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Relativistic electric-dipole matrix-element zeros
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There exists a class of relativistic electric-dipole matrix-element zeros which occurlif) (e,l + 1))
transitions at the photon energy=mc%(1+ 1), independent of the potentisl as well asn and Z. These
zeros do have observable physical consequences, despite the fact that they occur at high energies where
multipole matrix elements are important.
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[. INTRODUCTION occur inNnsy,— epspp transitions wherZz=128 and innpy,
— €edy, transitions whenZ=133 [8]. Unlike RDZ'’s, they
Matrix-element zeros in radiative transitions have beerpccur at near-threshold energies and only-iaj+ 1 transi-
observed at energies of orderc® [1]. Here we report on tions(rather than irj—j transitions as in the case of RDZ's
electric-dipole matrix-element zeros that occur in this energy (3) Higher-energy nonrelativistic Coulomb zerosly oc-
regime, which we will call relativistic dipole matrix-element cyr in nondipole matrix elements at photon energies ranging
zeros(RDZ's). RDZ'’s are fundamentally different from all f,om 1 to about 50 keV. In the quadrupole case they only
other types of zeros. The position of these zeros with respegfeeyr in 0,1,)— (e,1.) transitions in whicH .=+ 2 [5,9].
to photon energy» is independent of the primary qUantum Tege zeros, present in a Coulomb potential, generally occur

numbern, the atomic nuclear chargé the central potential : ; -
! . . L at high enough energies that they are largely independent of
V, and dipole retardation. The positiasf’ of RDZ's is de- electron screening. Like low-energy CM, they can strongly

termined entirely by the bound-;tate orbital gngular MOMENS tfect angular distributions. These three classes of zeros, un-
tum quantum numbek,, according to the simple formula

0®=mdc®/(l,+1) exactly. RDZ’s occur only inf,ly,jp) “kz EDZ s, show at Ieals_t storge;j depegdendgzenolz, andV
—(€l,+1,,) transitions, that is, whenq,<0 and |k, 2N¢ NAve @ more complicaled dependence,on

=|k¢| [« is the relativistic Dirac equation quantum number (4) High-energy relativistic multipole zerotn addition to
defir?ed asc= T (j+1/2) asj =1+ 1/2; the subscripts and the RDZ's we are discussing here, we have also observed

¢ correspond to the bound and continuum states, respeg_ondipolc_e relativistic zeros which occur at energies of order
tively]. The behavior of RDZ’s is summarized in Table I. It mc”. Unlike RDZ's they show dependences o@andZ that
should be noted that, although these are high energies, me@nge from nearly independent to strongly dependent, with
surements of photoionization have already been performed iftore complicated dependencelgn Unlike RDZ's, it is not
this range[2,3]. We will argue that it should be possible to clear whether these higher-multipole zeros have physical
observe the consequences of RDZ'’s. consequences, in photoionization or in related processes.

RDZ's, unlike all other classes of zeros, are not influenced Despite the fact that RDZ's occur at energies for which
by any detailed atomic properties of the bound and connondipole effects matter, they still have observable physical
tinuum states, by, Z, or V. We may briefly review these consequences. The most striking effect occurs in the photon-
classes of zeros and their properties. electron polarization correlation coefficie@;. This coeffi-

(1) Low-energy zeroshat cause Cooper minimeCM),  cient gives the correlation between longitudinal polarization
which exist in screened Coulomb potentials but not in pointof electrons produced by photoionization and the linear po-
Coulomb potential$4]. These are associated with the break-larization of the incident photons out of the production
ing of the Coulomb degeneracy in angular momentum in thglane. C,, like the other six nonzerG;;’s, are physically
presence of screeniri§]. In the ground state, they occur in observable quantities that can be measured. For example,
(n,lp)—(e,lp+1) dipole transitions in the nonrelativistic C,, has been measured for elements such as Pt, Pb, Ta, Au,
case. In the relativistic casfs] they occur in ,l,,j,)  and U at energies in the MeV ran§2] and C,, was mea-
—(e,l¢,j¢) transitions, where agaih.=1,+1, with (i) j,  sured for Au at 662 keV\3].
=l,—1/2 andj.=I,+1/2, (ii) j,=I1,+1/2 andj.=1,+1/2,
and(iii) jp=1,+1/2 andj.=1,+3/2. In excited-state atoms
multipole zeros are possible and they can also occug, in
—lp,—1 transitions[5]. Such zeros also occur in higher-
multipole matrix element$7]. These zeros, unlike RDZ’s,

TABLE |. Summary of RDZ behavior.

Transition  k, K¢ ° (units of Mm@  ° (keV)

o

are strongly dependent am |, and Z and occur at near- ns;,—ep;, -1 1 0 1 511

threshold energies. Npgy—€dg, —2 2 1 1/2 255.5
(2) Ultrahigh-Z low-energy point Coulomb relativistic ze- ndg,—efs, -3 3 2 1/3 170.3

ros, associated with the breaking of degeneracy fior a  nf,,—eg;,, -4 4 3 1/4 127.75

givenj in hydrogen[8]. At above-threshold energies, they
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The full differential cross section including polarization of the angular distribution shape in Legendre polynomials,
may be written as the corresponding expansion @55 [10,12,13 is

do 1/ do
d—Q<w,e,¢>=§{d—Q} (@,0) 2 &x,Cij(@,0), (1) -
unpol ! czg<w.a):s-1<w.a>|:22 {a(@)LP(6), )

where C;; are the photon-electron polarization coefficients.

All' C;; values are on a scale of unity with the unpolarized

contributionCyy=1. Hered is the angle between the ejected where instead oB, ¢, (w) is the corresponding spin polar-
electron and the incident photon directiGnaxis); the & are  ization parametefl4], composed of pairs of reduced matrix
the Stokes parameters describing photon polarizagpaye  elements summed over multipoles and continuum states,
the components of the unit vector for the spin direction of theweighted by functions in the cosine and sine of the con-
electron in its rest systenf10,11 (&,=x0=1). Also tinuum phase shifts; P|"(6) is an associated Legendre poly-
[do/dQ Jynpo= (0/27)S(w, 0), with o the total cross sec- nomial in which m=2 for C,; and L,=[(I—-1)!/(l
tion, S(w, ) ==,B,P,(cos#), whereB, andP, are the angu-  +1)!1]*2

lar distribution parameters and the Legendre polynomials, In our numerical calculations we used the relativistic full
respectively{8—10]. Note that, from general considerations, multipole code of Goldber§15]. Wave functions were gen-
the differential cross sectiofll) is bilinear in the electron erated in the field of a Dirac-Slater potential in the
spin and the Stokes parametérs andC;; only depends on independent-particle approximatior{lPA). This model
p-k. Thus if the coordinate is chosdeee Fig. 2 in[10]]  should be good at energies at which RDZ's occur. Even

such that the axis is along? and they axis alongzxf) then though it is now understood that correlation contributions
th leb-k is th | | indicated d’th . can remain significant at these enerdi&§] for non-s states,

€ anglep- K 1S the polar anglé, as indicated, and the azl- a4 paen found that net electron correlation contributions
muthal angle¢ only enters in the Stokes and spin param-

> ; . are generally small at high energies due to partial cancella-
eters, not |nCij(0).ABy contrast, if the coordinate axes are tion of such effect§17]. We note that good agreement be-
determined12] by k and e (assuming linear polarization  tween experimental and theoretical IPA values &g and
p-k and soC;j; will depend on both polar and azimuthal angular distributions in th& shell has been reported [@].
angles. The fact that thg;; can be written as single-variable  In the next section we demonstrate the connection be-
functions is of considerable importance for tabulation. Thistween the occurrence of a RDZ @f and a zero irC,3, by
simplicity we achieve in the functional dependenceCgfis  tracing the feature i€ 3 to its spin polarization parameters
at the expense of defining the Stokes parameters of the irand finally to the RDZ matrix element itself. In the following
coming photon relative to the chosen direction of observasection we show how the RDZ’s result directly from the
tion of the ejected photoelectron. For discussion of these tw®irac equation for any potential. We give examples of simple
coordinate systems, sgkl—13. Analogous to the expansion analytic forms of RDZ matrix elements.
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FIG. 2. The spin-polarization parametg’gf, for photoionization FIG. 3. Same as Fig. 2 but f¢8) 4dyz; (b) 4fsp.

of neodymium Z=60): (a) 4ps;, ©°=255.5keV;(b) 4dg),, »°

—170.3 keV. The calculation is the same as described in Fig. 1. 1S iS illustrated in Fig. @), which shows the g/, case,

where the{,’s contain theM4p3,2Hed3,2 RDZ matrix ele-

Il. CONNECTION BETWEEN ZEROS IN Cog ment. The zeros i, become progressively closer to°
AND RDZ MATRIX ELEMENTS with increasing, . This is illustrated in comparison with the

C,3 is the only polarization correlation coefficient that results in Fig. 2), for 4ds;,, which containsMyq, .,
consistently changes sign at an close tow® (asl, in-  For 4ds;, [Fig. 3@] and 45, [Fig. 3b)], where thel,'s
creasef see Fig. 1. AlthouglC,; contributes to the differ- containM 40y Py andM4f5/zﬂfd5/z’ respectively, which are
ential cross section at ordeiZ, it becomes quite sizable for non-RDZ matrix elements, no zeros result. This is also true
intermediate- to higlz elements at photon energies on thefor all other cases ofr(ly,,j,)— (€,lp—1,jp) matrix ele-
order of hundreds of keV. However, it vanishes in the non-ments.
relativistic and extreme relativistic limi{d0,11]. We mainly We now assess the relative importance of RDZ matrix
use Nd(neodymium,Z=60) photoionization in this article elements inC,; by partitioning its components, correspond-
to illustrate the effects of RDZ'’s. In Flg(a) we see no sign |ng to the components (ECZS [the numerator of Eq(2)]'
changes irC,; nearw®=mc*=511keV for 4, photoion-  into two groups, one@gp;y) consisting of all terms that in-
ization, while we do see zeros fop4,, 4ds,, and 47,,  clude RDZ matrix elements and on€4;) containing all
increasingly closer to the correspondiad. In Fig. 1(b) the  other terms. In the cases 0b4,, 4ds,, and 4, [Figs.
zero in C,3 for 4py), is near 210 keV compared t@°  4(a), 4(b), and 40), respectively, Crp; is dominant fore up
=mc*/2=255.5 keV; the zero in the case ofi4, [Fig. 1(c)]  to about 100 keV and it is largely responsible for the positive
is at approximately 150 keV, close taw®=mc’/3  value of C,; at low energies. Crpy and Cyp, do display
=170.3keV; Fig. 1d) shows a zero near 120 keV, very someZ dependence, which is apparent in comparing Fig. 4
close tow’=mc?/4=127.75keV, for 4. Similar results  with Figs. a), 5(b), and 5c) when Z=92. However, the
are obtained for other choices nfandZ. This trend withl general behavior is similar at al. Dependence on the pri-
can be expected, because, for smdlﬂ,erwo is larger and is mary quantum numben is generally very small. Cg, is
now at energies at which higher multipole contributions be-generally smal(sometimes becoming negative for higf@r
come more important. As one can see from Fig. 1, at thesgver a broad energy range, reflecting partial cancellation
energies the relative contribution 6fy; to do/dQ) is in the  among its terms as they individually begin to increase in
range of 2-5% €3 is on a scale of unityfor photoelectron  sjze. In all case€gp; is sufficiently dominant to prevent any
ejection angles between 20° and 50Fhe positions of zeros sign change irC,; at lower energies and to cause a zero in
in C23 deviate frome® for §>50°, due to sign changes in C,, close tow®. It should be noted that ,; vanishes at both
the P (0) that alter the near-cancellation of correspondingforward and backward angles; it tends to be largest at angles
oL PI terms which occurs at smaller angles, and so they ndbetween about 20° and 50°. The effects of RDZ'slir/ d()
longer provide a signature for the RDZ matrix elements. may best be observed over this range of angles, for energies

Whenevel ,>0, the/,,’s always have zeros close . ranging from 100 to about 300 keV.

032701-3



L. A. LaJOHN AND R. H. PRATT PHYSICAL REVIEW A67, 032701 (2003

0.04 0.03 =
(@) a
0.03 0.02 / ~Crds
g 0.01 ri-Cipg. -
0.02 o 7 e
& 7 G = 000 / . T~
g o.o01 [ g o g e
(& / iCoth Ny © -0.01 ~oth .“\
0.00 otk . . NI D T
o 0.02 g
‘\\ L
-0.01 g E -0.03
-0.02 ™~ -0.04
o 50 100 150 200 250 300 o 50 100 150 200 250 300
o (keV)
0.02 ® (keV) 0.02 = o (¢ 3]
""""" ® 0.01 p
e G . i R
0.01 23- / =3
0.00 Cothle. L e 0.00 g rdz
OV st N (o] =  -0.01
= | 2 e, ]
g oot ; & 002
S . .
-0.02 - -0.03 T
-0.03 N - -0.04 -
B -0.05
-0.04 0.00 50.00 100.00 150.00 200.00 250.00 300.00
o 50 100 150 200 250 300
toV) w (keV)
(o) e
0.02 ©)
©
0.01
0.00 [ Cotni- =
= N \ = rdz
g -0.01 B s S = A Bt
P o el
-0.02 Ny ~LCoaa
-0.03 S <
-0.04 o 50 100 150 200 250 300
o 50 100 150 200 250 300 o (keV)
w (keV)

FIG. 4. Crpz represents all terms i€,; for which SCy3 con- FIG. 5. Same as Fig. 4 but fat=92.

tains a RDZ matrix element. All r$mainiTg terms are contained i“w_herej| is.a spherical Bessel functiom, and B are radial
Cotn=C23~Croz.  Croz=(ZncMir  Mic)IS. My, con-  Dirac matricesp=kr, k is the photon momentuns,E,, are

tain the matrix elements of multipolarity phase shifts and the the electron kinetic and bound-state energies corresponding
vector coupling coefficients as described[i0]. HereZ=60 and  to the k. and «,, states, andH, is the radial Dirac Hamil-
n=4. The calculation is the same as described in Fig. 1, for the casmnian[see[18], Eq. (53.11]. We take expectation values of
6=25°. (a) 4pg;p, w°=255.5keV,xp=—2 (P3p), xe=2 (d3); the operator Eq9.3) and(4) between bound and continuum
(b) 4dgpp, @0=170.3 keV;kp=—3 (ds;), k=3 (f5); (0) 4f7,  radial states. We utilize the fact that the Dirac Hamiltonian is

w®=127.75keV,kp=—4 (f71), k¢=4 (972 Hermitian, H, ¢, =€, andH, ¢, =Ep,, with k=e
Ill. PROPERTIES OF RDZ MATRIX ELEMENTS: —E,, and we require the conditior,+ «.=0. Then sub-
GENERAL PROOF OF ZEROS AND EXPLICIT traction of the expectation values of E@) from those of
ANALYTIC EXPRESSIONS Eq. (3), and utilizing identities for the derivatives of spheri-

cal Bessel functiond[19], Egs. (11.162 and (11.171],
Now that we have established a link between zerdSJjn yields 1119), Eas. ( 2 ( 3]

and the RDZ matrix element, we try to explain how and why

RDZ’s occur. We first give a proof that RDZ exists af 2k\ )
=mc%/(l,+1) whenk,+ «.=0 for anyn, Z, and potential —(3><|ar[lo(P)+lz(P)]>
V. We then obtain explicit expressions for RDZ matrix ele-

ments under simplifying assumptions and see how they ex- _ Kk . _ _
plicitly exhibit the zeros. +2iapl—5-[io(p)+i2(p)]=]o(p) | | =0.
For our proof we use the following two sets of commuta-
tors: 6)
o o dji_1(p) The electric-field dipole matrix element whety+ x.=0
Hel = ieriioa(p)]=[=iana(p)H,, —k— g = (120, Eq. (11a] is i
i + : . 1 .
+ PalP T IS) o) M= —2Kc<|arﬁ(10<p>— 3[Jo(P)+lz(P)])>
(3 2 .
_ _ N — 3 (iarliolp) +ia(p)])- (6)
H dji-1(p)| _(dii-1(p) H —igk d%j-1(p)
% dp dp T dp? Subtracting Eq(5) from Eq. (6) yields
Pa B(Ke— Kp) (djll(l)) _ 2 L
- L M= g (1=kno)(iarjo(p)), ()
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which confirms that, whenevet,+ x,=0 with «,<0, M
=0 whenk=wo=mc* k,=mc%/(l,+1) (k=w in our di-
mensionless units witm=%#=c=1). Note in the nonrela-
tivistic limit of Eq. (7), whenw<mc?, 1—kk.—1 and the
zero no longer occurs.

We now illustrate RDZ behavior in explicit analytic cal-
culations of the matrix elements. The result fof was in-
dependent of the potenti&l, so we use the Coulomb poten-
tial, which in fact is quite accurate for matrix elements at
these energiegexcept for normalization Since one can
show that the result foe° is also independent of retardation
(for these energies retarded and nonretarded dipole matr
elements only differ by 10—-20%we consider the nonre-
tarded casgi.e., jo=1, ;=0 if I>1; see Eq(6)] whenk,
+k,=0. Using the Coulombic radial wave functions
[21,22, we integrate over by a Laplace transforifi23], Eq.
(7.621] and follow with a Kumar transformatiofj23], Eq.
(9.31)], which yields a terminating series for the resulting
hypergeometric function, and we obtain

M=(2/3)

(zkc—l)f gFerr+(2KC+1)f fGrzdr}
=—An[(2ke—1)UT Im(B,,)
(8)

This equation only applies tb,—1,*=1 transitions when
kp+ k.=0. (G,9 and (Ff) are the large and small compo-
nents of the boundupper caseand continuuni{lower casg
radial wave functions, respectively,,, B_,, andU~* are
given in the Appendix.

In Eq. (8) one finds thatf fGr2dr always has a zero at
2mc? and fgFr2dr one at—2mc?. In the nodeless case
(n"=0) Eq.(8) becomes

+(2Kk,+ 1)U~ ReB,,)].

*
n’

M=—QuA[(2k—1)(w+2)+ (2.t 1)(w—2)]

=4QoAo(1- kew), 9
where Qo= (2w)Y?k.(aZ), showing the zeros in the two
radial integrals(first equation and showing® as the posi-
tion of the RDZ(second equationNote thatx, in the poly-
nomial (1— k.w) which determiness® comes from the ra-
dial integral coefficients 2+=1 shown in Eq.(8). Equation
(9) can be generalized for any’ (i.e., A;—A,, and Qg
—Q,) due to the relationshipfgFr2dr/ffGridr=(w
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FIG. 6. (a) Dipole nonretarded matrix elemehftlsuﬁepu2 for
Z=92; (1) relativistic; (2) y replaced by|x|; (3) nonrelativistic
limit. (b) Same aga) but for Mg,

= €fgpy

ping terms of order ¢Z)?, the position of the zeros becomes
dependent om andZ. If we complete taking the nonrelativ-
istic limit by dropping the remaining«Z)? consistently and
introducing the low-energy approximationw f-mc~
+mc?), we can show both numerically and analytically that
there are no photoionization zeroshh Numerical examples
for Z=92 which illustrate this behavior are shown in Fig. 6
for Mis, o epyp and Mad, ety IN general, wheny is re-

placed by|«| the deviation in the matrix element from®

+2)/(w—2), an identity that can be established as generallycreases with increasirg but decreases with increasing

valid by consideringf (d/dr)(gG+ fF)r?dr=0 and apply-
ing the Dirac equation. Her®,,» can involve polynomials in
w. As a consequence, the square brackets in (Bq(first
equation and the quantity (* «.w) (second equation as
well as the resuliw®=mc?/(l,+1), are general, indepen-
dent ofn andV, and arise from the energy, andmc® terms
in the Dirac equatiorf[18], Eq. (53.15]. Note that there is
no zero in (- k.w) for I,—1,—1 transitions, in whichk,
is negative, so that (1 x,w) can only vanish for negative.
We can confirm the relativistic character of the RDZ'’s by
considering the nonrelativistic limit o [Eq. (8)]. If we
take a partial limit, lettingy=|«|, but not otherwise drop-

Both graphs show that the zeros disappear in the nonrelativ-
istic limit. The disappearance of RDZ’s is illustrated in the
analytic RDZ matrix-element expression for= 0, which in
the nonrelativistic limitM" becomes

M an:4A8rI( K§+q2)l/2(n_ Kb)(Za))mKCaZ, (10)

whereq is defined in the Appendix. A)" is the nonrelativ-
istic limit of Ay. There are no terms in Eq10) that can
change sign with any change in energy. Similar expressions,
though more complicated, can also be obtainedrfor 0,

again reflecting the absence of any photoionization zeros.
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IV. CONCLUSIONS Here U™ =(w+1)Y41%¢, )"% the photoelectron energy
We have shown that RDZ's are a special class of zero¥/=©—Ept+1; &, ={1+[aZ/(n"+y)]?} "% n'=n
whose positionsw® depend only onl,, according tow®  —|ky|; v=v=v.=[|x|>—(«Z)?]*2 A, , collecting all

=mc/(l,+1), wherew® is thus independent of and the real terms common to both radial integrals, depends on
inclusion of dipole retardation. The fact that RDZ's disap-

pear in the nonrelativistic limit forms of their matrix ele-

ments due to their dependence m?® confirms that RDZ’s

are relativistic. We have found these zeros for the case of N_ —[n -2n"(|kpy| = y)1¥% H, =(aZ)?+(N, p)%
Dirac relativistic dipole matrix elements; the condition for b b
the occurrence of a zero for givép is that bound and con-
tinuum Dirac quantum numberns,+ x.=0. Finally, RDZ's
have observable physical consequences, particularly for the
polarization correlatiorC,3, at energies for which cross sec-
tions and spin-polarization correlations have already been
measured.

y=aZwlp; p=(w?—1)Y?%

APPENDIX

_ - ~ D=27""13"1pr exn 7ry/2)(2aZIN, )" YT (y—iy)|/
Anr:DHKl)(y+l>eXF){_2ytan l[NKbp(a'Z) l]} F( y ( b) | (7 y)|

N [47n"IN, (N, — ko) (2y+1)]"2
<1 2y+k),
k=1

-1 * i ;
C* B, collects all complex terms, the imaginary part corre-

sponding tof gFr2dr and the real part t§fGr2dr. In Br;, ,
T=(rc—ia) Yy +iy)¥% a=ylw; C, =aZ+iN, p; I ;
=N,,—xp=(n"—]); S=II_y(n"+1-1); and Wy,
H —H”‘ 1(j+1=s)(y+s+iy)(2y+s) L.

I

—1)J
B, =T l 0ch+2( _) 35, j(2az)

j _a\m
1+2(1)

m=1 m!

2NKbp
iC%
b

xS,
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