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Cooling atomic motion with quantum interference
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We theoretically investigate the quantum dynamics of the center of mass of trapped atoms, whose internal
degrees of freedom are driven inAashaped configuration with the lasers tuned at two-photon resonance. In
the Lamb-Dicke regime, when the motional wave packet is well localized over the laser wavelength, transient
coherent population trapping occurs, canceling transitions at the laser frequency. In this limit the motion can be
efficiently cooled to the ground state of the trapping potential. We derive an equation for the center-of-mass
motion by adiabatically eliminating the internal degrees of freedom. This treatment provides the theoretical
background of the scheme presented@ Morigi et al,, Phys. Rev. Lett85, 4458(2000] and implemented
in [C.F. Rooset al, Phys. Rev. Lett85, 5547(2000]. We discuss the physical mechanisms determining the
dynamics and identify parameters regimes, where cooling is efficient. We discuss implementations of the
scheme to cases where the trapping potential is not harmonic.
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[. INTRODUCTION cuss this equation in detail when the potential is harmonic,
and derive a set of rate equations for the occupation of the
The progress in laser cooling of atoms and ions has set thébrational states. Thereby, we identify the parameter regime
stage for coherent control of the dynamics of quantumwhere cooling is effective. In some limits, these equations
mechanical systenfd]. By means of laser cooling, states of reduce to the ones used in Reff§,8,9. Nevertheless, a re-
the center-of-mass motion of trapped atoms with high puritysult of this paper is the identification of the basic mechanism
have been prepardd__zﬂy allowing, for instance, for their characterizing the dynamics, which allows us to determine
coherent manipulation for quantum information processing’arameter regimes where cooling can be efficient. We dis-
[5]. Nevertheless, there is a continuous interest for new anfuss the limit of the validity of the equations derived, give
efficient cooling methods, which solve experimental difficul- alternative interpretations of the dynamics, and consider pos-
ties and increase the efficiency of the process. In this contexgible extensions of the method to cases where the center of
a laser-cooling scheme for trapped atoms has been recentljass is confined by a potential that is not necessarily har-
proposed6], which exploits the principles of coherent popu- monic and whose functional form may depend on the elec-
lation trapping(CPT) [7] and allows to achieve almost unit tronic state.
probability of occupation of the trapping-potential ground We remark that the laser-cooling dynamics of trapped at-
state[6,8]. This method has been demonstrated to be an alPms, whose internal transitions are driven ik aconfigura-
ternative to sidebanfP] and Raman-sideband coolifig,4],  tion, have been investigated in several works, as for instance
routinely used for the preparation of very pure states of thén Refs.[12—15. These, however, focused on different cool-
center-of-mass motion of trapped atoms and ions. Furthdpg mechanisms. This work, together with RES], extends
applications of this cooling methothow labeled as “EIT these previous analyses to other regimes, characterized by
cooling”) have been discussed in several publicati@$0]. novel features of the center-of-mass dynamics, as we discuss
The focus of this work is to discuss theoretically the below.
physical principles on which this method is based, and par-
ticularly the role of quantum coherence between atomic Il THE DARK RESONANCE AND THE MOTION

states on the mechamcal effects of light on trapped atoms. In this section, we first discuss the internal dynamics and
Thus, in Sec. Il we introduce the electronic level scheme

Steady state of an atom whose electronic bound states are
composed of two stable or metastable states coupled by | y

s t mmon excited state. the confiquration. and Yriven by lasers in a resulting configuration. We focus on
Sers 1o a common excited state, theconfiguration, a the conditions for which CPT occurs. Then, we consider the
discuss in general CPT when the transitions are driven b

counterpropagating laser beatiise Doppler-sensitive cajse ¥enter-of-mass degrees of freedom and discuss under which
Here %O% %r e%hat in the pre e(r)llcjzg ?)f an external Oteconditions the features characterizing the bare internal dy-
1€1€, We observ | presenc 1 ex PO mics are preserved, when the motion is taken into account.
tial confining the center-of-mass motioftransient CPT is

: The discussion in this section and throughout the paper is
obtained when thg lasers are _set at two-photon resonance tricted to motion in one dimension, identified here with
the wave packet is well localized over the laser wavelength ™. , ) . ,

(the Lamb-Dicke regime In Sec. Ill, starting from a general the x axis. This allows a simpler exposition without loss of
approach we develop the theoretical model, assuming th&enerality.
the atomic center of mass is confined by an external potential

in the Lamb-Dicke regime: This allows one to adiabatically

eliminate the internal degrees of freedom and derive an equa- An exemplary atomic level configuration where the ef-
tion for the external degrees of freedom ofibd]. We dis-  fects of quantum interference manifest is theransition. It

A. The dark resonance
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FIG. 1. (a) Level scheme: The solid arrows represent the lasers
at Rabi frequencieg),, Q,, that couple to the transitions,)
—le), |g2)—|e), respectively, and are detuned dffrom atomic
resonance(b) Addition of a probe at Rabi frequend)p and de-
tuning Ap, coupling|g;)—|e).

FIG. 2. Excitation spectrum(Ap) in arbitrary units as a func-
tion of the probe detuning\p in units of y. Here, Q=+, A

=25y, Qp=0.05y.

Y
consists in two electronic transitions, formed by two stable K 2[|e)<e|p+p|e>(e|]+j=§;,2 vilg(elple)gil
or metastable states that we lateh), |g,), which are )
coupled by lasers to the same excited staje For a closed .
transition, the atom stops to fluoresce when the staggs W€ 1. v, are the rates of decay intgy), |g2), respec-

and|g,) are resonantly coupletwo-photon resonangeas tively,.and v1+ vo=7. It can be easily vgrified th.at the dark
shown in Fig. 1a): The system evolves into the dark state, gState is a dressed state of the system, i.e. an eigensthte of

stable atomic-states superposition that is decoupled from thEn€ other two dressed states r¢aé]
| )=coséle)+sinb| yic), (6)

excited state because of destructive interference between the
excitation amplitudes. This phenomenon is called coherent

population trappind7], and the atoms are found in the co- —sindle)— cosf 7
herence(dark state [¥-) e) e, @

where

1
|‘I’D>=§(Qz|gl>—ﬂl|g2>), 1) JATEOZ-A
tang= —a (8)
whereQ) = \/Qzl+(222 andQ, (Q,) is the Rabi frequency of
the laser coupling to the transitidg,)—|e) (|g,)—|e)). 1
Here, without loss of generality, we have assurfigd (), to lihc)= ﬁ(ﬂllgl) +Q,|g,)), ©))
be real. The dark state is accessed by spontaneous emission,
unless the system has been initially prepared in it. Thus, th
density matrixpp=|¥p)(¥p| is the steady-state solution of
the master equation for the atomic density majrixdp/dt
=Lop, WhereL, is the Liouvillian defined as

&nd where we have introduced the state), orthogonal to

le) and|yp). The stateg6) and (7) are at eigenfrequencies

dw.=(ATJAZ+0?)/2, and since they possess a nonzero

overlap with the excited state), they have a finite decay

1 rate and are populated in the transient dynamics. We denote

Lop=—[H,p]+Kp. 2) their linewidths withy, , v_ . The steady state is accessed at
in the slowest rate of decay and, for later convenience, we in-

i ) . troduceT,, the time scale corresponding to the inverse of
Here, H=H,+V, is the Hamilton operator, and its terms inis rate.

have the forn{in the rotating wave approximation and in the

X - The dressed-state picture is a useful tool for interpreting
frame rotating at the laser frequengies

the atomic spectra in a pump-probe experiment, where, e.g.,
a weak probe at Rabi frequené€yp (Qp<Q,,Q,) couples

Ho=—7A(91)(91l *+92)(g2]). 3 o the transitiong,)—|e) as shown in Fig. ), while its
. frequency is let sweep across the atomic resonance. Figure 2
_n shows the spectrum of excitation as a function of the detun-
Vo=3 (€2a]e){(ga|+Qsle)(gz +H.c.). “ ing of the probe\p, for a certain choice of the lasers param-

eters. Here, one can observe that the component of the spec-
whereA =w;—w 1= w,— o, are the laser detunings, with trum atAp=A is zero, corresponding to the situation where
the atomic resonance frequencies of the transition|gj> the system is in the dark stat# ). Moreover, the spectrum
—|e) and the frequencies of the corresponding driving laseexhibits two resonances centered Ap=dw., whose
wj (j=1,2). The operatoK is the Liouvillian describing widths correspond approximateiwhen|A[,Q2>y) to y, ,
spontaneous emission, v_, respectively, and can be identified with the dressed

033402-2



COOLING ATOMIC MOTION WITH QUANTUM INTERFERENCE PHYSICAL REVIEW A67, 033402 (2003

states| ¢, ), |#_) [17]. Note that these resonances have not In this system, at a given instant of time perfect destruc-
a Lorentzian shape: The spectrum shares in fact many simiive interference between excitation amplitudes occurs for
larities with a Fano profilé17]. Typical excitation spectra, the state

measured with a single ion in a trap, are reported in Refs.

18,19 W)= 5 (2291, 7)

B. The motion —Q exli(kocosg; —koc08¢5)x1[g2,¥)), (15
We consider now the center-of-mass motion in the pres

ence of a conservative potential, of which for the momentg 4i0r acting on the external degrees of freedom, Hrig a
the form is not specified. Given the mass of the atonihe  giate of the center-of-mass motion. The sta is stable—

momentump, the positionx, and the potentialJ(x), the  and thus a dark state—if it is an eigenstateHy+ H pec.

where expi(k, cos¢,—k, cosd,)x] is the displacement op-

mechanical Hamiltonian is This is always true when the lasers are copropagating and
2 k,cos¢, =k, cosg, [or, for one-dimensionallD) motion as

H :p_+ U 10 in this case, when the direction of propagation of the lasers is
mec (X) ( ) H H — .
2m orthogonal to the axis of the motion, c¢s=cos®,=0]:

. _ _ Then, the motional state factorizes out in H45). For
We denote with 4. the eigenvectors ofi e at the eigen-  k; cose,#k,cosd,, on the contrary, one must consider the
valuese. The full dynamics are now described by the Masterparticular form of the confining potential. For instance, for

equation free atoms[U(x)=consi a perfect dark state exists for
o1 k150|s¢12;>§2/?205$%'=k and :ear:js|‘I;D>=(Qz|glt,—ﬁk>
Ilpetiiag = - , . This property has been used to prepare
P ih[H,p]-l—/Cp Lp, (12) 1192 property prep

very cold atomic sampld0]. In the presence of a confining
potential, on the other hand, there exists, in general, no state

where is the density matrix for the internal and external |q,D> that is perfectly dark. Approximate dark states have

degrees of freedom and been discussed in RéfL5] for a 1D flat bottom and for a 2D
~ ~ harmonic trap.
H=Ho+Hmect V. (12) Nevertheless, transient CPT can be observed in trapping

~ ) ) ) ~_potentials and in Doppler-sensitive configurations when the
Here,V describes the coherent interaction of the atomic di-atoms are in the Lamb-Dicke reginfeDR), i.e., when the

pole with the lasers, and has the form size of their motional wave packef(Ax?) is much smaller
5 than the wavelength of the Iighkl,z\/<Ax2><1. In this
VZE(QleXF:(iklx cosey)|e)(g,] limit, a hierarchy of processes in the excitation of the center-

of-mass wave packet is established. At zero orderlin

+ Q,explikox CoSdy)|e)(ga| + H.C), (13) =ky (AX?), the effects due to the spatial gradient of the
light-atom potential are neglected: the atoms behave as if
where the lasers are traveling waves at wave vedtp@nd they were pointlike, anq the coherent transition_s tak(_a place at
k,, propagating along the directions forming the anglgs  the laser frequencfcarriep. The_n, after the transient timig
-, respectively, with the axis. In Eq.(13) the spatial de- the atoms have accessed the internal dark M'.At first
pendence is explicitly included, which couples to the eX,[er_order ing, effects due to the finite size of the motional wave

nal degrees of freedom of the ion, while the Rabi frequenciee"’mket become .mamfest, and transitions betwgen different
Q,, O, are assumed to be constant over the spatial regio otional stategsidebands transitiop®ccur. On this longer

L . L~ _ Ime scale, which we denote wiffi,, the atom is optically
where the ion is localized. The Liouvilliaki describes the 1, yned out of the dark state into another state of the motion.

incoherent s_cattering processes, V\_/hereby a.photon IS SPONR- the | amb-Dicke regime, the relatiohy>T, allows for a
neously emitted under an angle with the axis of the mo-  ;arse grained description of the dynamics, where the inter-
tion. It has the form nal state of the atom is assumed to be always the dark state
o).
Kp=— %[|e)<el7) +ple)(el] These arguments suggest that for a trgpped atom in _the
LDR, some of the properties of the excitation spectrum dis-
1 cussed for the Doppler-free case may also be applicable to
+ 2 ij d cos¢/\/(cos¢)|gj> the Doppler-sensitive one. Here, the carrier transition is pre-
=12 -1 dominant, whereas transitions which change the state of the
i ~ i motion (sidebands transitionsare of higher order in the
X (e|[exp(ikjx cos)p exp( —ikjx cose)][e)(gjl, Lamb-Dicke parameter, and can be interpreted as transitions
(14) due to a probe{Qp) set at the corresponding frequency in the
bare atom, as illustrated for instance in Figh)1 In the fol-
whereN{cos¢) is the probability distribution for the angles lowing section, we show that this interpretation is theoreti-
of photon emission with respect to the motional axis. cally justified.
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where pg=pp Is the internal steady state and(0)

Here, we derive the equations for the center-of-mass mo—ITfin};{PoZ(O)} is the reduced density matrix, calculated
tion in the limit where the LDR applies and when the center-from p att=0 by tracing over the internal degrees of free-
of-mass motion is confined by the same potential at all threelom (Tr,{}) and applying the projectdP, acting over the

electronic levels. The procedure consists in adiabaticallyternal degrees of freedom. The latter is definedPgs

eliminating the internal degrees of freedom from the dynami-

cal equation at second order in the paraméteand it cor-

22, l(wl(vdplve), wherely.), |y) are eigen-

responds to analyzing the coarse-grained evolution on thstates ofH .. at e. In general, at zero order, equatidgp

time interval At such thatT,>At>T,. The formalism we
use has been first developed in REf1] for a two-level

transition driven by a running wave, and later applied to

standing-wave drives and multilevel transitions in Hetl].

In the following, we outline the fundamental steps that are™

=ZL,p admits an infinite number of stable solutions. They

can be expanded in the basis of eigenvectﬁg§,=p5t
|y (| at the (imaginary eigenvalues X\ .

—i(e—€')/% of the Liouville operatorZ,, satisfying the

most general to all treatments, and refer the reader to Regecular equatiorfoﬁe,er=Ae,erﬁe,é_r (ps: is eigenvector at
[11,21] for details(we have used the same notation as in RefA=0). The eigenspaces at the eigenvalugs may be also

[21] when possible

A. Lamb-Dicke limit
In the Lamb-Dicke limit{<1, the operators exyKx)
appearing in Eq913) (14) can be expanded in powers &f
At second order in this expansion, E41) can be rewritten
as
O~ ~ ~ ~
Ep=[£0+£1+£2]p, (16)

where the LiouviIIianst describe processes at tfth order
in the Lamb-Dicke parameter, and are defined as

-~ ~ ~ 1 ~
Lop=Lop+ %[Hmecap]a (17
~~ 1 ~
‘Clp:ﬁ[xvlap]! (18)
~~ 1 o, o~ =
ﬁzng[x Va,p]+ Kap. (19

Here, V., V, are the first- and second-order terms in the
expansion of/ and read

in
Vi=g 3 kcostiy(le)a ~lg)(e). (20

h
Vo==g 2, K coSi0y((e)gl gl (2D

The Liouvillian £, has the form

Kap= aj:Eu yik?1g;)(el(2xpx—xZp—px?)|e)(g;],
(22)
wherea = [1,d cos¢NV{(cosg)coe.
At zero order inZ, the internal and external degrees of

freedom are decoupled: The statg, solution ofCop=0, is
not uniquely defined, and has the forpy=pg@ u(0),

infinitely degenerate, as it occurs, for instance, in the har-
monic oscillator. Forl #0, these subspaces are coupled by
L1, L,. At second-order perturbation theory dn for ¢;Q;
<min, . .e—¢€) (i.e., when the spectum of is suffi-
ciently spaced, to allow for nondegenerate perturbation
theory), a closed equation for the dynamics in the subspace

atA=0 can be derived. Denoting witR, the projector onto

this subspace, defined Bsp=ps® Trind Pop’, this equation
has the form11]

d. ~ ~ o~ o~ O
&Pop(t):[poﬁzfpo‘*' JO dTpoﬁleLOTﬁlpo p(t)
(23

After substituting the explicit form of;,Z, in the second
term on the right-hand side of ER3) and tracing over the
internal degrees of freedom, we obtain

d 1

G4 P | arTrndVaexpLan Vapsd R [X(). 1)

+Trind V1897 [ V1, psd[X, uX(7)]). (24)
Here, the matriszrim{Po}S} is the reduced density matrix
for the external degrees of freedom in the subspace at eigen-
value(at zero orderh =0. The operatox(7) is here defined
asx(7) =exp(—iH mecr/ %)X exp(H mec/ ).

It is remarkable that the term,L,P,=0. This result is
explained by looking at the form of E¢19). When tracing
over the internal degrees of freedom, the first term in Eqg.
(19) gives rise to a contribution proportional to;;fV,psd:

This term usually gives rise to a shift to the eigenvalues
Ne o, It represents a renormalization of the harmonic-
oscillator frequency due to the presence of the laser fields,
and here it vanishes since there is no occupation of the ex-
cited state at steady state. The second term in(E9). de-
scribes the diffusion arising from spontaneous emission into
other mechanical statgd21]. Again, since at steady state
there is no excited-state occupation, it vanishes. Thus, the

disappearance dP,L,P, is due to quantum interference at
zero order in the Lamb-Dicke expansion.
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For a nondegenerate spectrum of eigenvakiethe re-  and for the probabilityx, ,=(n|u|n) of the system to be in
duced matrixu is diagonal, and the equation for a matrix the number statp), Eq.(28) turns to a rate equation, whose

element has the form form is well known in laser cooling of single iorf&3],
d d o,
m<¢e|#|we>:2 CE,E'S((UE,E/) a/"«n,n_ Y [(rH'1)(A7:U“n+l,n+1_A+:U“n,n)
X[_<‘r//e|lu’|¢’e>+<ws’|ﬂ|ws’>]+H-C-v +n(A—IUvn,n_A+/-Ln—1,n—l)]- (29)
(25  In our case of a three-level atorng= 7, COS¢;— 17, COSh,,
and
where the coefficien8(w, /) is the value of the fluctuation
spectrum of the operatov; at the frequencyw, . = (e A.=2RdS(Fv)]
—€')/h, and reads
1(0102 2 ')’VZ (30)
4\ Q) [0%4—v(v=A) P+ Y224

1 (= ) ,

S(wee)=27 fo d7 Trind Vaexp( Lo7) Vapshe! =™ )7, (26)
Equation (29) has the same structure as the rate equation
derived for sideband cooling in a two-level system. Here,

. . _ , 2 . .
ZQEN ggﬁfzﬁéegégfgr'_ ofl-irlfaig léteaﬁys)wae A%Tt; /;h:ugot%plrg however, the rateé\.. describe the sideband excitation in-
photon momentum at second order in the Lamb-Dicke exSuding the effect of quantum interference between the

pansion. The equations necessary for the derivation of th@tomic tran3|t|0ns._quat|0(29) allows for a steady state
explicit form of Eq.(26) are reported in the Appendix. Equa- yvhen A_>A, , which is fulfiled whenA <0 (plue detun-
tion (26) shows that the rate for the transitipp.)— | . ) is ing) and 0>2v, or when A>0 (red detuning and €}
given by the value of the excitation spectrum for a probe,<2v. The value of the trap frequenay=()/2 separates two
whose interaction with the atomic transition is described byegimes: forv<<(Q)/2 it is the narrow resonance that deter-
V, and which is detuned from the pump by, ., (sideband mines relevgntly the centgr-of-mass dynamics, whereas for
transition. Here, the form of the potential enters explicitly »>{2/2 the sideband transitions are at the frequency range of
through the coefficients, .., and implicitly through the the broad resonanc¢22]. We remark that =0 for

assumptions on the spectrum that have lead to(£5). k1C0s¢h =k, Cos¢,, corresponding to the Doppler-free situa-
tion. Furthermore, the Lamb-Dicke parameter entering into

the dynamics is the one determined by the laser wave vector.

The Lamb-Dicke parameter connected to spontaneous emis-
We now let the potential be harmonic at frequengy sion eventsi.e., recoils because of emission into other states

U(x)=3m»?x?, and introduce the annihilation and creation of the motion does not appear, since the diffusion term van-

B. Harmonic oscillator

operatorsa anda' of a quantum of vibrational energyv, ishes at second order in the Lamb-Dicke expansion.
such thax=x,(a’+a), p=ipy(a’—a), with xo= Vi/2mv In the following we assumé,coseg,#k,cos¢, and A

andpy=vAmuv/2. The center-of-mass Hamiltonian reads <0, Q>2v (A_>A,). Some insight into the dynamics can
be gained from the equation for the average number of pho-
Hme=fiv(ata+ 3). (27)  non{n(t))==;_onunn(t), which is derived from Eq(29)
and has the form23]
Now, |#.)=|n) and e=Av(n+1/2), wheren=0,1, ... is
the number of phonon excitations, and the mechanical ener-
gies are equidistantly spaced By. The coefficientC,, ,/
=x§[n5n,'n_1+(n+ 1)6, n+1], and thus at first order in 5 ) _
the Lamb-Dicke expansion the relevant transitions betweeWhereW=7°(A_—A.) is the cooling rate. The steady state
motional states are the blue sidebami—|n+1) at fre- value(n).. reads
quency w, — v, and the red sidebanth)—|n—1) at fre- 5 s 0
quency o, +v. We define the Lamb-Dicke paramete () AL A v(v— M)y (32
=KjXo, which fuffills the relationZ; ,= 7, ,y2(n)+1, with * 4v|A|(Q%—417) '
(n) being the average number of phonon excitations.

For the harmonic oscillator, the equations derived in theand is minimum wher)?=4y(v—A). This relation corre-
preceding section simplify notably: Equati@@4) gets the sponds to setting the ac Stark shitb, of the narrow reso-
form nance|V ) at the frequency of the first red sidebardd .

=A—v. For this value,(n){™W=(/4/A[)%: Hence, low
temperatures are achieved for lasers far detuned from atomic

d 2
Gim=—Wn)+ %A, , (31)

— =X —_at U .
gii=XeS(v[-a'autaua’] resonance. This corresponds to an enhanced asymmetry of
5 . . the excitation spectrum, as that shown in Fig. 2, where the
+XoS(—v)[-aa'u+a'pal+Hec, (28  two resonances have very different widths.
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(@) (b) FIG. 3. Plot of(a) (n).. and(b) W as a func-

<n> W tion of 5. Dashed line, rate equation resul,

2 numerical simulation, 500 trajectories with the

o quantum Monte Carlo method. Herey, cos¢,

102 o =1,C08h=1m9 (7=27m0), v=2MHz, y
10° =20 MHz, Q;=Q,=17 MHz, A=70 MHz,

’ v1/v,=1. In (a) the result of the simulation in

agreement with the rate equation predictidn)(

— — 10 ~ — =0.005) is indicated by the arrow. [ib) the rate

10 10 10 10 W is in units of y/2.

T’|0 T]O

0.005} o o

For Sw,. =A—v the cooling rate scales as the process, while in Raman sideband cooling a finite
branching ratio gives rise to heatifg4]. Another important

WM~ 2(Q10, /)% y. (33 feature of EIT cooling is the disappearance of the carrier

o ) ) ] absorption due to quantum interference. This effect implies
Thus, fast cooling is achieved for large Rabi frequencies anghe suppression of diffusive processes: Since in the coarse-

when();=0Q,. The ultimate limit toW is set by the param-  grained evolution the excited state is effectively empty, pro-
eters that ensure the validity of the perturbative treatmentesses, where the atom is scattered into other motional states
applied here: This is valid for;; cosf<y, (j=1,2), with  py spontaneous emission, disappear at second order in the

y:+~ycos being the linewidth of the narrow resonance, | amb-Dicke expansion. This implies an improved efficiency
corresponding in the bare atom to the situation where th@yith respect to Raman-sideband cooling, where instead such

At dw,=A-wv, one hasy,~vy/4/A?+0? which sets It is instructive to compare the dynamics in EIT cooling
the fastest rate at which efficient laser cooling can occurwith the dynamics of a trapped ion at the node of a standing
WM&~y /2. wave, as studied, for example, in RE21]. At the node of a

It is remarkable that these results do not depend on thetanding wave the carrier absorption cancels, since here the
branching ratioy,/vy,. In fact, in this limit the branching value of the electric field is zero. Nevertheless, sideband ab-
ratio enters the problem only throudRy. Nevertheless, a too sorption occurs because of the finite size of the motional
large branching ratio affects the time scdlg at which the  wave packet. In the case offa configuration driven by two
transient steady state is reached. traveling waves at two-photon resonance, the transient dark

In Fig. 3 we test the validity of the adiabatic elimination state(15) is a superposition of the statfg) and|g,) whose
procedure for various values of the Lamb-Dicke parametefelative phase is a function of the coordinateso that the
by comparing the results predicted by E§1) with a full  finite size of the wave packet allows sideband absorption
numerical simulation. The parameters are reported in thalso in this case. Nevertheless, in the LDR the gradient of the
caption. Full agreement between the two results is found fophase over the wave packet is small, and the sideband tran-
7=0.02 (1, cOS$=—17,C08¢,=0.01). It should be men- sitions are excited on a longer time scale. This can be illus-
tioned that in Ref[6] full agreement has been found fgras  trated when writing the atom-laser interactid) at the first
large as 0.2. On the other hand, those results have beeder in the Lamb-Dicke expansion and in the form
evaluated for the cas@,<(),, and the small value of),
ensured the validity of the perturbative expansion. 5 QO
V~ﬁ§[|e><\PC|+i|e><\I'D|kx+ H.cl, (34)
IV. DISCUSSION

We have shown that, by properly choosing the lasers paahere we have made the simplifying assumptiéhs=(,
rameters, one can achieve almost unity ground-state occupa-Q/+/2, k; cos¢;=—k,cos¢,=k. Here, we see that the
tion with this cooling method(EIT cooling. The state dark state is coupled to the excited state at first order in the
| 45)|0) is equivalent to the ground state in sideband coolingL.amb-Dicke expansion, for effects arising from the finite
since it is only off-resonantlyweakly) coupled to other size of the motional wave packet.
states, and it satisfies the criteria of an approximate dark state The atom dynamics during the coarse-grained evolution
as discussed in Reff15]. can be interpreted in terms of field gradients over the size of

From Eq.(30) one recovers the rates of Ed) in Ref.[6] the wave packet, which give rise to forcgZs]. In this re-
in the limit ), <(,. We have shown that the same dynamicsspect, one can say that this method uses the phase gradient of
are encountered in more general situations, which do ndhe dark state, due to the spatial gradient of the total field, for
impose a specific relation between the two Rabi frequenciesachieving cooling. In this context, we remark that the opera-
From the technical point of view, EIT cooling proves againtor V; in Eq. (26) is the gradient of potentigll3) at x=0,
to be more advantageous than Raman sideband co@esy i.e., at the center of trap.

Refs.[6,9]). Such an advantage is mainly twofold. On one Finally, we apply the results obtained for the harmonic
hand, in EIT cooling both lasers cool the atom, and a decagscillator to the case of a generic potenti(x). Several
into one or the other channel does not affect the efficiency o€onclusions drawn in this section are applicable to the case
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described in Eq(25), when the mechanical Hamiltonian has order in the Lamb-Dicke expansion. Cooling takes place be-
a discrete spectrum, and the minimum distance between twoause of excitations due to the spatial gradient of the electric
neighboring energy levels is sufficiently large to allow for field over the width of the motional wave packet, which are

nondegenerate perturbation theory. Laser cooling is herdue to the finite size of the wave packet itself and occur at
achieved for the same parameters as for the harmonic osciiirst order in the Lamb-Dicke expansion. The motion can be
lator. However, the narrow resonance enhances transitions said to be cooled by both lasers, while the branching ratio

a finite range of frequencieg(;)’ and 8w, must be prop- does not affect, in general, the efficiency of the process.

er|y tuned, e.g., to the average value of the red sideband Fina"y, we have discussed the pOSSlblllty to observe these

transitions frequencies. The process will thus be efficient undynamics for other types of potentials, which may depend on

der the condition that, for each motional state, there is dhe electronic state.

sufficient number of red sidebands inside this range, so that This work opens interesting prospects in the manipulation

the rate of cooling for a given motional state is larger thanof the quantum center-of-mass motion of atoms by using

the rate of heating. guantum interference in driven multilevel transitions, which
An interesting question is how the dynamics are affecteds subject of on-going investigations.

when the external potential depends on the electronic state,

and thus when
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ing the transient dynamics the atom is optically pumped imoable and stimulating scientific atmosphere
the (transient dark statg1). However, duringT the center- g P '

of-mass wave packet changes, since each eigenstate of

U.(x) (Uy(x)) may have a nonzero overlap with several

eigenstates ofU.(x). This effect constitutes a diffusion

mechanism that lowers the cooling efficiency and, outside of The termS(v) in Eq. (26) is the Laplace transform at i

some regimes, can make it even impossible. Formally, foof the correlation function G(7), defined as G(7)

Ue#U;1,U,, the formalism applied in this section is not ap- =Tr; {V1(7)V1(0)psgd, whereV,(7) =V ,exp(Ly7). This is

plicable, since one cannot separate the time scales charactefaluated applying the quantum regression thedresy24.

izing the evolution of the internal and external degrees ofin the following, we derive the equations that are essential

freedom. for this calculation. For convenience, we introduce the
In the general case of three different confining potentials,ector-operatorc whose components are defined as

the presence of a dark state cannot be excluded: this howevgrIg g1l ol ~19)(g0] pl ~|gy)(el ol ~eXg,l bl

depends on the specific form of the functidog(x). AL F2ri92/A92), FeTISIAED T4 s

=[g2)(el, o6=[e)(g2l, o7=192)(9ul, 5=[91)(02|. The

mean value(o;)=Tr{ojp} obeys the equationd(o;)/dt

= M(&j)+ B, whereM, B are a matrix and a column vector,
We have presented a systematic investigation of theespectively, and are defined through the equations

center-of-mass dynamics of a trapped ion, the internal tran-

sitions of which are driven by lasers inftype configura-

tion and set at two-photon resonance. Assuming that the 2 R R R 0, . R

center-of-mass wave packet is well localized over the laser 2 Myj(oj)=— y1(<0'1)+(0'2>)—i7(<0'3>—<0'4>).

wavelength(the Lamb-Dicke regime we have adiabatically =1

eliminated the internal degrees of freedom from the equation

of the center-of-mass dynamics, and obtained a set of rate

equations for the occupation of the motional states. We have A A - Q, . -

identified the parameter regimes where efficient ground-state j§=:l M2j(o))==y2((o1) +(02)) = '7(<‘75>_<‘76>)'

cooling can be achieved. The derivation here presented pro-

vides the theoretical background for the equations in Refs.

[6,8,9 and extends the parameter regime to cases that have g

not been previously considered. As also discussed in Ref. E M -<<}<>=—i&(2<¢} >+<(} y)—

[6], we have shown that diffusive processes, encountered in 3T 2 ! 2

cooling with two-level atoms or with effective two-level sys-

tems (Raman sideband coolifgare suppressed because of —i&«} )

guantum interference between the dipole transitions at zero 2 \U8h

APPENDIX: CALCULATION OF S(w»)

V. CONCLUSIONS AND OUTLOOK

(a3)

Y .
§+IA
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8 Q y 8 Q Q
~ . 1 ~ ~ . ~ ~ . 2 ,~ . 1,~
> M4,j<0j>:|7(2<01>+<02>)—(§—'A)(U4> > Mgj(oj)=—i— (o3)+i—(0e),
=1 =1
O, . d
i (o), o
.Ql .QZ
Bj:7151,1+725j,2+|7(5j,3_5],4)“7(51',5_5116)'

(o5)

8
~ ,Qz ~ ~ Y .
> M5,j<0'j>:_|7(<0'1>+2<0'2>)_ §+|A o _
=1 with j=1,...,8 ands; , the Kronecker-delta. According to
0 this definition, the steady-state vector is now,=M ~!B.
—i 71<(}7>, Using thiAs noAtation, we reV\[rite the operaidy in Eq. (20) as
V1=a1(0'4—a'3)+a2(0'6—0'5), with a]:|hkj COS¢ij/2,
8 Q j=1,2. The Laplace transfor8(v) is then the sum of the
E M6,j<(}j>=i72(<&1>+2<&2>)_(%_iA)<(}6> Laplaf:e transformss;(v) of the individual termsg;(7)
=1 =Tr{oj(7)V1(0)os, such thatS(v)= aq[si(v)—s3(v)]
Q. + ay[ss(v) —ss(v)], wheres;(v) are given by the equations
+i_<0'8>,
2 1
5i(1) =2 Li| Tr{oVa(0)pst + [ BiTr{Va(0)psi |,

i Q Q
> ~ S22 A Al
=1 7o) 2< 9 2 {s) with L matrix, L=[iv—M] 1.
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