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Giant oscillations in a magneto-optical trap
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The present paper reports on the study of deterministic instabilities in the atomic cloud of a magneto-optical
trap. Giant periodic and erratic self-oscillations are experimentally observed and analyzed through a simple
original model taking into account the shadow effect and the spatial distribution of the atoms in the cloud. We
show that giant oscillations are induced by a homoclinic orbit merging in the neighborhood of a Hopf bifur-
cation.
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The magneto-optical cooling of atoms is at the origin of awith respect to the experiment described in Ré&f is a
renewal of atomic physics. It is used in various fields, sucHarger laser intensity, up tb,=20 mW/cnt per beam.

as Bose-Einstein condensateld, optical lattices[2], and A typical experiment consists in recording the dynamics
quantum chao$3], and could lead to several applications, for fixed parameters, and repeating the measurement for dif-
such as atomic clockf4] or quantum computing5]. Al- ferent values of the detunind, between the trap laser

though the technology and realization of magneto-opticaP€ams and the atomic transition, without changing the other
traps (MOT) is well mastered, some experimental adjust-parameters. Far from resonance, the cloud is stable. When
ments remain empirical. It is, in particular, well known by the resonance is approached, the behavior becomes abruptly
experimentalists that, for dense atomic clouds close to resainstable forA,=—1.7 (A is in units of the natural widtfr
nance, instabilities appear in the spatiotemporal distributio®f the atomic transition The resulting periodic oscillation,

of the atoms. This problem is usually fixed by slightly mis- which we callC,, appears as an asymmetric cycle, with a
aligning the trapping beams. slow growth of bothz andn followed by a fast stage, where

A recent study has concluded that the so-called instabilin decreasesFig. 1). The characteristic times of the growth
ties are not really instabilities, but originate in the amplifica-and loss stages differ by more than one order of magnitude.
tion of experimental noise through coherent resonaftdt But the most striking feature of our observations was the
also showed the main role of the shadow effect: because @mplitude of the spatial oscillations, which can be more than
the absorption of light inside the cloud, the intensities of thel00 times greater than those reported in R&f. This behav-
backward and forward beams are locally different, leading tdor depends of course on the parameters, but not in a critical
an internal attractive force. In the configuration where eachvay. For example, increasing the beam intensity simply
backward beam is obtained by retroreflection of the forwardshifts the bifurcation points, without changing the shape of
beam, the symmetry between forward and backward beantbe dynamics.
is broken, and an external force appears, displacing the cloud Figure 2 shows, for an intensity larger than that in Fig. 1,
along the bisectors of the trap beams. the evolution of the frequenay of the oscillations whed

We report here the experimental observation of actual inis changed: far from resonance, is constant. ForA,=
stabilities, consisting in giant oscillations of the cloud. This
large amplitude motion is periodic or erratic, depending on 34
the parameters. A modified version of the model developed &
in Ref.[6] allows us to describe the mechanisms at the origin '
of the giant oscillations, through a stability analysis of the 30
stationary and dynamical solutions, in particular in the vicin-
ity of a Hopf bifurcation[7]. This approach, adopted, to our
knowledge, for the first time in this domain, confirms the 0.5
existence of deterministic instabilities in the MOT.

The experimental setup is a standard three-arfo~ N 0.4
MOT on cesiuni6]. In each arm, the beam is retroreflected, N
creating an intensity asymmetry that generates a center-of g3
mass motion. Note that this choice is not restrictive, as it
simply links the local motion inside the cloud to a global
motion, easily detected with a crossed couple of four-
guadrant photodiodes. This motion is recorded through the t(s)
locationz of the center of mass, complemented by the num-
ber of atomsn in the cloud. The trap beam waist is 3 mm,  FIG. 1. Experimental record of@, periodic instability. Param-
and the forward and backward beams are carefully alignedsters ard ;=11 mwWi/cn? andA,= — 1.4. { is the size of the cloud.
The magnetic field gradient is 13 G/cm. The main changedere =3 mm.
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. population relaxation raten, is assumed to depend anto
e o * o , take into account the depopulation of the cloud outside the
— . i trap center. We define a distanzg linked to the trap beam
'::j waists, beyond which the trap is emptyn.&0). For z
5. . <z,, we assume a quadratic behavigy=ng[1—(2/20)?[,
wheren, is the cloud population at the trap center.
0-le - . To take into account the shadow effect, the model in Ref.
20 48 42 o8 [6] considered the cloud as a point object, and so was valid
A, (T units) only for small clouds in the vicinity oz=0. Indeed, when
the cloud approacheg,, the border affects the cloud pro-
FIG. 2. Evolution of the instability frequenay vs the detuning  gressively, in proportion to the number of atoms located be-
for 1,=20 mwicnt, yond z,. Thus the cloud spatial distribution becomes crucial
for giant oscillations, such as those observed here. To model
—0.8, the behavior changes: the global shape of the oscilldt, we consider that, starting from an input forward intensity
tions remains the same, alternateing between slow and fakf, the intensity after a first crossing of the clolice., the
variations ofz andn (Fig. 3). But the periodicity has disap- input backward intensibyis I ,<I;, and the remaining inten-
peared, and the return timeof the dynamics is erratic. For sity after a second crossing of the clotice., the output
Ao>—0.8, Fig. 2 reports the mean value ofr2", which  backward intensityis 13<I,. The rate of photons absorbed
decreases drastically with,. An analysis ofr with the in the forward [backward beam is S(I1,—1,)/hv [S(l,
usual techniques of nonlinear dynami@®oincaresection, —13)/hv], whereSis the cross-sectional area of the cloud
first return time diagrapndoes not put in evidence any order, and hv the energy of a photon. The force associated with
and our conclusion is that the irregularity of these instabili-each beam is the product of the number of absorbed photons
ties, which we callCg, originates in noise and is not deter- and the elementary momentufik,
ministic chaos. Finally, foA ;> —0.55, the instabilities dis-
appear and the behavior is again stationary.
To understand the origin of these giant oscillations, we
use the one-dimensioné&lD) model introduced in Ref.6].
The system is modeled through the equations of motion of ~ T0 get a relation betweeh, I,, andls;, we solve the

S
FT:E(I1_2|2+|3)- (2

and a rate equation af. We have: equations of propagation of the two beams through the
atomic cloud. Since the MOT is operated with high intensity
d2z 1 beams and small detunings, a Doppler model is suitable and
@= MFT’ (1a we can assume a=0—J=1 transition. Inside the cloud,

the intensityl , (1_) of the o, (o_) forward (backward
polarized beam evolves due to photon scattering, which is
dn proportional to the corresponding excited-state populations

at B(ne—n), (1b) I1. . The evolution equations of the intensity are simply
whereM is the mass of the cloud: is the total external dl_i: FThpll. 3
force, ne is the atom number at equilibrium, ar®lis the dz N
wherep is the atomic density in the cloud. The populations
13 IT. are given by the steady state of the master equation. The
S 12 underlying hypothesis is that the evolution of the external
'9_ 1 degrees of freedom is much slower than that of the internal
10 ones. The populationE . depend on both, andl_, so
9 that Eq.(3) is a set of coupled nonlinear equations. They are
' ' ' ' integrated numerically from the side of the cloud where
0.8 =|_=1,, to the other side, where_=1; andl, =14, as-
06 suming that the density is constant, because of multiple

scattering 8]. Note that this method to treat absorption also
N 4 properly takes into account the cross saturation, contrary to
0. the model in Ref[6].

02 When A, is varied as in the experiment, the stationary

o solutions exhibit two sudden changes of the slope, leading to
' T T a “fold” in the parameter spacgFig. 4a)], as in Ref.[6].
0 2 t(t:) 6 The slope of the fold depends on the other parametecs,

ny), evolving from a flat dependence to bistability. Far from
FIG. 3. Experimental record of @g-like instability. Parameters ~ bistability, the stationary solutions are stable everywhere, in-
are the same as in Fig. 2 withy=—0.6. {=5 mm. cluding the fold: in this case, the model is equivalent to that
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FIG. 4. Theoretical evolution of the behavior of the cloud as a
function of the detuning. Ia), the stationary solutiozg of z is 2] 02
stable(full line) or unstable(dashed ling At pointsH, andH,, a 0.0 T T T 0.0
Hopf bifurcation occurs, while at point; andP,, wg vanishes. F 0.0 05 1.0 1.5 20
(focu9, SF(saddle focus and SN(saddle noderefer to the nature t(s)
of the fixed point representing the stationary solution in the phase .
space(b) Evolution of wg Vs Ag. (c) Plot of the instability frequen- FIG. 5. Examples of the behavior of the cloud. The fdthshed

cieswy (circles and wg (squares Parameters for the calculations line curve is a PlOt ot (n) vs time. The horizontal ful(da;hecillqe
are I, =33 mWicn?, p=2x10cm 3, np=6x 10, z,=3 cm, mark_s the stationary valu_ag (ns)_._ In (a), ng/ng=0.757 is outside
B=5 s ! and a Zeeman shift ofl3cm L. the figure.(a) shows aC, instability for A;=—0.37 ;(b) shows a

Cg instability for Ag=—0.35; (c) corresponds to the same param-
in Ref.[6], with similar behaviors. We focus here on the areaeters as ir(b), but a noise level of 7% has been added gnOther
close to bistability, where the stationary solutions are un{arameters are the same as in Fig. 4.

stable on the foldFig. 4]. For Ay smaller than the fold, at the experiment. The final regime, fr,> — 0.400, is a cycle

the left of pointH; on Fig. 48) (Ag<A,). the fixed point is [Fig. 5(a)] with the characteristics of th€, instabilities: the

a stable focusK): the stationary solutions are stable and large amplitude is linked to its homoclinic origin, together
associated with an eigenfrequeney decreasing with the wjith the low frequency. The appearance in the cycle of two
detuning[Fig. 4(b)]. At the edge of the fold, the system stages with different characteristic times is due to the differ-
exhibits a Hopf bifurcation(point H;): the fixed point be-  ence between the real part of the eigenvalues in the neigh-
comes a saddle focu$F), and the stationary solutions be- phorhood of the bifurcation: during the slow stage, the system,
come unstable. Ad\, is further increased, the eigenvalues |eaving the fixed point, is governed by the positive eigen-
become real at poir®, [Figs. 4a),4(b)], so thatwg disap-  value, close to zero. In the fast stage, the system approaches

pears and the fixed point becomes a saddle &#. Fi-  the fixed point, following the stable manifold, associated
nally, whenA, is still increased, the inverse sequence ap-with a large negative eigenvalue.
pears for the fixed point (SN SF— Hopf bifurcation—F). As the system is progressively carried bff, the trajec-

For Ap=Ay , the stationary solution is unstable, but atories leave the fixed point: for example, fdr,=—0.37
stable periodic orblt appears in the vicinity of the fixed point,[Fig. Xa)], the trajectory is never in the vicinity of the fixed
as is usual with a Hopf bifurcation. However, this orbit be- point, where theng coordinate is outside the graph. The
comes unstable in the immediate neighborhoo#l of while ~ shape gradually changes and the period decrg&sesA(c)].

a homoclinic orbit appears, connecting the stable and unAs the C, behavior is not linked to the nature of the fixed
stable manifolds of the unstable fixed point. A, is  point, it still exists in the SN zone, without any discontinuity
changed, the transition occurs through a complex sequened P, or P,.

including period doubling, chaos, and multistability, on the The amplitude ofC, is several millimeters when it ap-
interval —0.402<A (< —0.400. Such a complex sequence pears atH,, and increases regularly with,, so that inAg

on such a narrow interval has of course no experimenta—0.362, the cloud border reacheg. At this point, the
meaning, and we do not expect to observe these dynamics oscillation frequency abruptly decreadésg. 4(c)] and the
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shape of the limit cycle qualitatively changes. Indeed, theobservation. The only difference concerns the detuning inter-
atoms beyond, are lost, and so can decrease rapidly. The val on which instabilities appear, which is one order of mag-
resulting temporal behavior is still a periodic cycle and maynitude larger in the experiments. However, to make a real
be described as previously, except that the decreageiof comparison, we should take into account the inevitable ex-
much faster and that of is much largefFig. 5b)]. It looks  perimental variation ofi; whenA is changed. Note that in
like the CB eXperimental bEhaVior, except that it is periOdiC. the model, a simultaneous Changenaf and AO leads to a
Note that this behavior is also observed in theone be-  rg|ative stretch of the unstable zone. Unfortunately, as we
tweenH, and resonance: this means that a generalized bistgzye no simple way to establish experimentally the relation
blll_ty occurs betweerCB_ and _the stable stationary :_;(_)I_utlon. betweenn, andA,, we are not able to check the amplitude
This confirms that at this point, the periodic instabilities areyt ihe correction in the present model.

no longer linked to the fixed-point properties. In conclusion, we have demonstrated the existence of
To explain the difference between ti&; experimental  «geterministic,” in contrast to “noise,” instabilities in the
and theoretical behaviors, we take into consideration the 0T cloud. As a consequence, a simple amelioration of the
noise, which is known to play a fundamental role in this oy serimental noise cannot improve the cloud stability. But
system[ﬁ]. Its mﬂuence on Qeterm|n|st|c instabilities is we_II mainly, this opens different perspectives in the characteriza-
known: fixed points and limit cycles are usually robust with 5, of the atomic systems. Indeed, it is well known that an
respect to noise, whose main effect is to shift slightly thensaple dynamics enables the experimental measure of more
bifurcation pointg9]. So we do not expect to observe spec-gystem parameters than in a stationary regime. The analysis
tacular changes in the stationary afq behaviors when o the dynamics of a perturbed MOT has already made pos-
noise is a(_dde_d, a_nd this is confirmed by the simulations. Thgjpje the evaluation of the capture velocitld®]. The exis-
Cg behavior is different, as, due to the border effects, thgence of periodic and chaotic dynamics in a MOT should
cloud could be very sensitive to noise in the vicinityzf  enaple the access to numerous other atomic quantities. It

indeed, noise should induce large variations in the decreasingyy|d be, for example, a way to find a signature of long-
of n, and hence in the period of the dynamics. This is conyange interactionfl1].

firmed by the numerical simulations: Fig(ch shows the
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