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Time-dependent electron-impact scattering from He¿ using variable lattice spacings
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Department of Physics, Auburn University, Auburn, Alabama 36849
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Excitation and ionization cross sections are calculated fore-He1 scattering at electron impact energies of
100, 200, and 300 eV, using a time-dependent close-coupling method that employs variable lattice spacings.
The He1 ionization cross section is found to be in good agreement with previous converged close-coupling
calculations and experimental measurements. Excitation cross sections for 1s→ns,np transitions in He1 are
presented for highn values well beyond the reach of available experimental measurements and previous
nonperturbative theories. The relative difference between the nonperturbative close-coupling and the perturba-
tive distorted-wave results is found to grow larger as the principal quantum numbern is increased. This
difference has important implications in the collisional-radiative modeling of many astrophysical and labora-
tory plasmas that use perturbation theory.
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I. INTRODUCTION

The electron-impact excitation and ionization of low
charged atomic ions at intermediate incident energies
mains a formidable theoretical and computational challen
For all atomic targets, the description of the excitation
bound states near the ionization threshold and the descrip
of the ionization just above threshold must take into acco
strong correlation effects. In the last few years several n
perturbative theoretical methods have been developed
treat the strong correlation effects found, for example, in
ionization of the neutral hydrogen atom@1–5# and in the
excitation of the members of the Li isoelectronic sequenc
neutral Li @6#, Be1 @7#, B21 @8#, C31, and O51 @9#.

In this paper we calculate excitation and ionization cro
sections, using a time-dependent close-coupling~TDCC!
method@3# that employs variable lattice spacings. The ma
limitation for the TDCC and other nonperturbative metho
is the size of the numerical region in which all the Coulom
interactions are treated exactly. For the ionization just ab
threshold, and for the excitation of bound states with h
principal quantum numbern, the numerical box size neede
becomes quite large. Variable lattice spacings allow the
merical box size to increase without a concurrent increas
the overall computational run time. A time honored meth
in atomic structure calculations is to either double the s
size of the radial distancer at regular intervals@10#, or to
transform to a new variabler5 f (r ). Two popular choices
have beenr5Ar andr5 ln(r). On the other hand, for atomi
collision calculations it is also important to limit the large
step size in the radial distancer so that a suitable represen
tation of high momentum continuum states can be retain
Thus, in this paper we do not transform to a new variabler,
but employ a variable lattice spacing with both a minimu
and a maximum radial step size.

We test our formulation of the TDCC method with var
able lattice spacings by examining electron scattering
He1. The total ionization cross section for He1 has been
experimentally measured by Peartet al. @11# and Defrance
et al. @12# and has been calculated by using the converg
close-coupling@13# andR-matrix B-spline@14# methods. Ex-
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citation cross sections for the transitions 1s→ns,np (n
52,3,4) have also been calculated by using the converg
close-coupling method@15#. The remainder of the paper i
organized as follows. In Sec. II we use the variational pr
ciple to derive a discretized Hamiltonian operator for a co
tinually changing nonuniform mesh. In Sec. III we exami
the dangers of a doubling mesh when applied to elect
scattering from a model He1 ion. In Sec. IV we apply the
TDCC method with a continuously changing nonunifor
mesh to calculate excitation and ionization cross sections
e-He1 scattering. Finally, in Sec. V, we give a brief summa
of our findings on the strength of correlation effects ine-He1

scattering. Unless otherwise noted, atomic units are u
throughout this paper.

II. VARIATIONAL PRINCIPLE

A numerical representation of the time-dependent rad
Schrödinger equation for a single electron in the field of
nucleus is derived from the variational form@16#

d

dP* ~r ,t !S i E
0

`

P* ~r ,t !
]P~r ,t !

]t
dr2

1

2E0

`U]P~r ,t !

]r U2

dr

2E
0

`

P* ~r ,t !V~r !P~r ,t !dr D 50, ~1!

whereP(r ,t) is the reduced radial wave function andV(r )
5 l ( l 11)/2r 22Z/r . If we represent the derivatives and in
tegrals with low-order finite differences, discretizing spa
on a uniform mesh yields

i
]Pj~ t !

]t
5~HP! j~ t ! , ~2!

where the Hamiltonian operator is given by

~HP! j~ t !52
1

2 S Pj 11~ t !1Pj 21~ t !22Pj~ t !

h2 D 1Vj Pj~ t !,

~3!
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FIG. 1. Probability densityuPss(r 1 ,r 2 ,t)u2 at E5100 eV, using a fixed mesh~top row! and a doubling mesh~bottom row! for various
times during the early phase of scattering~radial distances are in atomic units, 1 a.u.55.2931029 cm; time is in atomic units, 1 a.u
52.419310217s).
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andh is the uniform mesh interval. On the other hand, d
cretizing space on a continually changing nonuniform m
yields a Hamiltonian operator given by

~HP! j~ t !52S Pj 11~ t !

hj~hj1h̄ j !
1

Pj 21~ t !

h̄ j~hj1h̄ j !
2

Pj~ t !

hj h̄j
D

1Vj Pj~ t !, ~4!

wherehj5r j 112r j and h̄ j5r j2r j 21. The discretization of
Eq. ~2! in time, for either a uniform or a nonuniform spati
mesh, using the staggered leap frog method@3# yields

Pj~ t1Dt !522iDt~HP! j~ t !1Pj~ t2Dt !, ~5!

whereDt is the time interval. Norm conservation is exact
we adjustDt to be smaller than the smallest (hj )

2 on the
spatial mesh. A power series expansion of the time evolu
operator,e2 iHt , aroundt50 provides a way of initializing
the two-step algorithm of Eq.~5!.

For many purposes it is quite useful to generate a co
plete set of bound and continuum orbitals by direct diagon
ization of the one-electron radial Hamiltonian matrix. For
uniform mesh theH matrix is symmetric, while for a non
uniform mesh theH matrix is nonsymmetric. However, th
transformed Hamiltonian matrixT21HT is symmetric if the
elements of theT matrix are given by@17#

Tjk5A 2

hj1h̄ j

d jk . ~6!

The inverse transformation matrixT21 is used on the eigen
vectors ofT21HT to recover the eigenvectors of the origin
H matrix.
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III. WAVE PACKET STUDIES ON A MODEL ATOM

A numerical representation of the time-dependent Sch¨-
dinger equation for two electrons moving in the field of
nucleus may be derived from a simple extension of the va
tional form found in Eq.~1!. To explore various choices for
continually changing nonuniform mesh, we first exami
three-body Coulomb scattering using ans-wave model de-
veloped by Temkin@18# and Poet@19#. The radial Hamil-
tonian is given by

H52
1

2

]2

]r 1
22

1

2

]2

]r 2
22

Z

r 1
2

Z

r 2
1

1

r .
, ~7!

where r .5max(r 1 ,r 2). The time-dependent radial wav
function satisfies the initial condition

Pss~r 1 ,r 2 ,t50!5P1s~r 1!gks~r 2!, ~8!

where P1s(r ) is the ground-state radial orbital of He1 and
the incoming electron wave packetgks(r ) is a Gaussian of
the form

gks~r !5
1

~w2p!1/4
e2(r 2r 0)2/2w2

e2 ikr . ~9!

In Eq. ~9! r 0 is the initial location of the wave packet cente
w is the wave packet width, andk is the linear momentum o
the incident electron. Spatial discretization of the two kine
energy operators is the same as found in Eq.~4!, while the
potential energy operators are represented by diagonal m
ces.

We first examine a mesh whose lattice spacing is doub
at specified intervals. To test the general accuracy of
doubling mesh for our time-dependent calculations, we
3-2
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amine electron scattering on a model He1 atom using the
doubling mesh and then compare it to the scattering sys
calculated on a fixed mesh. The calculations are perform
on a two-dimensional grid where each radial direction sp
48 a.u. An electron wave packet, centered initially atr 0
524 a.u., travels inwards with an energy of 100 eV alo
the r 2 axis while interacting with a bound 1s electron de-
fined along ther 1 axis. The propagation of the probabilit
density uPss(r 1 ,r 2 ,t)u2 is shown in Fig. 1 for early times
during the scattering. In the top row of Fig. 1 are probabil
density plots using a fixed mesh, while the bottom row
with the doubling mesh. The lattice spacing for both mes
starts at 0.10 a.u., but the spacing for the doubling mes
increased to 0.20 a.u. atr 15r 2524 a.u. Att53.6 a.u., some
of the wave function for the doubling mesh has been
flected at the boundary where the lattice spacing is doub
The reflected piece can be seen moving towards larger 2 at
t55.4 a.u., while the rest of the wave function propaga
inward as in the fixed mesh example. This unphysical s
tering leads to inaccuracies in the long-time scatter
wave function and the resultant cross sections.

In order to avoid reflection, a continuously changing me
is used for which the lattice spacing is gradually increase
each point. Reflections are avoided due to the small va
tions in the lattice spacing, yet the ability to cover lar
radial distances is retained since the lattice spacing is c
tinually being increased. The example used above for
doubling mesh was repeated with this continuously chang
mesh where the lattice spacing starts at 0.10 a.u., but is
creased by 0.001 a.u. at each subsequent point. This m
requires only 226 points for each radial direction, compa
to 480 needed with a fixed mesh, and yields results that a
very well with the fixed mesh results. A plot of the probab
ity density of the variable mesh results in the form of Fig
is indistinguishable from the fixed mesh plots.

IV. TIME-DEPENDENT CLOSE-COUPLING FOR He ¿

We now use the continuously changing mesh to perfo
full time-dependent close-coupling calculations for electr
scattering from He1. The total Hamiltonian is given by

H52
1

2
¹1

22
1

2
¹2

22
Z

r 1
2

Z

r 2
1

1

ur 1
W2r 2

W u
. ~10!

The time-dependent wave function for a particularLS sym-
metry has the form

cLS~r 1
W ,r 2

W ,t !5 (
,1,2

P,1,2

LS ~r 1 ,r 2 ,t !

r 1r 2
W,1,2

L ~r 1̂,r 2̂!, ~11!

where

W,1,2

L ~r 1̂,r 2̂!5 (
m1m2

Cm1m20
,1,2L Y,1m1

~r 1̂!Y,2m2
~r 2̂!. ~12!
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The time-dependent radial wave functions satisfy the ini
condition

P,1,2

LS ~r 1 ,r 2 ,t50!

5A 1
2 @P1s~r 1!d,1,0gk,2

~r 2!

1~21!Sgk,1
~r 1!P1s~r 2!d,2,0#, ~13!

and the incoming electron wave packetgk,(r ) is a Gaussian
of the form

gk,~r !5
1

~w2p!1/4
e2(r 2r 0)2/2w2

e2 ikreip,/2. ~14!

Spatial discretization of the radial parts of the two kine
energy operators is the same as found in Eq.~4!, while the
angular and electrostatic potential energy operators are
resented by diagonal matrices.

To gauge the strength of the high-order perturbative
fects in the TDCC lattice calculations, we also carried o
first-order perturbative distorted-wave calculations for el
tron scattering from He1. The LS term specific angular al-
gebra for both excitation and ionization is obtained fro
a modified version of theWEIGHTS program of Scott and
Hibbert @20#. The distorted-wave potentials are th
configuration-average Hartree potentials for the direct in
action and a local density approximation for the exchan
interaction. TheLS distorted-wave programs have been us
recently to calculate excitation and ionization cross secti
for neutral Li @6,21#. Besides providing first-order perturba
tive excitation and ionization cross sections, the distort
wave method is also used to ‘‘top-up’’ the nonperturbati
TDCC calculations by providing high partial wave contrib
tions up toL550.

Applying the TDCC method toe-He1 scattering, we
choose a 4803480 point grid. The lattice spacing, initially
0.10 a.u., is increased by 0.001 at each point up to a m
mum value of 0.40 a.u. and held constant afterward. W
this mesh each radial direction extends to aboutR
5150 a.u. and supports spectroscopic He1 orbitals up ton
510. The results are then compared to a fixed mesh ca
lation, also on a 4803480 point grid, with a constant lattice
spacing of 0.10 a.u. so thatR extends to 48 a.u. This mes
can only support spectroscopic He1 orbitals up ton54.

The TDCC calculations are performed at electron imp
energies of 100, 200, and 300 eV forL50 to L56. EachLS
symmetry includes enoughl 1 ,l 2 pairs to achieve conver
gence; four pairs forL50 up to 23 pairs forL56. The
initial wave function, Eq.~13!, is propagated in time, using
Eq. ~5! for a sufficient time so that wave function move
inwards and then outwards from the origin. The probabil
of excitation as a function of time for 1s→n, is calculated
by using@3#
3-3
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,8
H 0 0

,,8
n8,8 0 0

,,8 8 8 J
~15!

whered(,1,2,3) is a triangle identity andPn,(r ) are the bound orbitals obtained by diagonalization of the Hamilton
represented on the 480-point mesh as outlined in Sec. II. The wave function is propagated for timet5T, until all the excitation
probabilites are converged to a constant value. Once the final excitation probability is found, the excitation cross
obtained by using

s~1s→n, !5
p

4k2(
L

(
S

~2L11!~2S11!`n,
LS~ t5T!. ~16!

The final ionization probability is given by

` ion
LS 512(

n,
`n,

LS~ t5T!2(
n,

(
n8,8

F E
0

`

dr2E
0

`

dr1P,,8
LS

~r 1 ,r 2 ,t5T!Pn,~r 1!Pn8,8~r 2!G2

~17!
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s ion5
p

4k2 (
L

(
S

~2L11!~2S11!` ion
LS . ~18!

The resulting ionization and excitation cross sections
topped up forL.6 with perturbative distorted-wave calcu
lations.

Total electron-impact ionization cross sections for He1,
using the variable mesh TDCC method, are compared w
the experimental measurements and distorted-wave and
convergent close-coupling theory in Fig. 2. The varia
mesh TDCC results are represented by filled squares,
convergent close-coupling results@13# are displayed as a dot
dash line, the dotted line is our distorted-wave results,
the circles represent experimental measurements obtaine
Peartet al. @11#. The experimental points at 200 and 300 e
have been shifted slightly to avoid overlapping with t

FIG. 2. Total ionization cross section fore-He1 scattering.
Filled squares, time-dependent close-coupling theory with varia
mesh; filled circles, experiment@11#; dot-dash curve, convergen
close-coupling theory@13#; dotted curve, distorted-wave theor
(1 Mb510218 cm2).
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time-dependent points. While the experiment, the tim
dependent close-coupling theory, and the convergent cl
coupling theory all agree to each other within 6%, t
distorted-wave curve lies about 10% higher at the peak t
the rest of the results. Time-dependent results on a fi
mesh are not shown in the figure since they agree quite
with the variable mesh results. Measurements taken by
franceet al. @12# are in close agreement with Peartet al. @13#
and theR-matrix B-spline calculations performed by van d
Hart @14# agree well with the other nonperturbative theor
ical methods.

The variable mesh allows us to calculate excitation cr
sections to highern states than with the fixed mesh. Excit
tion cross sections for 1s→ns,np for n52 to n59 are
shown in Figs. 3 and 4. The filled squares represent varia
mesh TDCC results, the dot-dash line again represents
vergent close-coupling, and the dashed line is the distor
wave results. If plotted, the fixed mesh TDCC excitati

le FIG. 3. Excitation cross sections for 1s→ns for n52 to 9
(1 Mb510218 cm2). Filled squares, time-dependent close-coupli
theory with variable mesh; dot-dash curve, convergent clo
coupling theory@15#; dotted curve, distorted-wave theory.
3-4
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cross sections forn52 to n54 would overlap the variable
mesh points. There is also excellent agreement between
time-dependent and convergent close-coupling transit
@15# up to 1s→4s,4p after which no convergent close
coupling data is available. TheR-matrix pseudostate calcula
tions @22# with an incident electron energy of 100 eV ha
been performed for 1s→2s and up to 1s→4p and agree
well with our variable mesh TDCC calculations. The variab
mesh time-dependent data is consistently lower than
distorted-wave results and the relative difference tends
increase withn. This trend is shown in Fig. 5, where th
percent difference between the distorted-wave and the
dependent cross sections at an incident energy of 100 e
plotted versusn for 1s→ns,np.

FIG. 4. Excitation cross sections for 1s→np for n52 to 9
(1 Mb510218 cm2). Filled squares, time-dependent close-coupl
theory with variable mesh; dot-dash curve, convergent clo
coupling theory@15#; dotted curve, distorted-wave theory.

FIG. 5. Percent relative difference between time-depend
close-coupling and distorted-wave excitation cross sections vs p
cipal quantum numbern of final state for an incident electron en
ergy of 100 eV. Solid curve, 1s→ns; dashed curve, 1s→np.
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The small difference between the TDCC cross sections
the variable and fixed meshes depends on many fac
When constructing the fixed mesh grid, the lattice spac
and box size determine the accuracy of the calculation.
curacy using a variable mesh is more complicated. Care m
be taken when choosing the mesh spacing increment and
maximum mesh spacing as well as the initial mesh spac
and the box size. In general, as the mesh spacing increm
for the variable mesh increases, the resulting cross sect
differ more from the fixed mesh cross sections. This diff
ence is partially offset, however, at large total angular m
mentum since the larger box size obtained with the varia
mesh represents the high partial waves more accurately.
difference between the fixed mesh and variable mesh ex
tion cross sections forn52 to n54 resulting from any of
the above factors is typically within 5% for the variab
mesh parameters used in these calculations. The excita
cross sections for largen presented in this paper are probab
less accurate than for lown, but we believe they are stil
accurate within 10%. We note that the differences betw
the variable mesh and fixed mesh calculations for cross
tions summed over the angular momentum in ann manifold,
and also for the total ionization cross section, are gener
within 5%.

V. SUMMARY

The formulation of the time-dependent close-coupli
method is extended to include variable lattice spacings.
size of the numerical region in which the Coulomb intera
tions between two electrons and a positive atomic core
treated exactly is substantially increased without a conc
rent increase in the overall computational run time. The
fore, the strong correlation effects found in the electron io
ization of atoms near threshold, and in the electron excita
of atoms to highn bound states, are more easily investigat
We find that the TDCC variable mesh results calculated
electron impact energies of 100, 200, and 300 eV ag
within 6% of the experimental measurements and the c
verged close-coupling calculations for the electron-imp
ionization of He1. Of equal importance, the TDCC variab
mesh method allows us to calculate 1s→nl excitations of
He1 to n values well beyond the reach of the experiment a
the previous nonperturbative theory.

Populations of various species in a plasma can be ca
lated by using collisional-radiative modeling@23#, which re-
quires reaction rates for many collisional and radiative p
cesses including electron-impact excitation from the grou
state. Recent collisional-radiative modeling efforts@24# have
included nonperturbative calculations for collisional exci
tion processes from ground up ton55, and scale those ex
citation rates asn3 for larger n. The TDCC method with
variable lattice spacings allows us to check other nonper
bative calculations up ton55. For those systems wher
there are substantial differences between the nonperturb
and perturbative calculations for excitations up ton55, as in
He1, we find that those differences may even grow larger
higher n. Thus, in those systems, the use of perturbat

-

nt
n-
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methods for excitation from the ground to any excited st
may be quite inaccurate.
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