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Time-dependent electron-impact scattering from H& using variable lattice spacings
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Excitation and ionization cross sections are calculatecefbie’ scattering at electron impact energies of
100, 200, and 300 eV, using a time-dependent close-coupling method that employs variable lattice spacings.
The He' ionization cross section is found to be in good agreement with previous converged close-coupling
calculations and experimental measurements. Excitation cross sections-farsinp transitions in Hé are
presented for higm values well beyond the reach of available experimental measurements and previous
nonperturbative theories. The relative difference between the nonperturbative close-coupling and the perturba-
tive distorted-wave results is found to grow larger as the principal quantum numiseincreased. This
difference has important implications in the collisional-radiative modeling of many astrophysical and labora-
tory plasmas that use perturbation theory.
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[. INTRODUCTION citation cross sections for the transitions-tns,np (n
=2,3,4) have also been calculated by using the convergent
The electron-impact excitation and ionization of low- close-coupling metho@l15]. The remainder of the paper is
charged atomic ions at intermediate incident energies resrganized as follows. In Sec. Il we use the variational prin-
mains a formidable theoretical and computational challengeciple to derive a discretized Hamiltonian operator for a con-
For all atomic targets, the description of the excitation oftinually changing nonuniform mesh. In Sec. Ill we examine
bound states near the ionization threshold and the descriptidhe dangers of a doubling mesh when applied to electron
of the ionization just above threshold must take into accounscattering from a model Heion. In Sec. IV we apply the
strong correlation effects. In the last few years several nonTDCC method with a continuously changing nonuniform
perturbative theoretical methods have been developed tmesh to calculate excitation and ionization cross sections for
treat the strong correlation effects found, for example, in thee-He" scattering. Finally, in Sec. V, we give a brief summary
ionization of the neutral hydrogen atofi—5] and in the of our findings on the strength of correlation effecteifie”
excitation of the members of the Li isoelectronic sequence—scattering. Unless otherwise noted, atomic units are used

neutral Li[6], Be" [7], B2" [8], C3*, and O [9]. throughout this paper.
In this paper we calculate excitation and ionization cross
sections, USing a time-dependent ClOSG'COUpl(m_@CC) II. VARIATIONAL PRINCIPLE

method[ 3] that employs variable lattice spacings. The main
limitation for the TDCC and other nonperturbative methods A numerical representation of the time-dependent radial
is the size of the numerical region in which all the CoulombSchralinger equation for a single electron in the field of a
interactions are treated exactly. For the ionization just aboveéucleus is derived from the variational fofrh6]
threshold, and for the excitation of bound states with high

principal quantum numbaer, the numerical box size needed o | mP*(r H dP(r,t) dr— 1(=[oP(r,D) 2dr
becomes quite large. Variable lattice spacings allow the nu- SP*(r,t)| " Jo ' at 2J)o ar

merical box size to increase without a concurrent increase in

the overall computational run time. A time honored method .. _

in atomic structure calculations is to either double the step B fo P*(r.yV(rP(r,tidr =0, @

size of the radial distance at regular intervalg10], or to

transform to a new variablp=f(r). Two popular choices \yhereP(r,t) is the reduced radial wave function arqr)
have beem= \r andp=In(r). On the other hand, for atomic (| +1)/2r2—Z/r. If we represent the derivatives and in-

collision calculations it is also important to limit the largest tegrals with low-order finite differences, discretizing space
step size in the radial distanceso that a suitable represen- on a uniform mesh yields

tation of high momentum continuum states can be retained.
Thus, in this paper we do not transform to a new varighle IP;(1)
but employ a variable lattice spacing with both a minimum I——=(HP);(1), 2
and a maximum radial step size.

We test our formulation of thg _TDCC method with _vari— where the Hamiltonian operator is given by
able lattice spacings by examining electron scattering on
He'. The total ionization cross section for Hehas been

1/ Pjta(D+Pj1(H—2Pi(1)

experimentally measured by Peattal. [11] and Defrance (HP);(t)=— +V,P;(1),
et al.[12] and has been calculated by using the convergent 2 h2
close-couplind 13] andR-matrix B-spline[14] methods. Ex- 3
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FIG. 1. Probability densityP.(r,r,,t)|> atE=100 eV, using a fixed mesfiop row) and a doubling mestbottom row for various
times during the early phase of scatterifrgdial distances are in atomic units, 1 &8.29x10 ° cm; time is in atomic units, 1 a.u.
=2.419<10 %s).

andh is the uniform mesh interval. On the other hand, dis- Ill. WAVE PACKET STUDIES ON A MODEL ATOM
cretizing space on a continually changing nonuniform mesh

yields a Hamiltonian operator given by A numerical representation of the time-dependent Schro

dinger equation for two electrons moving in the field of a
nucleus may be derived from a simple extension of the varia-

Pjya(t) N Pi-1()  Py(D)

(HP);(H)=— A L A tional form found in Eq(1). To explore various choices for a
hj(hj+h;)  hj(hj+h;)  hjh; continually changing nonuniform mesh, we first examine
three-body Coulomb scattering using awave model de-
+VjPy(1), 4) veloped by Temkin18] and Poet{19]. The radial Hamil-

_ . o tonian is given by

whereh;=r;,,—r; andh;=r;—r;_;. The discretization of
Eqg. (2) in time, for either a uniform or a nonuniform spatial 19 19 z Z 1

: i He—c ——2—5— —— —+ — 7

mesh, using the staggered leap frog metf®)dyields 29r2 2095 ry ry r’ )

Pj(t+At)=—2iAt(HP);(t) + Pj(t—At), ®)  where r-=max(,r,). The time-dependent radial wave

whereAt is the time interval. Norm conservation is exact if function satisfies the initial condition

we adjustAt to be smaller than the smallest;§* on the PedT1,l2,t=0)=P14(r1)ges(r2), (8)

spatial mesh. A power series expansion of the time evolution

operator,e ™", aroundt=0 provides a way of initializing where P(r) is the ground-state radial orbital of Heand

the two-step algorithm of Ed(5). the incoming electron wave packgis(r) is a Gaussian of
For many purposes it is quite useful to generate a comthe form

plete set of bound and continuum orbitals by direct diagonal-

ization of the one-electron radial Hamiltonian matrix. For a

uniform mesh theH matrix is symmetric, while for a non- Oks(F) =

uniform mesh thed matrix is nonsymmetric. However, the

transformed Hamiltonian matriX *HT is symmetric if the

elements of thé matrix are given by17]

e—(r—ro)z/zwze—ikr_ (9)

(W2’7T) 1/4

In Eq. (9) rq is the initial location of the wave packet center,
w is the wave packet width, arids the linear momentum of

the incident electron. Spatial discretization of the two kinetic
2 - . .
= / — 5. (6) energy operators is the same as found in @&g. while the
! hj+h; . potential energy operators are represented by diagonal matri-
ces.
The inverse transformation matrix * is used on the eigen- We first examine a mesh whose lattice spacing is doubled
vectors of T HT to recover the eigenvectors of the original at specified intervals. To test the general accuracy of this
H matrix. doubling mesh for our time-dependent calculations, we ex-

032713-2



TIME-DEPENDENT ELECTRON-IMPACT SCATTERING . .. PHYSICAL REVIEW A7, 032713 (2003

amine electron scattering on a model Hatom using the The time-dependent radial wave functions satisfy the initial
doubling mesh and then compare it to the scattering systeondition

calculated on a fixed mesh. The calculations are performed

on a two-dimensional grid where each radial direction spans

48 a.u. An electron wave packet, centered initiallyrgt P?fez(fl,fz,tzo)

=24 a.u., travels inwards with an energy of 100 eV along

the r, axis while interacting with a boundslelectron de- = \/E[Pls(rl)a?l,ogkfz(rZ)

fined along ther; axis. The propagation of the probability

density |Po{(r.r,,t)|? is shown in Fig. 1 for early times +(=1)%ke,(r)P1s(r2) 8¢,0l, (13

during the scattering. In the top row of Fig. 1 are probability
density plots using a fixed mesh, while the bottom row is
with the doubling mesh. The lattice spacing for both meshegnd the incoming electron wave pacmg(r) is a Gaussian
starts at 0.10 a.u., but the spacing for the doubling mesh igf the form
increased to 0.20 a.u. gf=r,=24 a.u. Att=3.6 a.u., some
of the wave function for the doubling mesh has been re-
flected at the boundary where the lattice spacing is doubled.
The reflected piece can be seen moving towards laygpet
t=5.4 a.u., while the rest of the wave function propagates
inward as in the fixed mesh example. This unphysical scat-
tering leads to inaccuracies in the long-time scattering
wave function and the resultant cross sections. Spatial discretization of the radial parts of the two kinetic
In order to avoid reflection, a continuously changing mestenergy operators is the same as found in @g. while the
is used for which the lattice spacing is gradually increased a&ngular and electrostatic potential energy operators are rep-
each point. Reflections are avoided due to the small varialesented by diagonal matrices.
tions in the lattice spacing, yet the ability to cover large To gauge the strength of the high-order perturbative ef-
radial distances is retained since the lattice spacing is corfects in the TDCC lattice calculations, we also carried out
tinually being increased. The example used above for théirst-order perturbative distorted-wave calculations for elec-
doubling mesh was repeated with this continuously changingfon scattering from He. The LS term specific angular al-
mesh where the lattice spacing starts at 0.10 a.u., but is irgebra for both excitation and ionization is obtained from
creased by 0.001 a.u. at each subsequent point. This meghmodified version of thevElGHTS program of Scott and
requires only 226 points for each radial direction, comparedibbert [20]. The distorted-wave potentials are the
to 480 needed with a fixed mesh, and yields results that agreg@nfiguration-average Hartree potentials for the direct inter-
very well with the fixed mesh results. A plot of the probabil- action and a local density approximation for the exchange
ity density of the variable mesh results in the form of Fig. 1interaction. TheL S distorted-wave programs have been used
is indistinguishable from the fixed mesh plots. recently to calculate excitation and ionization cross sections
for neutral Li[6,21]. Besides providing first-order perturba-
tive excitation and ionization cross sections, the distorted-
wave method is also used to “top-up” the nonperturbative
We now use the continuously changing mesh to performfDCC calculations by providing high partial wave contribu-
full time-dependent close-coupling calculations for electrontions up toL =50.
scattering from H&. The total Hamiltonian is given by Applying the TDCC method tce-He' scattering, we
choose a 488480 point grid. The lattice spacing, initially
0.10 a.u., is increased by 0.001 at each point up to a maxi-
Z Z 1 mum value of 0.40 a.u. and held constant afterward. With

gk((f):( ~ )l/4e—(r—r0)2/2wze—ikrei7r€/2_ (14)
W

IV. TIME-DEPENDENT CLOSE-COUPLING FOR He *

_ 2 2
H=—5Vi~ Evz_rl LT =t (19 this mesh each radial direction extends to abdRt
=150 a.u. and supports spectroscopicHebitals up ton
The time-dependent wave function for a particll® sym- = _10. The results are then (_:omp_ared_to a fixed mesh palcu—
metry has the form lation, also on a 48R 480 point grid, with a constant lattice

spacing of 0.10 a.u. so th& extends to 48 a.u. This mesh
can only support spectroscopic Herbitals up ton=4.
p'ESf (ry,r,,t) The TDCC calculations are performed at electron impact
L2 W, (ry.rp), (11)  energies of 100, 200, and 300 eV for=0 toL=6. EachLS
v symmetry includes enough,l, pairs to achieve conver-
gence; four pairs folL=0 up to 23 pairs forL,=6. The
where initial wave function, Eq(13), is propagated in time, using
Eqg. (5) for a sufficient time so that wave function moves
inwards and then outwards from the origin. The probability
Wlf-lé’z(rl’r;):m% Cr(;lfnf:OYflml(Fl)Y(zmz(Fz)' (12) ggiéciggt[ig]n as a function of time forsl-n¢ is calculated
11112

PrS(rra =2

€15 rirs
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2

%) o) 2 o %
phAt)=2> 8(€€'L) fodrzm drlptiul,rz,t)Png(ro} - UOdrzjodrlP;?&rl,rz.t)PnArl)Pn,er(rz)
o' n'¢’

(15

where §(€,€,€3) is a triangle identity and®,,(r) are the bound orbitals obtained by diagonalization of the Hamiltonian
represented on the 480-point mesh as outlined in Sec. Il. The wave function is propagated fer Timantil all the excitation
probabilites are converged to a constant value. Once the final excitation probability is found, the excitation cross can be
obtained by using

0-(15_>ne)—4k22 E (2L+1)(2S+1)p=3(t=T). (16)

The final ionization probability is given by

2

ple=1-3 phft=T) IR AR LR &y

nt e’

and the ionization cross section is time-dependent points. While the experiment, the time-
dependent close-coupling theory, and the convergent close-

T Ls coupling theory all agree to each other within 6%, the

Tion= )2 ; ES 2L+ 1)(2S+D)oion- (18 distorted-wave curve lies about 10% higher at the peak than

the rest of the results. Time-dependent results on a fixed

The resulting ionization and excitation cross sections arénesh are not shown in the figure since they agree quite well
topped up forL>6 with perturbative distorted-wave calcu- with the variable mesh results. Measurements taken by De-

lations. franceet al.[12] are in close agreement with Peattal.[13]

Total electron-impact ionization cross sections for'He and theR-matrix B-spline calculations performed by van der
using the variable mesh TDCC method, are compared withiart [14] agree well with the other nonperturbative theoret-
the experimental measurements and distorted-wave and tfi@al methods.
convergent close-coupling theory in Fig. 2. The variable The variable mesh allows us to calculate excitation cross
mesh TDCC results are represented by filled squares, trgections to highen states than with the fixed mesh. Excita-
convergent close-coupling results3] are displayed as a dot- tion cross sections for sk-=ns,np for n=2 to n=9 are
dash line, the dotted line is our distorted-wave results, anghown in Figs. 3 and 4. The filled squares represent variable
the circles represent experimental measurements obtained byesh TDCC results, the dot-dash line again represents con-
Peartet al.[11]. The experimental points at 200 and 300 eV vergent close-coupling, and the dashed line is the distorted-
have been shifted slightly to avoid overlapping with thewave results. If plotted, the fixed mesh TDCC excitation
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FIG. 2. Total ionization cross section fa-He" scattering.

Filled squares, time-dependent close-coupling theory with variable FIG. 3. Excitation cross sections forst:ns for n=2 to 9
mesh; filled circles, experimeritl1]; dot-dash curve, convergent (1 Mb=10"18cn?). Filled squares, time-dependent close-coupling
close-coupling theory{13]; dotted curve, distorted-wave theory theory with variable mesh; dot-dash curve, convergent close-
(1 Mb=10"8 cn?¥). coupling theory[15]; dotted curve, distorted-wave theory.
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10.0 T 0.18 — The small difference between the TDCC cross sections for
50 Fmmm==atti 20 | g0 [T D 2% the variable and fixed meshes depends on many factors.
00 L 0.00 When conetructing the fixed mesh grid, the lattice epacing
20 012« v and box size determine the accuracy of the calculation. Ac-
- (b) 15— 3p . H1s>7p curacy using a variable mesh is more complicated. Care must
LO pa et n ] 006 | g T be taken when choosing the mesh spacing increment and the
= 00 . 0.00 e maximum mesh spacing as well as the initial mesh spacing
s 08 T 0.08 ' — and the box size. In general, as the mesh spacing increment
© . (©) 1s —4p — (2)1s —> 8p . . . .
04 Crmmmeme ] 008 T for the variable mesh increases, the resulting cross sections
00 L 0.00 differ more from the fixed mesh cross sections. This differ-
04 _ 0.06 N ence is partially offset, however, at large total angular mo-
(d) 15> 5p _ () 1s = 9p mentum since the larger box size obtained with the variable
02 Py o] 003 T mesh represents the high partial waves more accurately. The
0 s T s s s Y0 o5 105 205 205 ;2 c_iifference between the fixed mesh and veriable mesh excita-
tion cross sections fon=2 to n=4 resulting from any of
Energy (eV) the above factors is typically within 5% for the variable

FIG. 4. Excitati tions forsLnp for N=2 to 9 mesh parameters used in these calculations. The excitation
- 4. =xcration Cross sections fors=np for n=2 1o cross sections for largepresented in this paper are probably

—10-18 ; e . ; ) .
(1 Mb=10"* cn¥). Filled squares, time-dependent close CoulOl'ngless accurate than for low, but we believe they are still

theory with variable mesh; dot-dash curve, convergent close; .. oo within 10%. We note that the differences between
coupling theory[15]; dotted curve, distorted-wave theory.

the variable mesh and fixed mesh calculations for cross sec-
) ) tions summed over the angular momentum imananifold,
cross sections fon=2 to n=4 would overlap the variable anq also for the total ionization cross section, are generally
mesh points. There is also excellent agreement between th&inin 5%.

time-dependent and convergent close-coupling transitions

[15] up to 1s—4s,4p after which no convergent close-

coupling data is available. TH&matrix pseudostate calcula- V. SUMMARY
tions[22] with an incident electron energy of 100 eV have '
been performed for $—2s and up to 5—4p and agree The formulation of the time-dependent close-coupling

well with our variable mesh TDCC calculations. The variablemethod is extended to include variable lattice spacings. The
mesh time-dependent data is consistently lower than thsize of the numerical region in which the Coulomb interac-
distorted-wave results and the relative difference tends ttions between two electrons and a positive atomic core are
increase withn. This trend is shown in Fig. 5, where the treated exactly is substantially increased without a concur-
percent difference between the distorted-wave and the timeent increase in the overall computational run time. There-
dependent cross sections at an incident energy of 100 eV fsre, the strong correlation effects found in the electron ion-
plotted versus for 1s—ns,np. ization of atoms near threshold, and in the electron excitation
of atoms to highh bound states, are more easily investigated.
We find that the TDCC variable mesh results calculated for
electron impact energies of 100, 200, and 300 eV agree
within 6% of the experimental measurements and the con-
verged close-coupling calculations for the electron-impact
ionization of He . Of equal importance, the TDCC variable
mesh method allows us to calculats-2nl excitations of
i He" to nvalues well beyond the reach of the experiment and
the previous nonperturbative theory.

Populations of various species in a plasma can be calcu-
i lated by using collisional-radiative modelif@3], which re-
quires reaction rates for many collisional and radiative pro-
cesses including electron-impact excitation from the ground
state. Recent collisional-radiative modeling effd24]| have
included nonperturbative calculations for collisional excita-
tion processes from ground up =5, and scale those ex-
citation rates as® for larger n. The TDCC method with

12 3 4 5 6 7 & 9 10 variable lattice spacings allows us to check other nonpertur-
n bative calculations up tom=5. For those systems where

FIG. 5. Percent relative difference between time-dependenth€re are substantial differences between the nonperturbative
close-coupling and distorted-wave excitation cross sections vs prirand perturbative calculations for excitations umte5, as in
cipal quantum numben of final state for an incident electron en- He™, we find that those differences may even grow larger for
ergy of 100 eV. Solid curve, $—ns; dashed curve, &—np. higher n. Thus, in those systems, the use of perturbative

100 T T T T

80 b

Percent Difference

20
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