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Theory of elementary excitations in unstable Bose-Einstein condensates and the instability
of sonic horizons
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Like classical fluids, quantum gases may suffer from hydrodynamic instabilities. Our paper develops a
quantum version of the classical stability analysis in fluids, the Bogoliubov theory of elementary excitations in
unstable Bose-Einstein condensates. In unstable condensates the excitation modes have complex frequencies.
We derive the normalization conditions for unstable modes such that they can serve in a mode decomposition
of the noncondensed component. Furthermore, we develop approximative techniques to determine the spec-
trum and the mode functions. Finally, we apply our theory to sonic horizons—sonic black and white holes. For
sonic white holes the spectrum of unstable modes turns out to be intrinsically discrete, whereas black holes
may be stable.
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I. INTRODUCTION

Instabilities may haunt classical as well as quantum flu
For example, classical supersonic flows can trigger sh
waves@1,2# or moving obstacles in Bose-Einstein conde
sates@3# can shed vortex pairs@4#. In fact, a dynamical in-
stability is at the heart of vortex nucleation in rotating co
densates@5#. In classical fluid mechanics@2# the stability of a
solution of the equations of motion is treated using stabi
analysis. Assuming a small perturbation of the solution,
equations are linearized in the perturbation and the eigen
ues of the linearized problem decide the fate of the solut
Complex eigenfrequencies with positive imaginary parts
dicate instabilities. In the theory of quantum fluids such
Bose-Einstein condensates@3# the equations of motion ar
linearized around the mean field to find the elementary e
tations. The ground state of the condensate is, almos
definition, stable, yet macroscopic flows of condensed ato
may develop instabilities. Here it is important to understa
how to test for dynamical instabilities and how unstable flu
tuations evolve.

In this paper we elaborate a theory of elementary exc
tions in unstable Bose-Einstein condensates. Our work is
marily inspired by recent proposals@6–10# for generating
analogs of black holes using trans-sonic condensates, bu
theoretical concepts and tools may certainly find applicati
in other situations as well@11#. Surprisingly, little systematic
work has been published on elementary excitations in
stable condensates, to the best of our knowledge, despit
fundamental nature of the subject. Inspired by the treatm
of instabilities in quantum fields@12#, Garayet al. studied a
quantum theory of instabilities in Bose-Einstein condensa
in an appendix@7# and in a brief book contribution@8#.
Yurovsky@13# developed an alternative theory of instabiliti
in quantum fluids. Section II of our paper elaborates on th
ideas, starting from the basic concepts of elementary exc
tions in dilute quantum gases@14#. We put forward an eco-
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nomic notation that allows us to derive the theory with
little technical effort as possible. Section III addresses t
important approximative methods to describe unstable e
tations analytically. We present a brief summary of the f
quently applied acoustic approximation and develop a v
sion of the WKB approximation that can be extended
complex frequencies and complex variables. In Sec. IV
apply all the developed concepts and techniques to the an
sis of sonic horizons, demonstrating so their problem-solv
potential.

II. ELEMENTARY EXCITATIONS

A. Fluctuation field

Consider a stationary Bose-Einstein condensate of at
with short-range repulsive interactions. Following Fetter@14#

we describe the dynamics of the bosonic atom fieldĉ(t,x)
using the grand-canonical Hamiltonian

Ĥ2mN̂5E ĉ†S 2
\2¹2

2m
1U2m1

1

2
gĉ†ĉ D ĉd3x.

~2.1!

HereN̂ abbreviates the total number of particles,*ĉ†ĉ d3x,
a conserved quantity, andm denotes a constant, the chemic
potential.@Because of particle-number conservation, both
Hamiltonian Ĥ and the grand-canonical Hamiltonian~2.1!
are equivalent.# We assume that most of the atoms constit
a Bose-Einstein condensate with macroscopic wave func

c05Ar0 eiS0, ~2.2!

such that the deviations ofĉ from the mean fieldc0 form a
quantum fieldf̂ of small fluctuations,

ĉ5c01eiS0f̂. ~2.3!
©2003 The American Physical Society02-1
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We expand the grand-canonical Hamiltonian~2.1! up to
quadratic order inf̂, and get

Ĥ2mN̂5Ĥ01Ĥ11Ĥ2 ,

Ĥ05E c0* S 2
\2¹2

2m
1U2m1

1

2
gr0Dc0d3x,

Ĥ15E f̂†S 2
\2¹2

2m
1U2m1gr0Dc0d3x1H.c.,

Ĥ25E @f̂†~T1U2m!f̂1 1
2 gr0~4f̂†f̂1f̂†21f̂2!#d3x,

~2.4!

with the kinetic term

T5
m

2 S \¹

im
1uD 2

~2.5!

and the condensate flow

u5
\

m
¹S0 . ~2.6!

HereĤ0 describes the energy of the condensate. The Ha
tonianĤ1 would displace the mean value of the fluctuation
when acting onf̂, unless we impose the stationary Gros
Pitaevskii equation

S 2
\2¹2

2m
1U2m2guc0u2Dc050, ~2.7!

which minimizes also the HamiltonianĤ0 such that

Ĥ052
1

2E mc2r0d3x. ~2.8!

Here, and throughout this paper,c denotes the local speed o
sound, defined by

mc25gr0 . ~2.9!

The quadratic HamiltonianĤ2 generates the equations
motion of the fluctuation fieldf̂ ~Bogoliubov–de Gennes
equations!. We found it advantageous to deviate from t
traditional notation of condensate fluctuations@3# and to
combinef̂ and f̂† in one spinor field

ŵ5S f̂

f̂†D . ~2.10!

Our spinor representation serves as a convenient short
notation, which does not refer to the spin of the atoms
course. In terms of this Bogoliubov spinorŵ the fluctuation
field evolves as

i\] tŵ5Bŵ,
03360
il-
,
-

nd
f

B5~T1U2m12mc2!sz1 imc2sy ,

T5
m

2 S \“

im
1uszD 2

, ~2.11!

where T describes the kinetic energy of the fluctuation
Throughout this paper we use the Pauli matrices in th
standard representation

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D .

~2.12!

The Bogoliubov–de Gennes equation~2.11! is non-
Hermitian, because of the anti-Hermitian spinor-mixing te
imc2sy . Therefore, the spectrum of elementary excitatio
is not necessarily real. Dynamical instabilities may emer
Finally, as a consequence of Eqs.~2.11!, we find

Ĥ25
i\

2 E @f̂†~] tf̂ !2~] tf̂
†!f̂#d3x, ~2.13!

an expression that we need in the mode expansion of
HamiltonianĤ2.

B. Mode expansion

As in standard field theories, we expand the Bogoliub
spinor ŵ into modes. First we note thatŵ is invariant under
the conjugation

w̄̂[sxŵ
†. ~2.14!

Consequently,ŵ must have the mode structure

ŵ5(
n

~wnân1w̄nân
†!. ~2.15!

The spinorwn comprises Bogoliubov’s familiarun and vn

modes@3#,

wn5S un

vn
D , ~2.16!

and w̄n denotes the conjugated Bogoliubov spinor,

w̄n5sxwn* 5S vn*

un*
D , ~2.17!

such that@3#

f̂5(
n

~unân1vn* ân
†!. ~2.18!

The mode functionswn are subject to the Bogoliubov–d
Gennes equation

i\] twn5Bwn ~2.19!

that implies
2-2
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i\] tw̄n5Bw̄n . ~2.20!

In a field theory, modes are orthonormal with respect to
invariant scalar product (w1 ,w2) with

] t~w1 ,w2!50, ~2.21!

in order to guarantee that theân and ân
† are annihilation and

creation operators. Such a scalar product is

~w1 ,w2!5E w1
†szw2d3x, ~2.22!

wherew† abbreviatesw* T. This scalar product is time in
variant, because

B†sz5szB. ~2.23!

The ân andân
† are Bose annihilation and creation operators

we require that

~wn ,wn8!5E ~un* un82vn8
* vn!d3x5dnn8 ,

~w̄n ,wn8!5E ~vnun82unvn8!d
3x50.

~2.24!

So far, the mode expansion~2.15! is fairly general. Now
consider single-frequency modes,

i ] twn5Vnwn . ~2.25!

We obtain from the invariance~2.21! of the scalar produc
~2.22!,

05 i ] t~w1 ,w2!5~V2* 2V1!~w1 ,w2!. ~2.26!

Consequently, single-frequency modes are only normaliza
when their frequenciesVn are realvn @14#. In this case we
obtain the well-known mode expansion of the Hamiltoni
Ĥ2 @14# in terms of independent harmonic oscillators,

Ĥ25(
n

\vnS ân
†ân2E uvnu2d3xD . ~2.27!

Single-frequency Bogoliubov spinors with complexV, indi-
cating instabilities, have zero norm. However, this fact do
of course not prohibit the existence of instabilities. It on
means that we must not directly employ such spinors
modes.

C. Unstable condensates

Suppose that the frequency of a Bogoliubov spinorw is
complex,

V5v1 ig. ~2.28!
03360
n
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Because the Bogoliubov–de Gennes equation~2.19! is non-
Hermitian, each eigenfrequency corresponds to a left an
right eigenfunction, here denoted byw1 and wl , respec-
tively,

Bw15\V w1 , wl
†B5\V wl

† . ~2.29!

As a consequence of the property~2.23! we find

B~szwl !5szB
†wl5\V* ~szwl !. ~2.30!

Therefore,szwl is the Bogoliubov spinor with the comple
conjugated eigenfrequency ofw1 . Complex frequencies o
elementary excitations occur in conjugated pairs, reflect
the Hermiticity of the grand-canonical Hamiltonian~2.1!.
The spinor conjugatew̄1 corresponds trivially to the fre-
quency2V* , whereas the frequency2V is associated with
the spinor

w2[szwl . ~2.31!

Consider the scalar product of the modes with6Vn frequen-
cies that are labeled by the subscripts6n,

05 i ] t~w̄2n ,w1n8!5~2Vn1Vn8!~w̄2n ,w1n8!.
~2.32!

Consequently, we can require

~w̄2n ,w1n8!5dnn8 ~2.33!

by choosing the appropriate overlap between the left
right eigenstates ofB. In Sec. IV we use this orthogonalit
condition to find the unstable elementary excitation of
sonic horizon.

Single-frequency Bogoliubov spinors with complexV
must not represent modesper se, yet nothing prevents us
from combining two or more of such spinors to form no
stationary modes. A simple choice is

W6n[
1

A2
~w6n6w̄7n!5S U6n

V6n
D , ~2.34!

satisfying the relations

~W6n ,W6n8!5dnn8 ,~W6n ,W7n8!50 ,

~W̄6n ,W6n8!50, ~W̄6n ,W7n8!50. ~2.35!

Therefore, theW6n are perfectly suitable as Bogoliubo
modes. We expand the fluctuation fieldf̂ in terms of the
U6 , V6 modes,

f̂5(
n

f̂n ,

f̂n5U1nâ1n1V1n* â1n
† 1U2nâ2n1V2n* â2n

† . ~2.36!

We obtain from Eqs.~2.25! and ~2.28!
2-3
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i ] tU6n56vnU6n2 ignV7n* ,

i ] tV6n56vnV6n2 ignU7n* , ~2.37!

and, consequently,

i ] tf̂n5~vnâ1n2 ignâ2n
† !U1n2~vnâ1n

† 1 ignâ2n!V1n*

2~vnâ2n1 ignâ1n
† !U2n1~vnâ2n

† 2 ignâ1n!V2n* .

~2.38!

We insert this result and the expansion~2.36! into formula
~2.13!, use the orthonormality relations~2.35!, and get

Ĥ25\(
n

vnF â1n
† â1n2â2n

† â2n2E ~ uV1nu22uV2nu2!d3xG
1\(

n
ignF â1nâ2n2â1n

† â2n
†

1E ~U1nV2n2U1n* V2n* !d3xG . ~2.39!

Due to the instability of the condensate, pairs of element
excitations are spontaneously generated at the ratesgn , and
so the noncondensed part grows at the expense of the
densate. Of course, the HamiltonianĤ2 describes the correc
dynamics only for short times, as long as the growing ex
tations are still small compared with the condensate. Furt
more, the backaction of the noncondensed part onto the
densate ought to be taken into account, affecting the gro
ratesgn and the frequenciesvn . The instability causes the
condensate to dissolve. Nevertheless, the atoms may s
afterwards to constitute a new condensate with a stable m
roscopic wave function, as happens in vortex nucleation@5#.

III. APPROXIMATIVE METHODS

A. Acoustic approximation

Frequently, approximative methods provide the tools
find analytic results that capture the essential physics of
ementary excitations. The best known example is the exc
tion spectrum of a condensate in a harmonic trap@15#. Here
the excitations of the condensate have been calculate
hydrodynamic or, as we would prefer to call it, acoustic a
proximation.~Elementary excitations are sound waves with
the validity of the approximation.! Furthermore, sound
waves in moving Bose-Einstein condensates propagate in
same way as massless waves in a sufficiently large clas
curved space-time structures@6–8,16#. In Sec. IV we use this
connection to analyze the instabilities of a sonic horizon.

Let us briefly summarize the main aspects of the acou
approximation. Given a solution ~2.16! of the
Bogoliubov–de Gennes equation~2.19!, the function

c5c01eiS0~u1v* ! ~3.1!

solves the time-dependent Gross-Pitaevskii equation,
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i\] tc5S 2
\2¹2

2m
1U2guc0u2Dc, ~3.2!

as long asu andv are small. We representc in terms of the
particle densityr and the phaseS,

c5Ar eiS, r5r01rs , S5S01s. ~3.3!

Neglecting the quantum potential\2(¹2Ar)/(2mAr)in the
Gross-Pitaevskii equation~3.2!, we recover the equation o
continuity and the Bernoulli equation,

] tr1“•S r
\

m
“SD50, ~3.4!

\] tS1
\2

2m
~“S!21gr1U50. ~3.5!

Assuming thatr0 andS0 satisfy Eq.~3.4! and linearizing in
rs ands gives

] trs52“•S rsu1r0

\

m
“sD , ~3.6!

rs52
\r0

mc2
~] t1u•“ !s, ~3.7!

wherec denotes the speed of sound~2.9! andu describes the
flow (\/m)¹S0. Substituting the expression forrs produces
the wave equation for sound in irrotational fluids@16,17#

]m f mn]ns50,

f mn5
r0

c2 S 1 u

u 2c211u^ uD ,

]n5~] t ,“ !, ~3.8!

the central argument in the analogy between sound in m
ing media and waves in general relativity@8,16#. Here we
have used a relativistic notation withm and n referring to
space-time coordinates~not to the chemical potential o
course!.

To see howrs ands are related to the Bogoliubov spino
we comparec2 of Eqs.~3.1! and~3.3! to linear order inrs ,
s, u, andv, and get

u1v* 5Ar0S rs

2r0
1 isD . ~3.9!

Consider a single-frequency sound wave where

s5se2 iVt1s* e1 iV* t. ~3.10!

We assume that the corresponding Bogoliubov componenu
andv oscillate with the frequencyV. Equation~3.9! deter-
mines the spatial part of the Bogoliubov modes. We find
result
2-4
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u5Ar0S \

2mc2
~2 iV1u•“ !11D ise2 iVt,

v5Ar0S \

2mc2
~2 iV1u•“ !21D ise2 iVt ~3.11!

by decomposing Eq.~3.9! into positive- and negative
frequency components.

B. WKB approximation

Another important approximative method to analyze
ementary excitations is the WKB approximation@18#, the
equivalent of semiclassical wave mechanics or geometr
optics~geometrical acoustics!. Frequently, the important fea
tures of waves are determined by the turning points of r
on the complex plane or by branch points of the momentu
Here we develop a modification of the WKB approximati
for elementary excitations@18# that can be analytically con
tinued to complex variables and complex frequencies.

We assume an effectively one-dimensional model w
spatial coordinatez and flowu. We express the Bogoliubo
spinor as

w5~w01\w11••• !expF i

\
S E p dz2EtD G ~3.12!

in terms of the semiclassical momentump and the energyE.
We insert the ansatz~3.12! into the Bogoliubov–de Genne
equation~2.19! and expand the result into powers in\. In
zeroth order we obtain

B0w05Ew0 ,

B05S 1

2m
~p11musz!

21~U2m12mc2! Dsz1 imc2sy .

~3.13!

The determinant ofB02E1 vanishes whenp satisfies the
Hamilton-Jacobi equation

S p2

2m
1E0D 2

2~E2up!25m2c4 ~3.14!

with

E05U1
m

2
u22m12mc2. ~3.15!

The componentsu0 and v0 of the envelopew0 are linearly
dependent, becausew0 is an eigenstate ofB0. We get

v05hu0 ,

h52
1

mc2 S E01
p2

2m
1up2ED . ~3.16!

Before we proceed, let us see how the Hamilton-Jac
equation is related to the acoustic approximation. The hyd
03360
-

al

s
.

h

bi
o-

dynamic model~3.4! presumes small local variations in th
density and in the flow such that we can describe the c
densate locally. Let us assume that the chemical potentiam
corresponds reasonably accurately to the local energy of
condensate,mc21U1(m/2)u2, such that

E05mc2. ~3.17!

Then, for upu!mc, i.e., for sound with wavelengths muc
larger than the healing length\/(A2mc) @3#, we get the
dispersion relation of sound in moving media

~E2up!25c2p2. ~3.18!

Additionally, in the relationship~3.16! between the envelope
components we ignore thep2/(2m) term within the acoustic
approximation. We get

h5211
E2up

mc2
5216

p

mc
, ~3.19!

which represents the linearized Bernoulli equation~3.7! ex-
pressed in terms~3.9! of the Bogoliubov-spinor components

To first order in\ we obtain from the Bogoliubov–de
Gennes equation~2.19! and from the ansatz~3.12!

05B1w01sz~B02E1!w1 ,

B15
1

2im
@~2p]z1p8!11m~2u]z1u8!sz#.

~3.20!

For complex frequencies or complexz values the matrix
sz(B02E1) is symmetric but not necessarily Hermitia
Sincew0 is the eigenvector ofsz(B02E1) with zero eigen-
value, B1w0 must be orthogonal onw0 with respect to the
scalar productw1

Tw2. Note that this scalar product does n
involve complex conjugation. We find

05w0
TB1w0

5
1

2im
]z@~u0

21v0
2!p1m~u0

22v0
2!u#, ~3.21!

which gives the continuity relation

]z~u0
22v0

2!v50 ~3.22!

with the velocity

v5
11h2

12h2

p

m
1u5

]H

]p
~3.23!

in terms of the semiclassical Hamiltonian

E5H5up6AS p2

2m
1E0D 2

2m2c4. ~3.24!

The continuity relation~3.22! shows how the spinor ampli
tudes are connected on the complex plane. For real ene
and real coordinates (uu0u22uv0u2)v is exactly conserved
2-5
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LEONHARDT, KISS, AND ÖHBERG PHYSICAL REVIEW A67, 033602 ~2003!
describing a stationary quasiparticle flux@18#. In this case
our result agrees with (uu0u22uv0u2)v, apart from an arbi-
trary phase. On the other hand, for complex energies or c
plex coordinates (u0

22v0
2)v does not correspond to an exa

conservation law in general, but still remains a const
within the validity of the WKB approximation. The advan
tage of our result is that it can be analytically continued su
that

u0
22v0

25
A0

v
, ~3.25!

with a constantA0 as long asz does not reach the vicinity o
a turning point or crosses a Stokes line in the complex pl
@19#.

C. Turning points

At a turning point the velocityv vanishes and, conse
quently,u0

22v0
2 diverges such that the WKB approximatio

is no longer valid in its vicinity. Turning points are the or
gins of Stokes lines where the WKB solutions are disc
tinuously connected@19#.

Assume that the condensate is nearly uniform aroun
turning point such that the speed of sound is approxima
constant and that the locality condition~3.17! is satisfied. In
this case the turning point does not lie at the edge of
condensate, as it is the case for oscillations in harmonic t
@15#. Let us find out whether and where such turning poi
exist. Our conditions imply that the momentump depends on
z only through the flowu(z). Let us turn matters around an
regardz as a function ofu andu as a function ofp. We get
from the expression~3.24! of the quasiclassical Hamiltonia

v5
]H

]p
5u1

]

]p
~E2up!52p

]u

]p
. ~3.26!

The definition~3.16! of h and the Hamilton-Jacobi equatio
~3.14! with the condition~3.17! implies the relation

p2

m2c2
52

~11h!2

h
. ~3.27!

We substitute this result forp2 in Eq. ~3.16!, solve forup,
and get

u5
mc2

p S «2
h221

2h D ~3.28!

with

«5
E

mc2
. ~3.29!

We differentiate Eq.~3.28! with respect to the momentump,
utilize relation~3.27! and its momentum derivative, and a
rive at

]u

]p
5

11~322«!h1~312«!h21h3

2m~h21!~h11!2
. ~3.30!

The turning points correspond to the zerosh0 of the numera-
03360
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tor. We note that« is naturally a small number, because t
energy of the elementary excitation ought to be much sma
than the condensate’s energy~2.8!. We expandh0 in powers
of «1/3,

h05x01x1«1/31x2«2/31x3«3/31•••, ~3.31!

and find the coefficients

x0521, x15A3 24, x25
2

x1
, x352

2

3
. ~3.32!

Close to a turning point the flow profile depends quadra
cally on the momentum

u2u05
~p2p0!2

b
, b215

1

2

]2u

]p2U
0

. ~3.33!

This relation shows that a turning point is a branch point
the semiclassical momentump and it also specifies the onse
of Stokes lines@19#, defined as the lines where the diffe
ences between the phases*p dz/\ of the twop branches is
purely imaginary. Here one of the waves is exponentia
small compared with the other. Crossing a Stokes line c
nects waves in a discontinuous yet precisely defined w
@19#. We obtain the coefficients from Eqs.~3.27! and~3.30!,
using the series~3.31!,

6
p0

mc
5x1«1/32

«

6
1•••,

6
]2u

]p2U
0

52
3

4
2

5

8x1
«2/32

«

4
1•••. ~3.34!

Finally, we determine the velocityu0 at a turning point from
Eq. ~3.28!. We find

6
u0

c
5211

3

2
A3 21S «

2D 2/3

1O~«4/3!. ~3.35!

HereA3 21 refers to the three cubic roots of21, generating
three turning points in the complex plane whenu approaches
c. In a mostly uniform condensate the turning points of
ementary excitation are close to trans-sonic regions wh
the condensate flow transcends the speed of sound. Su
region forms a sonic horizon.

IV. SONIC HORIZONS

A. Model

Consider a stationary trans-sonic medium, i.e., a med
with a spatially nonuniform flow that varies from subsonic
supersonic speed. One would expect that beyond the in
face where the flow exceedsc sound waves are swept awa
such that no sound from the supersonic zone can return to
subsonic region. This trans-sonic interface serves as
sonic equivalent of a black-hole horizon@6–8,16#. On the
other hand, the interface where the flow settles from sup
sonic to subsonic speed forms the horizon of a sonic w
hole @6–8#, an object that no sound wave can enter fro
2-6



tin
a

ro
n

n-
se
it
th

or
ur

w

e

th
t i
le

oi

b

ar

nt
s

to
cita-
the
tic
the

e

in
om-
on-

per-
tes

-
o

THEORY OF ELEMENTARY EXCITATIONS IN . . . PHYSICAL REVIEW A67, 033602 ~2003!
outside. Close to the horizons, sound waves propaga
against the current freeze, and their wavelengths are dram
cally reduced.

Trans-sonic Bose-Einstein condensates offer great p
pects@6–10# for demonstrating the quantum effects of eve
horizons@20,21#. Such effects and the stability of the co
densate depend on the behavior of the condensate clo
the horizons. Let us thus focus on the physics in the vicin
of a black- or white-hole horizon. In this case we can use
simple one-dimensional model

u52c1az. ~4.1!

Herez denotes the spatial coordinate orthogonal to the h
zon atz50, a characterizes the surface gravity or, in o
acoustic analog, the gradient of the trans-sonic flow, andr0
and c are assumed to be constant. Strictly speaking,
should complement the flow component~4.1! in the z direc-
tion by appropriate components in thex andy directions, in
order to obey the continuity of the flow. But as long as w
focus on effects on length scales smaller thanuc/au we can
ignore the other dimensions of the fluid. Depending on
sign of a, two cases emerge. When the velocity gradien
positive we are considering the horizon of a sonic black ho
Whena is negative the horizon refers to a white hole@6–8#.
In a typical alkali Bose-Einstein condensate without expl
tation of Feshbach resonances the speed of soundc is in the
order of 1 mm/s. The trans-sonic velocity gradient should
small compared with the healing length@3#

uauj!c, j5
\

mcA2
, ~4.2!

which guarantees that the Hawking energyk
B
T

H
is much

smaller than the energy of the condensate,

k
B
T

H
5

\uau
2p

!mc2. ~4.3!

Being in the vicinity of the horizon and having the line
velocity profile ~4.1! presumes that

uzu!U c

aU. ~4.4!

The energies of elementary excitations should be sufficie
smaller thanmc2, which implies that their dimensionles
energy parameter« defined in Eq.~3.29! is small. The exci-
tations are sound waves for low wave numbers and forz far
away from the turning points,

uzu@uz0u, z05
3c

2a
A3 21S «

2D 2/3

. ~4.5!

Given the linear velocity profile~4.1!, we solve the wave
equation~3.8! exactly, and get

s5s0~ iziV/ae2 iVt2 iz2 iV* /aeiV* t!. ~4.6!

We use the relationship~3.11! to find the Bogoliubov spinor
within the acoustic approximation,
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w5AS V

2az
1

mc

\

V

2az
2

mc

\

D ziV/ae2 iVt, ~4.7!

where

A52s0

\Ar0

mc
. ~4.8!

The approximation~4.7! is restricted to complexz variables
outside the transacoustic region indicated in Fig. 1. Close
the transacoustic zone the wavelength of elementary ex
tions is dramatically reduced. In this regime we can use
WKB approximation. In the region where both the acous
and the WKB approximations are applicable we represent
Bogoliubov spinor as

w5S u0

v0
D expS i E k dz2 iVt D ~4.9!

with the wave number

k;
V

az
. ~4.10!

If the acoustic approximation were universally valid th

FIG. 1. Analytic structure of a sonic horizon in a Bose-Einste
condensate. The figure shows the three turning points in the c
plex z plane around the horizon at the origin. The points are c
nected by two branch cuts where the wave numberk of acoustic
elementary excitations is elevated to other solutions of the dis
sion relation. The circle around the turning points roughly indica
the place wherek approaches the asymptoticsV/(az) that is char-
acteristic of waves at a horizon@21#. The third branch cut, connect
ing one of the turning points to infinity, is the cut between the tw
transacoustic branches with the asymptotics~4.11!.
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FIG. 2. Wave numbersk of elementary excitations around a sonic white-hole horizon, analytically continued on the complexz plane. The
figure shows three roots of the dispersion relation@\2k2/(2m)1mc2#22\2@V2(2c1az)k#25m2c4 for V50.1i (mc2/\) and a5
20.5(mc2/\). The branch cuts ofk are chosen according to Fig. 1. The top row displays the wave number of a sound wave that pro
against the current. The asymptotic behaviorV/(az) is clearly visible. The two lower rows display two transacoustic branches ofk. The
fourth root of the dispersion relation is not shown, because it corresponds to the trivial case of sound waves that propagate with
n
rin
o

ee
ee

sa-
the
ave

a-
wave numberk would approach a singularity at the horizo
where, consequently, the wavelength of sound would sh
beyond the scale of the healing length. The acoustic the
predicts its own demise@22#. In the regime beyond the
acoustic approximation, the singularity is split into thr
branch points, the turning points. The branch cuts betw
03360
k
ry

n

the points connect the acoustic branch to two other tran
coustic branches with wave numbers so high that
branches do not represent sound waves subject to the w
equation~3.8!. We solve the Hamilton-Jacobi equation~3.14!
in the uVu!uuku limit and get the asymptotics for the trans
coustic branches@23#,
2-8
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k;62
mc

\
Au2/c2211

Vu

c22u2
. ~4.11!

Figure 2 illustrates the momentak of the three branches in
the complexz plane. Finally, we note that the fourth solutio
of the Hamilton-Jacobi equation~3.14! corresponds to soun
waves that are swept away by the current, a less interes
case.

B. Stokes phenomenon

It is tempting to assume that we could employ the aco
tic asymptoticsV/(az) of the wave numberk on the entire
complexz plane, as long asz is sufficiently far away from
the turning points at the horizon. In this case, however,
phase*k dz becomes logarithmic and hence multivalue
whereas the true Bogoliubov mode function is single valu
The Stokes phenomenon@19# resolves this conflict by con
necting the acoustic modes to transacoustic ones on the
per or the lower half plane, giving rise to connection form
las @23# that describe mode conversion@24#, i.e., scattering.
At each turning pointz0 two branches of WKB wave num
bersk coincide, as we see from Eq.~3.33!. In other words,
the k branch is undetermined here, and hence two branc
can be converted into each other. The mode conversion
curs near the Stokes lines in the complexz plane@19#. Stokes
lines originate from the turning points and are defined as
lines where the phase difference between the two conne
branches is purely imaginary. We obtain from Eqs.~3.33!
and ~4.1!

E ~p2p0!dz;
2ab

3
~z2z0!3/2 ~4.12!

FIG. 3. Stokes lines of elementary excitations at a sonic w
hole with purely imaginary frequencies~dotted lines!. The pairs of
letters indicate which branches of the superposition~4.11! are con-
nected by the lines. The first letter of each pair identifies the ex
nentially dominant branch.
03360
ng
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ed

close to the turning pointsz0. The initial phase difference
is purely imaginary at three lines. Consequently, each turn
point is the origin of three Stokes lines. At a Stokes li
one of the WKB waves exponentially exceeds the ot
such that the smaller cannot be resolved within the W
approximation, if the larger wave is present. In general,
Bogoliubov spinor is a superposition of the four fundamen
solutions that correspond to the four branches of the W
wave numbers.

w5c
A
w

A
1c

B
w

B
1c

C
w

C
1c

D
w

D
. ~4.13!

When crossing a Stokes line, the exponentially suppres
solution may gain an additional component that is prop
tional to the coefficient of the exponentially enhanced so
tion. If we wish to construct a Bogoliubov spinor where on
the exponentially smaller component exits in the vicinity o
Stokes line we must put the coefficient of the larger one
zero. Figure 3 shows the Stokes lines of Bogoliubov mo
at a sonic white hole with purely imaginary frequency, a ca
of importance in Sec. IV C. The pairs of letters indica
which branches are connected by the lines, and the first le
identifies the exponentially dominant branch. The pictu
shows that with the choice of branch cuts made we can c
struct a Bogoliubov mode that is acoustic on the lower h
plane, by demanding thatc

C
vanishes at theC,A Stokes line

of the lowest turning point and thatc
B

is zero on the lower

half plane. Sincec
D

is not connected to the other thre
branches we can put the coefficient to zero throughout
complex plane. Such a strategy is not possible for a so
black hole, see Fig. 4, because here the order of expo
tially dominant or suppressed waves is exchanged. Mo
over, we cannot find a solution that is purely acoustic on
upper half plane, because of the branch cut between the
tral and the highest turning point in Fig. 4. We can, of cour
alter the arrangements of branch cuts, such that the cut

e

-

FIG. 4. Stokes lines of elementary excitations at a sonic bl
hole with purely imaginary frequencies analogous to Fig.3.
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tween the two transacoustic branchesB andC points in other
directions. Choosing different branch cuts does determin
which half plane the excitation wave may be acoustic, wh
has profound consequences, because it determines how
amplitudes and the phases on the two real sides of the h
zon are connected to each other. Here thezV/a term in the
Bogoliubov spinor~4.7! attains the factore2pV/a on the up-
per andepV/a on the lower half plane. The fate of the mod
is decided by small features beyond the WKB approxim
tion. This extra degree of freedom reflects the key prope
of an event horizon—to cut space into two disconnected
gions @10#. On the other hand, the choice of the branch c
does not influence whether the acoustic behavior~4.7! is pos-
sible at all on either the upper or the lower half plane. The
fore, at a sonic white hole unstable elementary excitati
exist that obey the acoustic asymptotics~4.7! on one of the
complex half planes, whereas the unstable modes of b
holes, if any, are always transacoustic.

C. Instabilities

Consider the unstable elementary excitations of a so
white hole, assuming the acoustic asymptotics~4.7! with
complex frequenciesv1 ig to be valid on one of the com
plex half planes. Excitations~4.7! with negativeg are local-
ized near the horizon and are attenuated in time, whe
acoustic excitations with positiveg would grow in both
space and time. Elementary excitations are small pertu
tions of the condensate, they may grow when tim
progresses, but they ought to be small in space. There
the truly unstable modes of the white-hole horizon a
transacoustic. Nevertheless, we can use the propertie
the attenuated modes to determine the spectrum of
stable modes, because of the spectral symmetry of
Bogoliubov–de Gennes equations proven in Sec. II C.

Bogoliubov excitations with complex frequencies ha
zero norm, see Eq.~2.26!, and they should satisfy the o
thogonality relation~2.33!. First we calculate the scalar prod
uct of two Bogoliubov spinors (w1 ,w2) at timet50, to find
a condition for zero norm. We assume that the scalar prod
~2.22! is dominated by the acoustic region whereuz0u!uzu
!uc/au,

~w1 ,w2!5E w1
†szw2dz

;uAu2
mc

\ S E
2`

0

1E
0

1` D 2v

az
z(v1* 2v2)/adz

5uAu2
mc

\
~2e62pv/a11!

3E
0

`2v

az
expS i

v1* 2v2

a
ln zDdz. ~4.14!

Here we have connected the two acoustic regions on
upper or lower half plane, respectively, indicated by the6
sign, circumventing the transacoustic region close to the
rizon atz50. The scalar product vanishes if
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v50. ~4.15!

Therefore, within the validity range of our approximation
the unstable elementary excitations have purely imagin
frequenciesg. Let us examine the orthogonality conditio
~2.33!. We representg as

g52na, ~4.16!

and we deform the integration contour such that it circu
vents the transacoustic zone from below on a large se
circle with radiusr,

~w̄2n ,w1n8!5E ~v2nu1n82u2nv1n8!dz

;A2nA1n8

mc

\ E 2n12n8

iz
z2(n2n8)dz,

5A2nA1n8

mc

\
~2n12n8!r 2(n2n8)

3E
p

2p

e2i (n2n8)udu. ~4.17!

The scalar product (w̄2n ,w1n8) vanishes fornÞn8 if the n
are integers. The spectrum of unstable elementary excitat
consists of discrete and equally spaced points on the im
nary frequency axis.

An interesting proposal for a sonic hole@6–8# involves a
toroidal condensate that flows through a constriction wher
exceeds the speed of sound and that then, after the con
tion, settles to subsonic speed. Garayet al. @6–8# found that
the condensate is unstable only in narrow ‘‘instability fi
gers’’ in the parameter space used. Our analysis indicates
the instabilities are generated when the excitations of
toroidal condensate match the discrete imaginary resona
of the white hole. This would explain the narrowness of t
instability fingers@6–8#. Such instabilities are enhanced b
the ‘‘lasing’’ effect of the black-hole–white-hole pair@24#.
The white hole generates a hydrodynamic instability tha
resonantly enhanced by the pair of horizons where elem
tary excitations can bounce back and forth. Sonic black ho
can be stabilized by employing the equivalent of a La
nozzle@1,9# that converts a subsonic flow to a supersonic o
without causing turbulence~as in a rocket engine!. Our
theory indicates that white holes are intrinsically unsta
@25#, generating breakdown shocks@1#.

V. SUMMARY

Unstable Bose-Einstein condensates develop elemen
excitations with complex frequencies. Such excitations h
zero norm and are subject to orthogonality relations betw
pairs of excitations with opposite frequencies. We elabora
the general theory of unstable elementary excitations an
two important approximate methods to analyze their beh
ior, the acoustic and the WKB approximations. Applyin
these techniques, we showed that sonic white holes in B
Einstein condensates give rise to a discrete spectrum o
2-10
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stabilities, which may explain the remarkable stability
sonic holes in toroidal traps@6–8#.
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