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Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case
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We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-
shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a
symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-
phase interference devi¢APHID). The two-ring APHID is shown to be sensitive to rotation.
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[. INTRODUCTION spatially dependent tunneling between them via mode over-
lap, meaning that the rings are coupled, allowing Josephson

The last few years have witnessed magnificent advancesscillations [6,7]. Each individual ring may be realized
in the preparation, manipulation, and exploration of atomicphysically, using a toroidal trap of high aspect rafd
Bose-Einstein condensate§BECS. These quantum- =L/{, wherel is the toroid circumference ané, the
degenerate systems offer an excellent experimental platfortnansverse oscillator lengtiy= yA/mwg, with wg the fre-
from which to study a multitude of nonlinear matter-wave quency of transverse oscillations, assumed to be harmonic.
phenomena including four-wave mixind], dark [2] and  The transverse trap potential is assumed to be symmetric
bright[3] solitons, superfluid vorticggl], and the generation about an axis consisting of a circle on which the trap poten-
and study of quantized vortices on toroidal atomic traps otial is minimum. The longitudinalcircumferential motion
rings. In particular, ring-shaped BECs allow for the study ofon each ring can be described approximately by a one-
phenomena related to persistent currents and rotational metimensional(1D) coordinatex; e[ —L/2,L/2] obtained by
tion, with potential applications to rotation sensing. In thisunfolding the ring and applying periodic boundary condi-
paper, our goal is to take the first theoretical steps in studyingons, as illustrated in Fig.(b). Then, at zero temperature the
Josephson coupling between adjacent ring BEESsopposed quantum dynamics of an atomic BEC moving on the paired
to concentric ring BECs that have been considered previrings may be described by the following coupled Gross-
ously[5]). In particular, we investigate how quantum tunnel- Pitaevskii equations in a reference frame rotatingwat
ing between two condensates trapped in adjacent toroid@8—11]:
traps, formed, for example, using optical-dipole traps with
Laguerre-Gaussian light beams, modifies both the ground-
state properties and quantum dynamics of the system. The
two-ring BEC system is the simplest example of what we
refer to as an atomic-phase interference deisEBHID),
essentially a neutral-atom analog of a superconducting quan- +| ¢i|2¢1 TR P3-j @
tum interference devicdSQUID). The properties of the
APHID will be shown to be strongly influenced by the indi-
vidual phases of the matter-waves in the rings.

The remainder of this paper is organized as follows: In the
following section we elucidate the details of the model we
use. Following this, we explore the properties of the ground
state and the first-excited state of the system. We then look at
the Josephson coupling and the time-dependent solutions,
highlighting important considerations due to the effects of
rotation, followed by concluding remarks.
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II. BASIC MODEL

The basic model we consider is shown in Figa)land

COMPriSes two |c_Jer_1t|caI ring BECs Iabelgzdc}, 2, W_h'Ch FIG. 1. (a) The basic model we consider comprises two identical
are in close proximity, and the whole system is rotating at aning Bgcs labeled = 1,2 which are in close proximity and coupled
angular frequencyog around thez axis, which is pointing yia tunneling, andb) shows the unfolded rings to which periodic
out of the page. The close proximity of the rings allows for youndary conditions are applied. The rings come closest together at
the originx=0, where tunneling is represented by a dark oval. The
whole system rotates at an angular veloaityy about thez axis
*Email address: ewan.wright@optics.arizona.edu pointing out of the page.
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where ¢;(x,t) is the macroscopic wave function for rijg  tion. Thus,{(x) will generically be a bell-shaped function
=1, 2, with normalization condition of X, and the spatial extent of the Josephson coupling will be
much less than the size of rirlg Clearly, for smaller rings
L2 ) o with tighter curvature{)(x) will drop off faster away from
ﬁmdx[|’/’1(x’t)| g DF]=N. 2 the peak. In the limit2(x)=0, Egs.(1) reduce to the ap-
proximate one-dimensional form previously used to describe
atomic BECs on a toroif9—11].
The conservedN-particle energy functional for the
coupled Gross-Pitaevskii equati¢h) is

Here, N is the number of atoms of massn, ¢
=4xh%al(27l3m)=2kw,a>0 is the effective one-
dimensional nonlinear coefficient describing repulsive many
body interactionsa being thes wave scattering length, and
Q(x)>0, which is chosen real and positive, is the spatially
dependent tunneling frequency between the two rings. In
writing Egs. (1) we have taken advantage of the fact that
although the atoms in each ring are described by different fogl [ 9 9P\ g 4 4
coordinatesx;_; », they can nonetheless be described as t o 'J’ZW_%W +§(|"[’1| i2]*)
moving on the same domaie [ —L/2,L/2] with the caveat
that the atoms on each ring do not cross interact via mean-
field effects, and are only coupled via the spatially dependent
tunneling.

The third term on the right-hand side of Ed4) arises

2
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: giving the energy per particle=E/N. Since in this paper
from the rotation of the whole system at frequen@¥%  the transverse confinement enefgy, is assumed the same

around the z-axis. In particular, we have used the r¢8@lt ¢4 poth the rings and simply redefines the zero of energy, we
that in the rotating frame of reference the Hamiltonian of thepgreafter drop this energy term for simplicity in notation.

system is given byH’=H—Q-L=H—wgl,, whereH is
the Hamiltonian of the nonrotating systefl=wgz is the
angular velocity vector directed along thexis, and_ is the
vector angular momentum operator of the atoms trapped on In this section we examine the properties of the ground
each ring. We may express the circumferential coordimate and first-excited states of a nonrotatingg=0) pair of
around the ring as an angular varialle 27x/L, in terms ~ coupled ring BECs, using a simple model to expose the main
of which thez component of the angular momentum operatorfeatures.

isL,=—ihdld0, so thatH'=H+i(AwglL/27)dl ox. How-

Ill. GROUND AND FIRST-EXCITED STATES

ever, inspection of Figs.(& and Xb) shows that atoms cir- A. Zero-coupling limit
culating from x=—L/2—L/2 along ringj=1 are going ) ) ) )
counterclockwise, whereas atoms circulating frem— L/2 It is useful in assessing the ground-state properties to con-

—.L/2 along ringj =2 are going clockwise. This means that Sider the noncoupled case with(x)=0. If all N atoms are
although we write the equations using a common spatial co?@megeneously distributed on just one of the rings, with
ordinatex=(6/2m)L e[ — L/2,L/2], propagation inagiven = VN/L andys_;=0, then according to Eq3) the energy
direction corresponds to opposite senses of rotation thBEr particle isey,,=gn/2, wheren=N/L is the linear
different rings. This is why the third term in Eqgl), atomic density. In contrast, when the atoms are equally split
_i(_l)j(ﬁwRL/Zﬂ-)an /9x, describing the rotation of the between the two rings, but still homogeneously distributed

whole system, has a ring-dependent sigri()’. on each ring|¢;|=VN/2L, and the energy per particle is
With reference to Fig. (B) we see, for example, that for n
an atom moving clockwise from a given reference point on 61/2297, (4)

ring j=1, then tunneling over to ring=2 and moving
counterclockwise, and finally tunneling back after orbiting
ring j=2 to ringj =1 to the original starting point, the atom irrespective of the relative phase between the macroscopic
crosses the tunneling region twice. In this sense the couple@lave functions of the two rings. Energetically speaking then,
atomic rings are analogous to a symmetric SQUE), in  in the absence of coupling the lowest-energy state is that in
which two superconducting rings are connected by a weaklyhich the atoms are equally split between the rings, as this
link, which has been employed as a magnetonigitg). The  minimizes the mean-field energy.

two-ring system, then, is the simplest version of an APHD,
and we concentrate on the two-ring case in this paper to
explore the basic properties of the APHIDs.

The tunneling frequency) .= Q(x=0) will be at its To proceed we now reintroduce the coupling and look for
maximum at the point of closest approach of the rings, whictsolutions where the atoms are equally split between the
we choose a=0, and will decrease with separation, or rings. In particular, we consider solutions where the macro-
equivalently as< varies away form the origin. Typically, the scopic wave functions of the two rings are in phase @nd
tunneling frequency decays exponentially with ring separaeut of phase {) by making the ansatz

B. Coupled solutions
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ED :
lﬂj(xi):Te e (x), =12, 5

with ¢ . (x) the mode profiles on each ring apd. the cor-
responding chemical potentials. Then substituting in Efjs.
we obtain

h? dz‘P:

__hdes 9
Hepe="751 a2 +2|(Pt| e *hQ(X)p~, (6)

051

and fdx| ¢+ (x)|>=N. On general grounds, the out-of-phase 1|
(=) solution corresponds to the ground state. This can be
seen from Eq.(6) where the spatially dependent coupling -15}
Q(x)>0, which is typically bell-shaped, plays the role of a
confining (deconfining potential for the out-of-phasén- 2, 100 200 300 200 500
phase solution, thereby allowing for lower energy in com- Scaled funneling frequency
parison to the case without coupling.

In the limit =0, Eq.(6) also has the well-known dark ~ FIG._2. Plot of { vs #Qpuad/g for n/n=10", with ¢

soliton solution[14—19 on the infinite domairk — oo, =X; /2%y, (>0, and{=x_1v2x,, ¢{<0.
(X+Xo) single-particle potential, thé function approximation yields
@ (X)=@o(X)=+/ntan NG , (7)  a quantum-contact interactidr20]. Substituting Eq.(9) in
2Xn Eq. (6) and integrating fromx=0_ to x=0, across the

junction, we find that the action of th&function coupling is

with uo=gn/2, wheren is the linear density of the back- equivalent to a condition on the macroscopic wave function

ground (in the thermodynamic limit, wher&—c and L

—o, N/L—n remains nonzedo The healing lengthx,, is derivative
derived from the relation 12 (de. ’ do.
aml ax | Tdx = =1 Qmade-(0).
ﬁz _ gn (8) 2m dX X=0+ dX x=0_> ma
2amg 2 (10

_ . it L x> . "
The dark soliton solution represents a flat background denl—n the limit L >x,>d, we further impose the condition that

: . . : ) o ¢©~(X) is symmetric arounck=0 in order to satisfy the pe-
S'ty proiile with a hole of widthx,<L located ak=—X,, at riodic ring boundary conditions, and we approximate
which a phase jump ofr also occurs asp, goes through

zero. In the thermodynamic limit the energy per particle as- X4 X
sociated with the dark soliton solution calculated using Eq. o (X)~ \/ﬁtam—< +>, x>0. (11
(3) is eg=ngl4= €45, that is, it is the same as that in Hd) \/§Xh

for a homogeneous density on each ring without coupling. ] S ] ]

This arises because in the thermodynamic limjtL—0,  With this approximation there is a cusp . (x) at x=0,
meaning that any energy increase due to the hole in the deRNd the solution is extended <0 by imposing reflection
sity makes a negligible effect on average: in other words, th8ymmetry around the origin. We can solve for the variables

hole in the density occupies a vanishingly small portion off+ Dy substituting the approximate solutiodl) in the
the ring. boundary conditior{10), which yields

C. Analytic approximation 50 ad= ( (12)
In general, numerical methods are required to solve Eq.

(6) for the given parameters and tunneling profiléx). In
order to obtain insight into the ground-state properties, wi

employ a simple model

h? )[l—tanr?(x+ I\2Xp)]
my2xp, tanh(x. /v2x,)

Since >0 we find by inspection that the in-phase solu-

ions correspond ta, >0 and the out-of-phase solutions to

X_<0. By introducing a dimensionless parametér
Q) =0 d8(X), 9  =X4/V2X,, with £>0 and{=x_/\2x,, with {<0, and

using Eq.(8) for the healing length, we may write the above

where Q,ax is the maximum tunneling frequency awdldis  equation as

the length of the tunneling region. Thi&function approxi-

mation will apply whend is much less than any other char- 1Qmad [ n [1-tankf()]

acteristic length scale of the problem, namely, ring lerigth g 2_nS tanh(|Z])

and healing lengtlx;,. For the stationary coupled-ring solu-

tions described by Eq6), whereQ(x) plays the role of a wherens=mg/%? is a scaled density. Figure 2 shows a plot

(13)
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r (®) FIG. 4. Scaled energy per particke. /€1, Vs hQ,d/g for
0.9 n/ng=10, the upper solid line corresponding to the in-phasg (
08 solution and the lower solid line corresponding to the out-of-phase
' (=) or ground-state solution.
07
206 separated dashed line in Fig. @) fc'>r. hQmad/g=6.3¢
g =2], but come together at the origin d@d},,,d/g—
g%° [solid line in Fig. 3b) for %€ ,,d/g=95¢=0.5]. Thus, for
§°-4 both the in-phase and out-of-phase solutions the density van-
0.3 ishes at the origin a&(},,,,d/g— >, and we have
02 = X
o+ (X)=~+ntan . (14
0.1 \/§Xh
o A quantity of physical interest here is the energy per par-
%@ ticle e. for the two solutions. Using the above approximate

solution in the energy function&B) we find in the thermo-
FIG. 3. Scaled density profilede.|?/n for n/ng=10%,  dynamic limit
1 Qnad/g=95¢=0.5 (solid lines, £ Q,,,d/g=6.3,=2 (dashed

lines): (a) the out-of-phase or ground-state solution d&bdthe in- ng
phase solution. €x =" Thlmadn tant?(|Z]), (19

of [ versus the scaled tunne"ng frequerﬁﬂmaxd/g for Where the solution is_again parametrizedJ)yNOte that i.n
n/ng=10". Figure 3 shows examples of scaled density prothe limit of zero couplingy.,—0, the energies per particle
files |@.|%n for #Q,.d/g=95,=05 (solid lines, of the two s_olutlon_s become the same and equal to_that of the
7O mayd/g=6.37=2 (dashed linesand(a) the out-of-phase €qually split solutione; ,=ng/4 as they should. Using Eq.

or ground-state solution, an®) the in-phase solution. Den- (13) in Eqg. (15) we obtain finally

sity cusps in the solutions are evident, though we note that 5

the ground-state density does not extend down to zero. The _ [en _

key features of the ground state are that as the scaled tunnel- ~ €* 61’2( 1= nstanr(|§|)[1 tanf(0)]). (19

ing frequencyhQ,.,d/g is increased the depth of the den-

sity profile increases, the density at the origin going to zeravhich is once again parametrized [y Figure 4 shows

as Q. d/g—, and the width of the density hole also €. /€y, versush{),,,d/g for n/ng=10, the upper solid line
increases, approaching, as#,,,d/g—~. The in-phase corresponding to the in-phase+-§ solution and the lower
solution is different in that it displays two density zeros andsolid line to the out-of-phase—) or ground state solution.

an on-axis maximum, that is, a cusp, as shown in Fig).3 For small values of the scaled tunneling frequency
Furthermore, inspection of the in-phase solution shows thai(),,,d/g<1, the energy per particle for the in-phasait-

its sign reverses through each density zero, and there are tvad-phase solution initially increasegdecreasesaway from

sign reversals around each ring to ensure that the wave fune,, for zero-coupling, and this is expected physically. How-
tions are single valued. The in-phase solution, therefore, hasver, as the scaled tunneling frequency is increased further
a phase structure like a pair of dark solitons on each ring. Fathe energy per particle for the in-phagmut-of-phasg solu-
smaller valuesk(),,,d/g, the density zeros are spatially tion reaches a turning point €} ,,,,d/g~2, then decreases
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(increasel and bothe.. tend back to the zero-coupling value hancement may also be used to allow for large-radius toroi-
€1, for 1Q,,,,d/g— . The reason for this is that, as dis- dal trapg29]. Regardless of experimental method, the initial
cussed above, for both solutions the density tends to zero abndition we take is

the origin x=0 where the junction is concentrated in the

limit %Q,,,,d/g—, so the Josephson coupling is rendered $1(£,00=€""PE, ¢,=0. (21)
inoperative and the energy per particle tends to that for zero
coupling. B. Resonance conditions

To proceed we examine the resonance conditions leading
IV. TIME-DEPENDENT SOLUTIONS to the initial exchange of atoms from ring42, using first-
order perturbation theory. For the initial conditi¢®l) we

_ . . _ choose the zeroth-order solution as that #e+0,
For purposes of numerical simulations we introduce a

simple Gaussian model for the spatially dependent Josephson HO(&,7)= g2iPég=i(2m*Bp? —pr+ 1)1 (22
coupling

A. Scaled equations

- Then writing the first-order solution for ring 2 in the form
Q(X):Qma)ée_x w =Qmadf(x), (17)

oo

¢(21)(§,T):qz aq(T)EZWiqge—i(2w23q2+qV)T (23)

with Q 4, the maximum tunneling frequency amg<L the

width of the coupling region around=0. We also introduce

the normalized Gaussiarf(x)=exp(x2WA)/\Jmw? for  yields
which d=/7w? so that effective parameters can be com-
pared with that of the preceding section. Then introducing

, SIP(Xpq7/2)

2_4.2
the scaled variables |lag(7)*=4n"Fq 2 ' (24)
Pg
r=t(nglh), &=xIL, ¢;=+\ng;, (18)  where
with n=N/L the mean density as before, we obtain wjith Foq= JmAe AP0
=12,
Xpq=2mB(p*— %) —v(p+a)+1. (25)
2
i%: _B a_(ﬁi_i(_ 1)1(L)% The vortex states of ring 2 are therefore excited and gen-
aT 2 g2 2m) 9¢ erally exhibit small oscillations except at the resonance
5 22 wherey,, becomes small. The level of excitation of tth
+| 2+ e by, (19 vortex state is also dictated by the factgg,, but since we
assume a narrow junctiony/L =A<1, this factor allows for
where [dé[| p1]*+],*]=1 and almost constant excitationF,,~\/wA, in the rangeq=p
+ 6q with
w hQ h n/n
A=—<l, pm——m o DOR s 1
L ng ng N2 8q= _A>1' (26)
(20) i

) ) Consider first the case that the system is not rotating,
These are the scaled equations used for our numerical study.(- Resonance occurs for that integer valugofor which
We have solved the equations numerically using the split-qu is equal to or closest to zero:

step fast-Fourier transform methpal1].

To study the quantum dynamics of the coupled-ring 1
BECs, we shall use an initial condition a0, where allN qr2= p2+ > (27)
atoms are on one ring in a vortex state of winding nungoer 2B

This may be realized, for example, by condensing the atomsf1
on one ring in the absence of the other, stirring the BEC td
create the vortex22], and then turning on the second ring.
Saueret al. [23] have demonstrated a 2-cm diameter mag- Ag~ 1 _
netic storage ring for laser-cooled, and Arnold and 2] 27m2(p+q,)B
have worked towards realizing a 10-cm diameter magneti-

cally trapped toroidal BEC. One scheme for turning rings offWhen the width of the resonance is smal<1, the initial
and on is to use toroidal optical dipole traf@5] formed by  vortex of indexp in ring 1 will selectively couple to vortices
Laguerre-Gaussian beams piercing a two-dimensional BE@ith mode indices, satisfying Eq(27) in ring 2, giving rise

to create the ring$5,26,27, or alternatively using scanned to a few relatively simple mode dynamics. In contrast, when
laser beams to form the toroidal traf8]. Cavity field en- Ag>1 the initial vortex of indexp in ring 2 will couple to a

e width of the resonance being

(28)

033601-5



ANDERSON, DHOLAKIA, AND WRIGHT PHYSICAL REVIEW A 67, 033601 (2003

broad range of vortices with mode indicgst Aq in ring 2, 1 e ‘ T — (a)
giving rise to multimode dynamics and complex behavior. In 09l P // ' f \\
addition, for Josephson oscillations to occur the tunneling o8l // v [ Do
energy per particle averaged over the ring length ’ ' ' i \‘ / \
(1L) fdxh Q(X) = Qmax/7W/L should be of the same or- ,, 077 ,'I ' i ' / ‘\ 1
der as the mean-field energy per particlg or 5 06 \! '\\ f ! / \
© / / | i \
5 05f ] 1
hQ 1 c " v i \ (I \|
p=— = 29 £ o4 | ! ,,’ \ / i
ng \/;A E 0sl ,' \ Il \\ ',’ 7\
! \ ' \ ;
This gives an estimate of the scaled tunneling frequepty 0.2t ,’l \ ! v
obtain Josephson oscillations. o1}/ | / \ ,/
,/ \\ II ‘\ k
0 , ‘ . .
C. Numerical results 0 2 84 od S 8 10
caled time
Here we present some examples of the dynamics of the 1 . . ‘ ‘ b
coupled-ring BECs. For all the simulations we get0,A (b)
=102, and »=50. Consider first that the initial state cor- 097
responds to the ground statp=0) of ring 1. From Egs. 0.8
(27) and (28) we obtain 071t
4]
1 E 0.6+
©
a=/ =Aq, B0 5 o5t
' 278 c
.% 0.4+
that is, the width of the resonande is equal to the resonant s 03t
valueq=gq, . Figure %a) shows the fraction of atoms in each 02t~ A A U A Y
ring for =1 for which g,=Aq=0.22, and complete Jo- ; \\ Y AW AWV
sephson oscillations between the two rings are evident. Ir 01 A VoV v
this case the density profiles in the two rings are largely flat 0 : : ; :
i LI . 0 2 4 6 8 10
as resonant coupling occurs between the individual modes ir Soaled
caled time T

each ring withp=0,g,~0. In contrast, for3=5.1x10"2,
as shown in Fig. &) for which g,=Aq=1, the Josephson FIG. 5. Fraction of atoms in each ring far=10"2, =50: (a)

oscillations are now incomplete. Physically, there are mul-g=1Aq=0.22 and(b) =5.1x10"2,Aq=1.
tiple spatial modes involved in ring=2 with q=0,*1,

*2, and the resulting multimode dynamics is what frustrates=1 c¢m, a=5 nm, we findQ ,,,=27 x5 rads %, andr is

the Josephson oscillations fdrq=1. The multimode dy- time in units ofi/ng=1.6 s, so the Josephson oscillations in
namics manifests itself as spatial density modulations in thesijg. 5a) occur on a time scale of seconds. Settimy

two rings as shown in Fig.(6), for the same parameters asin =10-25 kg we obtainn,=mg/%2~63 cm~%, and forn

Fig. 5(b) and 7=10. For even lower densitp=5.1x10"*  =N/L=10° cm~%,8=1.6x10 °. It is important thamn/n,

for which g,=Aq=10, the Josephson oscillations are all but> 1 to ensure that the one-dimensional gas acts as a BEC as
eXtinguiShed, and the Spatial denSity profiles in I’Img'-S].,Z Opposed to a Tonks ga$30,3:u The parameterB

are shown in Flg 6)) for 7=10. We remark that the rapid :(n/nS)/N2 is proportiona| to ].{.bo and 1N, so we can
spatial oscillations in Fig. ®) are not numerical noise, and increases by decreasing either the number of atoms and/or
the calculation is well resolved numerically and is reproduc+he transverse oscillator frequency with respect to the above
ible; rather, the density modulations are the signature that thgg|yes.

dynamics now involves many spatial modes witk 0,+ 1,

+2,.... Inparticular, the multimode nature of the solution D. Effects of rotation

allows the coupling due to tunneling to concentrate around ) ] ] .
the coupling region, that is, only atoms in the immediate An interesting feature of the two-ring APHID is that the

vicinity of the coupling region participate in tunneling, hence condition x,q=27?8(p?~q* — »(p+q)+1—0 for reso-
reducing the maximum fraction of atoms that can be transhant coupling between the rings is dependent on the scaled

ferred between the rings. This is illustrated in Figo)gvhere ~ fotation ratev=fiwg/ng. In particular we find, fop=0,

the density in ring 2(bold line), and hence the coupling to

ring 2, is concentrated around the origin and is close to zero q 1
,

away from the coupling region.

Some estimates of parameters are in order. Uging
=2hwoa  gives ng=2hwgN(all), and  Qpax
=27nwoN(a/L). Then for wg=2mXx10% rads },N=10° L

[— v+ v?+87°A]. (31

_471'2,8

This implies that for scaled rotation rates|~ 8723 the
rotation of the entire APHID will affect the coupling. Con-
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(a)
1.2 of 1
8_ -
1 o
N_N g 7r 1
< 0.8
z 2 f ]
: :
3 o8 © 5f .
S 04 g
8 3r 1
®
0.2 a Ll i
q
0 : . : 1 ]
-0.4 0.2 0 0.2 0.4
Scaled coordinate x/L 0 . L . .
0 0.02 0.04 0.06 0.08 0.1
(b) Scaled rotation rate v
1.2+ FIG. 7. Percentage of atoms in rifg-2 as a function of scaled
rotation ratev=#%wgr/ng. The numerical data points are shown as
1 circles and the solid line is included as an aid to the eye.
:5‘ 08 versus scaled rotation rate at time =10 andA=0.01»
z =50,8=5.1x10 %, for which g,=Aq=10, and the effect
g 06 of rotation-dependent coupling between the rings is clearly
3 exhibited (the numerical data points are shown as circles
8 Some points are worth making here: First, the rotation causes
04r the number of atoms in ring 2 to change by about 10% of the
total number of atoms, so experimentally it will be necessary
0.2r to control the initial number of atoms on ring 1 to better than

this percentage. Furthermore, it would be a challenge to de-
02 0.1 0 01 0.0 tect the small number of atoms in ring 2. Second, for our
Scaled coordinate x/L particular example witip=0, the number of atoms in ring 2
is sensitive to the magnitude but not the sign of the rotation,
but this can be changed by havipg:0 in which case the
coupling becomes sensitive to the signiwofThird, the sen-
sitivity of the atom number to the rotation rate increases with
the observation time chosen, remembering that we are in a
far-off-resonant situation, so coupling happens slowly. Fi-
nally, the number of atoms in ring 2 is not necessarily a
rTqgonotonic function of the rotation rate, as seen from Fig. 7,
which will limit the range of rotation rates that can be
uniguely measured. Nonetheless, we feel this is an interest-
éng phenomena that may have utility for rotation sensing
I){vith further development.

PG N S Sy ! P R S S G o

FIG. 6. (a) Spatial density in ring=1 (thin line) andj =2 (bold
line) for the same parameters as Fighbwith 7=10, 8=5.1
X 1072, andAq=1; (b) spatial density in ring=1 (thin line) and
j=2 (bold ling) for 3=5.1x10"% Aq=10 for =10, and on the
rangex e[ —0.2.,0.2L ] so that the density profiles can be resolved.

sider then a case where without rotatidg>1 so that the
Josephson oscillations are all but extinguished and the ato
remain on ring 1. Then as the scaled rotation rates in-
creased from zero, inspection shows that one solujoim
Eqg. (31) moves towards resonance, while the other move
further away. Therefore, starting from a detuned case wit \ o .
minimal coupling, increased rotation leads to increased cou- To gain some sense of the sensitivity of th|s_ scheme we
pling, which can then be detected via the number of atom'Se the same parameters as the preceding section for which

on ring 2 at a fixed-detection time. Physically, the tunnel-'S the time in units ofﬁ/ngzl._6 s. Then a value of
coupled rings are an example of coupled nonlinear oscilla= 0-01 corresponds to a rotation ratez=2vwoN(a/L)
tors, and it is well-known that the coupling between nonlin-:27",><10 .rads » Which is 100 times h|gher than .the
ear oscillators is dependent upon any asymmetries betweé?iarthS rotation rate at the pole_s. However, if we are willing
them that causes an energy mismatch between the oscillatofS. reduci the transverse oscillator frequency atg=2m
Equations(1) show that rotation of the whole system at an X1 rads, thenvz.o'o.l gorregponds to thg Earth.s rotation
angular frequencyor, affects the two rings differently, and rate, but then the time is in units of 1_60 sin the f|g_ures!_We
this introduces an energy or phase mismatch between the tf€ currently working on schemes involving multiple-ring
rings that can inhibit or enhance the coupling. For the ini-APHIDS to enhance the rotation sensitivity.
tially detuned case considered here the rotation partially re-
stores the coupling, and this manifests itself as a change in
the number of coupled atoms in ring 2 due to the rotation.  In summary, we have presented a theoretical investigation
Figure 7 shows the percentage of the atoms in ring 2of a pair of ring BECs coupled by tunneling as the simplest

V. SUMMARY AND CONCLUSIONS
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example of a potential APHID. We have shown that the two-will display enhanced sensitivity to the relative phase be-
ring APHID has interesting ground-state properties, withtween the rings, hence potentially leading to increased rota-
density profiles reminiscent of dark soliton states around théion sensitivity. We shall be exploring multiring APHIDs in
point of contact of the rings. Furthermore, we have demonfuture research.
strated that Josephson oscillations between the two rings can

occur, and that these oscillations are sensitive to the state of

rotation of the APHID. In particular, if all the atoms are

prepared on one ring, then the number of atoms transferred This work was supported by the Office of Naval Research
to the second ring in a given time span is a measure of th€ontract No. N00014-99-1-0806, the U.S. Army Research
rotation rate of the APHID. Although the two-ring APHID Office, and the Royal Society of Edinburgh. K.D. acknowl-
was found to be not very rotation sensitive, we believeedges the support of the U.K. Engineering and Physical Sci-
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