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Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring c

B. P. Anderson,1 K. Dholakia,2 and E. M. Wright1,2,*
1Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

2School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland, United King
~Received 12 September 2002; published 11 March 2003!

We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-
shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a
symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-
phase interference device~APHID!. The two-ring APHID is shown to be sensitive to rotation.
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I. INTRODUCTION

The last few years have witnessed magnificent advan
in the preparation, manipulation, and exploration of atom
Bose-Einstein condensates~BECs!. These quantum-
degenerate systems offer an excellent experimental platf
from which to study a multitude of nonlinear matter-wa
phenomena including four-wave mixing@1#, dark @2# and
bright @3# solitons, superfluid vortices@4#, and the generation
and study of quantized vortices on toroidal atomic traps
rings. In particular, ring-shaped BECs allow for the study
phenomena related to persistent currents and rotational
tion, with potential applications to rotation sensing. In th
paper, our goal is to take the first theoretical steps in study
Josephson coupling between adjacent ring BECs~as opposed
to concentric ring BECs that have been considered pr
ously @5#!. In particular, we investigate how quantum tunn
ing between two condensates trapped in adjacent toro
traps, formed, for example, using optical-dipole traps w
Laguerre-Gaussian light beams, modifies both the grou
state properties and quantum dynamics of the system.
two-ring BEC system is the simplest example of what
refer to as an atomic-phase interference device~APHID!,
essentially a neutral-atom analog of a superconducting q
tum interference device~SQUID!. The properties of the
APHID will be shown to be strongly influenced by the ind
vidual phases of the matter-waves in the rings.

The remainder of this paper is organized as follows: In
following section we elucidate the details of the model
use. Following this, we explore the properties of the grou
state and the first-excited state of the system. We then loo
the Josephson coupling and the time-dependent soluti
highlighting important considerations due to the effects
rotation, followed by concluding remarks.

II. BASIC MODEL

The basic model we consider is shown in Fig. 1~a! and
comprises two identical ring BECs labeledj 51, 2, which
are in close proximity, and the whole system is rotating at
angular frequencyvR around thez axis, which is pointing
out of the page. The close proximity of the rings allows f
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spatially dependent tunneling between them via mode o
lap, meaning that the rings are coupled, allowing Joseph
oscillations @6,7#. Each individual ring may be realize
physically, using a toroidal trap of high aspect ratioR
5L/,0, where L is the toroid circumference and,0 the
transverse oscillator length,,05A\/mv0, with v0 the fre-
quency of transverse oscillations, assumed to be harmo
The transverse trap potential is assumed to be symm
about an axis consisting of a circle on which the trap pot
tial is minimum. The longitudinal~circumferential! motion
on each ring can be described approximately by a o
dimensional~1D! coordinatexjP@2L/2,L/2# obtained by
unfolding the ring and applying periodic boundary cond
tions, as illustrated in Fig. 1~b!. Then, at zero temperature th
quantum dynamics of an atomic BEC moving on the pai
rings may be described by the following coupled Gro
Pitaevskii equations in a reference frame rotating atvR
@8–11#:

i\
]c j

]t
5\v0c j2

\2

2m

]2c j

]x2
2 i ~21! j

\vRL

2p

]c j

]x

1guc j u2c j1\V~x!c32 j , ~1!

FIG. 1. ~a! The basic model we consider comprises two identi
ring BECs labeledj 51,2 which are in close proximity and couple
via tunneling, and~b! shows the unfolded rings to which period
boundary conditions are applied. The rings come closest togeth
the originx50, where tunneling is represented by a dark oval. T
whole system rotates at an angular velocityvR about thez axis
pointing out of the page.
©2003 The American Physical Society01-1
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wherec j (x,t) is the macroscopic wave function for ringj
51, 2, with normalization condition

E
2L/2

L/2

dx@ uc1~x,t !u21uc2~x,t !u2#5N. ~2!

Here, N is the number of atoms of massm, g
54p\2a/(2p,0

2m)52\v0a.0 is the effective one-
dimensional nonlinear coefficient describing repulsive ma
body interactions,a being thes wave scattering length, an
V(x).0, which is chosen real and positive, is the spatia
dependent tunneling frequency between the two rings
writing Eqs. ~1! we have taken advantage of the fact th
although the atoms in each ring are described by differ
coordinatesxj 51,2, they can nonetheless be described
moving on the same domainxP@2L/2,L/2# with the caveat
that the atoms on each ring do not cross interact via me
field effects, and are only coupled via the spatially depend
tunneling.

The third term on the right-hand side of Eqs.~1! arises
from the rotation of the whole system at frequencyvR
around the z-axis. In particular, we have used the result@12#
that in the rotating frame of reference the Hamiltonian of
system is given byH85H2VW •LW 5H2vRLz , whereH is
the Hamiltonian of the nonrotating system,VW 5vRzW is the
angular velocity vector directed along thez axis, andLW is the
vector angular momentum operator of the atoms trapped
each ring. We may express the circumferential coordinax
around the ring as an angular variableu52px/L, in terms
of which thez component of the angular momentum opera
is Lz52 i\]/]u, so thatH85H1 i (\vRL/2p)]/]x. How-
ever, inspection of Figs. 1~a! and 1~b! shows that atoms cir
culating from x52L/2→L/2 along ring j 51 are going
counterclockwise, whereas atoms circulating fromx52L/2
→L/2 along ringj 52 are going clockwise. This means th
although we write the equations using a common spatial
ordinatex5(u/2p)LP@2L/2,L/2#, propagation in a givenx
direction corresponds to opposite senses of rotation
different rings. This is why the third term in Eqs.~1!,
2 i (21) j (\vRL/2p)]c j /]x, describing the rotation of the
whole system, has a ring-dependent sign (21) j .

With reference to Fig. 1~a! we see, for example, that fo
an atom moving clockwise from a given reference point
ring j 51, then tunneling over to ringj 52 and moving
counterclockwise, and finally tunneling back after orbiti
ring j 52 to ring j 51 to the original starting point, the atom
crosses the tunneling region twice. In this sense the cou
atomic rings are analogous to a symmetric SQUID@6#, in
which two superconducting rings are connected by a w
link, which has been employed as a magnetometer@13#. The
two-ring system, then, is the simplest version of an APH
and we concentrate on the two-ring case in this pape
explore the basic properties of the APHIDs.

The tunneling frequencyVmax5V(x50) will be at its
maximum at the point of closest approach of the rings, wh
we choose atx50, and will decrease with separation,
equivalently asx varies away form the origin. Typically, th
tunneling frequency decays exponentially with ring sepa
03360
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tion. Thus,V(x) will generically be a bell-shaped functio
of x, and the spatial extent of the Josephson coupling will
much less than the size of ringL. Clearly, for smaller rings
with tighter curvature,V(x) will drop off faster away from
the peak. In the limitV(x)50, Eqs.~1! reduce to the ap-
proximate one-dimensional form previously used to descr
atomic BECs on a toroid@9–11#.

The conservedN-particle energy functional for the
coupled Gross-Pitaevskii equation~1! is

E5N\v01E
0

L

dxF \2

2m S U]c1

]x U2

1U]c2

]x U2D
1 i

\vRL

2p S c2*
]c1

]x
2c1*

]c2

]x D1
g

2
~ uc1u41uc2u4!

1\V~x!~c1c2* 1c1* c2!G , ~3!

giving the energy per particlee5E/N. Since in this paper
the transverse confinement energy\v0 is assumed the sam
for both the rings and simply redefines the zero of energy,
hereafter drop this energy term for simplicity in notation.

III. GROUND AND FIRST-EXCITED STATES

In this section we examine the properties of the grou
and first-excited states of a nonrotating (vR50) pair of
coupled ring BECs, using a simple model to expose the m
features.

A. Zero-coupling limit

It is useful in assessing the ground-state properties to c
sider the noncoupled case withV(x)50. If all N atoms are
homogeneously distributed on just one of the rings, withc j

5AN/L andc32 j50, then according to Eq.~3! the energy
per particle is e trap5gn/2, where n5N/L is the linear
atomic density. In contrast, when the atoms are equally s
between the two rings, but still homogeneously distribu
on each ring,uc j u5AN/2L, and the energy per particle is

e1/25
gn

4
, ~4!

irrespective of the relative phase between the macrosc
wave functions of the two rings. Energetically speaking th
in the absence of coupling the lowest-energy state is tha
which the atoms are equally split between the rings, as
minimizes the mean-field energy.

B. Coupled solutions

To proceed we now reintroduce the coupling and look
solutions where the atoms are equally split between
rings. In particular, we consider solutions where the mac
scopic wave functions of the two rings are in phase (1) and
out of phase (2) by making the ansatz
1-2
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c j~x,t !5
~61! j

A2
e2 im6t/\w6~x!, j 51,2, ~5!

with w6(x) the mode profiles on each ring andm6 the cor-
responding chemical potentials. Then substituting in Eqs.~1!
we obtain

m6w652
\2

2m

d2w6

dx2
1

g

2
uw6u2w66\V~x!w6 , ~6!

and*dxuw6(x)u25N. On general grounds, the out-of-pha
(2) solution corresponds to the ground state. This can
seen from Eq.~6! where the spatially dependent couplin
V(x).0, which is typically bell-shaped, plays the role of
confining ~deconfining! potential for the out-of-phase~in-
phase! solution, thereby allowing for lower energy in com
parison to the case without coupling.

In the limit V50, Eq. ~6! also has the well-known dar
soliton solution@14–19# on the infinite domainL→`,

w6~x!5w0~x!5An tanhS ~x1x0!

A2xh
D , ~7!

with m05gn/2, wheren is the linear density of the back
ground ~in the thermodynamic limit, whereN→` and L
→`, N/L→n remains nonzero!. The healing lengthxh is
derived from the relation

\2

2mxh
2

5
gn

2
. ~8!

The dark soliton solution represents a flat background d
sity profile with a hole of widthxh!L located atx52x0, at
which a phase jump ofp also occurs asw0 goes through
zero. In the thermodynamic limit the energy per particle
sociated with the dark soliton solution calculated using E
~3! is e05ng/45e1/2, that is, it is the same as that in Eq.~4!
for a homogeneous density on each ring without coupli
This arises because in the thermodynamic limitxh /L→0,
meaning that any energy increase due to the hole in the
sity makes a negligible effect on average; in other words,
hole in the density occupies a vanishingly small portion
the ring.

C. Analytic approximation

In general, numerical methods are required to solve
~6! for the given parameters and tunneling profileV(x). In
order to obtain insight into the ground-state properties,
employ a simple model

V~x!5Vmaxdd~x!, ~9!

whereVmax is the maximum tunneling frequency andd is
the length of the tunneling region. Thisd-function approxi-
mation will apply whend is much less than any other cha
acteristic length scale of the problem, namely, ring lengtL
and healing lengthxh . For the stationary coupled-ring solu
tions described by Eq.~6!, whereV(x) plays the role of a
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single-particle potential, thed function approximation yields
a quantum-contact interaction@20#. Substituting Eq.~9! in
Eq. ~6! and integrating fromx502 to x501 across the
junction, we find that the action of thed function coupling is
equivalent to a condition on the macroscopic wave funct
derivative

\2

2m S dw6

dx U
x501

2
dw6

dx U
x502

D 56\Vmaxdw6~0!.

~10!

In the limit L@xh@d, we further impose the condition tha
w6(x) is symmetric aroundx50 in order to satisfy the pe
riodic ring boundary conditions, and we approximate

w6~x!'An tanhS x1x6

A2xh
D , x.0. ~11!

With this approximation there is a cusp inw6(x) at x50,
and the solution is extended tox,0 by imposing reflection
symmetry around the origin. We can solve for the variab
x6 by substituting the approximate solution~11! in the
boundary condition~10!, which yields

6\Vmaxd5S \2

mA2xh
D @12tanh2~x6 /A2xh!#

tanh~x6 /A2xh!
. ~12!

SinceVmax.0 we find by inspection that the in-phase sol
tions correspond tox1.0 and the out-of-phase solutions
x2,0. By introducing a dimensionless parameterz
5x1 /A2xh , with z.0 andz5x2 /A2xh , with z,0, and
using Eq.~8! for the healing length, we may write the abov
equation as

\Vmaxd

g
5A n

2ns

@12tanh2~z!#

tanh~ uzu!
, ~13!

wherens5mg/\2 is a scaled density. Figure 2 shows a p

FIG. 2. Plot of z vs \Vmaxd/g for n/ns5104, with z
5x1 /A2xh , z.0, andz5x2 /A2xh , z,0.
1-3
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ANDERSON, DHOLAKIA, AND WRIGHT PHYSICAL REVIEW A 67, 033601 ~2003!
of z versus the scaled tunneling frequency\Vmaxd/g for
n/ns5104. Figure 3 shows examples of scaled density p
files uw6u2/n for \Vmaxd/g595,z50.5 ~solid lines!,
\Vmaxd/g56.3,z52 ~dashed lines! and~a! the out-of-phase
or ground-state solution, and~b! the in-phase solution. Den
sity cusps in the solutions are evident, though we note
the ground-state density does not extend down to zero.
key features of the ground state are that as the scaled tu
ing frequency\Vmaxd/g is increased the depth of the de
sity profile increases, the density at the origin going to z
as \Vmaxd/g→`, and the width of the density hole als
increases, approachingxh as \Vmaxd/g→`. The in-phase
solution is different in that it displays two density zeros a
an on-axis maximum, that is, a cusp, as shown in Fig. 3~b!.
Furthermore, inspection of the in-phase solution shows
its sign reverses through each density zero, and there are
sign reversals around each ring to ensure that the wave f
tions are single valued. The in-phase solution, therefore,
a phase structure like a pair of dark solitons on each ring.
smaller values\Vmaxd/g, the density zeros are spatial

FIG. 3. Scaled density profilesuw6u2/n for n/ns5104,
\Vmaxd/g595,z50.5 ~solid lines!, \Vmaxd/g56.3,z52 ~dashed
lines!: ~a! the out-of-phase or ground-state solution and~b! the in-
phase solution.
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separated@dashed line in Fig. 3~b! for \Vmaxd/g56.3,z
52], but come together at the origin as\Vmaxd/g→`
@solid line in Fig. 3~b! for \Vmaxd/g595,z50.5]. Thus, for
both the in-phase and out-of-phase solutions the density
ishes at the origin as\Vmaxd/g→`, and we have

w6~x!'An tanhS x

A2xh
D . ~14!

A quantity of physical interest here is the energy per p
ticle e6 for the two solutions. Using the above approxima
solution in the energy functional~3! we find in the thermo-
dynamic limit

e65
ng

4
6\Vmaxdn tanh2~ uzu!, ~15!

where the solution is again parametrized byz. Note that in
the limit of zero couplingVmax→0, the energies per particl
of the two solutions become the same and equal to that of
equally split solutione1/25ng/4 as they should. Using Eq
~13! in Eq. ~15! we obtain finally

e65e1/2S 16A8n

ns
tanh~ uzu!@12tanh2~z!# D , ~16!

which is once again parametrized byz. Figure 4 shows
e6 /e1/2 versus\Vmaxd/g for n/ns510, the upper solid line
corresponding to the in-phase (1) solution and the lower
solid line to the out-of-phase (2) or ground state solution
For small values of the scaled tunneling frequen
\Vmaxd/g,1, the energy per particle for the in-phase~out-
of-phase! solution initially increases~decreases! away from
e1/2 for zero-coupling, and this is expected physically. Ho
ever, as the scaled tunneling frequency is increased fur
the energy per particle for the in-phase~out-of-phase! solu-
tion reaches a turning point at\Vmaxd/g'2, then decrease

FIG. 4. Scaled energy per particlee6 /e1/2 vs \Vmaxd/g for
n/ns510, the upper solid line corresponding to the in-phase (1)
solution and the lower solid line corresponding to the out-of-ph
(2) or ground-state solution.
1-4
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ATOMIC-PHASE INTERFERENCE DEVICES BASED ON . . . PHYSICAL REVIEW A67, 033601 ~2003!
~increases!, and bothe6 tend back to the zero-coupling valu
e1/2 for \Vmaxd/g→`. The reason for this is that, as di
cussed above, for both solutions the density tends to zer
the origin x50 where the junction is concentrated in th
limit \Vmaxd/g→`, so the Josephson coupling is render
inoperative and the energy per particle tends to that for z
coupling.

IV. TIME-DEPENDENT SOLUTIONS

A. Scaled equations

For purposes of numerical simulations we introduce
simple Gaussian model for the spatially dependent Josep
coupling

V~x!5Vmaxe
2x2/w2

5Vmaxd f~x!, ~17!

with Vmax the maximum tunneling frequency andw!L the
width of the coupling region aroundx50. We also introduce
the normalized Gaussianf (x)5exp(2x2/w2)/Apw2 for
which d5Apw2 so that effective parameters can be co
pared with that of the preceding section. Then introduc
the scaled variables

t5t~ng/\!, j5x/L, c j5Anf j , ~18!

with n5N/L the mean density as before, we obtain withj
51,2,

i
]f j

]t
52

b

2

]2f j

]j2
2 i ~21! j S n

2p D ]f j

]j

1uf j u2f j1he2j2/D2
f32 j , ~19!

where*dj@ uf1u21uf2u2#51 and

D5
w

L
!1, h5

\Vmax

ng
, n5

\vR

ng
, b5

n/ns

N2
.

~20!

These are the scaled equations used for our numerical s
We have solved the equations numerically using the sp
step fast-Fourier transform method@21#.

To study the quantum dynamics of the coupled-ri
BECs, we shall use an initial condition att50, where allN
atoms are on one ring in a vortex state of winding numbep.
This may be realized, for example, by condensing the ato
on one ring in the absence of the other, stirring the BEC
create the vortex@22#, and then turning on the second rin
Saueret al. @23# have demonstrated a 2-cm diameter ma
netic storage ring for laser-cooled, and Arnold and Riis@24#
have worked towards realizing a 10-cm diameter magn
cally trapped toroidal BEC. One scheme for turning rings
and on is to use toroidal optical dipole traps@25# formed by
Laguerre-Gaussian beams piercing a two-dimensional B
to create the rings@5,26,27#, or alternatively using scanne
laser beams to form the toroidal traps@28#. Cavity field en-
03360
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hancement may also be used to allow for large-radius to
dal traps@29#. Regardless of experimental method, the init
condition we take is

f1~j,0!5e2p ipj, f250. ~21!

B. Resonance conditions

To proceed we examine the resonance conditions lea
to the initial exchange of atoms from ring 1→2, using first-
order perturbation theory. For the initial condition~21! we
choose the zeroth-order solution as that forn50,

f1
(0)~j,t!5e2p ipje2 i (2p2bp22pn11)t. ~22!

Then writing the first-order solution for ring 2 in the form

f2
(1)~j,t!5 (

q52`

`

aq~t!e2p iqje2 i (2p2bq21qn)t ~23!

yields

uaq~t!u254h2F pq
2 sin2~xpqt/2!

xpq
2

, ~24!

where

Fpq5ApDe2p2D2(p2q)2
,

xpq52p2b~p22q2!2n~p1q!11. ~25!

The vortex statesq of ring 2 are therefore excited and ge
erally exhibit small oscillations except at the resonan
wherexpq becomes small. The level of excitation of theqth
vortex state is also dictated by the factorFpq , but since we
assume a narrow junction,w/L5D!1, this factor allows for
almost constant excitation,Fpq'ApD, in the rangeq5p
6dq with

dq5
1

pD
@1. ~26!

Consider first the case that the system is not rotatingn
50: Resonance occurs for that integer value ofqr for which
xpq is equal to or closest to zero:

qr
25p21

1

2p2b
, ~27!

the width of the resonance being

Dq'
1

2p2~p1qr !b
. ~28!

When the width of the resonance is small,Dq,1, the initial
vortex of indexp in ring 1 will selectively couple to vortices
with mode indicesqr satisfying Eq.~27! in ring 2, giving rise
to a few relatively simple mode dynamics. In contrast, wh
Dq@1 the initial vortex of indexp in ring 2 will couple to a
1-5
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ANDERSON, DHOLAKIA, AND WRIGHT PHYSICAL REVIEW A 67, 033601 ~2003!
broad range of vortices with mode indicesqr6Dq in ring 2,
giving rise to multimode dynamics and complex behavior.
addition, for Josephson oscillations to occur the tunnel
energy per particle averaged over the ring len
(1/L)*dx\V(x)5\VmaxApw/L should be of the same or-
der as the mean-field energy per particleng, or

h5
\Vmax

ng
;

1

ApD
. ~29!

This gives an estimate of the scaled tunneling frequencyh to
obtain Josephson oscillations.

C. Numerical results

Here we present some examples of the dynamics of
coupled-ring BECs. For all the simulations we setp50,D
51022, andh550. Consider first that the initial state co
responds to the ground state (p50) of ring 1. From Eqs.
~27! and ~28! we obtain

qr5A 1

2p2b
5Dq, ~30!

that is, the width of the resonanceDq is equal to the resonan
valueq5qr . Figure 5~a! shows the fraction of atoms in eac
ring for b51 for which qr5Dq50.22, and complete Jo
sephson oscillations between the two rings are evident
this case the density profiles in the two rings are largely
as resonant coupling occurs between the individual mode
each ring withp50,qr'0. In contrast, forb55.131022,
as shown in Fig. 5~b! for which qr5Dq51, the Josephson
oscillations are now incomplete. Physically, there are m
tiple spatial modes involved in ringj 52 with q50,61,
62, and the resulting multimode dynamics is what frustra
the Josephson oscillations forDq>1. The multimode dy-
namics manifests itself as spatial density modulations in
two rings as shown in Fig. 6~a!, for the same parameters as
Fig. 5~b! and t510. For even lower densityb55.131024

for which qr5Dq510, the Josephson oscillations are all b
extinguished, and the spatial density profiles in ringsj 51,2
are shown in Fig. 6~b! for t510. We remark that the rapid
spatial oscillations in Fig. 6~b! are not numerical noise, an
the calculation is well resolved numerically and is reprod
ible; rather, the density modulations are the signature tha
dynamics now involves many spatial modes withq50,61,
62, . . . . Inparticular, the multimode nature of the solutio
allows the coupling due to tunneling to concentrate arou
the coupling region, that is, only atoms in the immedia
vicinity of the coupling region participate in tunneling, hen
reducing the maximum fraction of atoms that can be tra
ferred between the rings. This is illustrated in Fig. 6~b! where
the density in ring 2~bold line!, and hence the coupling t
ring 2, is concentrated around the origin and is close to z
away from the coupling region.

Some estimates of parameters are in order. Usingg
52\v0a gives ng52\v0N(a/L), and Vmax
52hv0N(a/L). Then for v052p3102 rad s21,N5103,L
03360
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51 cm, a55 nm, we findVmax52p35 rad s21, andt is
time in units of\/ng51.6 s, so the Josephson oscillations
Fig. 5~a! occur on a time scale of seconds. Settingm
510225 kg we obtainns5mg/\2'63 cm21, and for n
5N/L5103 cm21,b51.631025. It is important thatn/ns
.1 to ensure that the one-dimensional gas acts as a BE
opposed to a Tonks gas@30,31#. The parameterb
5(n/ns)/N

2 is proportional to 1/v0 and 1/N, so we can
increaseb by decreasing either the number of atoms and
the transverse oscillator frequency with respect to the ab
values.

D. Effects of rotation

An interesting feature of the two-ring APHID is that th
condition xpq52p2b(p22q2)2n(p1q)11→0 for reso-
nant coupling between the rings is dependent on the sc
rotation raten5\vR /ng. In particular we find, forp50,

qr5
1

4p2b
@2n6An218p2b#. ~31!

This implies that for scaled rotation ratesunu;A8p2b the
rotation of the entire APHID will affect the coupling. Con

FIG. 5. Fraction of atoms in each ring forD51022,h550: ~a!
b51,Dq50.22 and~b! b55.131022,Dq51.
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sider then a case where without rotationDq@1 so that the
Josephson oscillations are all but extinguished and the at
remain on ring 1. Then as the scaled rotation raten is in-
creased from zero, inspection shows that one solutionqr in
Eq. ~31! moves towards resonance, while the other mo
further away. Therefore, starting from a detuned case w
minimal coupling, increased rotation leads to increased c
pling, which can then be detected via the number of ato
on ring 2 at a fixed-detection time. Physically, the tunn
coupled rings are an example of coupled nonlinear osc
tors, and it is well-known that the coupling between nonl
ear oscillators is dependent upon any asymmetries betw
them that causes an energy mismatch between the oscilla
Equations~1! show that rotation of the whole system at
angular frequencyvR affects the two rings differently, and
this introduces an energy or phase mismatch between the
rings that can inhibit or enhance the coupling. For the i
tially detuned case considered here the rotation partially
stores the coupling, and this manifests itself as a chang
the number of coupled atoms in ring 2 due to the rotatio

Figure 7 shows the percentage of the atoms in ring

FIG. 6. ~a! Spatial density in ringj 51 ~thin line! and j 52 ~bold
line! for the same parameters as Fig. 5~b! with t510, b55.1
31022, andDq51; ~b! spatial density in ringj 51 ~thin line! and
j 52 ~bold line! for b55.131024,Dq510 for t510, and on the
rangexP@20.2L,0.2L# so that the density profiles can be resolve
03360
s
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versus scaled rotation raten at time t510 andD50.01,h
550,b55.131024, for which qr5Dq510, and the effect
of rotation-dependent coupling between the rings is clea
exhibited ~the numerical data points are shown as circle!.
Some points are worth making here: First, the rotation cau
the number of atoms in ring 2 to change by about 10% of
total number of atoms, so experimentally it will be necess
to control the initial number of atoms on ring 1 to better th
this percentage. Furthermore, it would be a challenge to
tect the small number of atoms in ring 2. Second, for o
particular example withp50, the number of atoms in ring 2
is sensitive to the magnitude but not the sign of the rotati
but this can be changed by havingpÞ0 in which case the
coupling becomes sensitive to the sign ofn. Third, the sen-
sitivity of the atom number to the rotation rate increases w
the observation timet chosen, remembering that we are in
far-off-resonant situation, so coupling happens slowly.
nally, the number of atoms in ring 2 is not necessarily
monotonic function of the rotation rate, as seen from Fig
which will limit the range of rotation rates that can b
uniquely measured. Nonetheless, we feel this is an inter
ing phenomena that may have utility for rotation sens
with further development.

To gain some sense of the sensitivity of this scheme
use the same parameters as the preceding section for wht
is the time in units of\/ng51.6 s. Then a value ofn
50.01 corresponds to a rotation ratevR52nv0N(a/L)
52p31023 rad s21, which is 100 times higher than th
Earth’s rotation rate at the poles. However, if we are willi
to reduce the transverse oscillator frequency tov052p
31 rad s21, thenn50.01 corresponds to the Earth’s rotatio
rate, but then the time is in units of 160 s in the figures! W
are currently working on schemes involving multiple-rin
APHIDs to enhance the rotation sensitivity.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented a theoretical investiga
of a pair of ring BECs coupled by tunneling as the simpl

.

FIG. 7. Percentage of atoms in ringj 52 as a function of scaled
rotation raten5\vR /ng. The numerical data points are shown
circles and the solid line is included as an aid to the eye.
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example of a potential APHID. We have shown that the tw
ring APHID has interesting ground-state properties, w
density profiles reminiscent of dark soliton states around
point of contact of the rings. Furthermore, we have dem
strated that Josephson oscillations between the two rings
occur, and that these oscillations are sensitive to the sta
rotation of the APHID. In particular, if all the atoms ar
prepared on one ring, then the number of atoms transfe
to the second ring in a given time span is a measure of
rotation rate of the APHID. Although the two-ring APHID
was found to be not very rotation sensitive, we belie
APHIDs are worthy of further study as multiring APHID
v.

03360
-

e
-
an
of

ed
e

e

will display enhanced sensitivity to the relative phase b
tween the rings, hence potentially leading to increased r
tion sensitivity. We shall be exploring multiring APHIDs i
future research.
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