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Cooling atomic motion with quantum interference

Giovanna Morigi
Abteilung Quantenphysik, Universita¨t Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany

~Received 24 October 2002; published 13 March 2003!

We theoretically investigate the quantum dynamics of the center of mass of trapped atoms, whose internal
degrees of freedom are driven in aL-shaped configuration with the lasers tuned at two-photon resonance. In
the Lamb-Dicke regime, when the motional wave packet is well localized over the laser wavelength, transient
coherent population trapping occurs, canceling transitions at the laser frequency. In this limit the motion can be
efficiently cooled to the ground state of the trapping potential. We derive an equation for the center-of-mass
motion by adiabatically eliminating the internal degrees of freedom. This treatment provides the theoretical
background of the scheme presented in@G. Morigi et al., Phys. Rev. Lett.85, 4458~2000!# and implemented
in @C.F. Rooset al., Phys. Rev. Lett.85, 5547~2000!#. We discuss the physical mechanisms determining the
dynamics and identify parameters regimes, where cooling is efficient. We discuss implementations of the
scheme to cases where the trapping potential is not harmonic.

DOI: 10.1103/PhysRevA.67.033402 PACS number~s!: 32.80.Pj, 42.50.Gy, 42.50.Vk
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I. INTRODUCTION

The progress in laser cooling of atoms and ions has se
stage for coherent control of the dynamics of quantu
mechanical systems@1#. By means of laser cooling, states
the center-of-mass motion of trapped atoms with high pu
have been prepared@1–4#, allowing, for instance, for their
coherent manipulation for quantum information process
@5#. Nevertheless, there is a continuous interest for new
efficient cooling methods, which solve experimental difficu
ties and increase the efficiency of the process. In this con
a laser-cooling scheme for trapped atoms has been rec
proposed@6#, which exploits the principles of coherent pop
lation trapping~CPT! @7# and allows to achieve almost un
probability of occupation of the trapping-potential grou
state@6,8#. This method has been demonstrated to be an
ternative to sideband@2# and Raman-sideband cooling@3,4#,
routinely used for the preparation of very pure states of
center-of-mass motion of trapped atoms and ions. Fur
applications of this cooling method~now labeled as ‘‘EIT
cooling’’! have been discussed in several publications@9,10#.

The focus of this work is to discuss theoretically t
physical principles on which this method is based, and p
ticularly the role of quantum coherence between atom
states on the mechanical effects of light on trapped ato
Thus, in Sec. II we introduce the electronic level sche
composed of two stable or metastable states coupled b
sers to a common excited state, theL configuration, and
discuss in general CPT when the transitions are driven
counterpropagating laser beams~the Doppler-sensitive case!.
Here, we observe that, in the presence of an external po
tial confining the center-of-mass motion,~transient! CPT is
obtained when the lasers are set at two-photon resonance
the wave packet is well localized over the laser wavelen
~the Lamb-Dicke regime!. In Sec. III, starting from a genera
approach we develop the theoretical model, assuming
the atomic center of mass is confined by an external pote
in the Lamb-Dicke regime: This allows one to adiabatica
eliminate the internal degrees of freedom and derive an e
tion for the external degrees of freedom only@11#. We dis-
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cuss this equation in detail when the potential is harmon
and derive a set of rate equations for the occupation of
vibrational states. Thereby, we identify the parameter reg
where cooling is effective. In some limits, these equatio
reduce to the ones used in Refs.@6,8,9#. Nevertheless, a re
sult of this paper is the identification of the basic mechani
characterizing the dynamics, which allows us to determ
parameter regimes where cooling can be efficient. We
cuss the limit of the validity of the equations derived, gi
alternative interpretations of the dynamics, and consider p
sible extensions of the method to cases where the cente
mass is confined by a potential that is not necessarily h
monic and whose functional form may depend on the el
tronic state.

We remark that the laser-cooling dynamics of trapped
oms, whose internal transitions are driven in aL configura-
tion, have been investigated in several works, as for insta
in Refs.@12–15#. These, however, focused on different coo
ing mechanisms. This work, together with Ref.@6#, extends
these previous analyses to other regimes, characterize
novel features of the center-of-mass dynamics, as we dis
below.

II. THE DARK RESONANCE AND THE MOTION

In this section, we first discuss the internal dynamics a
steady state of an atom whose electronic bound states
driven by lasers in a resultingL configuration. We focus on
the conditions for which CPT occurs. Then, we consider
center-of-mass degrees of freedom and discuss under w
conditions the features characterizing the bare internal
namics are preserved, when the motion is taken into acco
The discussion in this section and throughout the pape
restricted to motion in one dimension, identified here w
the x̂ axis. This allows a simpler exposition without loss
generality.

A. The dark resonance

An exemplary atomic level configuration where the e
fects of quantum interference manifest is theL transition. It
©2003 The American Physical Society02-1
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consists in two electronic transitions, formed by two sta
or metastable states that we labelug1&, ug2&, which are
coupled by lasers to the same excited stateue&. For a closed
transition, the atom stops to fluoresce when the statesug1&
and ug2& are resonantly coupled~two-photon resonance!, as
shown in Fig. 1~a!: The system evolves into the dark state
stable atomic-states superposition that is decoupled from
excited state because of destructive interference betwee
excitation amplitudes. This phenomenon is called cohe
population trapping@7#, and the atoms are found in the c
herence~dark state!

uCD&5
1

V
~V2ug1&2V1ug2&), ~1!

whereV5AV1
21V2

2 andV1 (V2) is the Rabi frequency o
the laser coupling to the transitionug1&→ue& (ug2&→ue&).
Here, without loss of generality, we have assumedV1 , V2 to
be real. The dark state is accessed by spontaneous emis
unless the system has been initially prepared in it. Thus,
density matrixrD5uCD&^CDu is the steady-state solution o
the master equation for the atomic density matrixr: ]r/]t
5L0r, whereL0 is the Liouvillian defined as

L0r5
1

i\
@H,r#1Kr. ~2!

Here, H5H01V0 is the Hamilton operator, and its term
have the form~in the rotating wave approximation and in th
frame rotating at the laser frequencies!

H052\D~ ug1&^g1u1ug2&^g2u!, ~3!

V05
\

2
~V1ue&^g1u1V2ue&^g2u1H.c.!, ~4!

whereD5v12vL,15v22vL,2 are the laser detunings, wit
the atomic resonance frequenciesv j of the transitionugj&
→ue& and the frequencies of the corresponding driving la
vL, j ( j 51,2). The operatorK is the Liouvillian describing
spontaneous emission,

FIG. 1. ~a! Level scheme: The solid arrows represent the las
at Rabi frequenciesV1 , V2, that couple to the transitionsug1&
→ue&, ug2&→ue&, respectively, and are detuned ofD from atomic
resonance.~b! Addition of a probe at Rabi frequencyVP and de-
tuning DP, couplingug1&→ue&.
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j 51,2
g j ugj&^eurue&^gj u,

~5!

whereg1 , g2 are the rates of decay intoug1&, ug2&, respec-
tively, andg11g25g. It can be easily verified that the dar
state is a dressed state of the system, i.e. an eigenstateH.
The other two dressed states read@16#

uc1&5cosuue&1sinuucC&, ~6!

uc2&5sinuue&2cosuucC&, ~7!

where

tanu5
AD21V22D

V
, ~8!

ucC&5
1

V
~V1ug1&1V2ug2&), ~9!

and where we have introduced the stateucC&, orthogonal to
ue& and ucD&. The states~6! and ~7! are at eigenfrequencie
dv65(D7AD21V2)/2, and since they possess a nonze
overlap with the excited stateue&, they have a finite decay
rate and are populated in the transient dynamics. We de
their linewidths withg1 , g2 . The steady state is accessed
the slowest rate of decay and, for later convenience, we
troduceT0, the time scale corresponding to the inverse
this rate.

The dressed-state picture is a useful tool for interpret
the atomic spectra in a pump-probe experiment, where, e
a weak probe at Rabi frequencyVP (VP!V1 ,V2) couples
to the transitionug1&→ue& as shown in Fig. 1~b!, while its
frequency is let sweep across the atomic resonance. Figu
shows the spectrum of excitation as a function of the det
ing of the probeDP, for a certain choice of the lasers param
eters. Here, one can observe that the component of the s
trum atDP5D is zero, corresponding to the situation whe
the system is in the dark stateuCD&. Moreover, the spectrum
exhibits two resonances centered atDP5dv6 , whose
widths correspond approximately~when uDu,V@g) to g1 ,
g2 , respectively, and can be identified with the dress

rs FIG. 2. Excitation spectrumI (DP) in arbitrary units as a func-
tion of the probe detuningDP in units of g. Here, V5g, D
52.5g, VP50.05g.
2-2



no
im
,
ef

es
n

te

a

d

er
ie
io

on

s

uc-
for

-

and

s is

e
or
r

re
g
tate
ve

ing
the

ter-

he
s if
e at

ve
rent

ion.

ter-
tate

the
is-
e to
re-
the

ions
he

ti-

COOLING ATOMIC MOTION WITH QUANTUM INTERFERENCE PHYSICAL REVIEW A67, 033402 ~2003!
statesuc1&, uc2& @17#. Note that these resonances have
a Lorentzian shape: The spectrum shares in fact many s
larities with a Fano profile@17#. Typical excitation spectra
measured with a single ion in a trap, are reported in R
@18,19#.

B. The motion

We consider now the center-of-mass motion in the pr
ence of a conservative potential, of which for the mome
the form is not specified. Given the mass of the atomm, the
momentump, the positionx, and the potentialU(x), the
mechanical Hamiltonian is

Hmec5
p2

2m
1U~x!. ~10!

We denote withuce& the eigenvectors ofHmec at the eigen-
valuese. The full dynamics are now described by the Mas
equation

]

]t
r̃5

1

i\
@H̃,r̃ #1K̃r̃5L̃r̃, ~11!

where r̃ is the density matrix for the internal and extern
degrees of freedom and

H̃5H̃01Hmec1Ṽ. ~12!

Here,Ṽ describes the coherent interaction of the atomic
pole with the lasers, and has the form

Ṽ5
\

2
~V1exp~ik1x cosf1!ue&^g1u

1V2exp~ik2x cosf2!ue&^g2u1H.c.!, ~13!

where the lasers are traveling waves at wave vectorsk1 and
k2, propagating along the directions forming the anglesf1 ,
f2, respectively, with thex̂ axis. In Eq.~13! the spatial de-
pendence is explicitly included, which couples to the ext
nal degrees of freedom of the ion, while the Rabi frequenc
V1 , V2 are assumed to be constant over the spatial reg
where the ion is localized. The LiouvillianK̃ describes the
incoherent scattering processes, whereby a photon is sp
neously emitted under an anglef with the axis of the mo-
tion. It has the form

K̃r̃52
g

2
@ ue&^eur̃1 r̃ue&^eu#

1 (
j 51,2

g jE
21

1

d cosfN~cosf!ugj&

3^eu@exp~ ikjx cosf!r̃ exp~2 ikjx cosf!#ue&^gj u,

~14!

whereN(cosf) is the probability distribution for the angle
of photon emission with respect to the motional axis.
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In this system, at a given instant of time perfect destr
tive interference between excitation amplitudes occurs
the state

uC̃D&5
1

V
~V2ug1 ,C&

2V1exp@ i(k1cosf12k2cosf2)x#ug2 ,C&), ~15!

where exp@i(k1 cosf12k2 cosf2)x# is the displacement op
erator, acting on the external degrees of freedom, andC is a
state of the center-of-mass motion. The state~15! is stable—
and thus a dark state—if it is an eigenstate ofH01Hmec.
This is always true when the lasers are copropagating
k1cosf15k2 cosf2 @or, for one-dimensional~1D! motion as
in this case, when the direction of propagation of the laser
orthogonal to the axis of the motion, cosf15cosf250]:
Then, the motional state factorizes out in Eq.~15!. For
k1 cosf1Þk2 cosf2, on the contrary, one must consider th
particular form of the confining potential. For instance, f
free atoms@U(x)5const# a perfect dark state exists fo

k1 cosf152k2 cosf25k and readsuC̃D&5(V2ug1 ,2\k&
2V1ug2 ,\k&)/V. This property has been used to prepa
very cold atomic samples@20#. In the presence of a confinin
potential, on the other hand, there exists, in general, no s
uC̃D& that is perfectly dark. Approximate dark states ha
been discussed in Ref.@15# for a 1D flat bottom and for a 2D
harmonic trap.

Nevertheless, transient CPT can be observed in trapp
potentials and in Doppler-sensitive configurations when
atoms are in the Lamb-Dicke regime~LDR!, i.e., when the
size of their motional wave packetA^Dx2& is much smaller
than the wavelength of the light,k1,2A^Dx2&!1. In this
limit, a hierarchy of processes in the excitation of the cen
of-mass wave packet is established. At zero order inz
5k1,2A^Dx2&, the effects due to the spatial gradient of t
light-atom potential are neglected: the atoms behave a
they were pointlike, and the coherent transitions take plac
the laser frequency~carrier!. Then, after the transient timeT0
the atoms have accessed the internal dark stateuCD&. At first
order inz, effects due to the finite size of the motional wa
packet become manifest, and transitions between diffe
motional states~sidebands transitions! occur. On this longer
time scale, which we denote withTz , the atom is optically
pumped out of the dark state into another state of the mot
In the Lamb-Dicke regime, the relationTz@T0 allows for a
coarse-grained description of the dynamics, where the in
nal state of the atom is assumed to be always the dark s
uCD&.

These arguments suggest that for a trapped atom in
LDR, some of the properties of the excitation spectrum d
cussed for the Doppler-free case may also be applicabl
the Doppler-sensitive one. Here, the carrier transition is p
dominant, whereas transitions which change the state of
motion ~sidebands transitions! are of higher order in the
Lamb-Dicke parameter, and can be interpreted as transit
due to a probe (VP) set at the corresponding frequency in t
bare atom, as illustrated for instance in Fig. 1~b!. In the fol-
lowing section, we show that this interpretation is theore
cally justified.
2-3
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III. THEORY

Here, we derive the equations for the center-of-mass
tion in the limit where the LDR applies and when the cent
of-mass motion is confined by the same potential at all th
electronic levels. The procedure consists in adiabatic
eliminating the internal degrees of freedom from the dyna
cal equation at second order in the parameterz, and it cor-
responds to analyzing the coarse-grained evolution on
time intervalDt such thatTz@Dt@T0. The formalism we
use has been first developed in Ref.@11# for a two-level
transition driven by a running wave, and later applied
standing-wave drives and multilevel transitions in Ref.@21#.
In the following, we outline the fundamental steps that a
most general to all treatments, and refer the reader to
@11,21# for details~we have used the same notation as in R
@21# when possible!.

A. Lamb-Dicke limit

In the Lamb-Dicke limitz!1, the operators exp(ikjx)
appearing in Eqs.~13! ~14! can be expanded in powers ofz.
At second order in this expansion, Eq.~11! can be rewritten
as

]

]t
r̃5@L̃01L̃11L̃2#r̃, ~16!

where the LiouvilliansL̃j describe processes at thej th order
in the Lamb-Dicke parameter, and are defined as

L̃0r̃5L0r̃1
1

i\
@Hmec,r̃ #, ~17!

L̃1r̃5
1

i\
@xV1 ,r̃ #, ~18!

L̃2r̃5
1

i\
@x2V2 ,r̃ #1K̃2r̃. ~19!

Here, V1 , V2 are the first- and second-order terms in t
expansion ofṼ and read

V15
i\

2 (
j 51,2

kj cosf jV j~ ue&^gj u2ugj&^eu!, ~20!

V252
\

4 (
j 51,2

kj
2 cos2f jV j~ ue&^gj u1ugj&^eu!. ~21!

The Liouvillian K̃2 has the form

K̃2r̃5a (
j 51,2

g j kj
2ugj&^eu~2xr̃x2x2r̃2 r̃x2!ue&^gj u,

~22!

wherea5*21
1 d cosfN(cosf)cos2f.

At zero order inz, the internal and external degrees
freedom are decoupled: The stater̃St, solution ofL̃0r̃50, is
not uniquely defined, and has the formr̃St5rSt^ m(0),
03340
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where rSt5rD is the internal steady state andm(0)
5Trint$P0r̃(0)% is the reduced density matrix, calculate
from r̃ at t50 by tracing over the internal degrees of fre
dom (Trint$%) and applying the projectorP0 acting over the
external degrees of freedom. The latter is defined asP0r̃

5(e(ce ,c
e8

8 uce&^ce8u^ceur̃uce8&, whereuce&, uce8& are eigen-

states ofHmec at e. In general, at zero order, equation] tr̃

5L̃0r̃ admits an infinite number of stable solutions. Th
can be expanded in the basis of eigenvectorsr̃e,e85rSt
^ uce&^ce8u at the ~imaginary! eigenvalues le,e8
52 i( e2e8)/\ of the Liouville operatorL̃0, satisfying the
secular equationL̃0r̃e,e85le,e8r̃e,e8 ( r̃St is eigenvector at
l50). The eigenspaces at the eigenvaluesle,e8 may be also
infinitely degenerate, as it occurs, for instance, in the h
monic oscillator. ForzÞ0, these subspaces are coupled
L̃1 , L̃2. At second-order perturbation theory inz, for z jV j

!mine,e8Þe(ue2e8u) ~i.e., when the spectum ofL̃0 is suffi-
ciently spaced, to allow for nondegenerate perturbat
theory!, a closed equation for the dynamics in the subsp
at l50 can be derived. Denoting withP̃0 the projector onto
this subspace, defined asP̃0r̃5rSt^ Trint$P0r̃%, this equation
has the form@11#

d

dt
P̃0r̃~ t !5F P̃0L̃2P̃01E

0

`

dtP̃0L̃1eL̃0tL̃1P̃0G r̃~ t !.

~23!

After substituting the explicit form ofL̃1 ,L̃2 in the second
term on the right-hand side of Eq.~23! and tracing over the
internal degrees of freedom, we obtain

d

dt
m52P0

1

\2E0

`

dt~Trint$V1exp~L0t!V1rSt%@ x̂,@ x̂~t!,m##

1Trint$V1eL0t @V1 ,rSt#%@ x̂,m x̂~t!#). ~24!

Here, the matrixm5Trint$P0r̃% is the reduced density matri
for the external degrees of freedom in the subspace at ei
value~at zero order! l50. The operatorx̂(t) is here defined
as x̂(t)5exp(2iHmect/\) x̂ exp(iHmect/\).

It is remarkable that the termP̃0L̃2P̃050. This result is
explained by looking at the form of Eq.~19!. When tracing
over the internal degrees of freedom, the first term in E
~19! gives rise to a contribution proportional to Trint$V2rSt%:
This term usually gives rise to a shift to the eigenvalu
le,e8 , it represents a renormalization of the harmon
oscillator frequency due to the presence of the laser fie
and here it vanishes since there is no occupation of the
cited state at steady state. The second term in Eq.~19! de-
scribes the diffusion arising from spontaneous emission
other mechanical states@21#. Again, since at steady stat
there is no excited-state occupation, it vanishes. Thus,
disappearance ofP̃0L̃2P̃0 is due to quantum interference a
zero order in the Lamb-Dicke expansion.
2-4
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For a nondegenerate spectrum of eigenvaluese, the re-
duced matrixm is diagonal, and the equation for a matr
element has the form

d

dt
^ceumuce&5(

e8
Ce,e8S~ve,e8!

3@2^ceumuce&1^ce8umuce8&#1H.c.,

~25!

where the coefficientS(ve,e8) is the value of the fluctuation
spectrum of the operatorV1 at the frequencyve,e85(e
2e8)/\, and reads

S~ve,e8!5
1

\2E0

`

dt Trint$V1exp~L0t!V1rSt%e
i( e2e8)t/\. ~26!

The coefficientCe,e85u^ceuxuce8&u
2 weights the coupling

between the center-of-mass statesuce& and uce8& due to the
photon momentum at second order in the Lamb-Dicke
pansion. The equations necessary for the derivation of
explicit form of Eq.~26! are reported in the Appendix. Equa
tion ~26! shows that the rate for the transitionuce&→uce8& is
given by the value of the excitation spectrum for a pro
whose interaction with the atomic transition is described
V1 and which is detuned from the pump byve,e8 ~sideband
transition!. Here, the form of the potential enters explicit
through the coefficientsCe,e8 , and implicitly through the
assumptions on the spectrum that have lead to Eq.~25!.

B. Harmonic oscillator

We now let the potential be harmonic at frequencyn,
U(x)5 1

2 mn2x2, and introduce the annihilation and creatio
operatorsa and a† of a quantum of vibrational energy\n,
such thatx5x0(a†1a), p5 ip0(a†2a), with x05A\/2mn
andp05A\mn/2. The center-of-mass Hamiltonian reads

Hmec5\n~a†a1 1
2 !. ~27!

Now, uce&5un& and e5\n(n11/2), wheren50,1, . . . is
the number of phonon excitations, and the mechanical e
gies are equidistantly spaced by\n. The coefficientsCn,n8
5x0

2@ndn8,n211(n11)dn8,n11#, and thus at first order in
the Lamb-Dicke expansion the relevant transitions betw
motional states are the blue sidebandun&→un11& at fre-
quency vL2n, and the red sidebandun&→un21& at fre-
quency vL1n. We define the Lamb-Dicke parameterh j

5kjx0, which fulfills the relationz1,25h1,2A2^n&11, with
^n& being the average number of phonon excitations.

For the harmonic oscillator, the equations derived in
preceding section simplify notably: Equation~24! gets the
form

d

dt
m5x0

2S~n!@2a†am1ama†#

1x0
2S~2n!@2aa†m1a†ma#1H.c., ~28!
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and for the probabilitymn,n5^numun& of the system to be in
the number stateun&, Eq.~28! turns to a rate equation, whos
form is well known in laser cooling of single ions@23#,

d

dt
mn,n5h2@~n11!~A2mn11,n112A1mn,n!

1n~A2mn,n2A1mn21,n21!#. ~29!

In our case of a three-level atom,h5h1 cosf12h2 cosf2,
and

A652Re@S~7n!#

5
1

4 S V1V2

V D 2 gn2

@V2/42n~n6D!#21g2n2/4
. ~30!

Equation ~29! has the same structure as the rate equa
derived for sideband cooling in a two-level system. He
however, the ratesA6 describe the sideband excitation in
cluding the effect of quantum interference between
atomic transitions. Equation~29! allows for a steady state
when A2.A1 , which is fulfilled whenD,0 ~blue detun-
ing! and V.2n, or when D.0 ~red detuning! and V

,2n. The value of the trap frequencyn̄5V/2 separates two
regimes: forn,V/2 it is the narrow resonance that dete
mines relevantly the center-of-mass dynamics, whereas
n.V/2 the sideband transitions are at the frequency rang
the broad resonance@22#. We remark that h50 for
k1cosf15k2 cosf2, corresponding to the Doppler-free situ
tion. Furthermore, the Lamb-Dicke parameter entering i
the dynamics is the one determined by the laser wave ve
The Lamb-Dicke parameter connected to spontaneous e
sion events~i.e., recoils because of emission into other sta
of the motion! does not appear, since the diffusion term va
ishes at second order in the Lamb-Dicke expansion.

In the following we assumek1cosf1Þk2 cosf2 and D
,0, V.2n (A2.A1). Some insight into the dynamics ca
be gained from the equation for the average number of p
non ^n(t)&5(n50

` nmn,n(t), which is derived from Eq.~29!
and has the form@23#

d

dt
^n&52W^n&1h2A1 , ~31!

whereW5h2(A22A1) is the cooling rate. The steady sta
value ^n&` reads

^n&`5
4@V2/42n~n2D!#21g2n2

4nuDu~V224n2!
, ~32!

and is minimum whenV254n(n2D). This relation corre-
sponds to setting the ac Stark shiftdv1 of the narrow reso-
nanceuC1& at the frequency of the first red sideband,dv1

5D2n. For this value,^n&`
(min)5(g/4uDu)2: Hence, low

temperatures are achieved for lasers far detuned from ato
resonance. This corresponds to an enhanced asymmet
the excitation spectrum, as that shown in Fig. 2, where
two resonances have very different widths.
2-5
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FIG. 3. Plot of~a! ^n&` and ~b! W as a func-
tion of h0. Dashed line, rate equation result;s,
numerical simulation, 500 trajectories with th
quantum Monte Carlo method. Here,h1 cosf1

5h2 cosf25h0 (h52h0), n52 MHz, g
520 MHz, V15V2517 MHz, D570 MHz,
g1 /g251. In ~a! the result of the simulation in
agreement with the rate equation prediction (^n&
50.005) is indicated by the arrow. In~b! the rate
W is in units ofg/2.
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For dv15D2n the cooling rate scales as

Wmax;h2~V1V2 /V!2/g. ~33!

Thus, fast cooling is achieved for large Rabi frequencies
whenV15V2. The ultimate limit toW is set by the param
eters that ensure the validity of the perturbative treatm
applied here: This is valid forh jV j cosu!g1 ( j 51,2), with
g1;g cos2u being the linewidth of the narrow resonanc
corresponding in the bare atom to the situation where
probe~the sideband! does not saturate the transition touC1&.
At dv15D2n, one hasg1;ng/4AD21V2, which sets
the fastest rate at which efficient laser cooling can occ
Wmax;g1/2.

It is remarkable that these results do not depend on
branching ratiog1 /g2. In fact, in this limit the branching
ratio enters the problem only throughT0. Nevertheless, a too
large branching ratio affects the time scaleT0 at which the
transient steady state is reached.

In Fig. 3 we test the validity of the adiabatic eliminatio
procedure for various values of the Lamb-Dicke parame
by comparing the results predicted by Eq.~31! with a full
numerical simulation. The parameters are reported in
caption. Full agreement between the two results is found
h50.02 (h1 cosf152h2 cosf250.01). It should be men
tioned that in Ref.@6# full agreement has been found forh as
large as 0.2. On the other hand, those results have b
evaluated for the caseV1!V2, and the small value ofV1
ensured the validity of the perturbative expansion.

IV. DISCUSSION

We have shown that, by properly choosing the lasers
rameters, one can achieve almost unity ground-state occ
tion with this cooling method~EIT cooling!. The state
ucD&u0& is equivalent to the ground state in sideband cooli
since it is only off-resonantly~weakly! coupled to other
states, and it satisfies the criteria of an approximate dark s
as discussed in Ref.@15#.

From Eq.~30! one recovers the rates of Eq.~4! in Ref. @6#
in the limit V1!V2. We have shown that the same dynam
are encountered in more general situations, which do
impose a specific relation between the two Rabi frequenc
From the technical point of view, EIT cooling proves aga
to be more advantageous than Raman sideband cooling~see
Refs. @6,9#!. Such an advantage is mainly twofold. On o
hand, in EIT cooling both lasers cool the atom, and a de
into one or the other channel does not affect the efficienc
03340
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te

s
ot
s.

y
f

the process, while in Raman sideband cooling a fin
branching ratio gives rise to heating@24#. Another important
feature of EIT cooling is the disappearance of the car
absorption due to quantum interference. This effect imp
the suppression of diffusive processes: Since in the coa
grained evolution the excited state is effectively empty, p
cesses, where the atom is scattered into other motional s
by spontaneous emission, disappear at second order in
Lamb-Dicke expansion. This implies an improved efficien
with respect to Raman-sideband cooling, where instead s
processes are present, as already discussed in Ref.@6#.

It is instructive to compare the dynamics in EIT coolin
with the dynamics of a trapped ion at the node of a stand
wave, as studied, for example, in Ref.@21#. At the node of a
standing wave the carrier absorption cancels, since here
value of the electric field is zero. Nevertheless, sideband
sorption occurs because of the finite size of the motio
wave packet. In the case of aL configuration driven by two
traveling waves at two-photon resonance, the transient d
state~15! is a superposition of the statesug1& andug2& whose
relative phase is a function of the coordinatex, so that the
finite size of the wave packet allows sideband absorpt
also in this case. Nevertheless, in the LDR the gradient of
phase over the wave packet is small, and the sideband
sitions are excited on a longer time scale. This can be ill
trated when writing the atom-laser interaction~13! at the first
order in the Lamb-Dicke expansion and in the form

Ṽ'\
V

2
@ ue&^CCu1 iue&^CDukx1H.c.#, ~34!

where we have made the simplifying assumptionsV15V2

5V/A2, k1 cosf152k2 cosf25k. Here, we see that the
dark state is coupled to the excited state at first order in
Lamb-Dicke expansion, for effects arising from the fini
size of the motional wave packet.

The atom dynamics during the coarse-grained evolut
can be interpreted in terms of field gradients over the size
the wave packet, which give rise to forces@25#. In this re-
spect, one can say that this method uses the phase gradie
the dark state, due to the spatial gradient of the total field,
achieving cooling. In this context, we remark that the ope
tor V1 in Eq. ~26! is the gradient of potential~13! at x50,
i.e., at the center of trap.

Finally, we apply the results obtained for the harmon
oscillator to the case of a generic potentialU(x). Several
conclusions drawn in this section are applicable to the c
2-6
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described in Eq.~25!, when the mechanical Hamiltonian ha
a discrete spectrum, and the minimum distance between
neighboring energy levels is sufficiently large to allow f
nondegenerate perturbation theory. Laser cooling is h
achieved for the same parameters as for the harmonic o
lator. However, the narrow resonance enhances transition
a finite range of frequencies (, n̄), anddv1 must be prop-
erly tuned, e.g., to the average value of the red sideb
transitions frequencies. The process will thus be efficient
der the condition that, for each motional state, there i
sufficient number of red sidebands inside this range, so
the rate of cooling for a given motional state is larger th
the rate of heating.

An interesting question is how the dynamics are affec
when the external potential depends on the electronic s
and thus when

U~x!5U1~x!ug1&^g1u1Ue~x!ue&^eu1U2~x!ug2&^g2u.

We consider first the caseU1(x)5U2(x), while Ue(x) is,
say, constant, so that the center of mass of the excited ato
not spatially confined and the spectrum ofHmec at the state
ue& is a continuum. Assuming that forU1 , U2 the Lamb-
Dicke regime holds, then at two-photon resonance and
ing the transient dynamics the atom is optically pumped i
the ~transient! dark state~1!. However, duringT0 the center-
of-mass wave packet changes, since each eigenstat
U1(x) (U2(x)) may have a nonzero overlap with seve
eigenstates ofUe(x). This effect constitutes a diffusion
mechanism that lowers the cooling efficiency and, outside
some regimes, can make it even impossible. Formally,
UeÞU1 ,U2, the formalism applied in this section is not a
plicable, since one cannot separate the time scales chara
izing the evolution of the internal and external degrees
freedom.

In the general case of three different confining potent
the presence of a dark state cannot be excluded: this how
depends on the specific form of the functionsU j (x).

V. CONCLUSIONS AND OUTLOOK

We have presented a systematic investigation of
center-of-mass dynamics of a trapped ion, the internal tr
sitions of which are driven by lasers in aL-type configura-
tion and set at two-photon resonance. Assuming that
center-of-mass wave packet is well localized over the la
wavelength~the Lamb-Dicke regime!, we have adiabatically
eliminated the internal degrees of freedom from the equa
of the center-of-mass dynamics, and obtained a set of
equations for the occupation of the motional states. We h
identified the parameter regimes where efficient ground-s
cooling can be achieved. The derivation here presented
vides the theoretical background for the equations in R
@6,8,9# and extends the parameter regime to cases that
not been previously considered. As also discussed in
@6#, we have shown that diffusive processes, encountere
cooling with two-level atoms or with effective two-level sy
tems ~Raman sideband cooling!, are suppressed because
quantum interference between the dipole transitions at z
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order in the Lamb-Dicke expansion. Cooling takes place
cause of excitations due to the spatial gradient of the elec
field over the width of the motional wave packet, which a
due to the finite size of the wave packet itself and occur
first order in the Lamb-Dicke expansion. The motion can
said to be cooled by both lasers, while the branching ra
does not affect, in general, the efficiency of the process.

Finally, we have discussed the possibility to observe th
dynamics for other types of potentials, which may depend
the electronic state.

This work opens interesting prospects in the manipulat
of the quantum center-of-mass motion of atoms by us
quantum interference in driven multilevel transitions, whi
is subject of on-going investigations.
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APPENDIX: CALCULATION OF S„n…

The termS(n) in Eq. ~26! is the Laplace transform at in
of the correlation function G(t), defined as G(t)
5Trint$V1(t)V1(0)rSt%, whereV1(t)5V1exp(L0t). This is
evaluated applying the quantum regression theorem@16,26#.
In the following, we derive the equations that are essen
for this calculation. For convenience, we introduce t
vector-operatorŝ whose components are defined asŝ1

5ug1&^g1u, ŝ25ug2&^g2u, ŝ35ug1&^eu, ŝ45ue&^g1u, ŝ5

5ug2&^eu, ŝ65ue&^g2u, ŝ75ug2&^g1u, ŝ85ug1&^g2u. The
mean value^ŝ j&5Tr$ŝ jr% obeys the equationsd^ŝ j&/dt

5M ^ŝ j&1B, whereM, B are a matrix and a column vecto
respectively, and are defined through the equations

(
j 51

8

M1,j^ŝ j&52g1~^ŝ1&1^ŝ2&!2 i
V1

2
~^ŝ3&2^ŝ4&!,

(
j 51

8

M2,j^ŝ j&52g2~^ŝ1&1^ŝ2&!2 i
V2

2
~^ŝ5&2^ŝ6&!,

(
j 51

8

M3,j^ŝ j&52 i
V1

2
~2^ŝ1&1^ŝ2&!2S g

2
1 iD D ^ŝ3&

2 i
V2

2
^ŝ8&,
2-7
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(
j 51

8

M4,j^ŝ j&5 i
V1

2
~2^ŝ1&1^ŝ2&!2S g

2
2 iD D ^ŝ4&

1 i
V2

2
^ŝ7&,

(
j 51

8

M5,j^ŝ j&52 i
V2

2
~^ŝ1&12^ŝ2&!2S g

2
1 iD D ^ŝ5&

2 i
V1

2
^ŝ7&,

(
j 51

8

M6,j^ŝ j&5 i
V2

2
~^ŝ1&12^ŝ2&!2S g

2
2 iD D ^ŝ6&

1 i
V1

2
^ŝ8&,

(
j 51

8

M7,j^ŝ j&51 i
V2

2
^ŝ4&2 i

V1

2
^ŝ5&,
d

t-

.

n

f t
pir
ica

.

,

J.

d

s

.

03340
(
j 51

8

M8,j^ŝ j&52 i
V2

2
^ŝ3&1 i

V1

2
^ŝ6&,

and

Bj5g1d j ,11g2d j ,21 i
V1

2
~d j ,32d j ,4!1 i

V2

2
~d j ,52d j ,6!,

with j 51, . . . ,8 andd j ,k the Kronecker-delta. According to
this definition, the steady-state vector is nowsSt5M 21B.
Using this notation, we rewrite the operatorV1 in Eq. ~20! as
V15a1(ŝ42ŝ3)1a2(ŝ62ŝ5), with a j5 i\kj cosfjVj/2,
j 51,2. The Laplace transformS(n) is then the sum of the
Laplace transformssj (n) of the individual termsgj (t)
5Tr$ŝ j (t)V1(0)sSt%, such that S(n)5a1@s4(n)2s3(n)#
1a2@s6(n)2s5(n)#, wheresj (n) are given by the equation

sj~n!5(
k

L jkS Tr$skV1~0!rSt%1
1

in
BkTr$V1~0!rSt% D ,

with L matrix, L5@ in2M #21.
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