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Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding
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A variety of means are now available to design control fields for manipulating the evolution of quantum
systems. However, the underlying physical mechanisms often remain obscure, especially in the cases of strong
fields and high quantum state congestion. This paper proposes a method to quantitatively determine the various
pathways taken by a quantum system in going from the initial state to the final target. The mechanism is
revealed by encoding a signal in the system Hamiltonian and decoding the resultant nonlinear distortion of the
signal in the system time-evolution operator. The relevant interfering pathways determined by this analysis
give insight into the physical mechanisms operative during the evolution of the quantum system. A hierarchy
of mechanism identification algorithms with increasing ability to extract more detailed pathway information is
presented. The mechanism identification concept is presented in the context of analyzing computer simulations
of controlled dynamics. As illustrations of the concept, mechanisms are identified in the control of several
simple, discrete-state quantum systems. The mechanism analysis tools reveal the roles of multiple interacting
quantum pathways to maximally take advantage of constructive and destructive interference. Similar proce-
dures may be applied directly in the laboratory to identify control mechanisms without resort to computer
modeling, although this extension is not addressed in this paper.
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I. INTRODUCTION

Optimal control theory is an effective technique for d
signing electric fields to manipulate the evolution
quantum-mechanical systems@1–6#. Closed-loop learning
algorithms @2# combined with advances in laser puls
shaping techniques have enabled the direct discovery
laboratory optimal controls, even for complex syste
@7–14#. However, the mechanisms by which the target st
is reached often remain obscure, in both computer sim
tions and experiments. Under favorable conditions inform
tion about the control mechanism may be deduced from
analysis of the temporal, frequency, or time-frequency str
ture of the control fields@15,16#. However, under genera
circumstances caution is called for as the mechanism
depend in a nonlinear fashion on the control field. Thus
more systematic technique is required, which addresses
nonlinearities of the mechanism identification problem. T
paper presents the means to understand the control me
nism in the theoretical design of fields and their simula
dynamic response. The control mechanism is revealed
identifying the dominant quantum pathways contributing
the observable final state achieved by the control field. T
pathways, and thus the system mechanism, can be reso
at various levels of detail. The notion of a quantum pathw
is also subject to the definition associated with the choice
representation of the Hamiltonian, and this paper uses a n
ral definition in the context of applications described by
discrete set of states. However, some systems might
themselves to other definitions of mechanism, which may
similarly revealed.

*Electronic address: abhra@princeton.edu
1050-2947/2003/67~3!/033407~16!/$20.00 67 0334
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The mechanism identification concept

The essence of the mechanism identification~MI ! concept
will be explained below with the remainder of the pap
presenting the details of the procedure and its illustration
several simple problems. A quantum control pathway ana
sis can be used for post-field-design MI as well as during
design procedure, to actively steer the dynamics to fa
certain pathways. Analogous MI pathway analyses could
performed directly in the laboratory@17#. This paper concen-
trates on introducing the MI concept in the context of ana
sis after computational control field design. The basic pro
dure for MI remains the same when working with laborato
data, but additional complexities must be dealt with as dir
access to the wave function is not available.

The quantum systems analyzed in this paper are descr
by Hamiltonians of the formH5H01V(t), whereH0 is the
field-free Hamiltonian andV(t) accounts for the externa
field. For many quantum control applications typicallyV(t)
52mE(t) where m is the dipole andE(t) is the control
electric field. Although the paper will assume this form f
V(t), the general formulation of Hamiltonian encoding do
not require the Hamiltonian to be linear in the control fie
The time evolution of the system is prescribed by the eq
tion

i\
dU~ t !

dt
5@H02mE~ t !#U~ t !, U~0!51. ~1!

The eigenvaluesEi and eigenfunctionsuni& of H0 satisfy
H0uni&5Ei uni& for i 51,2, . . . ,d whered is the dimension of
the state space of the quantum system. We definev i j 5(Ei
2Ej )/\, and the control field can be conveniently express
as
©2003 The American Physical Society07-1
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E~ t !5A~ t !(
i 51

d

(
j , i

ai j sin~v i j t1f i j !, ~2!

where A(t) is a slowly varying envelope function. Th
actual control variables are the phases$f i j % and
amplitudes $ai j %. Making the transformation VI(t)
52exp(iH0t/\)mE(t)exp(2iH0t/\) gives

i\
dU~ t !

dt
5VI~ t !U~ t !, ~3!

whereU is now understood to be in the interaction repres
tation. The solution of Eq.~3! is the matrixU(T) with a
basic focus of MI being an understanding of how a particu
~often high! amplitudeUba(T) is achieved in stateub& at time
T by the action ofE(t) starting in stateua& at time t50.
Although knowledge of the matrixU(T) prescribes all pos-
sible system observables at timeT, the calculation ofU(T)
does not generally reveal how the evolution occurs~i.e., the
mechanism!. The proposed MI algorithm can be understo
by viewing the quantum system as a functioning ‘‘machin
under dynamical evolution, driven by the HamiltonianH(t)
5H02mE(t). This situation is analogous to considering a
functioning machine where an understanding of its opera
mechanism is usually best achieved by applying external
turbances~e.g., perturbations! and monitoring the resultan
transient system responses. If the disturbances are introd
in a suitable fashion, then the resultant response data
yield detailed information about the inner ‘‘workings’’ of th
functioning machine. This logic applies equally well
quantum-dynamical machines.

Before considering how to modulate the quantum dyna
ics for MI, it is first necessary to define what we mean
‘‘mechanism.’’ In the context of analyzing the mechanism f
achieving the particular amplitudeUba(T) it is natural to
seek out the important pathways leading fromua& to ub&. Here
a pathway is specified by a sequence of transiti
ua&→u l 1&→u l 2&→¯→u l n21&→ub& where the statesu l i&,
i 51,2, . . . ,n21, prescribe one particular path ofn steps
from ua& to b&. Such a path will have an associated amplitu
denoted byUba

n( l 1 ,...,l n21) . The total amplitudeUba(T) is then
the sum of all contributing pathway amplitudes

Uba~T!5 (
n,$ l i %

Uba
n~ l 1 ,...,l n21!

~T!. ~4!

As a notational shorthand we may simply denote the se
amplitudes asUba

n (T)[Uba
n( l 1 ,...,l n21) where the intermediate

states are implicitly understood. Figure 1~a! shows a sche-
matic of the pathways leading fromua& to ub& labeled by the
corresponding amplitudes.

The decomposition ofUba(T) in Eq. ~4! is fully consis-
tent with the general notion of quantum control operating
constructive interference between the amplitudes for all
nificant pathways leading from the initial stateua& to the final
stateub&. The present paper will present an efficient algorith
for determining the set of all relevant pathway amplitud
$Uba

n( l 1 ,...,l n21)
% connectingua& andub&, whereby an analysis o
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the set provides a means to understand the mechanis
computational quantum dynamics.

The amplitudes defining the mechanism of the control
evolution may be directly associated with the terms co
tained in the Dyson expansion for the time evolution ope
tor in the interaction picture@18# ~while the term pathway
invites comparison to Feynmann paths, these control p
ways do not correspond to Feynmann paths@19#!

U~T!5I 1S 2 i

\ D E
0

T

VI~ t1!dt1

1S 2 i

\ D 2E
0

T

VI~ t2!E
0

t2
VI~ t1!dt1dt21¯ . ~5!

Here I is thed3d identity matrix. The next term is of orde
n51, while the highest term explicitly shown in Eq.~5! is of
order n52, etc. Thenth-order term in the expansion is th
sum of allnth-order pathways prescribed by all possible
termediate steps$ l i%, i 51, . . . ,n21. Here the notion of or-
der n is exactly coincident with its use inUba

n( l 1 ,...,l n21)(T)
defined above. In order to determine the mechanistic in
mation contained in Eq.~5!, the physically relevant integral
need to be determined. The important integrals are thos
significant magnitude connecting statesua& and ub&, and a MI
analysis must deal with ana priori lack of knowledge about

FIG. 1. A schematic showing the basic concept of pathway id
tification by Hamiltonian encoding.~a! A matrix element of the
time-evolution operatorUba(T) can be decomposed into a set
n51,2, . . . ,N significant pathways$Uba

n % which constructively and
destructively interfere to make effective the transitionua&→ub& un-
der the action of the HamiltonianH(t), 0<t<T. If the population
in ub& is significant~insignificant! then the pathways add up con
structively ~destructively! to give a net transfer of population. Th
mechanism is revealed by the magnitude and phases of theN path-
way amplitudes$Uba

n %. ~b! The pathways are identified in a three
step process of~i! encoding the Hamiltonian features in terms of
characteristic variables, which is scanned,~ii ! performance of en-
coded dynamics to yieldU(T,s), and ~iii ! decoding ofU(T,s)
through an inverse transform over the variables to obtain$Uba

n %,
which reveals the dynamical mechanism of the original, unco
system undergoing normal dynamics.
7-2
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IDENTIFYING MECHANISMS IN THE CONTROL OF . . . PHYSICAL REVIEW A 67, 033407 ~2003!
which integrals to focus on. A direct numerical approach
evaluating these multiple integrals would be exceedingly
ficult, especially with strong fields where integrals~path-
ways! of high order may contribute significantly toU(T).
The MI technique introduced in this paper avoids this pro
lem byencodinga signal into the Hamiltonian anddecoding
its effect on the output of the resultant distorted time evo
tion operator. This procedure provides a practical means
MI by computing all relevant terms in Eq.~5! in a simple
fashion without explicit evaluation of the integrals.

The concept of encoding the Hamiltonian with a spec
signal and monitoring the observable response is a partic
incarnation of the general procedure of introducing a dis
bance in the dynamics in order to understand the dynam
mechanism. The encoding technique may be viewed a
modulation of the Hamiltonian by an input signal with th
goal of attaining MI from the effect of the signal upo
Uba(T). Normally, modulation for this purpose would b
introduced as a function of timet outside the frequency
range appearing in the quantum dynamics and the con
field. In this way the modulating signal would act as a trac
distinguished from the effects of the control field, so as
reveal the control mechanism from the distortions of
tracer signal appearing in the observations. However, the
troduction of modulation frequencies in the tracer mu
higher than that of the natural dynamics would have a nu
ber of undesirable features. First, integrating the Schro¨dinger
equation with a much finer time mesh than normal would
required, resulting in corresponding additional computatio
costs. Secondly, looking ahead to the laboratory implem
tation of MI such high-frequency input-modulation signa
even if they could be generated, would likely excite u
wanted dynamics~e.g., electronic excitations!. An alternative
encoding technique is available for computational MI, intr
duced in this paper, which is also extendable to a form a
nable for laboratory implementation.

As an illustration of the encoding technique consider
case of dipole coupling in the Hamiltonian such that ea
linkage in the sequenceua&→u l 1&→u l 2&→¯→u l n21&→ub&
is given by a particular matrix elementm i j , wherei andj are
members of the set$ua&,ub&,u l i&,i 21, . . . ,n21%. For en-
coding we may then modify the Hamiltonian matrix eleme
Hi j 5Eid i j 2m i j E(t) to becomeHi j 5Eid i j 2mi j (s)m i j E(t),
wheremi j (s) is a suitably chosen encoding function of th
variables for 2`,s,`. The resultant dynamics under th
new HamiltonianH(s) will accordingly produce an altere
transition matrixU(T,s) which is a function ofs. The goal is
to choosemi j (s) such that each dipole element in the Ham
tonian produces a unique feature inU(T,s) as the variables
is scanned. Furthermore, it is required that the deconvolu
of U(T,s) over the variables yield all of the relevant ampli-
tudesUba

n( l 1 ,...,l n21)(T). One possible approach is to modula
with Fourier functionsmi j (s);exp(igijs) and deconvolute
Uba(T,s) by a Fourier transform,

Ũba~T,g!5E
2`

`

Uba~T,s!e2 igsds. ~6!

In this case the frequencies$g i j % would be chosen to ensur
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a unique encoding for$m i j %, and then the amplitudes of th
fundamental and combination spectral lines ofŨba(T,g) as a
function of g can be used to directly determine the desir
amplitudesUba

n( l 1 ,...,l n21) . Importantly, the modulation is in-
troduced with respect to the variable~parameter! s, so the
time dependence of the dynamics continues to have nor
behavior. In practice this encoding/decoding operation wo
be implemented by repeatedly solving the Schro¨dinger equa-
tion at a sufficient set of discrete values fors such that the
relevant spectrumŨba(T,g) is fully covered ing. This con-
cept is schematically illustrated in Fig. 1~b!. The techniques
employed here are related to various nonlinear sensiti
analysis procedures@20,21#, but the latter methods are gen
erally confined to exploring the impact of system uncerta
ties.

The synopsis of the Hamiltonian encoding/decoding
technique presented above is fully developed and illustra
in the remainder of the paper. Section II of the paper give
precise definition of a quantum control pathway and Sec.
presents the concept of Hamiltonian encoding. Section
considers a hierarchy of encoding techniques and path
analyses to reveal different levels of detail about the mec
nism. Some numerical examples are given in Sec. V
concluding remarks are given in Sec. VI.

II. QUANTUM CONTROL PATHWAYS

Consider a quantum-mechanical system in the interac
picture evolving under the Schro¨dinger equation~3!. The
system is initially in stateua& and the control goal is to take
the system to the target stateub& at timeT. These two states
are members of a complete orthonormal setu1&, u2&, . . . , ud&
of dimensiond, which describes the subspace containing
the system dynamics. These states may arise in many w
depending upon the physical situation~i.e., they may be
eigenstates ofH0 or some other physically motivated oper
tor of the system!. The MI objective is to discern all relevan
pathways connectingua& and ub& during the evolution of the
system, as indicated in Fig. 1. Expressing Eq.~5! in the
explicit basis, assumingub&Þua&, using the notationvmn(t)
5(2 i /\)^muVI(t)un& andUba5^buU(T)ua&,

Uba5E
0

T

vba~ t1!dt11(
l 51

d E
0

T

vbl~ t2!E
0

t2
v la~ t1!dt1dt2

1(
j 51

d

(
k51

d E
0

T

vb j~ t3!E
0

t3
v jk~ t2!E

0

t2
vka~ t1!dt1dt2dt3

1¯ . ~7!

A particular pathway is specified by the sequence of sta
starting from the initial stateua& and ending at the final stat
ub&. The nth-order pathway withn21 intermediate states
l 1 ,l 2 ,...,l n21 will be denoted as (a→ l 1→ l 2→¯→ l n21
→b), and will have a corresponding transition amplitu
given by
7-3
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A. MITRA AND H. RABITZ PHYSICAL REVIEW A 67, 033407 ~2003!
Uba
n~ l 1 ,...,l n21!

5E
0

TE
0

tn
¯E

0

t2
vbln21

~ tn!v l n21l n22
~ tn21!¯

3v l 1a~ t1!dt1¯dtn21dtn . ~8!

The transition amplitude associated with a pathway is
contribution it makes to the evolution of the system. T
value ofUba will be given by the sum of the transition am
plitudes along all possible pathways starting atua& and end-
ing at ub&. Therefore

Uba5 (
n51

`

(
l 1 ,...,l n2151

d

Uba
n~ l 1 ,...,l n21! . ~9!

A pathway is considered to be significant if the absol
value of its transition amplitudeuUba

n( l 1 ,...,l n21)u is large com-
pared to the transition amplitudes of other pathways
greater than some specified minimum value.

As an example, consider a six-level system where
transition of interest is from stateu1& to u4&. Then the ampli-
tude of the second-order pathway corresponding to this t
sition occurring via the stateu2& is given by

U41
2~2!5E

0

TE
0

t2
v42~ t2!v21~ t1!dt1dt2 .

Similarly the transition amplitude for the third-order pathw
(1→2→5→4) would be

U41
3~2,5!5E

0

TE
0

t3E
0

t2
v45~ t3!v52~ t2!v21~ t1!dt1dt2dt3 .

Both of these pathways are illustrated in Fig. 2.
Knowledge of the set of dominant pathways contributi

to the evolution of the system reveals the control mechani
If the states$ue&% are identified as eigenstates ofH0 , and if a

FIG. 2. An illustration of two possible paths from stateu1& to u4&
in a six-level system with corresponding amplitudesU41

2(2) and
U41

3(2,5) .
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certain path (a→ l 1→ l 2→¯→ l n21→b) has a significant
transition amplitude, then this contribution to the mechani
involves the corresponding sequence ofn stimulated
absorption/emission processes. In the commonly expe
situation where multiple pathways with transition amplitud

Uba
n( l 1 ,...,l n21) , U

ba

n8( l 18 ,...,l
n821
8 )

, etc., all contribute signifi-
cantly to the transitionua&→ub&, an important issue is the
degree of constructive interference among these pathw
@7,22#. Each amplitude is a complex number with an asso
ated phasefba

n( l 1 ,...,l n21) . If the various phases are near

equal (fba
n( l 1 ,...,l n21)

'f
ba

n8( l 18 ,...,l n218 )
. . . ), then the ampli-

tudes will add up constructively at the final time implying a
efficient control process in steering the system fromua& to
ub&. The pathway analyses of systems in this paper driven
optimal fields showed excellent alignment of pathway pha
for constructive interference in the target state. A good o
mal control solution for population transfer fromua& to ub&
will yield uUba(T)u'1 and uUca(T)u'0 for cÞb. In the
latter case a pathway analysis is expected to show that
multiple amplitudes contributing toUca(T) destructively in-
terfere with each other to produce the nearly zero
amplitude.

III. HAMILTONIAN ENCODING

Prior to the performance of MI, a control field would b
prescribed by some appropriate means~e.g., optimal control
theory @1,6,23#!. The identification of the relevant pathway
and their transition amplitudesUba

n( l 1 ,...,l n21) is the central
step in revealing the underlying quantum control mec
nisms. As stated in Sec. I a direct computation of the inte
grals defining the pathway amplitudes can, in principle,
done. However, it is a forbidding task, especially for hig
order pathways. The Hamiltonian encoding procedure
passes this problem by modulating the Hamiltonian in a s
cial manner and deducing the pathway amplitudes
decoding the nonlinear system response to this modulatio
the outputUba .

The technique operates with just the ability to numerica
solve Schro¨dinger’s equation. In general, encoding th
Hamiltonian is done by modulating the matrix elements
the interaction termVI such that each pathway amplitud
Uba

n( l 1 ,...,l n21) has a unique signature inUba which can then
be read off at the end of the computation. Different encod
schemes can be employed for this purpose to provide dis
levels of detail about the mechanism.

An examination of Eq.~7! indicates that any modulation
in the time variable would distort each pathway in a ve
complex fashion, making recovery of the original transiti
amplitudes of Eqs.~8! and ~9! very difficult. This problem
may be circumvented by introducing a timelike variables
and modulating the system in this variable. Multiple timeli
variabless1 ,s2 ,... mayalso be introduced to some benefit
certain cases, but this extension will not be treated here.

The most general modulation scheme~in one variables!
for the coupling elements is

v i j ~ t !→v i j ~ t !mi j ~s!.
7-4
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The original Schro¨dinger equation with the coupling matrix explicitly shown is

dU~ t !

dt
5S v11~ t ! v12~ t ! ¯ v1d~ t !

v21~ t ! v22~ t ! ¯ v2d~ t !

• • • •

• • • •

• • • •

vd1~ t ! vd2~ t ! ¯ vdd~ t !

D U~ t !, ~10!

which now becomes

dU~ t,s!

dt
5S v11~ t !m11~s! v22~ t !m12~s! ¯ v1d~ t !m1d~s!

v21~ t !m21~s! v22~ t !m22~s! ¯ v2d~ t !m2d~s!

• • • •

• • •

• • • •

vd1~ t !md1~s! vd2~ t !md2~s! ¯ vdd~ t !mdd~s!

D U~ t,s!. ~11!
t

i-

th

m

le

n

of

n-
m-

of

in

her
s a
of
ion
s
cs
a-

n-
,
-
e

ling
ys
re
rib-
in
In the integration of Eq.~11! over time the variables is a
constant, implying that the transition amplitude for the pa
(a→ l 1→¯ l n21→b) becomes

Uba
n~ l 1 ,...,l n21!

~s!

5E
0

T

¯E
0

tn
vbln21

~ tn!mbln21
~s!¯v l 1a~ t1!

3ml 1a~s!dt1¯dtn

5Uba
n~ l 1 ,l 2 ,...,l n21!Mba

n~ l 1 ,l 2 ,...,l n21!
~s!, ~12!

Mba
n~ l 1 ,l 2 ,...,l n21!

~s!5mbln21
~s!ml n21l n22

~s!¯ml 1a~s!.
~13!

Here Mba
n( l 1 ,...,l n21)(s) is the characteristic function assoc

ated with the particular pathway (a→ l 1 ,...,l n21→b). The
encoding functionsmi j (s) are chosen such that each pa
will be modulated in a unique way as a function ofs. By
solving the Schro¨dinger equation at a suitable set ofs values,
the amplitudes of the relevant paths can be extracted fro
decoding ofUba(s)[^buU(T,s)ua&. Then, from Eqs.~8!–
~12!, the overall amplitudeUba(s) for the system evolving
from the stateua& to ub& over the time interval 0<t<T be-
comes

Uba~s!5 (
n51

`

(
l 1 ,l 2 ,...,l n2151

d

Uba
n~ l 1 ,l 2 ,...,l n21!

3Mba
n~ l 1 ,l 2 ,...,l n21!

~s!. ~14!

The utility of introducing modulation through the variab
s lies in the form of Eq.~14! upon comparison to Eq.~9!.
Time-domain modulation would completely distort the tra
03340
h

a

-

sition amplitude of each path, i.e.,Uba
n( l 1 ,...,l n21) would have

changed in an undecipherable way. Modulation in terms
the extra variables will also ~possibly severely! distort the
total time-evolution operatorUba(s). However, the distor-
tion has, by construction, a very special form which is co
veniently expressed in terms of the original undistorted a
plitudes for each individual pathwayUba

n( l 1 ,...,l n21) ,

multiplied by a known functionMba
n( l 1 ,...,l n21)(s). This for-

mulation provides considerable freedom in the choice
mi j (s) as the amplitudesUba

n( l 1 ,...,l n21) in Eq. ~14! remain
unchanged even with the most violents-domain modulation.
Equation~14! is exact for any form ofs-domain modulation,
regardless of the form ofmi j (s). Provided that the$mi j % are
bounded in magnitude, the expansion in Eq.~14! will always
converge as discussed in the Appendix. The MI analysis
Sec. IV will exploit this encoding flexibility by even making
the system matrix$v i j (t)mi j (s)% non-Hermitian in order to
distinguish between certain quantum pathways. Anot
scheme for extracting very fine pathway details employ
squareu3u matrix of functions to modulate each element
the Hamiltonian, creating a dynamical system of dimens
ud from the originald-dimensional one. The key point i
that, whiles modulation can completely distort the dynami
of the original system, the desired original pathway inform
tion is always preserved in a known manner.

Although in principle an infinite number of pathways co
tribute to any transitionua&→ub&, in practice the bounded
finite-time nature of realistic controls implies that only a lim
ited number of pathways will contribute significantly. Th
most detailed mechanism information resides in revea
the transition amplitudes of the full set of relevant pathwa
$Uba

n( l 1 ,...,l n21)
%, but in most cases a lower-resolution pictu

may suffice or even be desirable. If there are many cont
uting pathways, then extraction of mechanism information
7-5
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A. MITRA AND H. RABITZ PHYSICAL REVIEW A 67, 033407 ~2003!
full detail may be computationally expensive. Less detail
lower-resolution information may give more insight in
the control process. Thus, classes of pathwaysSn , n
51,2, . . . , may bedefined where each classSn forms a sub-
set of the original, full set of pathways, classified togeth
because of some common characteristics. Each class h
transition amplitude

Ũba
n 5 (

~a→ l 1 ,...,l n21→b!PSn

Uba
n~ l 1 ,...,l n21! , ~15!

where the summation is over all pathways (a→ l 1 ,...,l n21
→b) belonging to the classSn . Each pathway belongs t
only one class. The goal in this case is to determineŨba

n

directly without first extracting the individual terms in th
summand on the right-hand side~RHS! of Eq. ~15!. Given
the structure of Eqs.~9! and ~15! it is possible to write the
total amplitude as a sum over all pathway classes

Uba5 (
n51

R

Ũba
n , ~16!

whereR is the number of significant pathway classes~which
a priori is also unknown!. An example considered later con
sists of classes defined by grouping pathways of the s
order together. In that case we have

Ũba
n 5 (

l 1 ,...,l n2151

d

Uba
n~ l 1 ,l 2 ,...,l n21!, ~17!

where all intermediate steps have been summed over. M
lation in thes domain yields

Uba~s!5 (
n51

R

Ũba
n Mba

n ~s!, ~18!

where a suitable of choice of$mi j (s)% ensures that all path
in Sn have the same modulating functionMba

n (s), and that
each functionMba

n (s), n51,2, . . . ,R, is unique—permitting

the extraction of each amplitudeŨba
n . Regardless of the spe

cific form of pathway analysis, the structure of the result
expression forUba(s) remains the same@cf Eqs. ~14! and
~18!#. Considering the general case of Eq.~14! we require
that the functionsMba

n( l 1 ,...,l n21) be linearly independent ove
some specific domain ofs. Ideally the functions are ortho
normal under some suitably defined inner product such t

^Mba
n~ l 1 ,...,l n21!uM

ba

n8~ l 18 ,...,l
n821
8 !

&5dn~ l 1 ,..,l n21!,n8~ l
18 ,...,l n821!,

~19!

where thed function is zero if any of the path indices diffe
or 1 if the indices are all the same. The notation^ u & in Eq.
~19! represents an inner product, e.g., an integration oves,
possibly with a suitable weight function. Under the conditi
in Eq. ~19!,

Uba
n~ l 1 ,...,l n21!

5^Mba
n~ l 1 ,...,l n21!uUba&. ~20!
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In the case that the functionsMba
n( l 1 ,...,l n21) are just linearly

independent, any of a variety of standard techniques fr
linear algebra may be applied to solve Eq.~14! for the am-
plitudes. In choosing an algorithm the goal is to obtain pa
way information using a numerically stable technique for t
deconvolution of Eq.~14! with a minimal number of sam-
plings on the domain ofs.

The choice of the set$mi j (s)% may be guided by a num
ber of factors, including the fact that solving the Schro¨dinger
equation can be expensive. This paper presents results
tained by using complex exponentials as a convenient se
modulating functions; however, no claim is made that t
choice forms an optimum set of functions. Other possibilit
~e.g., encoding with digital signals, wavelets, multiple mod
lation variables, etc.! are worthy of careful consideration.

IV. ALTERNATIVE CLASSES OF QUANTUM PATHWAY
ANALYSES

This section will introduce distinct classes of quantu
control mechanism analyses capable of revealing differ
levels of detail. The examples in Sec. V illustrate each cl
of analysis.

A. The distribution of system orders

While the expansion in Eq.~9! always converges for re
alistic physical systems~see the Appendix!, there is no way
to know beforehand how many orders contribute sign
cantly. This first class of mechanism analysis aims to iden
the importance of the various orders contributing toUba .
The information on the contributing orders is valuable as
initial glimpse at the mechanism and it also forms the sta
ing point for the more detailed mechanism analyses to
low. This case corresponds to the situation in Eq.~17! and
here we extract the desired information by modulating
entire interaction matrix by a single functionm(s):

VI~ t !→VI~ t !m~s!. ~21!

The integral corresponding to allnth-order pathways

Ũba
n 5S 2 i

\ D n

^bu E
0

T

¯E
0

t2
VI~ tn!¯VI~ t1!dt1¯dtnua&

5 (
l 1 ,...,l n2151

d E
0

T

¯E
0

t2
vbln21

~ tn!¯v l 1a~ t1!dt1¯dtn

~22!

is modulated by a factorm(s)n. ThereforeUba(s) can be
written as

Uba~s!5 (
n51

R

Ũba
n m~s!n, ~23!

which is a special case of Eq.~18!. Although the number of
significantly contributing pathwaysR is generally not known
a priori, a reasonable estimate may be available~but is not
required by the algorithm!.
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FIG. 3. Four examples of pathways with a net 1→2→3 transition. All of them~and an infinite number of other pathways! belong to the
same composite-pathway class (1→2→3)* .
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We choosem(s)5eigs (g52p/N for some suitable inte-
ger N! and evaluateUba(s) at s51,2, . . . ,N. Then Eq.~18!
becomes

Uba~s!5 (
n51

R

Ũba
n e2p isn/N, s51,2, . . . ,N. ~24!

If N>R, then the coefficients may be computed by the
verse fast Fourier transform~FFT! of Uba(s), using the or-
thogonality relationship

1

N (
s51

N

@mn~s!#* ml~s!5dnl . ~25!

Since the value ofR is not known beforehand, it is general
necessary to repeat the procedure with increasingN to ensure
that all relevant order paths are accounted for. IfN,R then
the high-order~frequency! terms can appear as low-ord
~frequency! terms due to aliasing. Convergence will b
achieved whenŨba

n , for all relevantn, does not show sig-
nificant change with increasingN. This procedure is compu
tationally efficient as computations with increasingN may
reuse all the previousN8 points and onlyN2N8 new points
need to be evaluated by solving Schro¨dinger’s equation.

B. Revealing composite pathways

After classifying pathways according to their order by t
procedure in Sec. IV A, further information can be extrac
about the mechanism by decomposing the contributi
within each order and recombining them in a different ma
ner. A class of composite pathways is introduced for t
purpose. The concept of a composite pathway is best il
trated by an example. Consider a four-level system where
control field drives the system from the initial stateu1& to
stateu3&. The overall amplitude of transitionU31 may have
multiple relevant pathways. In particular, consider four p
sible pathways (1→2→3), (1→2→3→2→3), (1→2
→4→2→3), and (1→2→3→4→2→4→3). These path-
ways are shown in Fig. 3. All four paths~and an infinite
number of other easily constructed paths! have the same ne
transition 1→2→3 and differ only due to extra ‘‘rattling,’’
or Rabi flopping, where the pathway jumps from a stateui& to
another stateuj& and later jumps fromuj& back toui&. In some
03340
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cases it is useful to know the total amplitude of pathwa
contributing to U31 which proceed via a given composit
pathway regardless of how many times the pathway rat
around elsewhere. A later illustration will show th
composite-pathway amplitudes can clearly reveal how o
mal control theory tunes pathway amplitudes for the best
of constructive and destructive interference to reach the
sired target.

Each composite-pathway class is denoted by the low
order pathway belonging to it, and marked with an aster
All paths with the net transition (1→2→3) will be collec-
tively denoted as contributing to the composite pathway
→2→3)* , and the transition amplitude of the compos
pathway will be labeled similarly. Therefore the transitio
amplitude of the composite pathway (1→2→3)* is written
as

Ũ31
2~2!* 5U31

2~2!1U31
4~2,3,2!1U31

4~2,4,2!1U31
4~2,3,4,2,4!1¯ .

~26!

Another separate class of composite pathways for the s
overall transitionu1&→u3& is (1→4→2→3)* , which con-
tains the pathways (1→4→2→3), (1→4→2→4→2
→3), etc.

In order to identify composite pathways we choose
following encoding scheme:

v i j →v i j e
ig i j s, ~27a!

g i j 52g j i . ~27b!

This form of modulation preserves the Hermitian nature
the Hamiltonian. This scheme assigns the same ove
modulation function ofs to all paths belonging to the sam
composite pathway. For example, the amplitudes of the p
ways (1→2→3) and (1→2→3→2→3) will have modu-
lating functions exp$i(g121g23)s% and exp$i(g121g231g32
1g23)s%5exp$i(g121g23)s%, by virtue of the definition in
Eq. ~27b!. The cancellation will occur for any rattling as
transition pairi→ j and j→ i will not shift the pathway fre-
quency because of the condition imposed in Eq.~27b!. Then
we have

Uba~s!5(
k

Ũba
~k!* eigks. ~28!
7-7
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FIG. 4. Temporally distin-
guishable pathways like the pa
shown here involve the same tran
sitions, but in a different tempora
sequence. A scalar modulation a
gorithm cannot separate them a
they will always have the same as
sociated scalar modulation func
tion. The noncommutative modu
lation techniques of Sec. IV D can
separate such transition ampl
tudes.
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Each composite path labeled byk will have an associated
frequencygk .

The inverse FFT can then be used to extract the individ
composite amplitudes as follows. Choose$g i j % ~and hence
$gk%) as integer multiples of some frequencyg0 ~as yet
unknown! such that all significant composite pathways ha
a unique frequency assigned to them. First, the results
the algorithm of Sec. IV A are used to determine the list
possible significant pathways. For example, for a four-le
system, in the analysis ofU41(T), if the analysis of
Sec. IV A shows that pathways up to third order contribu
significantly then the possible composite pathwa
are $~1→4!* , ~1→2→4!* , ~1→3→4!* , ~1→2→3→4!* ,
~1→3→2→4!* %. The set$g i j % must then be assigned suc
that these composite pathways are at different frequen
$gk%. Then a convenientN ~e.g., for the FFT we could
choose a power of 2! is chosen such thatgk<Ng0 for all
relevant k. Taking g052p/N and evaluating Eq.~28! at
s51,2, . . . ,N, we create a sequence whose FFT coefficie
$gk% are the transition amplitudes of the composite pa
ways.

C. Revealing rattling contributions to composite pathways

In some situations it may be desirable to further deco
pose the composite pathways of Sec. IV B to reveal the c
tributions from cases involving bothi→ j and j→ i transi-
tions. The rattling could be sequential, e.g., (¯ i→ j→ i¯)
or separated (i→ j→k→ j→ i¯). In order to reveal rattling
the symmetry condition of Eq.~27b! is relaxed to keep just

v i j →v i j e
ig i j s. ~29!

This encoding produces a non-Hermitian coupling matrix
Eq. ~11!. Pathways differing by rattles may now be at diffe
ent frequencies~provided that the$g i j % are appropriately
chosen!. For example, (1→2→3) and (1→2→3→2→3)
will have modulating functions exp$i(g121g23)s% and
exp$i(g121g231g321g23)s%, respectively, which can now
be distinct. An inverse FFT can again be used to extr
pathway amplitudes after assigning$g i j % such that all path-
ways up to the relevant order are at distinct frequencies~one
exception to this procedure will be illustrated in Sec. IV D!,
by following operations identical to the one of Sec. IV B.
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practice, finding the transition amplitudes of all releva
pathways in this manner can be computationally formidab
Considering a four-level system evolving fromu1& to u4& with
pathways up to third order being relevant, there are ten p
sibly relevant pathways. The number of possible pathw
increases rapidly with order much faster than the numbe
composite pathways~e.g., for order 8 there are 658 pathwa
but only 73 composite pathways!. For high-dimensional sys
tems with high-order pathway contributions, several optio
are available. It may often be advisable to stop at
composite-pathway level of analysis, which should give s
ficient mechanism information. If more information is d
sired then the modulation can be applied selectively to o
those matrix elements which correspond to the pathway~s! of
interest. An extreme form of this logic may be applied
turning off all other transitions with the modulationmi j 50.
For example, the transition amplitude of (1→4) can be iden-
tified by settingmi j (s)50 for all coupling terms exceptv41.
This process turns off all pathways except the one of inter
AlthoughU41(s) is highly distorted from the original ampli
tudeU41 the information regarding the desired pathway w
be retained. Results from the algorithm of Sec. IV B can
used to decide which pathways demand a full rattling ana
sis to reduce computational effort.

The more detailed algorithm of this section is unable
distinguish between pathways having the same transit
but ordered differently in time. An example is illustrated
Fig. 4. Since each pathway is labeled only in terms of
transitions, it is not possible to distinguish between su
pathways by the methods introduced so far. The sum of
transition amplitudes of these paths will always be associa
with the same overall modulating function. Such pathwa
will be referred to as temporally distinguishable pathwa
Therefore the algorithm in this section classifies all temp
rally distinguishable pathways together. The decomposit
of the time evolution operator can be written as

Uba~s!5(
k

Ũba
n~k!T

, ~30!

where the additional notation (k)T has been introduced to
denote a set of temporally distinguishable pathways.
7-8
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IDENTIFYING MECHANISMS IN THE CONTROL OF . . . PHYSICAL REVIEW A 67, 033407 ~2003!
D. Discriminating between temporally distinguishable
pathways

Figure 4 shows two pathways that involve exactly t
same transitions, but in a different temporal sequence.
two transition amplitudesU31

6(2,3,2,1,2,3)andU31
6(2,1,2,3,2,3)will,

in general, have different contributions. However the alg
rithm in Sec. IV C cannot discriminate between them, a
can only compute the sum of their amplitudes. The previ
algorithm encoded each transitioni→ j through its modulat-
ing functionmi j (s), and each pathway had a product of su
modulating functions attached to it, reflecting the transitio
it contained. However, temporally distinguishable transit
pathways could not be discriminated from each other
cause the modulating functions commuted with each ot
i.e., there was invariance to the time order of any two tr
sitions such asl→k and i→ j because mlk(s)mi j (s)
s
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5mij(s)mlk(s). A noncommutative modulation scheme cou
discriminate amongst such temporally distinguishable pa
ways. Consider the noncommutative modulation scheme

v i j →v i j mi j ~s!A i j ~31!

whereA i j is a real, nonsymmetric,u3u matrix and the set
$A i j % is used in the overall encoding of the dynamics. If the
arep temporally distinguishable pathways to separate, theu
is the smallest integer such thatu2>p. The matrices$A i j %
are independent of botht and s. This modulation scheme
creates a new quantum system with dimensionud ~whered
was the dimension of the original system!. The conditions on
$A i j % for successful separation of temporally distinguisha
pathways will be made clear in the following analysis.

In the interaction picture the equation of motion for th
new ud3ud evolution matrixU8 has the form
dU8~ t,s!

dt
5S v11~ t !A11m11~s! v12~ t !A12m12~s! ¯ v1d~ t !A1dm1d~s!

v21~ t !A21m21~s! v22~ t !A22m22~s! ¯ v2d~ t !A2dm2d~s!

• • • •

• • • •

• • • •

vN1~ t !Ad1md1~s! vN2~ t !Ad2md2~s! ¯ vNN~ t !Addmdd~s!

D U8~ t,s!. ~32!
—a

alar
.g.,
w

ix

po-

ys
Instead of the scalar outputUba(s) from the evolution matrix
we now have the analogousu3u submatrix:

Uba8 ~s!

5S U ~b21!u11,~a21!u118 ~s! ¯ U ~b21!u11,au8 ~s!

• ¯ •

• •

• ¯ •

Ubu,~a21!u118 ~s! ¯ Ubu,au8 ~s!

D
~33!

andUba8 (s) can be written as

Uba8 ~s!5 (
n51

`

(
l 1 ,l 2 ,...,l n2151

d

Uba
n~ l 1 ,l 2 ,...,l n21!Dba

n~ l 1 ,...,l n21!

3Mba
n~ l 1 ,l 2¯ l n21!

~s!, ~34!

where

Dba
n~ l 1¯ l n21!

5Abln21
A l n21l n22

¯A l 1a ~35!

areu3u matrices and theM functions are defined exactly a
before. Using the samemi j (s) as in Sec. IV C makes eachM
function a complex exponential such that
Uba8 ~s!5 (
n51

`

(
l 1 ,l 2 ,...,l n2151

d

Uba
n~ l 1 ,l 2 ,...,l n21!

3Dba
n~ l 1 ,...,l n21!eisgn~ l 1 ,l 2¯ l n21!. ~36!

Now each pathway has a label consisting of two parts
scalars modulation function and a matrixD. Since all the
temporally distinguishable pathways have the same sc
modulating function, they sit on the same frequency, e
gx . However, the different ordering of transitions is no
reflected in the fact thatA lmA i j ÞA i j A lm . Hence each tem-
porally distinguishable pathway will have a different matr
D associated with it.

An inverse FFT of each element of theu3u matrix
Uba8 (s) can be used to pick the required frequency com
nentgx , generating a matrixK . If the transition amplitudes
of the p temporally distinguishable transition pathwa

are U
ba

m( l 1
1,...,l n21

1 )
,U

ba

m( l 2
2,...,l n21

2 )
,... ,U

ba

m( l 2
p ,...,l n21

p )
, then after

the FFT we get theu3u matrix equation

K5(
i 51

p

U
ba

m~ l 1
i ,...,l n21

i
!D

ba

m~ l 1
i ,...,l n21

i
!
. ~37!

With appropriate choice of the matrices$A i j %, the matri-

ces$Dba

m( l 1
i ,...,l n21

i )
% will be linearly independent and Eq.~37!

will give a system ofu2 (.p) linear equations inp un-
7-9
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A. MITRA AND H. RABITZ PHYSICAL REVIEW A 67, 033407 ~2003!
knowns $Uba

m( l 1
i ,...,l n21

i )
%, i 51,2, . . . ,p, that can be solved

for the amplitudes of individual temporally distinguishab
pathways.

V. ILLUSTRATIONS OF CONTROL PATHWAY ANALYSIS

The mechanism analysis procedures of Sec. IV were
plied to several model quantum systems. In all cases
eigenstates of the unperturbed Hamiltonian were used to
resent the evolution. However, other bases could be use
transitions between them can be given suitable phys
meaning. All the analyses were initiated by determining s
nificant pathway orders as explained in Sec. IV A. For s
tems with fewer than four states the non-Hermitian modu
tion scheme of Sec. IV C was applied directly after this s
because the number of pathways was quite small. For la
systems the transition amplitudes for the composite pathw
were computed by the algorithm of Sec. IV B, and then
dominant composite pathways were analyzed by the pro
dure of Sec. IV C to reveal the underlying dynamical rattlin

The numerical integration of the Schro¨dinger equation
was done by approximating the interaction Hamiltonian
piecewise constant:

U~T!5t expS 2
i

\ E
0

T

VI~ t !dtD' )
n51

T/Dt

expS 2
i

\
VI~ tn!Dt D ,

~38!

tn5nDt,

wheret is the time-ordering operator. The matrix expone
tial may be computed by Hamiltonian diagonalization. Ho
ever, in some of the proposed modulation schemes the
coded Hamiltonian is non-Hermitian, and it is possible th
the matrix may not always be diagonalizable. Therefo
Padéapproximants@24# were used to compute all matri
exponentials.

FIG. 5. The magnitude of the transition amplitudeuU21(t)u for
the two-level test case as a function of time in dimensionless u
The monotonic rise in amplitude hides the true multiphoton con
butions shown in Table I.
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A. Resonant nonoptimally controlled models

The first class of systems analyzed by Hamiltonian enc
ing used nonoptimal fields, resonantly coupled within t
rotating-wave approximation~RWA!. Such simple model
cases produce time-independent coupling matrices in
~10!, allowing for an alternative, direct determination of th
pathway transition amplitudes for algorithm verification. T
results are also physically instructive. For a tim
independent matrixVI the transition amplitude for a path o
ordern from Eq. ~8! becomes

Uab
n~ l 1 ,...,l n21!

5E
0

TE
0

tn
¯E

0

t2
vbln21

~ tn!v l n21l n22
~ tn21!¯

3v l 1a~ t1!dt1 ,...,dtn21dtn

5vbln21
v l n21l n22

¯v l 1a

Tn

n!
. ~39!

The first application is to a two-level system described
dimensionless units, with the field amplitude adjusted
complete transfer of population from levelu1& to u2&. A plot
of uU21(t)u is shown in Fig. 5. The monotonically increasin

s.
i-

TABLE I. The transition amplitudes for the two-level system
Fig. 5.

Path Amplitude

(1→2) 21.57i
(1→2→1→2) 0.65i
(1→2→1→2→1→2) 20.08i

TABLE II. The pathway amplitudes for the three-level system

Pathway Amplitudea Amplitudeb

(1→2→3) 22.250 22.250
(1→2→1→2→3) 1.688 1.688
(1→2→3→2→3) 0.422 0.422
(1→2→1→2→1→2→3) 20.506 20.506
(1→2→1→2→3→2→3)c 20.253 20.127
(1→2→3→2→1→2→3)c 20.253 20.127
(1→2→1→2→1→2→1→2→3) 0.081 0.081
Total 20.819d 20.819

aCalculated by the encoding algorithm of Sec. IV C.
bThe true values from Eq.~39!.
cThese two pathways are temporally distinguishable and canno
separated by scalar encoding algorithms. The computed amplit
which is the coefficient of the associated modulating funct
M31

6(2,1,2,3,2)(s)5M31
6(2,3,2,1,2)(s), will be the sum of the two separat

amplitudes. The sum shown in the table takes this into account
adds in the contribution~c! only once.
dThe sum of the amplitudes should give the total value ofU31(t)
520.7912. The observed mismatch arises because the table
includes pathways with amplitudes satisfyinguU31

(k)u>0.08.
7-10
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IDENTIFYING MECHANISMS IN THE CONTROL OF . . . PHYSICAL REVIEW A 67, 033407 ~2003!
transfer of population fromu1& to u2& might suggest that only
a one-photon process is involved, but the pathway anal
results in Table I show a significant contribution from t
rattling pathway (1→2→1→2). The numerical pathway
identification results agree exactly with the simple analyti
expression in Eq.~39! that the different pathway transitio
amplitudes arise from the Taylor series expansion
2 i sin(p/2):

FIG. 6. A plot of the real and imaginary parts ofU31(s) for the
three-level case with the coupling matrix in Eq.~41!. Information
about the pathways foru1&→u3& is revealed by a FFT decoding o
this output signal as shown in Fig. 7. The variables is dimension-
less.

FIG. 7. The magnitude of the FFT of the signal in Fig. 6. T
spectrum corresponds to the amplitudes listed in Table II. The
quency is dimensionless.
03340
is

l

f

U21~T!5S 2 i

\
V21DT1S 2 i

\ D 3 V21V12V21T
3

3!
1¯ ~40!

with (1/\)V12T5p/2.
The pathway analysis was then applied to another sim

system with thev matrix of Eq.~10! in the RWA having the
form

v5 iS 0 0.2 0

0.2 0 0.1

0 0.1 0
D , ~41!

where the units used are arbitrary. The system is initially
the stateu1&, and the dynamics was followed out to timeT
515, whereuU31u50.79. The analysis of Sec. IV A for the
u1&→u3& transition showed that pathways up to order 8 co
tributed significantly forU31. The significant pathways an
their transition amplitudes are shown in Table II. Paths
cluding 1→3 or 3→1 transitions do not arise in this case
v13(t)5v31(t)50 for all t. U31(s) is plotted in Fig. 6. The
magnitude of the inverse FFT ofU31(s) is shown in Fig. 7,
which corresponds to the results in Table II. The amplitud
determined by using the analysis of Sec. IV C fully agr
with those obtained by a direct evaluation of Eq.~39!. Table
II also shows two temporally distinguishable pathwa

-

FIG. 8. The control field designed using optimal control f
transfer fromu1& to u3& for the four-level system.

FIG. 9. Population in levelu3& as a function of time with the
four-level system driven by the optimal field in Fig. 8.
7-11
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A. MITRA AND H. RABITZ PHYSICAL REVIEW A 67, 033407 ~2003!
whose amplitudes were successfully separated~details not
shown here! using the noncommutative encoding scheme
Sec. IV D. The scalar encoding scheme gives the sum of t
amplitudes as part of the temporally distinguishable pathw
class.

B. Mechanisms of systems driven by optimal control fields

The pathway analysis algorithms are now applied to t
examples where the field has been computed using opt
control theory@1,4–6#, without the RWA. The first case is
four-level system@25# with the goal being population trans
fer from level u1& to u3&, along with a small cost to the field
fluence. The field computed using a local~steepest-descen!
optimization algorithm@1# is shown in Fig. 8. The population
in stateu3&, shown as a function of time in Fig. 9, was 0.99
the target time. The algorithm of Sec. IV A was first appli
to identify the orders of the significant pathways and
results are shown in Table III. Following the results in t
table, the more detailed mechanism analysis neglected p
ways of order 7 and greater.

The transition amplitudes of the composite pathwa
computed using the algorithm of Sec. IV B, is shown

TABLE III. Moduli of the significantly contributing pathway
orders for the transitionu1&→u3& with the four-level system driven
by the optimal field.

Order Modulus

1 0.85
2 1.36
3 0.85
4 0.73
5 0.25
6 0.15
7 0.037
8 0.017
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Table IV. The most important composite pathway
(1→2→3)* . The table indicates that the phases of the m
jor pathway amplitudes are very well aligned; hence
composite pathways interfere constructively to reach the
get. This behavior is a consequence of employing optim
control to attain the best possible outcome; the fluence
in the optimal control algorithm likely aids this process b
attempting to make the transfer efficient. It is convenient
define an amplitude alignment parameterh:

h5

U(
h

Uba
~n!*U

(
n

uUba
~n!* u

, ~42!

which provides a measure of the constructive interfere
among the composite pathways. For the three major com
ite pathwaysh was 0.999, which means that they show
most perfect constructive interference. A similar analysis w
also done for the transitionu1&→u4&. The optimal field was
designed to maximizeuU31(T)u, and the population in the
stateu4& was uU41(T)u250.01. The composite pathways fo
this transfer destructively interfere in order to ensure ne
zero final population inu4&, resulting in the major composite

TABLE IV. Moduli and phases of the composite pathways f
the transitionu1&→u3& with the four-level system driven by the
optimal field.

Path Modulus Phase~rad!a

(1→3)* 0.24 22.51
(1→2→3)* 0.61 22.59
(1→4→3)* 0.15 22.64
(1→2→4→3)* 0.000 47 22.92

aThe optimal field tends to align the phases for efficient construc
interference.
ere the

d then
n slightly
FIG. 10. The introduction of different composite-pathway amplitudes shown in the complex plane for the four-level system wh
goal is optimal transfer of population foru1&→u3&. The initial field guess had no pathways connectingu1& to u3&. For iterations 1 through 15
only one composite pathway (1→3)* was significant. The optimization algorithm first introduces the relevant composite pathways, an
optimally aligns them at convergence. The final converged composite amplitudes are almost completely aligned, and are show
separated here for graphical clarity. The key for the composite-pathway fonts is shown on the right.
7-12
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paths havingh50.03 for the u1&→u4& transition. The
mechanism analyses forU31(T) andU41(T) in this example
demonstrate how the optimal control process seeks o
control fieldE(t) to manipulate multiple pathways in a fas
ion to yield constructive interference in the desired final st
and destructive interference in the other states. This poin
illustrated graphically in Figs. 10 and 11.

All pathways up to order 5 including rattling foru1&
→u3& were decomposed according to the procedure of S
IV C, and pathways up to order 4 are shown in Table V. T
analysis captures most of the processes, but Table III sh
that additional processes also occur out to order 6. So
sixth-order pathway transition amplitudes were also co
puted but the trend indicated that there is no sixth-order p
way of high amplitude; the overall contribution of the sixt
order terms is because of the large number of participa
pathways rather than the presence of a few significant p
ways.

It is evident from Table V that the decomposed pathwa
are not aligned, unlike what is observed for the compo

FIG. 11. Destructive interference of pathways in the nontar
stateu4& for the four-level system. The pathways shown in the co
plex plane for theu1&→u4& transfer do not cancel out completely a
several smaller-amplitude pathways also contribute significantl
ensure no net population inu4&.

TABLE V. Moduli and phases for all significant pathways up
order 4 for the transitionu1&→u3& in the four-level system. A rela-
tionship exists amongst the phases of pathways marked with
same symbol~†,‡! as explained in the text, resulting in these pa
ways not being aligned like the composite pathways.

Path Modulus Phase

(1→3) 0.85 22.8 †
(1→2→3) 1.08 22.64 ‡
(1→4→3) 0.28 22.63
(1→2→1→3) 0.31 0.316 †
(1→3→1→3) 0.10 0.338 †
(1→3→2→3) 0.26 0.179 †
(1→4→1→3) 0.16 20.773 †
(1→2→1→2→3) 0.21 0.444 ‡
(1→2→3→1→3) 0.10 0.541 ‡
(1→2→3→2→3) 0.18 0.595 ‡
(1→4→1→2→3) 0.12 20.695 ‡
03340
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pathways, possibly implying that the optimization algorith
is missing an opportunity to work with constructive interfe
ences. However, this view is misleading as there is a c
cealed relation between the phases of the pathways con
uting to a single composite-pathway amplitude. Th
relationship can be qualitatively understood by considerin
resonant RWA analysis of the analogous pathway amplitu
in Eq. ~39!. Consider the pathways (1→3) and (1→3→2
→3), with their transition amplitudes

U31
1 5S 2 i

\ DV31T, ~43!

U31
3~3,2!5S 2 i

\ D 3

V32V23V31

T3

6
, ~44!

wherev i j is explicitly written as (2 i /\)Vi j in order to illus-
trate the connection between the phases. Since the pha
(2 i /\)2V32V23 is p, these two pathways will always be ex
actly out of phase. The actual optimally controlled dynam
of the example in Table V is more complex, but on exam
nation the same pair of pathways~labeled with †! shows this

t
-

to
FIG. 12. The energies and allowed couplings for the seven-le

system. The goal is population transfer fromu1& to u7&.

FIG. 13. The optimal field for making the transitionu1&→u7&
for the seven-level system of Fig. 12.
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A. MITRA AND H. RABITZ PHYSICAL REVIEW A 67, 033407 ~2003!
behavior. It is also observed to different degrees among o
pairs with a similar relation~see the paths labeled with ‡!.

The pathway analysis can also be performed at inter
diate iteration steps during the optimization process al
the way to the optimum field to give further insight. In th
present case after 15 iterations, the population in levelu3&
started to become significant~15%!. At that point the
composite-pathway analysis showed that only the (1→3)*
processes were significant. Iteration 16 produced a 3
transfer of the population and showed that, while (1→3)*
was dominant, the optimally controlled dynamics had star
to use other pathways as well. On the next iteration a sud
jump in the population transfer from 34% to 80% was o
served, accompanied by an increase in the contribution
higher-order composite pathways (1→2→3)* , etc. The
alignment wash50.87 for the composite pathways when a
three major composite pathways are introduced~iteration
17!, with h becoming 0.999 at convergence. Therefore,
optimization process consists of two cooperating features~i!
the introduction of different composite pathways, and~ii !
their alignment for constructive interference at the tar
state. Figure 10 shows how the optimal control algorith
achieves constructive interference in the desired stateu3&
while Fig. 11 shows destructive interference in the nontar
stateu4&.

FIG. 14. Population in levelu7& as a function of time with the
seven-level system driven by the optimal field in Fig. 13.

TABLE VI. The distribution of significant pathway orders in th
seven-level system of Fig. 12 due to the optimal field of Fig. 13

Order Amplitude

4 5.2
5 0
6 7.5
7 0
8 4.7
9 0
10 1.7
11 0
12 0.4
03340
er

e-
g

%

d
en
-
of

e

t

et

The pathway analysis algorithms were also applied t
seven-level system@26# shown in Fig. 12 governed by a
optimal control field aiming to transfer population fromu1& to
u7&. The system is slightly asymmetric because of the dip
coupling matrix elements. The optimal field shown in Fig.
produced 98% population in the target stateu7&, and the
population as a function of time is shown in Fig. 14.

The main contributing pathway orders for the transiti
u1&→u7& are shown in Table VI using the algorithm of Se
IV A. Due to the allowed couplings at least four steps a
required to get fromu1& to u7&, as seen in the table. The fou
major composite pathways are shown in Table VII, and th
are all in phase withh50.9999, again showing the tendenc
of optimal control to align the composite pathways. Table
shows paths of orders 6, 8, and 10 as significant, imply
that the control mechanism consists of the four simple dir
pathways as well as up to three rattlings, with the pathw
containing one rattle actually being more important than
direct pathways. The coupling diagram of Fig. 12, the dis
bution of orders in Table VI, and the composite pathways
Table VII provide a clear physical picture of the mechanis
The last row of Table VII shows a weak but physically i
teresting pathway traced out in Fig. 15 as containing a clo
loop of couplings (1→2→4→3→1) followed by transfer
of amplitude tou7& by (1→2→4→5→7).

FIG. 15. A physically interesting~but low-amplitude! eighth-
order composite pathway which involves looping around on
(1→2→4→3→1) before proceeding to the final sta
(1→2→4→5→7).

TABLE VII. Amplitudes and phases of significant composi
pathways for the seven-level system. The composite pathways
aligned.

Pathway Amplitude Phase

(1→2→4→5→7)* 0.226 20.417
(1→2→4→6→7)* 0.256 20.414
(1→3→4→5→7)* 0.224 20.413
(1→3→4→6→7)* 0.255 20.412
(1→2→4→3→1→2→4→5→7)* 0.001 0.085
7-14
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Since the optimal control fields tend to produce pha
aligned composite pathways in the target state, it follows t

Uba5(kuUba
C(k)ueifba

c(k)
'eifba(kuUba

c(k)u, where thekth com-
posite pathway has the phasefba

C(k) and the phases are esse
tially a constantfba . Therefore each composite pathwa

can be assigned a percentage contribution 100uUba
(k)* u/

(k8uUba
(k8)* u in achieving the final state. Figures 16 and

show the importance of the various composite pathways
the optimal control of the optimally controlled four- an
seven-level systems, respectively. While the four-level s
tem has a dominant composite pathway, the seven-level
tem, with its high degree of symmetry, uses all possible co
posite pathways almost equally.

VI. CONCLUSIONS

The pathway analysis algorithms introduced in the pa
provide an efficient and thorough means to reveal quant
mechanical control mechanisms. Defining mechanisms
terms of pathways is quite natural and allows for clear me
ing to be given to the notions of constructive and destruc
interference in controlling quantum systems. Most sign
cantly, the mechanism analysis can be carried out in sta
ranging from just revealing the order of interactions involv
all the way out to the highest level of detail, identifying ea
individual contributing pathway amplitude. The pathway
gorithms are especially efficient if only a few pathways a
desired for analysis. In this case the modulating functio
may be set to zero,mi j 50, for all transitionsnot involved in
the desired pathways. This rather extreme case would lea
an encoded Hamiltonian that would have drastically differ

FIG. 16. The percentage contributions of the various compos
pathway moduli to the optimally induced transitionu1&→u3& for the
four-level system.
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dynamics, while still preserving the desired pathway inf
mation. A balance exists between the level of detail and
computational effort involved.

The algorithms introduced here might be improved in
number of ways. Ultimately, optimal criteria could be a
plied to determine the best encoding functions that bala
numerical efficiency and stability. Notwithstanding these
finements, the Fourier-based procedures utilized in this pa
are practical and ready for use in various applications.
extending the analyses to other systems it would be valu
to verify the generality of the observations regarding t
alignment of composite pathways observed here.

Normally a mechanistic analysis would be performed
the last stage after obtaining an optimal control field. Ho
ever, other applications can also be envisioned. For exam
if some state~or pathway! is to be avoided during the con
trolled dynamics, then the mechanism analysis could be
formed in tandem with the optimal control design. In th
case pathway information would actually enter into t
control-design cost function. Regardless of the applicatio
the conceptual tools introduced here should provide
means to reveal the underlying physics operating in the c
trolled manipulation of quantum systems.
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APPENDIX

The appendix addresses the convergence behavior o
Dyson series under normal physical conditions~including
modulation!. Consider the equation

dU

dt
5V~ t,s!U, U~0!51, ~A1!

e-

FIG. 17. The percentage contributions of the various compos
pathway moduli to the optimally induced transitionu1&→u7& for the
seven-level system.
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A. MITRA AND H. RABITZ PHYSICAL REVIEW A 67, 033407 ~2003!
whereU and V are d3d matrices, andV(t,s) incorporates
modulation. The Dyson expansion for the solution of E
~A1! is

U~ t,s!5I 1E
0

t

V~ t1 ,s!dt11E
0

t

V~ t2 ,s!E
0

t2
V~ t1 ,s!dt1dt2

1¯ . ~A2!

The physical systems in this paper are all of finite dimens
d. The control field is always bounded in magnitude and
for a finite time T, and the modulation functions are als
bounded from above. The dimensiond either is fixed on
physical grounds byH0 or is an effective dimension beyon
which no significant dynamics exists for the particular co
trol problem. For such systems,iV(t,s)i is bounded from
above and nonzero over only a finite interval@0,T#. The
expansion of Eq.~A2! always converges under these con
tions. Hence, Eqs.~9! and~14! are mathematically meaning
ful and converge for any set of modulating functions$mi j %
for all s where themi j are finite. A crude upper bound on E
~14! can be estimated as follows. Considerw.0 to satisfy
w.uv i j (t)mi j (s)u ; i , j ,t,s, which is possible as the ele
ments ofV are all bounded and nonzero for only a finite tim
interval @0,T#. Then each term in Eq.~12! may be bounded
as
o

a,

v.

03340
.

n
n

-

-

U E
0

T

¯E
0

tn
vbln21

~ tn!mbln21
~s!¯v l 1a~ t1!ml 1a~s!dt1¯dtnU

<E
0

TE
0

tn
¯E

0

t2
ww¯w dt1¯dtn21 dtn5

wnTn

n!
. ~A3!

For nth order in the Dyson series there aren21 intermediate
steps each of which can be independently varied from 1 td;
therefore there aredn21 such integrals. Hence

uUba~s!u< (
n51

`

(
l 1 ,...,l n2151

d

uUba
n~ l 1 ,...,l n21!Mba

n~ l 1 ,...,l n21!
~s!u

< (
n51

`
wndn21Tn

n!
5

1

d (
n51

`
wndnTn

n!
5

1

d
~ewdT21!.

~A4!

Since the series on the RHS of Eq.~14! is absolutely
bounded from above, it converges.

The actual necessary condition onV(t,s) for convergence
is less stringent than the one imposed here@27#, but this
bound suffices to make the point about convergence be
ior. Finally, the convergence of Eq.~A2! is consistent with
the simple physical statement that in any real experim
only a finite number of photons will enter or leave the syst
due to the applied control field.
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