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Like classical fluids, quantum gases may suffer from hydrodynamic instabilities. Our paper develops a
guantum version of the classical stability analysis in fluids, the Bogoliubov theory of elementary excitations in
unstable Bose-Einstein condensates. In unstable condensates the excitation modes have complex frequencies.
We derive the normalization conditions for unstable modes such that they can serve in a mode decomposition
of the noncondensed component. Furthermore, we develop approximative techniques to determine the spec-
trum and the mode functions. Finally, we apply our theory to sonic horizons—sonic black and white holes. For
sonic white holes the spectrum of unstable modes turns out to be intrinsically discrete, whereas black holes
may be stable.

DOI: 10.1103/PhysRevA.67.033602 PACS nuntber03.75.Kk, 04.70.Dy

[. INTRODUCTION nomic notation that allows us to derive the theory with as
little technical effort as possible. Section Ill addresses two
Instabilities may haunt classical as well as quantum fluidsimportant approximative methods to describe unstable exci-
For example, classical supersonic flows can trigger shockations analytically. We present a brief summary of the fre-
waves[1,2] or moving obstacles in Bose-Einstein conden-duently applied acoustic approximation and develop a ver-
Sates[3] can shed vortex pa”@] In fact, a dynamical in- sion of the WKB appI’OXimation that can be extended to
stability is at the heart of vortex nucleation in rotating con-complex frequencies and complex variables. In Sec. IV we
densate§5]. In classical fluid mechanidg] the stability of a  @PPly all the developed concepts and techniques to the analy-

solution of the equations of motion is treated using stabilityS!S ©f Sonic horizons, demonstrating so their problem-solving

analysis. Assuming a small perturbation of the solution, thé)Otem'al'
equations are linearized in the perturbation and the eigenval-
ues of the linearized problem decide the fate of the solution. Il. ELEMENTARY EXCITATIONS
Complex eigenfrequencies with positive imaginary parts in-
dicate instabilities. In the theory of quantum fluids such as ) ) ) )
Bose-Einstein condensaté3] the equations of motion are _Con5|der a stationary B_ose-Elnsteln conde_nsate of atoms
linearized around the mean field to find the elementary exciWith short-range repulsive interactions. Following Feftist]
tations. The ground state of the condensate is, almost b¥ye describe the dynamics of the bosonic atom fig{d, x)
definition, stable, yet macroscopic flows of condensed atomdsing the grand-canonical Hamiltonian
may develop instabilities. Here it is important to understand 202
S R . - Y

how to test for dynamical instabilities and how unstable fluc- H—uN= i ot
tuations evolve.

In this paper we elaborate a theory of elementary excita-
tions in unstable Bose-Einstein condensates. Our work is pri- . . o oaan
marily inspired by recent proposa[ﬁ_lo] for generating HereN abbreviates the total number of partlcléﬂfgbdsx,
analogs of black holes using trans-sonic condensates, but o@rconserved quantity, and denotes a constant, the chemical
theoretical concepts and tools may certainly find applicationgotential [Because of particle-number conservation, both the
in other situations as weflL1]. Surprisingly, little systematic HamiltonianH and the grand-canonical Hamiltonid@.1)
work has been published on elementary excitations in unare equivalenf.We assume that most of the atoms constitute
stable condensates, to the best of our knowledge, despite tkeBose-Einstein condensate with macroscopic wave function
fundamental nature of the subject. Inspired by the treatment
of instabilities in quantum 'fi'eld§12], Garayet a]. studied a o= 1/po €', (2.2)
guantum theory of instabilities in Bose-Einstein condensates
in an appendix[7] and in a brief book contributioh8].
Yurovsky[13] developed an alternative theory of instabilities
in quantum fluids. Section Il of our paper elaborates on thesg84an
ideas, starting from the basic concepts of elementary excita- ) o
tions in dilute quantum gas¢44]. We put forward an eco- = hy+e'Soph. (2.3

A. Fluctuation field

2m

1 .. \a
+U—,u+§gz//*z,/;)z/1d3x.
(2.1

such that the deviations @f from the mean fieldj, form a
tum fieldg of small fluctuations,
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We expand the grand-canonical Hamiltonighl) up to
quadratic order inp, and get

H_Mﬂzﬂo"‘ﬂl"_ﬂz,

ffwd—
WeE

A,= f [&T(THU— ) d+30po(40 b+ T2+ $2)]d,

%2V

2m

. 2
H

1 3
+U=ut 5900 Pod°X,

Yod3x+H.c.,

(2.9
with the kinetic term
T— IEAY 2 )
“2lim Y s
and the condensate flow
= h \Y 2.6
= VS, (2.6

HereH, describes the energy of the condensate. The Hamil-
tonianH; would displace the mean value of the fluctuations,
when acting ong, unless we impose the stationary Gross-

Pitaevskii equation

22
(— — +U_M_g|'//o|2)l//o=0, @7
which minimizes also the Hamiltonia, such that
~ 1
HO: - Ef mCZpOdSX (28)

Here, and throughout this paperdenotes the local speed of
sound, defined by

mc=gpo. 2.9

The quadratic Hamiltoniard, generates the equations of

motion of the fluctuation fieldfﬁ (Bogoliubov—de Gennes
equations We found it advantageous to deviate from the
traditional notation of condensate fluctuatiof® and to

combinefb and " in one spinor field

il

Our spinor representation serves as a convenient shorthal
notation, which does not refer to the spin of the atoms of

course. In terms of this Bogoliubov spingrthe fluctuation
field evolves as

¢

o= (2.10

|h(9t(,\p: B(’\pv
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B=(T+U—pu+2mc*)o,+imc’ay,

2

: (2.11

m

2

—— +uo,
m

where T describes the kinetic energy of the fluctuations.
Throughout this paper we use the Pauli matrices in their
standard representation

0 1 0 —i 1 0
71 o)l o) % o —1)
(2.12
The Bogoliubov—de Gennes equatio(®.11) is non-

Hermitian, because of the anti-Hermitian spinor-mixing term
imczay. Therefore, the spectrum of elementary excitations
is not necessarily real. Dynamical instabilities may emerge.
Finally, as a consequence of E¢2.11), we find

N | N PSRN N
H, 'ﬂ [6'(ad) = (adD)pld*, (213

an expression that we need in the mode expansion of the
HamiltonianH,.

B. Mode expansion

As in standard field theories, we expand the Bogoliubov
spinor ¢ into modes. First we note that is invariant under

the conjugation

o=y, (2.14
Consequentlyp must have the mode structure
o=2 (W,a,+W,a}). (2.19

The spinorw, comprises Bogoliubov’s familiau, andv,

modes[ 3],

(2.19

andv_v,, denotes the conjugated Bogoliubov spinor,

(2.17

such thaf 3]

d=2>, (u,a,+v*al). (2.19

EI'% mode functionsv, are subject to the Bogoliubov—-de
Gennes equation

ifhdw,=Bw, (2.19

that implies
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ihow.=BW. . (2.20  Because the Bogoliubov—de Gennes equati@9 is non-
e ! Hermitian, each eigenfrequency corresponds to a left and a
In a field theory, modes are orthonormal with respect to arfight eigenfunction, here denoted by, andw;, respec-
invariant scalar product; ,w,) with tively,

= To_ T
dy(wq,Wp) =0, (2.21) Bw,=AQw,, wB=2Qw. (2.29

) . ~t o As a consequence of the prope(B/23 we find
in order to guarantee that tteg, anda,, are annihilation and
creation operators. Such a scalar product is B(ow)=0,B'W,=2Q% (o,w)). (2.30

+ 3 Therefore,o,w, is the Bogoliubov spinor with the complex
(W1, Wp)= f W10 Wod°X, (222 conjugated eigenfrequency uf. . Complex frequencies of
elementary excitations occur in conjugated pairs, reflecting
wherew' abbreviatesv*T. This scalar product is time in- the Hermiticity of the grand-canonical Hamiltonid@.1).

variant, because The spinor conjugatev, corresponds trivially to the fre-
guency— Q*, whereas the frequency() is associated with
B'o,=0,B. (223 the spinor
Thea, anda’ are Bose annihilation and creation operators if W_=0,W,. (2.3D

we require that i )
Consider the scalar product of the modes witk),, frequen-

cies that are labeled by the subscrigts,
(W,,,W,,/):j (uru, —v%v,)d%=46,,, N -
0=1d(W_p ,Win)= (= Qp+ Q) (W ,Wepr).

B (2.32
y r)= r— ’ d3 :0 .
(W, Wy) J (V= U0, )X Consequently, we can require
(2.24
W_,,W ’ :5 ’ 23

So far, the mode expansiof2.15 is fairly general. Now (Wen W) = Onn 233
consider single-frequency modes, by choosing the appropriate overlap between the left and

) right eigenstates oB. In Sec. IV we use this orthogonality

10w, =Q,Ww,. (2.29 condition to find the unstable elementary excitation of a

. ) , sonic horizon.
We obtain from the invarianc€.21) of the scalar product Single-frequency Bogoliubov spinors with complex

(2.22, must not represent modgeer se yet nothing prevents us
_ from combining two or more of such spinors to form non-
0=idy(Wy,Wp)= (03 —Qq)(Wy,Wy). (2.26  stationary modes. A simple choice is
Consequently, single-frequency modes are only normalizable 1 — Usp
when their frequencie§ , are realw, [14]. In this case we W:nEE(W:niW:n)Z v. | (2.34
obtain the well-known mode expansion of the Hamiltonian =n
H, [14] in terms of independent harmonic oscillators, satisfying the relations
") ~ta +n» +n’ :5 Iy +ns *n') = ’
H,=> fo, aiay—j lv,|2d3x]. (2.2 Wen Wen) = Gnnrs(Ween, W) =0

Wen Wen)=0, (Win Wsn)=0.  (2.39
Single-frequency Bogoliubov spinors with compl@x indi-
cating instabilities, have zero norm. However, this fact doed herefore, the)V.., are perfectly suitable as Bogoliubov
of course not prohibit the existence of instabilities. It only modes. We expand the fluctuation fieid in terms of the
means that we must not directly employ such spinors ag{, , V. modes,

modes.
C. Unstable condensates ¢= ; .
Suppose that the frequency of a Bogoliubov spinois . R ~ . ~
complex, ¢n:u+na+n+Vi‘kna+n+ufnafn+wnafn' (2.39
Q=w+iy. (2.28 We obtain from Eqs(2.25 and(2.28

033602-3



LEONHARDT, KISS, AND CHBERG PHYSICAL REVIEW A67, 033602 (2003

10U n=* o Usn—1yVE,, h2v2
ST e o= - 5—+U=glol|s. (32
iatvtn:iwnvtn_i')’nu;ny (2.37
as long ass andv are small. We represept in terms of the
and, consequently, particle densityp and the phas&,
. 5 ~ . ~ ~ . ~ = iS =S5 + = + . .
'at¢n:(wna+n_|Vnain)u+n_(wnain+|7nafn)vtn v \/I—)e » P=Potps, S=SFS 33

Neglecting the quantum potentiaP(V2\p)/(2m+/p)in the
Gross-Pitaevskii equatio8.2), we recover the equation of
(2.38  continuity and the Bernoulli equation,

_(wna—n+i'}’naz—n)u—n"_(a)natn_i7na+n)th'

We insert this result and the expansi¢h36) into formula h
(2.13, use the orthonormality relatior{2.35), and get dp+ V| p-VS|=0, (3.4
N At A _at A 2_ 2y43 h?
Hz_h; Wpldip@ipn—a_pad_q f(lv+n| |V—n| )d X ﬁr?tS-i-ﬁ(VS)2+gp+U=O. (35)

+5> iy, a,,a_,—a.a, Assuming thafpy and S, satisfy Eq.(3.4) and linearizing in

n ps ands gives
_ 3 f

+f (UsnVon=UinV2)dX . 2-39 dps=—V- PsU+PoEVS), (3.6
Due to the instability of the condensate, pairs of elementary
excitations are spontaneously generated at the rgtesnd _ @

= ditu-V)s, 3.
so the noncondensed part grows at the expense of the con- Ps mc2( ! ) 3.9

densate. Of course, the Hamiltoniﬁ@ describes the correct

dynamics only for short times, as long as the growing exci-wherec denotes the speed of sou(@9) andu describes the
tations are still small compared with the condensate. Furtheflow (%/m)VS,. Substituting the expression fpg produces
more, the backaction of the noncondensed part onto the cot?e wave equation for sound in irrotational fluids,17]
densate ought to be taken into account, affecting the growth

ratesy, and the frequencies,. The instability causes the 9,#79,8=0,
condensate to dissolve. Nevertheless, the atoms may settle
afterwards to constitute a new condensate with a stable mac- fuv_ Po 1 u
roscopic wave function, as happens in vortex nucledtign “2lu —cfl+ueu)’
. APPROXIMATIVE METHODS d,=(;,V), (3.8

A. Acoustic approximation the central argument in the analogy between sound in mov-

Frequently, approximative methods provide the tools tdng media and waves in general relativit§,16]. Here we
find analytic results that capture the essential physics of elhave used a relativistic notation with and » referring to
ementary excitations. The best known example is the excitsspace-time coordinategot to the chemical potential of
tion spectrum of a condensate in a harmonic frefg. Here  course.
the excitations of the condensate have been calculated in To see howpg ands are related to the Bogoliubov spinor
hydrodynamic or, as we would prefer to call it, acoustic ap-we compare)? of Egs.(3.1) and(3.3) to linear order inps,
proximation.(Elementary excitations are sound waves withins, u, andv, and get
the validity of the approximatioh. Furthermore, sound
waves in moving Bose-Einstein condensates propagate in the . ( Ps .

. . u+v* =po| 5—+is
same way as massless waves in a sufficiently large class of 2po
curved space-time structurs—8,164. In Sec. IV we use this
connection to analyze the instabilities of a sonic horizon. Consider a single-frequency sound wave where

Let us briefly summarize the main aspects of the acoustic
approximation. Given a solution (2.16 of the s=ge My gretit (3.10
Bogoliubov—de Gennes equati¢2.19, the function

. (3.9

We assume that the corresponding Bogoliubov components

Y=o+ eSo(utov*) (3.)  andv oscillate with the frequenc§). Equation(3.9) deter-
mines the spatial part of the Bogoliubov modes. We find the
solves the time-dependent Gross-Pitaevskii equation, result
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h
u:%( 2mc2(

)io_eiﬂt

h
v= JE( 5 (3.11

mc?

by decomposing Eq.(3.9 into positive- and negative-
frequency components.

(—iQ+u-V)—1)iae—i“t

B. WKB approximation

Another important approximative method to analyze el-

ementary excitations is the WKB approximati¢hg], the

equivalent of semiclassical wave mechanics or geometric

optics(geometrical acousti¢sFrequently, the important fea-

tures of waves are determined by the turning points of rays
on the complex plane or by branch points of the momentum.
Here we develop a modification of the WKB approximation

for elementary excitationgl8] that can be analytically con-
tinued to complex variables and complex frequencies.

We assume an effectively one-dimensional model wit

spatial coordinate and flowu. We express the Bogoliubov
spinor as

w=(wo+ﬁw1+-~-)exp{fii—(f pdz—Et } (3.12

in terms of the semiclassical momentymand the energie.
We insert the ansat®.12) into the Bogoliubov—de Gennes
equation(2.19 and expand the result into powersn In
zeroth order we obtain

80W0: EWO y

Bo=| = (p1+ 2+ (U—p+2mc®) |o,+imc?
0=| 5= (PI+MUoy)*+ (U= p+2mc) o, +imcoy .
(3.13

The determinant oBy—EI vanishes wherp satisfies the
Hamilton-Jacobi equation

2

2
P _ _ 2_ 24
2erEo) (E—up)*=m-c (3.19
with
m
Eo=U+ —u?—u+2mc (3.15

2

The componentsi, anduvq of the envelopew, are linearly
dependent, because, is an eigenstate dB,. We get

Vo= MUo,

1 p?
n=— E0+ +up E (3.1
mae
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dynamic model3.4) presumes small local variations in the
density and in the flow such that we can describe the con-
densate locally. Let us assume that the chemical poteatial
corresponds reasonably accurately to the local energy of the
condensatemc®+ U + (m/2)u?, such that
Eo=mc2. (3.17

Then, for|p|<mc, i.e., for sound with wavelengths much
larger than the healing length/(y/2mc) [3], we get the
dispersion relation of sound in moving media

(3.18

Addltlonally, in the relationshig3.16) between the envelope

(E-up)*=c?p®.

acomponents we ignore the?/(2m) term within the acoustic

apprOX|mat|on We get

E—u
n=—1+ p=—1i£,
m

(3.19

rwhich represents the linearized Bernoulli equati8rv) ex-

pressed in term&3.9) of the Bogoliubov-spinor components.
To first order inf we obtain from the Bogoliubov—de
Gennes equatiof2.19 and from the ansat@3.12

O:B]_W0+ (TZ(BO_ El)Wl,

Bi==—[(2pd,+p’')1+m(2ud,+u’)a,].

2im

(3.20

For complex frequencies or complexvalues the matrix
o,(Bp—El) is symmetric but not necessarily Hermitian.
Sincewy is the eigenvector ofr,(By— E1) with zero eigen-
value, B;wy must be orthogonal ow, with respect to the
scalar producwlwz. Note that this scalar product does not
involve complex conjugation. We find

O:W-IO-B:LWO
=5im [ (ug+vd)p+m(ui—vd)ul, (3.21
which gives the continuity relation
I (ud—v3)v=0 (3.22
with the velocity
1+7% p oH
v_l—nza —% (3.23
in terms of the semiclassical Hamiltonian
\/ p2 2
=H=up+ —m2c?
E=H=up= 2m+E° m-c”. (3.29

The continuity relation3.22 shows how the spinor ampli-

Before we proceed, let us see how the Hamilton-Jacobiudes are connected on the complex plane. For real energies
equation is related to the acoustic approximation. The hydroand real coordinates|y|?—|vo|?)v is exactly conserved,
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describing a stationary quasiparticle flik8]. In this case tor. We note that is naturally a small number, because the
our result agrees with|(o|?>—|vo|?)v, apart from an arbi- energy of the elementary excitation ought to be much smaller
trary phase. On the other hand, for complex energies or conthan the condensate’s ener@8). We expandy, in powers
plex coordinateSL(g—vg)v does not correspond to an exact of £,
conservation law in general, but still remains a constant
within the validity of the WKB approximation. The advan-

tage of our result is that it can be analytically continued suchyq find the coefficients

that

7]0:X0+X181/3+ X282/3+ X383/3+ Ty (331)

2 2
A Xo=—1, X;=3—4, X,=—, Xs=——. (3.3
ug—vg=7°, (3.25 0 1 7%, %3 (332

. L Close to a turning point the flow profile depends quadrati-
with a constanf, as long agz does not reach the vicinity of cally on the momentum

a turning point or crosses a Stokes line in the complex plane
[19]. _(p—po)® 1 éu

, =-— . 3.3
C. Turning points 0 B 2 ap? o (333

At a turning point the velocityy vanishes and, conse-
quently,u3—v3 diverges such that the WKB approximation
is no longer valid in its vicinity. Turning points are the ori-
gins of Stokes lines where the WKB solutions are discon
tinuously connectef19].

Assume that the condensate is nearly uniform around
turning point such that the speed of sound is approximatel

This relation shows that a turning point is a branch point for
the semiclassical momentupnand it also specifies the onset
of Stokes lined19], defined as the lines where the differ-
ences between the phasgs dz# of the twop branches is
Qurely imaginary. Here one of the waves is exponentially
mall compared with the other. Crossing a Stokes line con-

; o : i i discontinuous yet precisely defined way
constant and that the locality conditid®.17) is satisfied. In ects waves na L y
this case the turning point does not lie at the edge of th«glg]' We obtain the coefficients from Eqs8.27) and(3.30,

condensate, as it is the case for oscillations in harmonic tragéSing the serie€3.31),

[15]. Let us find out whether and where such turning points Po 5 &
exist. Our conditions imply that the momentyndepends on iR=X181 —g+ ,
z only through the flonu(z). Let us turn matters around and
regardz as a function ofu andu as a function ofp. We get 5u 3 5 e
from the expressiofi3.24 of the quasiclassical Hamiltonian * | ==7" §82/3—Z+ . (3.39
Jd 1
_OH . d . _au - P"lo
v p ! ap( up)= p&p' (3.29 Finally, we determine the velocity, at a turning point from
o ) ) ~ EQ.(3.28. We find
The definition(3.16 of % and the Hamilton-Jacobi equation 3 -
i iti impli i u €
(3.14 with the condition(3.17) implies the relation i?o: 14 53{/_—1(5) +0(%), (3.39
p? _ (1+n)? 3.22
m2c2 n ' Here3/—1 refers to the three cubic roots ef1, generating

three turning points in the complex plane wheapproaches
We substitute this result fgp? in Eq. (3.16), solve forup, ¢. In a mostly uniform condensate the turning points of el-

and get ementary excitation are close to trans-sonic regions where
me 2_q the condensate flow transcends the speed of sound. Such a
u= _( _n ) (3.28 region forms a sonic horizon.
p 27
with IV. SONIC HORIZONS
E A. Model
€= me (3.29 Consider a stationary trans-sonic medium, i.e., a medium

with a spatially nonuniform flow that varies from subsonic to
We differentiate Eq(3.28 with respect to the momentupy ~ Supersonic speed. One would expect that beyond the inter-
utilize relation(3.27 and its momentum derivative, and ar- face where the flow exceedssound waves are swept away
rive at such that no sound from the supersonic zone can return to the
subsonic region. This trans-sonic interface serves as the
du _ 1+(3—2¢&)n+(3+2¢8) n°+ 7° sonic equivalent of a black-hole horizg6—8,16. On the
p 2m(7—1)(7+1)2 ) (3.30 othe_r hand, the _interface where the fIO\_/v settles frorr_1 super-
sonic to subsonic speed forms the horizon of a sonic white
The turning points correspond to the zengsof the numera-  hole [6—8], an object that no sound wave can enter from
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outside. Close to the horizons, sound waves propagating Im 2
against the current freeze, and their wavelengths are dramat
cally reduced.

Trans-sonic Bose-Einstein condensates offer great pros
pects[6—10] for demonstrating the quantum effects of event
horizons[20,21]. Such effects and the stability of the con-
densate depend on the behavior of the condensate close -
the horizons. Let us thus focus on the physics in the vicinity
of a black- or white-hole horizon. In this case we can use the
simple one-dimensional model

u=-—c+az (4.2

Herez denotes the spatial coordinate orthogonal to the hori-
zon atz=0, « characterizes the surface gravity or, in our
acoustic analog, the gradient of the trans-sonic flow, gnd
and c are assumed to be constant. Strictly speaking, we
should complement the flow componédntl) in the z direc-

tion by appropriate components in tkeandy directions, in
order to obey the continuity of the flow. But as long as we
focus on effects on length scales smaller thafer| we can
ignore the other dimensions of the fluid. Depending on the
sign of «, two cases emerge. When the velocity gradient is FIG. 1. Analytic structure of a sonic horizon in a Bose-Einstein
positive we are considering the horizon of a sonic black holecondensate. The figure shows the three turning points in the com-
Whene is negative the horizon refers to a white hfffe-8]. plex z plane around the horizon at the origin. The points are con-
In a typical alkali Bose-Einstein condensate without exploi-n€cted by two branch cuts where the wave numbef acoustic
tation of Feshbach resonances the speed of sotgidh the elementary excitations is elevated to other solutions of the disper-

order of 1 mm/s. The trans-sonic velocity gradient should peion relation. The circle around the turning points roughly indicates
small compared with the healing lendi] the place wherd approaches the asymptoti€d («z) that is char-
acteristic of waves at a horizq@1]. The third branch cut, connect-

i ing one of the turning points to infinity, is the cut between the two
|a|é<c, ¢&= m (4.2 transacoustic branches with the asymptoti€d1).
which guarantees that the Hawking enerIgE}TH is much Q mce
smaller than the energy of the condensate, w=A 2z h S 0/ag-iot @.7)
ar £ _me ’ '
KT= 5o <mc’. (4.3 20z h
Being in the vicinity of the horizon and having the linear where
velocity profile (4.1) presumes that A
A=—5s, \/%. (4.8

c mc
The approximation(4.7) is restricted to complex variables

The energies of elementary excitations should be sufficientPutside the transacoustic region indicated in Fig. 1. Close to
smaller thanmc?, which implies that their dimensionless he transacoustic zone the wavelength of elementary excita-

energy parameter defined in Eq(3.29 is small. The exci- tions is dramatically reduced. In this regime we can use the
tations are sound waves for low wave numbers andfar ~ "WKB approximation. In the region where both the acoustic
away from the turning points and the WKB approximations are applicable we represent the

Bogoliubov spinor as

303 € 2/3
12>z, Zozﬂm(§> ' 49 w=(u°)exp(if kdz—iQt) (4.9
Given the linear velocity profilg4.1), we solve the wave .
equation(3.8) exactly, and get with the wave number
s=sp(iz' Ve 17710 agiQ¥t) (4.6) k~%. (4.10
o

We use the relationshi8.11) to find the Bogoliubov spinor
within the acoustic approximation, If the acoustic approximation were universally valid the
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FIG. 2. Wave numberk of elementary excitations around a sonic white-hole horizon, analytically continued on the camplaer. The
figure shows three roots of the dispersion relatfdtk?/(2m)+mc?— 4 Q—(—c+ az)k]>=m?c* for Q=0.1i(mc/%) and a=
—0.5(mc%). The branch cuts df are chosen according to Fig. 1. The top row displays the wave number of a sound wave that propagates
against the current. The asymptotic beha\ibi( az) is clearly visible. The two lower rows display two transacoustic branchds ©the
fourth root of the dispersion relation is not shown, because it corresponds to the trivial case of sound waves that propagate with the flow.

wave numbek would approach a singularity at the horizon the points connect the acoustic branch to two other transa-
where, consequently, the wavelength of sound would shrinicoustic branches with wave numbers so high that the
beyond the scale of the healing length. The acoustic theorgranches do not represent sound waves subject to the wave
predicts its own demis¢22]. In the regime beyond the equation(3.8). We solve the Hamilton-Jacobi equatit14)
acoustic approximation, the singularity is split into threein the|Q|<|uk| limit and get the asymptotics for the transa-
branch points, the turning points. The branch cuts betweenoustic branchef23],
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FIG. 3. Stokes lines of elementary excitations at a sonic white FIG. 4. Stokes lines of elementary excitations at a sonic black
hole with purely imaginary frequenciédotted line$. The pairs of  hole with purely imaginary frequencies analogous to Fig.3.
letters indicate which branches of the superpositdl) are con-
nected by the lines. The first letter of each pair identifies the expoelose to the turning pointg,. The initial phase difference
nentially dominant branch. is purely imaginary at three lines. Consequently, each turning

point is the origin of three Stokes lines. At a Stokes line
u one of the WKB waves exponentially exceeds the other
L (4.11 such that the smaller cannot be resolved within the WKB
c—u approximation, if the larger wave is present. In general, the
Bogoliubov spinor is a superposition of the four fundamental

Figure 2 illustrates the momentaof the three branches in  sojutions that correspond to the four branches of the WKB
the complexz plane. Finally, we note that the fourth solution \yave numbers.

of the Hamilton-Jacobi equatiai3.14) corresponds to sound
waves that are swept away by the current, a less interesting wW=c,W, +C W +C W +C W, (4.13
case.

mc
k~i27 us/cc—1+

When crossing a Stokes line, the exponentially suppressed
solution may gain an additional component that is propor-
tional to the coefficient of the exponentially enhanced solu-

It is tempting to assume that we could employ the acoustion. If we wish to construct a Bogoliubov spinor where only
tic asymptotics(2/(«z) of the wave numbek on the entire  the exponentially smaller component exits in the vicinity of a
complexz plane, as long ag is sufficiently far away from  Stokes line we must put the coefficient of the larger one to
the turning points at the horizon. In this case, however, theero. Figure 3 shows the Stokes lines of Bogoliubov modes
phase [k dz becomes logarithmic and hence multivalued,at a sonic white hole with purely imaginary frequency, a case
whereas the true Bogoliubov mode function is single valuedof importance in Sec. IVC. The pairs of letters indicate
The Stokes phenomendf9] resolves this conflict by con- which branches are connected by the lines, and the first letter
necting the acoustic modes to transacoustic ones on the ujglentifies the exponentially dominant branch. The picture
per or the lower half plane, giving rise to connection formu-shows that with the choice of branch cuts made we can con-
las [23] that describe mode conversipp4], i.e., scattering.  struct a Bogoliubov mode that is acoustic on the lower half
At each turning poiniz, two branches of WKB wave num- plane, by demanding that vanishes at th€,A Stokes line

bersk coincide, as we see from E(8.33. In other words, f the Jowest turning point and that is zero on the lower
the k branch is undetermined here, and hence two branche:nsahc lane. Sincec is not connethed to the other three
can be converted into each other. The mode conversion oco Pane: D o

curs near the Stokes lines in the compteane[19]. Stokes branches we can put the coefficient to zero throughout the
lines originate from the turning points and are defined as th€0mMpléx plane. Such a strategy is not possible for a sonic
lines where the phase difference between the two connectdfaCk hole, see Fig. 4, because here the order of exponen-
branches is purely imaginary. We obtain from E¢3.33 tially dominant or suppressed waves is exchange_d. More-
and (4.1) over, we cannot find a solution that is purely acoustic on the

upper half plane, because of the branch cut between the cen-
4.12 tral and the highest turning point in Fig. 4. We can, of course,
' alter the arrangements of branch cuts, such that the cut be-

B. Stokes phenomenon

2
[ o-poraz- 5L (229
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tween the two transacoustic brancliseandC points in other w=0. (4.15
directions. Choosing different branch cuts does determine in

which half plane the excitation wave may be acoustic, whichTherefore, within the validity range of our approximations,
has profound consequences, because it determines how thfe unstable elementary excitations have purely imaginary
amplitudes and the phases on the two real sides of the horirequenciesy. Let us examine the orthogonality condition
zon are connected to each other. Here 286 term in the  (2.33. We represent as

Bogoliubov spinor(4.7) attains the factoe™ "¢ on the up-

per ande™ ¢ on the lower half plane. The fate of the mode y=2na, (4.16

is decided by small features beyond the WKB approxima- ) ) o

tion. This extra degree of freedom reflects the key propertnd We deform the integration contour such that it circum-
of an event horizon—to cut space into two disconnected reYe€Nts the transacoustic zone from below on a large semi-
gions[10]. On the other hand, the choice of the branch cut<ircle with radiusr,

does not influence whether the acoustic behaidof) is pos- o

sible at all on either the upper or the lower half plane. There-  (w_, ,w+n,)=f (V_pUip—U_pU4nr)dz

fore, at a sonic white hole unstable elementary excitations

exist that obey the acoustic asymptotids?) on one of the mc [ 2n+2n’
complex half planes, whereas the unstable modes of black NAanJrn'Tf

holes, if any, are always transacoustic.

: 22(=n")qz,
iz

_ mc p2(n—n')
C. Instabilities —A,nA+n/7(2n+2n "
Consider the unstable elementary excitations of a sonic 2m 2i(n—n')0
white hole, assuming the acoustic asymptotids?) with XJ e de. (4.1
complex frequencies +ivy to be valid on one of the com- "
plex half planes. Excitationgl.7) with negativey are local-

! - A The scalar productwW_,,w. ) vanishes fom#n’ if the n
ized near the horizon and are attenuated in time, where P W W)

i tati ith " Id i both e integers. The spectrum of unstable elementary excitations
acoustic excitations with posilive/ would grow in o consists of discrete and equally spaced points on the imagi-
space and time. Elementary excitations are small perturbeh—ary frequency axis

tions of theb ::?Qdensatﬁi tthgy ma}ﬁ _grow Wh_l?ﬁ tllrcne An interesting proposal for a sonic hdle—8| involves a
progresses, bul they ought to be small In space. Therelorg, ,iqa| condensate that flows through a constriction where it

the truly unstable modes of the white-hole horizon arey, eeqs the speed of sound and that then, after the constric-

transacoustic. Nevertheless, we can use the properties f5n. settles to subsonic speed. Gaeayal. [6—8] found that

the attenuated modes to determine the spectrum of UNhe condensate is unstable only in narrow “instability fin-

stable' modes, because of the spectral _symmetry of thSers” in the parameter space used. Our analysis indicates that
Bogollub_ov—de Ge_nn_es equations proven in Sec. _” C. the instabilities are generated when the excitations of the
Bogoliubov excitations with complex frequ_enmes havetoroidal condensate match the discrete imaginary resonances
ZEro norm, see Eq2.26, _and they should satisty the or- of the white hole. This would explain the narrowness of the
thogonality reIatl_or(2.33._F|rst we calcuIaFe the scalar _prod— instability fingers[6—8]. Such instabilities are enhanced by
uct of two Bogoliubov spinorswy,w,) attime7=0, to find 4,5 «a5ing” effect of the black-hole—white-hole paie4].
a condmon for Zero norm. We assume thgt the scalar IorOduGIthe white hole generates a hydrodynamic instability that is
(2.22) is dominated by the acoustic region wheg|<|z|  esonantly enhanced by the pair of horizons where elemen-
<|[clal, tary excitations can bounce back and forth. Sonic black holes
. can be stabilized by employing the equivalent of a Laval
(Wy,Wp)= f W10 Wodz nozzle[1,9] that converts a subsonic flow to a supersonic one
without causing turbulencéas in a rocket engine Our
A ,mc J'o +J+w 2w (oF —ap)lag theory indicates that white holes are intrinsically unstable
~[Al F) T | az” z [25], generating breakdown shocks|.

mc
:|A|27(_ei277w/a+1) V. SUMMARY

Unstable Bose-Einstein condensates develop elementary

*2m 0] —w; excitations with complex frequencies. Such excitations have

X o EGXP(I | Z) dz (4.14 zero norm and are subject to orthogonality relations between
pairs of excitations with opposite frequencies. We elaborated

the general theory of unstable elementary excitations and of

Here we have connected the two acoustic regions on the&vo important approximate methods to analyze their behav-

upper or lower half plane, respectively, indicated by the ior, the acoustic and the WKB approximations. Applying

sign, circumventing the transacoustic region close to the hothese techniques, we showed that sonic white holes in Bose-
rizon atz=0. The scalar product vanishes if Einstein condensates give rise to a discrete spectrum of in-
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