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Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding
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A variety of means are now available to design control fields for manipulating the evolution of quantum
systems. However, the underlying physical mechanisms often remain obscure, especially in the cases of strong
fields and high quantum state congestion. This paper proposes a method to quantitatively determine the various
pathways taken by a quantum system in going from the initial state to the final target. The mechanism is
revealed by encoding a signal in the system Hamiltonian and decoding the resultant nonlinear distortion of the
signal in the system time-evolution operator. The relevant interfering pathways determined by this analysis
give insight into the physical mechanisms operative during the evolution of the quantum system. A hierarchy
of mechanism identification algorithms with increasing ability to extract more detailed pathway information is
presented. The mechanism identification concept is presented in the context of analyzing computer simulations
of controlled dynamics. As illustrations of the concept, mechanisms are identified in the control of several
simple, discrete-state quantum systems. The mechanism analysis tools reveal the roles of multiple interacting
guantum pathways to maximally take advantage of constructive and destructive interference. Similar proce-
dures may be applied directly in the laboratory to identify control mechanisms without resort to computer
modeling, although this extension is not addressed in this paper.
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I. INTRODUCTION The mechanism identification concept

) , ) ) The essence of the mechanism identificafiigih) concept
~ Optimal control theory is an effective technique for de- i pe explained below with the remainder of the paper
signing electric fields to manipulate the evolution of hiesenting the details of the procedure and its illustration on
quantum-mechanical systenid—6]. Closed-loop learning gseyeral simple problems. A quantum control pathway analy-
algorithms [2] combined with advances in laser pulse- g5 can e used for post-field-design MI as well as during the

shaping techniques have enabled the direct discovery Qfeign procedure, to actively steer the dynamics to favor

laboratory optimal controls, even for complex SystémScertain pathways. Analogous MI pathway analyses could be

[7—14. However, the mechanisms by which the target state,o tormed directly in the laboratofit7]. This paper concen-

is reached often remain obscure, in both computer simulagates on introducing the MI concept in the context of analy-

tions and experiments. Under favorable conditions informags after computational control field design. The basic proce-

tion about the control mechanism may be deduced from agyre for Mi remains the same when working with laboratory
analysis of the temporal, frequency, or time-frequency strucqata put additional complexities must be dealt with as direct

ture of the control fieldd15,16. However, under general ,.cass to the wave function is not available.

circumstances caution is called for as the mechanism can | quantum systems analyzed in this paper are described
depend in a nonlinear fashion on the control field. Thus, %y Hamiltonians of the form = H o+ V(t), whereH, is the
more systematic technique is required, which addresses thg|d-free Hamiltonian andv(t) accounts for the external
nonlinearities of the mechanism identification problem. Thisfig|d. For many quantum control applications typicaiiyt)
paper presents the means to understand the control mecha-— w&(t) where u is the dipole and&(t) is the control
nism in the theoretical design of fields and their simulatedelectric field. Although the paper will assume this form for
dynamic response. The control mechanism is revealed by(t), the general formulation of Hamiltonian encoding does
identifying the dominant quantum pathways contributing tonot require the Hamiltonian to be linear in the control field.
the observable final state achieved by the control field. Thehe time evolution of the system is prescribed by the equa-
pathways, and thus the system mechanism, can be resolvédn

at various levels of detail. The notion of a quantum pathway du(t)

is also subject to the definition associated with the choice of i% [Ho— #E1)U), U(0)=1. 1)

representation of the Hamiltonian, and this paper uses a natu- dt

ral definition in the context of applications described by a

discrete set of states. However, some systems might lend

themselves to other definitions of mechanism, which may b&he eigenvalue€; and eigenfunctiongn;) of H, satisfy

similarly revealed. Holni)=E;|n;) fori=1,2, ... d whered is the dimension of
the state space of the quantum system. We define (E;
—E;j)/A, and the control field can be conveniently expressed
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g(t):A(t)z z a.ij Sin(a)ijt-i- ¢ij)1 (2) /N
=1 j<i . AHMI
's":':{t'p) ! State ib)
where A(t) is a slowly varying envelope function. The —v
actual control variables are the phasdsp;} and w

amplitudes {a;;}. Making the transformation V(t)
= —exp(Ht/h) uE(t)exp(—iHqt/A) gives

®  Hm Norma) >Upy(T)

du() premes ¥

ih—g— =Vi(HU(t), (3
whereU is now understood to be in the interaction represen- § § <
tation. The solution of Eq(3) is the matrixU(T) with a
basic focus of MI being an understanding of how a particular
(often high amplitudeU,,,(T) is achieved in statfp) at time H(T.) e > Upa(T5)
T by the action of&(t) starting in statga) at time t=0. . . ) )
Although knowledge of the matrik(T) prescribes all pos- FIG. 1. A schematic showing the basic concept of pathway iden-

tification by Hamiltonian encoding(@ A matrix element of the

does not generally reveal how the evolution ocdiues, the time-evolution .Op?ratouba(-r) can Ee dec.omposed int.o a set of
mechanism The proposed MI algorithm can be understood” &2 - - - N significant pathway§Uy,,} which constructively and
by viewing the guantum svstem as a functionin ‘,machine,,destructlve_ly interfere to n_1ake_ effective the transitjah— |b) un-

y viewing . q . y . _g . der the action of the Hamiltoniad (t), O<t<T. If the population
under dynamlcaI. eV.OIUtI.O“’ erven by the HamHtpmHﬂt) in |b) is significant(insignifican} then the pathways add up con-
= HO__ M_g(t)' Th|§ situation is analogous t(_) cons_lderlng ar_]ystructively (destructively to give a net transfer of population. The
funct|on|_ng r_nachlne where an _understandmg_ of its Operat'r_‘%echanism is revealed by the magnitude and phases of fah-
mechanism is usually be;t achieved by applymg external dISWay amplitudeg U }. (b) The pathways are identified in a three-
turbances(e.g., perturbationsand monitoring the resultant step process ofi) encoding the Hamiltonian features in terms of a
transient system responses. If the disturbances are introducggaracteristic variabls, which is scannedji) performance of en-
in a suitable fashion, then the resultant response data ca@ded dynamics to yieldJ(T,s), and (iii) decoding ofU(T,s)
yield detailed information about the inner “workings” of the through an inverse transform over the variabl® obtain{U[_},
functioning machine. This logic applies equally well to which reveals the dynamical mechanism of the original, uncoded
guantum-dynamical machines. system undergoing normal dynamics.

Before considering how to modulate the quantum dynam-
ics for MI, it is first necessary to define what we mean bythe set provides a means to understand the mechanism in
“mechanism.” In the context of analyzing the mechanism for computational quantum dynamics.
achieving the particular amplitudg,,(T) it is natural to The amplitudes defining the mechanism of the controlled
seek out the important pathways leading fr@nto |b). Here  evolution may be directly associated with the terms con-
a pathway is specified by a sequence of transitiongained in the Dyson expansion for the time evolution opera-
[a)—|l)—|l2)—-—]l,_1)—|b) where the stategl;),  tor in the interaction pictur¢18] (while the term pathway
i=12,...n—1, prescribe one particular path of steps invites comparison to Feynmann paths, these control path-
from |a) to b). Such a path will have an associated amplitudeways do not correspond to Feynmann pdtt&))

denoted bwggl """ -1 The total amplitudéJ,,(T) is then _
the sum of all contributing pathway amplitudes U(T)=1+ %‘)
—i\2 (T to
7) f Vl(tz)J'O Vi(ty)dtdtz+---. ()

0

sible system observables at tifiethe calculation olU(T)

.
f Vi(tydty

0
Upa(T)= 2, Upat ™ H(T). 4
n,{l;

As a notational shorthand we may simply denote the set of
amplitudes aSJga(T)EUE(all ----- 'n-1) \where the intermediate Herel is thedx d identity matrix. The next term is of order
states are implicitly understood. Figuréall shows a sche- Nn=1, while the highest term explicitly shown in EG) is of
matic of the pathways leading frofa) to |b) labeled by the ordern=2, etc. Thenth-order term in the expansion is the
corresponding amplitudes. sum of allnth-order pathways prescribed by all possible in-
The decomposition oBl,,(T) in Eq. (4) is fully consis- termediate stepd;}, i=1, ... n—1. Here the notion of or-
tent with the general notion of quantum control operating byder n is exactly coincident with its use ihlggl """ IIH)(T)
constructive interference between the amplitudes for all sigdefined above. In order to determine the mechanistic infor-
nificant pathways leading from the initial std& to the final  mation contained in Eq(5), the physically relevant integrals
state|b). The present paper will present an efficient algorithmneed to be determined. The important integrals are those of
for determining the set of all relevant pathway amplitudessignificant magnitude connecting stat@sand|b), and a Ml
{Uggl """ '"‘1)} connectingay and|b), whereby an analysis of analysis must deal with aa priori lack of knowledge about
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which integrals to focus on. A direct numerical approach toa unique encoding fofu;;}, and then the amplitudes of the

evaluating these multiple integrals would be exceedingly diffyndamental and combination spectral linedlgf(T,y) as a
ficult, especially with strong fields where integralsath-  function of y can be used to directly determine the desired

ways of high order may contribute significantly td(T). amplitudesU”('l ----- In-1) Importantly, the modulation is in-

i i i thi ; i A ba
The MI techn_lque '.erdL.'CGd in this paper avoids th|§ prob troduced with respect to the variablparameters, so the
lem byencodinga signal into the Hamiltonian ardecoding .. d d f the d . . h |
its effect on the output of the resultant distorted time evqu-tlme ependence of the dynamics continues to have norma
X ) . . behavior. In practice this encoding/decoding operation would
tion operator. This procedure provides a practical means f

P X o,
MI by computing all relevant terms in Eg5) in a simple Ot.)e Implemen_te_d by repeatgdly solving the Sdimger equa-

. . - : ) tion at a sufficient set of discrete values ®such that the
fashion without explicit evaluation of the integrals.

The concept of encoding the Hamiltonian with a speciall€l€vant spectrun,,(T, y) is fully covered iny. This con-
signal and monitoring the observable response is a particul&ePt is schematically illustrated in Fig(k). The techniques
incarnation of the general procedure of introducing a distur®mPloyed here are related to various nonlinear sensitivity
bance in the dynamics in order to understand the dynamic&n@lysis procedurel20,21, but the latter methods are gen-

mechanism. The encoding technique may be viewed as %rally confined to exploring the impact of system uncertain-

modulation of the Hamiltonian by an input signal with the U€S: _ o _ _
goal of attaining Ml from the effect of the signal upon  Th€ synopsis of the Hamiltonian encoding/decoding MI
Up.(T). Normally, modulation for this purpose would be f[echnlque p_resented above is fuIIy_deveIoped and |IIu§trated
introduced as a function of time outside the frequency N the remainder of the paper. Section Il of the paper gives a
range appearing in the quantum dynamics and the contrdl"€cise definition of a quantum control pathway and S'ec. [l
field. In this way the modulating signal would act as a tracerP"€S€nts the concept of Hamiltonian encoding. Section IV
distinguished from the effects of the control field, so as tocOnSiders a hierarchy of encoding techniques and pathway
reveal the control mechanism from the distortions of the@nalyses to reveal different levels of detail about the mecha-
tracer signal appearing in the observations. However, the if?iSM. Some numerical examples are given in Sec. V and
troduction of modulation frequencies in the tracer muchtoncluding remarks are given in Sec. VI.
higher than that of the natural dynamics would have a num-
ber of undesirable features. First, integrating the Sdiniger
equation with a much finer time mesh than normal would be
required, resulting in corresponding additional computational Consider a quantum-mechanical system in the interaction
costs. Secondly, looking ahead to the laboratory implemenpicture evolving under the Schiimger equation(3). The
tation of MI such high-frequency input-modulation signals, system is initially in statéa) and the control goal is to take
even if they could be generated, would likely excite un-the system to the target stgt® at time T. These two states
wanted dynamicée.g., electronic excitatiofsAn alternative  are members of a complete orthonormal gt [2), . . . , |d)
encoding technique is available for computational MI, intro-of dimensiond, which describes the subspace containing all
duced in this paper, which is also extendable to a form amethe system dynamics. These states may arise in many ways
nable for laboratory implementation. _ _ depending upon the physical situatigie., they may be

As an illustration of the encoding technique consider thegjgenstates ofi, or some other physically motivated opera-
case of dipole coupling in the Hamiltonian such that eachor of the system The MI objective is to discern all relevant
linkage in the sequend@)—|l1)—[l2)—--—|lh-1)—[b)  pathways connectinf) and|b) during the evolution of the
is given by a particular matrix elemept; , wherei andj are  system, as indicated in Fig. 1. Expressing E8). in the
members of the sef|a),|b),[l;),i—1,...,n—1}. For en-  explicit basis, assuminth)#|a), using the notatiom ,(t)
coding we may then modify the Hamiltonian matrix element=(—j/#)(m|V,(t)|n) andUp,=(b|U(T)|a),
Hij = EI5IJ _,(L”E(t) to becomeHij = Ei 5” - m”(S),LL”g(t),
wherem;;(s) is a suitably chosen encoding function of the
variables for —oo<s<w. The resultant dynamics under the
new HamiltonianH(s) will accordingly produce an altered Uba:f
transition matrixU(T,s) which is a function o&. The goal is

II. QUANTUM CONTROL PATHWAYS

T d r7 ty
vba(tl)dt1+|21 fo vpi(t2) fo via(ty)dtdt;

0

to choosem;;(s) such that each dipole element in the Hamil- d d 7 ts t
tonian produces a unique featureUrfT,s) as the variables + 2 J Ubj(tg)j vjk(tz)f vya(ty)dtdtodts
is scanned. Furthermore, it is required that the deconvolution Jj=1k=1.J0 0 0
of U(T,s) over the variables yield all of the relevant ampli- +een 7)

tudesU g(all """ In*1)(T). One possible approach is to modulate
with Fourier functionsm;;(s)~exp(y;s) and deconvolute

Upa(T,S) by a Fourier transform, A particular pathway is specified by the sequence of states
starting from the initial stat¢éa) and ending at the final state
~ [~ —iys |b). The nth-order pathway withn—1 intermediate states,
Upa(T.¥)= | Upa(T.S)e"ds. ® 1,05, 0oy will be denoted as d—ly— 1yl ;

—b), and will have a corresponding transition amplitude
In this case the frequenci¢y;;} would be chosen to ensure given by
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16> certain path §—1,—Il,—---—I,_;—b) has a significant
transition amplitude, then this contribution to the mechanism
A 15> involves the corresponding sequence of stimulated
absorption/emission processes. In the commonly expected
situation where multiple pathways with transition amplitudes

4> L . S
A l unQae-to-a) o gn (g 'n’*l), etc., all contribute signifi-

ba ba
cantly to the transitioja)—|b), an important issue is the

13> degree of constructive interference among these pathways
A A 2> [7,22]. Each amplitude is a complex number with an associ-

ated phaseqsggl """ -1 If the various phases are nearly

equal @itV gn (iwdo-d) 0y Cthen the ampli-
tudes will add up constructively at the final time implying an
1> efficient control process in steering the system fr@nto
|b). The pathway analyses of systems in this paper driven by
optimal fields showed excellent alignment of pathway phases
FIG. 2. An illustration of two possible paths from stéteto|4) ~ for constructive interference in the target state. A good opti-

in a six-level system with corresponding amplitude{® and ~ mal control solution for population transfer frofa) to |b)

(12> 4) (1= 2-—=>5—=>4

U3y will yield |Upo(T)|=1 and|U.,(T)|=~0 for c#b. In the
latter case a pathway analysis is expected to show that the
ynUaetn-1) multiple amplitudes contributing tol.,(T) destructively in-
ba terfere with each other to produce the nearly zero net
T (tn tp amplitude.
:J f J vol, L, (tor o (th-1)
0Jo 0

IIl. HAMILTONIAN ENCODING

X1ty dty-dty 4 dt,. (8) Prior to the performance of MI, a control field would be

rescribed by some appropriate me&ag., optimal control
heory[1,6,23). The identification of the relevant pathways

and their transition amplitudeblggl """ 'n-1) s the central
step in revealing the underlying quantum control mecha-
nisms. As stated in Se¢ a direct computation of the inte-

grals defining the pathway amplitudes can, in principle, be

The transition amplitude associated with a pathway is th
contribution it makes to the evolution of the system. The
value ofUy, will be given by the sum of the transition am-
plitudes along all possible pathways startingaatand end-
ing at|b). Therefore

* d done. However, it is a forbidding task, especially for high-
Upa=2>, > Upteedn-a) (9)  order pathways. The Hamiltonian encoding procedure by-
n=11lg,...1h-1=1 passes this problem by modulating the Hamiltonian in a spe-

. . A . cial manner and deducing the pathway amplitudes by
A pathway is considered to ben(ﬂg’;“r?!ﬂcant if the abSOIUtedecoding the nonlinear system response to this modulation in

value of its transition amplitudgJ '-1)| is large com- the outputU, .

pared to the transition amplitudes of other pathways or The technique operates with just the ability to numerically

greater than some specified minimum value. solve Schidinger's equation. In general, encoding the
As an example, consider a six-level system where thgyamiltonian is done by modulating the matrix elements of

transition of interest is from stat@) to [4). Then the ampli-  the interaction termV, such that each pathway amplitude
tude of the second-order pathway corresponding to this tran; Egl ----- -1 has a unique signature Id,, which can then

sition occurring via the stat2) is given by be read off at the end of the computation. Different encoding
T [ty schemes can be employed for this purpose to provide distinct
Uﬁ(f):J' f Vatr)vog(ty)dt dt,. levels of detail about the mechanism.

070 An examination of Eq(7) indicates that any modulation
in the time variable would distort each pathway in a very
complex fashion, making recovery of the original transition
amplitudes of Egs(8) and (9) very difficult. This problem

T (s [ty may be circumvented by introducing a timelike variakle
u32d= f f f vas(ta)UsA(tp)va(ty ) dtydtydts. and modulating the system in this variable. Multiple timelike

0J0 Jo variabless, ,s,,... mayalso be introduced to some benefit in
certain cases, but this extension will not be treated here.
The most general modulation scheifive one variables)
the coupling elements is

Similarly the transition amplitude for the third-order pathway
(1—2—5—4) would be

Both of these pathways are illustrated in Fig. 2.
Knowledge of the set of dominant pathways contributing]cor

to the evolution of the system reveals the control mechanism.

If the stateg|e)} are identified as eigenstatestdf, and if a vij () —vi (DM ().

033407-4



IDENTIFYING MECHANISMS IN THE CONTROL CF . ..

PHYSICAL REVIEW A 67, 033407 (2003

The original Schrdinger equation with the coupling matrix explicitly shown is

v1a(t)  vt) v14(t)
vai(t)  vo(t) Uog(t)
du(t) B U 10
— = (1), (10
var(t) vga(t) vgq(t)
which now becomes
v1(H)myy(S)  va(t)MyoA(S) v1g(t)Myg(s)
Uo1(H)Myy(S)  va(t)MyAS) Ug(t)myy(s)
du(t,s) B Uit 1
T (t,s). (11)
Ua1(t)My1(S)  vga(t)Mya(s) Ugd(t)Mgq(s)
|
In the integration of Eq(11) over time the variables is a  sition amplitude of each path, i. eU,”('l ----- -1 \would have

constant, implying that the transition amplitude for the path

(a—l;—---1,_;—b) becomes
n(lyq,..., In—1)
Upat " Y(s)
T th
:J J v, (t) My ()0 a(ty)
0 0
Xmy a(s)dty---dt,
(g DaanUlp, a1
_Ubal 2 leal 2 Y(s), (12
n(|1,|2,...,|n,1) —
Mol (S)=my__ ()M ()M a(S).
13

Here M”(Il """ In*1)(.'5) is the characteristic function associ-
ated W|th the particular pathwayat14,...l,_1—Db). The

changed in an undecipherable way. Modulation in terms of
the extra variables will also (possibly severelydistort the
total time-evolution operatod,,(s). However, the distor-
tion has, by construction, a very special form which is con-
veniently expressed in terms of the original undistorted am-

plitudes for each individual pathwayu”('l ----- h-1)

multiplied by a known functiorivi 221 """ n- 1)(s). This for-
mulation provides considerable freedom in the choice of
m;;(s) as the amplltudesiJ”(Il """ -1 jn Eqg. (14) remain
unchanged even with the most violeatlomain modulation.
Equation(14) is exact for any form ot-domain modulation,
regardless of the form ofj;(s). Provided that th¢m;;} are
bounded in magnitude, the expansion in Elgl) will always
converge as discussed in the Appendix. The MI analysis in
Sec. IV will exploit this encoding flexibility by even making
the system matri{v;; (t)m;;(s)} non-Hermitian in order to

encoding functionsm;;(s) are chosen such that each pathdistinguish between certain quantum pathways. Another

will be modulated in a unique way as a function ©fBy
solving the Schrdinger equation at a suitable setsfalues,

scheme for extracting very fine pathway details employs a
squareu X u matrix of functions to modulate each element of

the amplitudes of the relevant paths can be extracted from #he Hamiltonian, creating a dynamical system of dimension

decoding ofUp4(s)=(b|U(T,s)|a). Then, from Eqs(8)—
(12), the overall amplitudeJ,,(s) for the system evolving
from the statda) to |b) over the time interval &t<T be-
comes

Ug(ll,lz,...,ln,l)
a

uba<s>—2 E

Tl dpog=1

X Mprlzeln-t(g) (14)

The utility of introducing modulation through the variable
s lies in the form of Eq.(14) upon comparison to Eq9).

Time-domain modulation would completely distort the tran-

ud from the originald-dimensional one. The key point is
that, whiles modulation can completely distort the dynamics
of the original system, the desired original pathway informa-
tion is always preserved in a known manner.

Although in principle an infinite number of pathways con-
tribute to any transitioa)—|b), in practice the bounded,
finite-time nature of realistic controls implies that only a lim-
ited number of pathways will contribute significantly. The
most detailed mechanism information resides in revealing
the transition amplitudes of the full set of relevant pathways
{Un(Il """ In- 1)}, but in most cases a lower-resolution picture
may suffice or even be desirable. If there are many contrib-
uting pathways, then extraction of mechanism information in
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full detail may be computationally expensive. Less detailedjn the case that the functiomgggl ----- 'n-1) are just linearly
lower-resolution information may give more insight into jnqependent, any of a variety of standard techniques from

the control process. Thus, classes of pathw&;s v
=1,2,..., may belefined where each claSs forms a sub-

linear algebra may be applied to solve Efj4) for the am-
plitudes. In choosing an algorithm the goal is to obtain path-

set of the original, full set of pathways, classified togethenyay information using a numerically stable technique for the
because of some common characteristics. Each class hagj@convolution of Eq(14) with a minimal number of sam-

transition amplitude

Opa= Upar 2,

(a~>|1 ..... |n,1~>b)ESV

(15

where the summation is over all pathways—14,...,|,_1
—b) belonging to the clasS,. Each pathway belongs to
only one class. The goal in this case is to deterniitg
directly without first extracting the individual terms in the
summand on the right-hand sidBHS) of Eq. (15). Given
the structure of Eq99) and (15) it is possible to write the
total amplitude as a sum over all pathway classes

R
Upa= 21 Dga' (16)

whereR is the number of significant pathway clasgesich
a priori is also unknowh An example considered later con-

sists of classes defined by grouping pathways of the same

order together. In that case we have

17)

plings on the domain o$.

The choice of the seftm;;(s)} may be guided by a num-
ber of factors, including the fact that solving the Salinger
equation can be expensive. This paper presents results ob-
tained by using complex exponentials as a convenient set of
modulating functions; however, no claim is made that this
choice forms an optimum set of functions. Other possibilities
(e.g., encoding with digital signals, wavelets, multiple modu-
lation variables, etg¢.are worthy of careful consideration.

IV. ALTERNATIVE CLASSES OF QUANTUM PATHWAY
ANALYSES

This section will introduce distinct classes of quantum
control mechanism analyses capable of revealing differing
levels of detail. The examples in Sec. V illustrate each class
of analysis.

A. The distribution of system orders

While the expansion in Eq9) always converges for re-
alistic physical systemésee the Appendijx there is no way
to know beforehand how many orders contribute signifi-
cantly. This first class of mechanism analysis aims to identify
the importance of the various orders contributingUg, .

where all intermediate steps have been summed over. ModU+e information on the contributing orders is valuable as an

lation in thes domain yields

R
Upa(s)= 2, UbaMy(9), (18)
where a suitable of choice ¢fm;;(s)} ensures that all paths
in S, have the same modulating functidh(s), and that
each functiorM ,(s), v=1,2, ... R, is unique—permitting
the extraction of each amplitu@b’ga. Regardless of the spe-

cific form of pathway analysis, the structure of the resultant

expression forU,,(s) remains the samgcf Egs. (14) and
(18)]. Considering the general case of Ef4) we require
that the functionsv E(all """ -1 pe linearly independent over
some specific domain of. Ideally the functions are ortho-

initial glimpse at the mechanism and it also forms the start-
ing point for the more detailed mechanism analyses to fol-
low. This case corresponds to the situation in Edg) and

here we extract the desired information by modulating the

entire interaction matrix by a single function(s):
Vi(H—=V,(H)m(s). (21)

The integral corresponding to aith-order pathways

n T t
<b| fo ...fozvl(tn)...Vl(tl)dtl“'dtn|a>

ﬂ”

~ —i
Uga:(7

d

to
= .fo vpi, ,(ta) v a(ty)dty--dt,

l1,lp1=1

normal under some suitably defined inner product such that

T
n’(ly

n(lq,..., ln_1)
<Mbal n 1|Mba

_y)
M= Oy ()

n'-1)
(19
where thed function is zero if any of the path indices differ

or 1 if the indices are all the same. The notatidi in Eq.
(19) represents an inner product, e.g., an integration eyer

(22)

is modulated by a factom(s)". ThereforeU,,(s) can be

written as

R
%ﬁﬁ%ﬁ@%ﬂ (23)

possibly with a suitable weight function. Under the condition,yich is a special case of E4L8). Although the number of

in Eq. (19),

Un(ll ..... In,l):<Mggl ..... In71)|Uba>-

ba (20)

significantly contributing pathwayR is generally not known
a priori, a reasonable estimate may be availablat is not
required by the algorithin

033407-6



IDENTIFYING MECHANISMS IN THE CONTROL CF . .. PHYSICAL REVIEW A 67, 033407 (2003

A Al

1-=2->3 (1>2>3>2->73) (1>2>4->2->3) (1>2>3>4>2>4>3)

FIG. 3. Four examples of pathways with a net-2— 3 transition. All of them(and an infinite number of other pathwayelong to the
same composite-pathway class{2—3)*.

We choosan(s)=e'"® (y=2=/N for some suitable inte- cases it is useful to know the total amplitude of pathways
gerN) and evaluatéJ,(s) ats=1,2,... N. Then Eq.(18)  contributing toUs; which proceed via a given composite
becomes pathway regardless of how many times the pathway rattled
around elsewhere. A later illustration will show that
stn/N B composite-pathway amplitudes can clearly reveal how opti-
Upa(s)= 2 s=12,... N. (24) mal control theory tunes pathway amplitudes for the best use

of constructive and destructive interference to reach the de-

If N>R, then the coefficients may be computed by the in-Sired target.
verse fast Fourier transforfFT) of U,4(s), using the or- Each composite-pathway class is denoted by the lowest-
thogonality relationship order pathway belonging to it, and marked with an asterisk.

All paths with the net transition (+2—3) will be collec-
N tively denoted as contributing to the composite pathway (1
E "(s)]*ml(s)=46,. (25 —2—3)*, and the transition amplitude of the composite
s= pathway will be labeled similarly. Therefore the transition
amplitude of the composite pathway-2— 3)* is written

R

Z||—\

Since the value oR is not known beforehand, it is generally

necessary to repeat the procedure with increaSitmensure

that all relevant order paths are accounted foN+ R then (2% 2 y2(2) 4 4232 4 J4(242 | j4(23424 .

the high-order(frequency terms can appear as low-order 81 31 81 81 st k26)

(frequency terms due to aliasing. Convergence will be

achieved wherUga, for all relevantn, does not show sig- Another separate class of composite pathways for the same

nificant change with increasin. This procedure is compu- overall transition|1)—|3) is (1—4—2—3)*, which con-

tationally efficient as computations with increasingmay  tains the pathways (*#4—2—3), (1-4—2—4-2

reuse all the previoul’ points and onlyN—N’ new points —3), €etc.

need to be evaluated by solving Sofirger’s equation. In order to identify composite pathways we choose the
following encoding scheme:

B. Revealing composite pathways Uij—>vijei nis 273
After classifying pathways according to their order by the

procedure in Sec. IV A, further information can be extracted Yi="Yji - (27b

about the mechanism by decomposing the contributions

within each order and recombining them in a different man-This form of modulation preserves the Hermitian nature of

ner. A class of composite pathways is introduced for thighe Hamiltonian. This scheme assigns the same overall

purpose. The concept of a composite pathway is best illusnodulation function of to all paths belonging to the same

trated by an example. Consider a four-level system where theomposite pathway. For example, the amplitudes of the path-

control field drives the system from the initial stdi¢ to  ways (:-»2—3) and (+-»2—3—2—3) will have modu-

state|3). The overall amplitude of transitiod3; may have lating functions exfi(yio+ v29)s} and exgi(yizt vast va2

multiple relevant pathways. In particular, consider four pos-+ v23) s} =exp{i(yio+ v23)s}, by virtue of the definition in

sible pathways (+2—3), (1—-2—3—2—3), (1-2 Eq. (27b). The cancellation will occur for any rattling as a

—4—-2-3), and (:-2—3—4—2—-4—-3). These path- transition pairi—j andj—i will not shift the pathway fre-

ways are shown in Fig. 3. All four path@nd an infinite quency because of the condition imposed in @7b). Then

number of other easily constructed pathave the same net we have

transition 1-2—3 and differ only due to extra “rattling,”

or Rabi flopping, where the pathway jumps from a sttt =S 00* aines

another statdj) and later jumps fronj) back toli). In some Ua(9) ; Uba €7 29
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|3> FIG. 4. Temporally distin-
A ‘ A guishable pathways like the pair
shown here involve the same tran-
sitions, but in a different temporal
sequence. A scalar modulation al-
v |2> gorithm cannot separate them as
they will always have the same as-
A A sociated scalar modulation func-
tion. The nhoncommutative modu-

v lation techniques of Sec. IV D can

|1> separate such transition ampli-
tudes.

(I=2—=>33>2->]1—>2->73) (12> 122> 33 )2—=>3)

Each composite path labeled lywill have an associated practice, finding the transition amplitudes of all relevant
frequencyyy. pathways in this manner can be computationally formidable.

The inverse FFT can then be used to extract the individuaConsidering a four-level system evolving frdf to |4) with
composite amplitudes as follows. Chodsg;} (and hence pathways up to third order being relevant, there are ten pos-
{v}) as integer multiples of some frequengy (as yet sibly relevant pathways. The number of possible pathways
unknown such that all significant composite pathways haveincreases rapidly with order much faster than the number of
a unique frequency assigned to them. First, the results afomposite pathway&.g., for order 8 there are 658 pathways
the algorithm of Sec. IV A are used to determine the list ofbut only 73 composite pathwayg-or high-dimensional sys-
possible significant pathways. For example, for a four-levetems with high-order pathway contributions, several options
system, in the analysis ofJ,(T), if the analysis of are available. It may often be advisable to stop at the
Sec. IV A shows that pathways up to third order contributecomposite-pathway level of analysis, which should give suf-
significantly then the possible composite pathwaysficient mechanism information. If more information is de-
are {(1-4)*, (1—-2—4)*, (1-3—4)*, (1-2—3-4)*, sired then the modulation can be applied selectively to only
(1—-3—2—4)*}. The set{y;;} must then be assigned such those matrix elements which correspond to the pattisyaf
that these composite pathways are at different frequencigsterest. An extreme form of this logic may be applied by
{w}. Then a convenienN (e.g., for the FFT we could turning off all other transitions with the modulation;; = 0.
choose a power of)2is chosen such thay,<Nvy, for all For example, the transition amplitude of-(14) can be iden-
relevantk. Taking yo=2#/N and evaluating Eq(28) at tified by settingm;;(s) =0 for all coupling terms except,; .
s=1,2,... N, we create a sequence whose FFT coefficientd his process turns off all pathways except the one of interest.
{y} are the transition amplitudes of the composite path-AlthoughU 4(s) is highly distorted from the original ampli-
ways. tude U 4, the information regarding the desired pathway will
be retained. Results from the algorithm of Sec. IV B can be
used to decide which pathways demand a full rattling analy-
sis to reduce computational effort.

In some situations it may be desirable to further decom- The more detailed algorithm of this section is unable to
pose the composite pathways of Sec. IV B to reveal the condistinguish between pathways having the same transitions
tributions from cases involving both—| andj—i transi- but ordered differently in time. An example is illustrated in
tions. The rattling could be sequential, e.g:{—j—i---)  Fig. 4. Since each pathway is labeled only in terms of its
or separatedi(~j—k—j—i---). In order to reveal rattling transitions, it is not possible to distinguish between such
the symmetry condition of Eq27b) is relaxed to keep just pathways by the methods introduced so far. The sum of the

, transition amplitudes of these paths will always be associated

vij—v;; e s, (29 with the same overall modulating function. Such pathways

will be referred to as temporally distinguishable pathways.

Therefore the algorithm in this section classifies all tempo-

rally distinguishable pathways together. The decomposition
of the time evolution operator can be written as

C. Revealing rattling contributions to composite pathways

This encoding produces a non-Hermitian coupling matrix in
Eq. (11). Pathways differing by rattles may now be at differ-
ent frequenciegprovided that the{y;;} are appropriately
chosen. For example, (+2—3) and (}»2—3—2—3)
will have modulating functions eXi{yi»+ y,3)s} and
expli(yiot va3t vaot+ ¥23) S}, respectively, which can now Uba(3)=2 Ug(akﬂ, (30)
be distinct. An inverse FFT can again be used to extract k

pathway amplitudes after assignifg;;} such that all path-

ways up to the relevant order are at distinct frequen@es

exception to this procedure will be illustrated in Sec. 1Y/ D where the additional notatiork]"” has been introduced to
by following operations identical to the one of Sec. IV B. In denote a set of temporally distinguishable pathways.
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D. Discriminating between temporally distinguishable =m;(9my(s). A noncommutative modulation scheme could
pathways discriminate amongst such temporally distinguishable path-

Figure 4 shows two pathways that involve exactly theWays: Consider the noncommutative modulation scheme

same transitions, but in a different temporal sequence. The vi—v M (S)A; (31)
two transition amplitudes)§{>3%123and U 5212323y, e

in general, have different contributions. However the algo-whereA;; is a real, nonsymmetrigjXu matrix and the set
rithm in Sec. IV C cannot discriminate between them, and{A;;} is used in the overall encoding of the dynamics. If there
can only compute the sum of their amplitudes. The previousrep temporally distinguishable pathways to separate, then
algorithm encoded each transition- j through its modulat- is the smallest integer such that=p. The matriceg Aj; }

ing functionm; (s), and each pathway had a product of suchare independent of both ands. This modulation scheme
modulating functions attached to it, reflecting the transitionscreates a new quantum system with dimensidr(whered

it contained. However, temporally distinguishable transitionwas the dimension of the original systemhe conditions on
pathways could not be discriminated from each other be{A;;} for successful separation of temporally distinguishable
cause the modulating functions commuted with each othepathways will be made clear in the following analysis.

i.e., there was invariance to the time order of any two tran- In the interaction picture the equation of motion for the
sitions such asl—k and i—j becausem/(s)m;;(s) new udXud evolution matrixU’ has the form

v12(DA1M1(S)  viADALMAS) - v1g(D)A1gMy4(S)
U21(H)A21Mo1(S) v ) AgMoa(S) =+ vag(t)AggMag(S)
w — ' . . . u’(t,s) (32)
dt . ) . . 1)
UN1(DAGIMG1(S)  vna(DAgaMga(S) -+ vnn(t)AgaMya(S)
|
Instead of the scalar outpUty,,(s) from the evolution matrix * d L
we now have the analogous< u submatrix: UlL(8)=2, - El uptatzdn-a)
n=11ly,03,...lh-1=1
Upa(s) XDE(all ----- In-Dgisyn(ly.lz - ln-1), (36)
U(,b—l)u+1,(a—1)u+1(s) U(,b—l)u+1,au(s)

Now each pathway has a label consisting of two parts—a
scalars modulation function and a matri®. Since all the
= : ‘ temporally distinguishable pathways have the same scalar
modulating function, they sit on the same frequency, e.g.,
v« However, the different ordering of transitions is now
Upu,a-1yu+1(S) Uby,au(s) reflected in the fact thad,Aj; #Aj;A, . Hence each tem-
(33 porally distinguishable pathway will have a different matrix
D associated with it.

and Uy ,(s) can be written as An inverse FFT of each element of theXu matrix
Upa(s) can be used to pick the required frequency compo-
* d O T TR nenty,, generating a matriX. If the transition amplitudes
Upa(S)= > > Utz Dttt of the p temporally distinguishable transition pathways
Pt dnma =t are UMt g3 r0E ) e ater
[P PR a ’ a v Ypa ,
X Mgtz (), (34 the FFT we get theix u matrix equation
where p , : : :
K:E Ug1(|1 ..... Infl)D?(I1 ..... 'n—l)_ (37)
[PRERN = a a
Doy 1):Abln,1Aln71In72'"Alla (35 '
With appropriate choice of the matricg4;;}, the matri-

areu X u matrices and th&! functions are defined exactly as mh 0y _ _
before. Using the sammay;(s) as in Sec. IV C makes eadh  ces{D,,* """~} will be linearly independent and E37)
function a complex exponential such that will give a system ofu? (>p) linear equations imp un-
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TABLE I. The transition amplitudes for the two-level system in

knowns {U[\1 -2} j=12 ... p, that can be solved Fig. 5

for the amplitudes of individual temporally distinguishable

pathways. Path Amplitude
(1-2) —-1.57
V. ILLUSTRATIONS OF CONTROL PATHWAY ANALYSIS (1-2—-1-2) 0.65

The mechanism analysis procedures of Sec. IV were ap- (1-2-1-2-1-2) —0.08

plied to several model quantum systems. In all cases the
eigenstates of the unperturbed Hamiltonian were used to rep-
resent the evolution. However, other bases could be used if ] o
transitions between them can be given suitable physical The firstclass of systems analyzed by Hamiltonian encod-
meaning. All the analyses were initiated by determining sigiNd used nonoptimal fields, resonantly coupled within the
nificant pathway orders as explained in Sec. IVA. For sysfotating-wave approximatiofRWA). Such simple model
tems with fewer than four states the non-Hermitian modula£@Ses produce time-independent coupling matrices in Eq.
tion scheme of Sec. IV C was applied directly after this steg10). allowing for an alternative, direct determination of the
because the number of pathways was quite small. For |argé}athway transition amphtgdes for algonthm ver|f|cat|on..The
systems the transition amplitudes for the composite pathway&sults are also physically instructive. For a time-
were computed by the algorithm of Sec. IV B, and then thdndependent matri¥/, the transition amplitude for a path of
dominant composite pathways were analyzed by the procerdern from Eq.(8) becomes
dure of Sec. IV C to reveal the underlying dynamical rattling.

The numerical integration of the Scliinger equation ab
was done by approximating the interaction Hamiltonian as Tt 6

:fo Jo "'JO voi, (tvr o (thmg)

A. Resonant nonoptimally controlled models

UnUzedn-y)

piecewise constant:

i T T/At i ><U|1a(tl)dtl,...,dtn_1dtn
U(T)=rex ——f v (Hdt|~ ] exp — =V,(t,)At],
h o A=1 h ™
(39) =Ubl, Ul gl Vlapy - (39
t,=nAt, The first application is to a two-level system described in

dimensionless units, with the field amplitude adjusted for
complete transfer of population from levid) to |2). A plot
where 7 is the time-ordering operator. The matrix exponen-of |U »(t)| is shown in Fig. 5. The monotonically increasing
tial may be computed by Hamiltonian diagonalization. How-
ever, in some of the proposed modulation schemes the en-TABLE Il. The pathway amplitudes for the three-level system.
coded Hamiltonian is non-Hermitian, and it is possible that

the matrix may not always be diagonalizable. Therefore, Pathway Amplitud®  Amplitudé®
Pade approximants[24] were used to compute all matrix
exponentials. (1-2-3) —2.250 —2.250
(1-2—1-2-3) 1.688 1.688
2 ] (1-2—3—2-3) 0.422 0.422
001 (1-2—-1-2—-1-2-3) —0.506 —0.506
) (1-2—1-2—-3—-2-3)° —0.253 —-0.127
0.8 ¢ (152-3-2-1-2-3)° —0.253 ~0.127
e (1-2-1-2-1-2-1-2-3) 0.081 0.081
3 O¢f Total —0.81¢ ~0.819
S 0.5]
Bouag Calculated by the encoding algorithm of Sec. IV C.
0.3 ¢ The true values from Eq39).
0.2 ¢ ‘These two pathways are temporally distinguishable and cannot be
0.1¢ 1 separated by scalar encoding algorithms. The computed amplitude,
0 A : . . . which is the coefficient of the associated modulating function

M§(21233(5) = M§(22213(s), will be the sum of the two separate

amplitudes. The sum shown in the table takes this into account and
FIG. 5. The magnitude of the transition amplituds,,(t)| for ~ adds in the contributiofc) only once.

the two-level test case as a function of time in dimensionless units'The sum of the amplitudes should give the total valueJgf(t)

The monotonic rise in amplitude hides the true multiphoton contri-=—0.7912. The observed mismatch arises because the table only

butions shown in Table I. includes pathways with amplitudes satisfyifd$?|=0.08.

Time
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s i ; 1.5 v
g
a 2
2 0
D"’ 0} 4 g
g i
-1.5 .
_s . 0 S0 100
0 00 200 time (£s)
s F ” v ] FIG. 8. The control field designed using optimal control for
ﬂ transfer from|1) to |3) for the four-level system.
. . 3 3
—1 —1 V21V12V21T
a0 \
E with (1/4)V,T=7/2.

The pathway analysis was then applied to another simple
system with the matrix of Eq.(10) in the RWA having the
form

~4 } .
0 100 200 0 02 0
v=i{ 0.2 0 0.1, (41
FIG. 6. A plot of the real and imaginary parts O,(s) for the 0 01 O

three-level case with the coupling matrix in Bg1). Information
about the pathways fdi)—|3) is revealed by a FFT decoding of
this output signal as shown in Fig. 7. The variablis dimension-
less.

where the units used are arbitrary. The system is initially in
the statel1), and the dynamics was followed out to tiriie
=15, where|U3,/=0.79. The analysis of Sec. IV A for the

, , |1)—|3) transition showed that pathways up to order 8 con-
transfer of population fronitl) to [2) might suggest that only - yip, teq significantly forU,. The significant pathways and
a one-photon process is involved, but the pathway analysigejr (ransition amplitudes are shown in Table II. Paths in-
results in Table | show a significant contribution from the cluding 13 or 3—1 transitions do not arise in this case as

rattling pathway (32—1—2). The numerical pathway t)=0~(t)=0 for all t. U«(s) is plotted in Fia. 6. The
identification results agree exactly with the simple analyticalvla( ) =vai() - Yails) is p g- >

S ) - magnitude of the inverse FFT &f5(s) is shown in Fig. 7,
expression in Eq(39) that the different pathway transition ynichy corresponds to the results in Table Il. The amplitudes
amplitudes arise from the Taylor series expansion o

etermined by using the analysis of Sec. IV C fully agree

—isin(m@/2): with those obtained by a direct evaluation of E89). Table
Il also shows two temporally distinguishable pathways
2.5
1
2
3
g1st B
ol -—
- o
o = !
5 1 § 0.5
0.5}
0 N N ' i 2 | J [
0 5 10 15 20 25 30 35 40 45 50 0 .
Fregquency 0 50 100

time (fs)

FIG. 7. The magnitude of the FFT of the signal in Fig. 6. The
spectrum corresponds to the amplitudes listed in Table Il. The fre- FIG. 9. Population in level3) as a function of time with the
quency is dimensionless. four-level system driven by the optimal field in Fig. 8.
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TABLE IIl. Moduli of the significantly contributing pathway TABLE IV. Moduli and phases of the composite pathways for
orders for the transitiofil)— |3) with the four-level system driven the transition|1)—|3) with the four-level system driven by the

by the optimal field. optimal field.
Order Modulus Path Modulus Phasgad?
1 0.85 (1—3)* 0.24 —2.51
2 1.36 (1—-2-3)* 0.61 —2.59
3 0.85 (1—4—3)* 0.15 —2.64
4 0.73 (1—-2—4—-3)* 0.000 47 -2.92
5 0.25
6 0.15 #The optimal field tends to align the phases for efficient constructive
7 0.037 interference.
8 0.017

Table IV. The most important composite pathway is
(1—2—3)*. The table indicates that the phases of the ma-
whose amplitudes were successfully separdtistails not jor pathway amplitudes are very well aligned; hence the
shown hergusing the noncommutative encoding scheme ofcomposite pathways interfere constructively to reach the tar-
Sec. IV D. The scalar encoding scheme gives the sum of the@et. This behavior is a consequence of employing optimal
amplitudes as part of the temporally distinguishable pathwagontrol to attain the best possible outcome; the fluence cost
class. in the optimal control algorithm likely aids this process by
attempting to make the transfer efficient. It is convenient to

B. Mechanisms of systems driven by optimal control fields

define an amplitude alignment parameter
The pathway analy_sis algorithms are now appl?ed to two 2 U
examples where the field has been computed using optimal ~ ~ba
control theory[1,4—6, without the RWA. The first case is a n=—"—
four-level systeni25] with the goal being population trans- > |Ugja)*|
fer from level|1) to |3), along with a small cost to the field n
fluence. The field computed using a lo¢ateepest-descent
optimization algorithnj 1] is shown in Fig. 8. The population which provides a measure of the constructive interference
in state|3), shown as a function of time in Fig. 9, was 0.99 atamong the composite pathways. For the three major compos-
the target time. The algorithm of Sec. IV A was first appliedite pathways» was 0.999, which means that they show al-
to identify the orders of the significant pathways and themost perfect constructive interference. A similar analysis was
results are shown in Table lll. Following the results in thealso done for the transitiofi)— |4). The optimal field was
table, the more detailed mechanism analysis neglected pattlesigned to maximiz¢U,(T)|, and the population in the
ways of order 7 and greater. state|4) was |U,;(T)|?=0.01. The composite pathways for
The transition amplitudes of the composite pathwaysthis transfer destructively interfere in order to ensure near-
computed using the algorithm of Sec. IVB, is shown inzero final population i), resulting in the major composite

: (42

e
o> (1 > 2 - 3)*

Iteration 15 Iteration16 = ceeeeeed - (1 - 4 > 3)*

Iteration 17 converged

FIG. 10. The introduction of different composite-pathway amplitudes shown in the complex plane for the four-level system where the
goal is optimal transfer of population fot)—|3). The initial field guess had no pathways connectiido |3). For iterations 1 through 15
only one composite pathway {23)* was significant. The optimization algorithm first introduces the relevant composite pathways, and then
optimally aligns them at convergence. The final converged composite amplitudes are almost completely aligned, and are shown slightly
separated here for graphical clarity. The key for the composite-pathway fonts is shown on the right.
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/7 |7>
T a-ayr

e |6> '5>

-, |4>

(1-3-4) =

-/’
s
-,

£
(1-2-3-4)* 3> 2>

FIG. 11. Destructive interference of pathways in the nontarget
state|4) for the four-level system. The pathways shown in the com-
plex plane for thé1)—|4) transfer do not cancel out completely as 1>
several smaller-amplitude pathways also contribute significantly to

ensure no net population i#A). FIG. 12. The energies and allowed couplings for the seven-level

system. The goal is population transfer fr¢th to |7).

paths having #7=0.03 for the [1)—[4) transition. The ahways, possibly implying that the optimization algorithm
mechanism analyses fbr;,(T) andU,y(T) in this example 5 missing an opportunity to work with constructive interfer-
demonstrate how the optimal control process seeks out gnces. However, this view is misleading as there is a con-
control field£(t) to manipulate multiple pathways in a fash- cegled relation between the phases of the pathways contrib-
ion to yield cpns’Fructive interf_erence in the desired f_inal ;tatqjting to a single composite-pathway amplitude. This
gnd destructive interference in the other states. This point igslationship can be qualitatively understood by considering a
illustrated graphically in Figs. 10 and 11. resonant RWA analysis of the analogous pathway amplitudes

All pathways up to order 5 including rattling fol) i, Eq. (39). Consider the pathways (23) and (t-3—2
—|3) were decomposed according to the procedure of Se(;,3)’ with their transition amplitudes

IV C, and pathways up to order 4 are shown in Table V. This

analysis captures most of the processes, but Table Il shows n =i

that additional processes also occur out to order 6. Some U31=(7> VaiT, (43

sixth-order pathway transition amplitudes were also com-

puted but the trend indicated that there is no sixth-order path- —j\3 3

way of high amplitude; the overall contribution of the sixth- u3Ea= (7) VaVoVarg, (44)

order terms is because of the large number of participating

pathways rather than the presence of a few significant path,;,h(:‘.rel)ij is explicitly written as (i/#)V;; in order to illus-

ways. trate the connection between the phases. Since the phase of

It is evident from Table V that the decomposed pathways —/7)2v,,V, is 7, these two pathways will always be ex-

are not aligned, unlike what is observed for the compositgcily out of phase. The actual optimally controlled dynamics

of the example in Table V is more complex, but on exami-

TABLE V. Moduli and phases for all significant pathways up to nation the same pair of pathwagtabeled with ¥ shows this
order 4 for the transitiohl)—|3) in the four-level system. A rela-
tionship exists amongst the phases of pathways marked with the 1.5

same symbo(t,$) as explained in the text, resulting in these path-
ways not being aligned like the composite pathways.
Path Modulus Phase -
54
(1—3) 0.85 -28t > M
(1-2-3) 1.08 -2.64 1 s 0
(1-4—3) 0.28 —2.63 o
(1—-2—1-3) 0.31 0.316 1 [
(1—-3—1—-3) 0.10 0.338 ¥
(1—-3—2—-3) 0.26 0.179 ¥
(1—4—1-3) 0.16 -0.773 t .
(1-2-1-2-3) 0.21 0.444 1 sy 50 100
(1—-2—-3—-1-3) 0.10 0.541 ¢ time (£s)
(1—-2—-3—-2—-3) 0.18 0.595 ¢
(1-4—1-2-3) 0.12 —0.695 t FIG. 13. The optimal field for making the transitioh)— |7)

for the seven-level system of Fig. 12.
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1 y TABLE VII. Amplitudes and phases of significant composite
pathways for the seven-level system. The composite pathways are
aligned.

Pathway Amplitude Phase
) o5 (152—4—5-7)* 0.226 -0.417
S (152—4—6-T7)* 0.256 -0.414
- (1-3—4—-5-7)* 0.224 —0.413
(1—-3—4—6—7)* 0.255 —0.412
(1-2—-4—-3-1-2-4-5-7)* 0.001 0.085
0 0 50 100 The pathway analysis algorithms were also applied to a

seven-level systeri26] shown in Fig. 12 governed by an
optimal control field aiming to transfer population frdin to
FIG. 14. Population in level?) as a function of time with the |7). The system is slightly asymmetric because of the dipole
seven-level system driven by the optimal field in Fig. 13. coupling matrix elements. The optimal field shown in Fig. 13
produced 98% population in the target stdfe, and the
behavior. It is also observed to different degrees among othgropulation as a function of time is shown in Fig. 14.
pairs with a similar relatiorisee the paths labeled with.+ The main contributing pathway orders for the transition
The pathway analysis can also be performed at intermd-l)—|7) are shown in Table VI using the algorithm of Sec.
diate iteration steps during the optimization process alondgV A. Due to the allowed couplings at least four steps are
the way to the optimum field to give further insight. In the required to get fronj1) to |7), as seen in the table. The four
present case after 15 iterations, the population in I¢8)el major composite pathways are shown in Table VII, and they
started to become significantl5%). At that point the are all in phase withy=0.9999, again showing the tendency
composite-pathway analysis showed that only the-@)* of optimal control to align the composite pathways. Table VI
processes were significant. Iteration 16 produced a 349%hows paths of orders 6, 8, and 10 as significant, implying
transfer of the population and showed that, while{3)* that the control mechanism consists of the four simple direct
was dominant, the optimally controlled dynamics had starteghathways as well as up to three rattlings, with the pathways
to use other pathways as well. On the next iteration a suddegontaining one rattle actually being more important than the
jump in the population transfer from 34% to 80% was ob-direct pathways. The coupling diagram of Fig. 12, the distri-
served, accompanied by an increase in the contribution djution of orders in Table VI, and the composite pathways in
higher-order composite pathways {12—3)*, etc. The Table VIl provide a clear physical picture of the mechanism.
alignment wasy=0.87 for the composite pathways when all The last row of Table VIl shows a weak but physically in-
three major composite pathways are introdudidration  teresting pathway traced out in Fig. 15 as containing a closed
17), with » becoming 0.999 at convergence. Therefore, thdoop of couplings (+2—4—3—1) followed by transfer
optimization process consists of two cooperating featuies: of amplitude to|7) by (1-2—4—5—7).
the introduction of different composite pathways, afiid
their alignment for constructive interference at the target [7>
state. Figure 10 shows how the optimal control algorithm
achieves constructive interference in the desired S@jte
while Fig. 11 shows destructive interference in the nontarget ——m @ ———— 6> |5>
state|4).

time (fs)

4>
TABLE VI. The distribution of significant pathway orders in the l

seven-level system of Fig. 12 due to the optimal field of Fig. 13.

Order Amplitude

4 5.2 '2>

5 0

6 7.5

7 0

8 4.7

9 0 >

10 1.7 FIG. 15. A physically interestingbut low-amplitudé eighth-

11 0 order composite pathway which involves looping around once
12 0.4 (1-2—4—3—1) before proceeding to the final state

(1—-2—4—-5-7).
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l4> \ JUU— o 7> 7>
l6> I5> l6> |5>
—r— 3> ——T—— B> 4> >
- Y I I B B> — > B3> 2>
A 1> 1>
S 1> ] 1> 25.4% 225%
23.9% 60.6% > >
. 16> 15> l6> I5>
p— 3> — B> B> > B> 12>
1> 1>
| 2> | 2>

25.6%

A—'—'— 22.4%

FIG. 17. The percentage contributions of the various composite-
—a p> 1 pathway moduli to the optimally induced transitid) — | 7) for the
seven-level system.

15% 0.05%
dynamics, while still preserving the desired pathway infor-
mation. A balance exists between the level of detail and the
computational effort involved.

The algorithms introduced here might be improved in a
) . . number of ways. Ultimately, optimal criteria could be ap-

_Since the optimal control fields tend to produce phaseyjieq to determine the best encoding functions that balance
aligned Compos!t(ec(gathyvays in the target state, it follows thah merical efficiency and stability. Notwithstanding these re-
Upa=3US e Pba’ ~ el %ba3, |UEK)|, where thekth com-  finements, the Fourier-based procedures utilized in this paper
posite pathway has the phagg( and the phases are essen-are practical and ready for use in various applications. In
tially a constant¢,,. Therefore each composite pathway extendmg the analysgs to other systems it would be yaluable
can be assigned a percentage contribution |u9<g)*|/ tol verify the general_lty of the observations regarding the

(K% | . ) _ alignment of composite pathways observed here.

20Uy | in achieving the final state. Figures 16 and 17 “\jormally a mechanistic analysis would be performed at
show the importance of the various composite pathways fofe a5t stage after obtaining an optimal control field. How-
the optimal control of the optimally controlled four- and eyer other applications can also be envisioned. For example,
seven-level sys_tems, respec_tlvely. While the four-level sysi come statg(or pathway is to be avoided during the con-
tem has a dominant composite pathway, the seven-level sygyjied dynamics, then the mechanism analysis could be per-
tem, with its high degree of symmetry, uses all possible cOM¢qrmed in tandem with the optimal control design. In this

FIG. 16. The percentage contributions of the various composite
pathway moduli to the optimally induced transitig) — |3) for the
four-level system.

posite pathways almost equally. case pathway information would actually enter into the
control-design cost function. Regardless of the applications,
VI. CONCLUSIONS the conceptual tools introduced here should provide the

means to reveal the underlying physics operating in the con-
The pathway analysis algorithms introduced in the papetrolled manipulation of quantum systems.
provide an efficient and thorough means to reveal quantum-
mechanical contro_l me.chanisms. Defining mechanisms in ACKNOWLEDGMENTS
terms of pathways is quite natural and allows for clear mean-
ing to be given to the notions of constructive and destructive This work was supported by the National Science Foun-
interference in controlling quantum systems. Most signifi-dation and the U.S. Department of Defense.
cantly, the mechanism analysis can be carried out in stages
ranging from just revealing the order of interactions involved APPENDIX
all the way out to the highest level of detail, identifying each
individual contributing pathway amplitude. The pathway al- ~ The appendix addresses the convergence behavior of the
gorithms are especially efficient if only a few pathways areDyson series under normal physical conditiaffiscluding
desired for analysis. In this case the modulating functiongnodulation). Consider the equation
may be set to zeran;; =0, for all transitionshotinvolved in
the desired pathways. This rather extreme case would lead to d_U —V(t,5U, U(0)=1 (A1)
an encoded Hamiltonian that would have drastically different dt B '
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whereU andV aredXxd matrices, and/(t,s) incorporates n
modulation. The Dyson expansion for the solution of Eq. Jo "'fo vol, ,(tn)Mp — (S) vy alty) My a(s)dty---dt,

(A1) is
t
. t . J J J ‘Wwe-w dtg--dt, ; dt,=——. (A3)
U(t,S)=| + J V(tl,s)dt1+ f V(tz,s)f V(tl,s)dtldtz
0 0 0
Fornth order in the Dyson series there are 1 intermediate
+eee (A2) steps each of which can be independently varied fromd to
therefore there ard"~ ! such integrals. Hence
The physical systems in this paper are all of finite dimension 0 d
d. The control field is always bounded in magnitude and on|y, (s)|< E 2 |U”('1 ----- In— 1>Mg<a|1 ----- In—l)(s)|
for a finite time T, and the modulation functions are also I, lnog=1
bounded from above. The dimensiaheither is fixed on " "
. . . . . ndn—l-l-n 1 whdnT"
physical grounds by, or is an effective dimension beyond _ E W _ E = (e™T_1)
which no significant dynamics exists for the particular con- =t n! di=t n! d '
trol problem. For such systemy/(t,s)|| is bounded from (Ad)

above and nonzero over only a finite inter&,T]. The
expansion of Eq(A2) always converges under these condi-Since the series on the RHS of E(l4) is absolutely
tions. Hence, Eq49) and(14) are mathematically meaning- bounded from above, it converges.

ful and converge for any set of modulating functidms;; } The actual necessary condition Wiit,s) for convergence

for all swhere them;; are finite. A crude upper bound on Eq. is less stringent than the one imposed hgZ@|, but this

(14) can be estimated as follows. Consiger0 to satisfy  bound suffices to make the point about convergence behav-
w>|vi;(t)m;;(s)| V i,j,t,s, which is possible as the ele- ior. Finally, the convergence of EGA2) is consistent with
ments ofV are all bounded and nonzero for only a finite time the simple physical statement that in any real experiment
interval [0,T]. Then each term in Eq12) may be bounded only a finite number of photons will enter or leave the system

as due to the applied control field.
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