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Relativistic electric-dipole matrix-element zeros

L. A. LaJohn and R. H. Pratt
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 27 May 2002; published 11 March 2003!

There exists a class of relativistic electric-dipole matrix-element zeros which occur in (n,l , j )→(e,l 11,j )
transitions at the photon energyv05mc2/( l 11), independent of the potentialV as well asn and Z. These
zeros do have observable physical consequences, despite the fact that they occur at high energies where
multipole matrix elements are important.

DOI: 10.1103/PhysRevA.67.032701 PACS number~s!: 32.80.Fb
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I. INTRODUCTION

Matrix-element zeros in radiative transitions have be
observed at energies of ordermc2 @1#. Here we report on
electric-dipole matrix-element zeros that occur in this ene
regime, which we will call relativistic dipole matrix-elemen
zeros~RDZ’s!. RDZ’s are fundamentally different from a
other types of zeros. The position of these zeros with res
to photon energyv is independent of the primary quantu
numbern, the atomic nuclear chargeZ, the central potentia
V, and dipole retardation. The positionv0 of RDZ’s is de-
termined entirely by the bound-state orbital angular mom
tum quantum numberl b , according to the simple formula
v05mc2/( l b11) exactly. RDZ’s occur only in (n,l b , j b)
→(e,l b11,j b) transitions, that is, whenkb,0 and ukbu
5ukcu @k is the relativistic Dirac equation quantum numb
defined ask57( j 11/2) asj 5 l 61/2; the subscriptsb and
c correspond to the bound and continuum states, res
tively#. The behavior of RDZ’s is summarized in Table I.
should be noted that, although these are high energies,
surements of photoionization have already been performe
this range@2,3#. We will argue that it should be possible t
observe the consequences of RDZ’s.

RDZ’s, unlike all other classes of zeros, are not influenc
by any detailed atomic properties of the bound and c
tinuum states, byn, Z, or V. We may briefly review these
classes of zeros and their properties.

~1! Low-energy zerosthat cause Cooper minima~CM!,
which exist in screened Coulomb potentials but not in po
Coulomb potentials@4#. These are associated with the brea
ing of the Coulomb degeneracy in angular momentum in
presence of screening@5#. In the ground state, they occur i
(n,l b)→(e,l b11) dipole transitions in the nonrelativisti
case. In the relativistic case@6# they occur in (n,l b , j b)
→(e,l c , j c) transitions, where againl c5 l b11, with ~i! j b
5 l b21/2 and j c5 l b11/2, ~ii ! j b5 l b11/2 and j c5 l b11/2,
and ~iii ! j b5 l b11/2 andj c5 l b13/2. In excited-state atom
multipole zeros are possible and they can also occur inl b
→ l b21 transitions@5#. Such zeros also occur in highe
multipole matrix elements@7#. These zeros, unlike RDZ’s
are strongly dependent onn, l, and Z and occur at near
threshold energies.

~2! Ultrahigh-Z low-energy point Coulomb relativistic ze
ros, associated with the breaking of degeneracy inl for a
given j in hydrogen@8#. At above-threshold energies, the
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occur inns1/2→ep3/2 transitions whenZ>128 and innp1/2

→ed3/2 transitions whenZ>133 @8#. Unlike RDZ’s, they
occur at near-threshold energies and only inj→ j 11 transi-
tions~rather than inj→ j transitions as in the case of RDZ’s!.

~3! Higher-energy nonrelativistic Coulomb zerosonly oc-
cur in nondipole matrix elements at photon energies rang
from 1 to about 50 keV. In the quadrupole case they o
occur in (n,l b)→(e,l c) transitions in whichl c5 l b12 @5,9#.
These zeros, present in a Coulomb potential, generally o
at high enough energies that they are largely independen
electron screening. Like low-energy CM, they can stron
affect angular distributions. These three classes of zeros,
like RDZ’s, show at least some dependence onn, Z, andV
and have a more complicated dependence onl b .

~4! High-energy relativistic multipole zeros. In addition to
the RDZ’s we are discussing here, we have also obser
nondipole relativistic zeros which occur at energies of or
mc2. Unlike RDZ’s they show dependences onn andZ that
range from nearly independent to strongly dependent, w
more complicated dependence onl b . Unlike RDZ’s, it is not
clear whether these higher-multipole zeros have phys
consequences, in photoionization or in related processes

Despite the fact that RDZ’s occur at energies for whi
nondipole effects matter, they still have observable phys
consequences. The most striking effect occurs in the pho
electron polarization correlation coefficientC23. This coeffi-
cient gives the correlation between longitudinal polarizat
of electrons produced by photoionization and the linear
larization of the incident photons out of the productio
plane. C23, like the other six nonzeroCi j ’s, are physically
observable quantities that can be measured. For exam
C10 has been measured for elements such as Pt, Pb, Ta
and U at energies in the MeV range@2# and C02 was mea-
sured for Au at 662 keV@3#.

TABLE I. Summary of RDZ behavior.

Transition kb kc l b v0 ~units of mc2) v0 ~keV!

ns1/2→ep1/2 21 1 0 1 511
np3/2→ed3/2 22 2 1 1/2 255.5
nd5/2→e f 5/2 23 3 2 1/3 170.3
n f7/2→eg7/2 24 4 3 1/4 127.75
©2003 The American Physical Society01-1
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FIG. 1. Photon-electron polar
ization coefficient C23 @see Eq.
~2!# for photoionization of neody-
mium (Z560):
~a! 4s1/2, v05511 keV;
~b! 4p3/2, v05255.5 keV;
~c! 4d5/2, v05170.3 keV;
~d! 4 f 7/2, v05127.75 keV.
The calculation is fully relativistic
within the independent-particle
approximation using the Dirac
Slater potential. The first ten
electric- and magnetic-field matrix
elements are included in all calcu
lations.
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The full differential cross section including polarizatio
may be written as

ds

dV
~v,u,f!5

1

2 F ds

dVG
unpol

~v,u!(
i j

j ix jCi j ~v,u!, ~1!

whereCi j are the photon-electron polarization coefficien
All Ci j values are on a scale of unity with the unpolariz
contributionC0051. Hereu is the angle between the ejecte
electron and the incident photon direction~z axis!; thej i are
the Stokes parameters describing photon polarization;x j are
the components of the unit vector for the spin direction of
electron in its rest system@10,11# (j05x051). Also
@ds/dV#unpol5(s/2p)S(v,u), with s the total cross sec
tion, S(v,u)5( lBl Pl(cosu), whereBl andPl are the angu-
lar distribution parameters and the Legendre polynomi
respectively@8–10#. Note that, from general consideration
the differential cross section~1! is bilinear in the electron
spin and the Stokes parametersj i , andCi j only depends on
p̂• k̂. Thus if the coordinate is chosen@see Fig. 2 in@10##

such that thez axis is alongk̂ and they axis alongk̂3p̂, then
the anglep̂• k̂ is the polar angle, as indicated, and the a
muthal anglef only enters in the Stokes and spin para
eters, not inCi j (u). By contrast, if the coordinate axes a
determined@12# by k̂ and e ~assuming linear polarization!,
p̂• k̂ and soCi j will depend on both polar and azimuth
angles. The fact that theCi j can be written as single-variabl
functions is of considerable importance for tabulation. T
simplicity we achieve in the functional dependence ofCi j is
at the expense of defining the Stokes parameters of the
coming photon relative to the chosen direction of obser
tion of the ejected photoelectron. For discussion of these
coordinate systems, see@11–13#. Analogous to the expansio
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of the angular distribution shape in Legendre polynomia
the corresponding expansion forC23 @10,12,13# is

C23~v,u!5S21~v,u!(
l 52

`

z2l~v!Ll Pl
m~u!, ~2!

where instead ofBl z2l(v) is the corresponding spin polar
ization parameter@14#, composed of pairs of reduced matr
elements summed over multipoles and continuum sta
weighted by functions in the cosine and sine of the co
tinuum phase shiftsd; Pl

m(u) is an associated Legendre pol
nomial in which m52 for C23 and Ll5@( l 21)!/( l
11)!#1/2.

In our numerical calculations we used the relativistic f
multipole code of Goldberg@15#. Wave functions were gen
erated in the field of a Dirac-Slater potential in th
independent-particle approximation~IPA!. This model
should be good at energies at which RDZ’s occur. Ev
though it is now understood that correlation contributio
can remain significant at these energies@16# for non-s states,
it has been found that net electron correlation contributio
are generally small at high energies due to partial cance
tion of such effects@17#. We note that good agreement b
tween experimental and theoretical IPA values forC10 and
angular distributions in theK shell has been reported in@2#.

In the next section we demonstrate the connection
tween the occurrence of a RDZ atv0 and a zero inC23, by
tracing the feature inC23 to its spin polarization parameter
and finally to the RDZ matrix element itself. In the followin
section we show how the RDZ’s result directly from th
Dirac equation for any potential. We give examples of sim
analytic forms of RDZ matrix elements.
1-2
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RELATIVISTIC ELECTRIC-DIPOLE MATRIX-ELEMENT . . . PHYSICAL REVIEW A 67, 032701 ~2003!
II. CONNECTION BETWEEN ZEROS IN C23

AND RDZ MATRIX ELEMENTS

C23 is the only polarization correlation coefficient th
consistently changes sign at anv close to v0 ~as l b in-
creases!; see Fig. 1. AlthoughC23 contributes to the differ-
ential cross section at orderaZ, it becomes quite sizable fo
intermediate- to high-Z elements at photon energies on t
order of hundreds of keV. However, it vanishes in the no
relativistic and extreme relativistic limits@10,11#. We mainly
use Nd~neodymium,Z560) photoionization in this article
to illustrate the effects of RDZ’s. In Fig. 1~a! we see no sign
changes inC23 nearv05mc25511 keV for 4s1/2 photoion-
ization, while we do see zeros for 4p3/2, 4d5/2, and 4f 7/2,
increasingly closer to the correspondingv0. In Fig. 1~b! the
zero in C23 for 4p3/2 is near 210 keV compared tov0

5mc2/25255.5 keV; the zero in the case of 4d5/2 @Fig. 1~c!#
is at approximately 150 keV, close tov05mc2/3
5170.3 keV; Fig. 1~d! shows a zero near 120 keV, ver
close tov05mc2/45127.75 keV, for 4f 7/2. Similar results
are obtained for other choices ofn andZ. This trend withl b
can be expected, because, for smallerl b , v0 is larger and is
now at energies at which higher multipole contributions b
come more important. As one can see from Fig. 1, at th
energies the relative contribution ofC23 to ds/dV is in the
range of 2–5 % (C23 is on a scale of unity! for photoelectron
ejection angles between 20° and 50°.@The positions of zeros
in C23 deviate fromv0 for u.50°, due to sign changes i
the Pl

2(u) that alter the near-cancellation of correspond
z2lL l Pl

2 terms which occurs at smaller angles, and so they
longer provide a signature for the RDZ matrix elements.#

Wheneverl b.0, thez2l ’s always have zeros close tov0.

FIG. 2. The spin-polarization parametersz2l for photoionization
of neodymium (Z560): ~a! 4p3/2, v05255.5 keV; ~b! 4d5/2, v0

5170.3 keV. The calculation is the same as described in Fig.
03270
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This is illustrated in Fig. 2~a!, which shows the 4p3/2 case,
where thez2l ’s contain theM4p3/2→ed3/2

RDZ matrix ele-

ment. The zeros inz2l become progressively closer tov0

with increasingl b . This is illustrated in comparison with th
results in Fig. 2~b!, for 4d5/2, which containsM4d5/2→e f 5/2

.

For 4d3/2, @Fig. 3~a!# and 4f 5/2 @Fig. 3~b!#, where thez2l ’s
containM4d3/2→ep3/2

andM4 f 5/2→ed5/2
, respectively, which are

non-RDZ matrix elements, no zeros result. This is also t
for all other cases of (n,l b , j b)→(e,l b21,j b) matrix ele-
ments.

We now assess the relative importance of RDZ ma
elements inC23 by partitioning its components, correspon
ing to the components ofSC23 @the numerator of Eq.~2!#,
into two groups, one (CRDZ) consisting of all terms that in-
clude RDZ matrix elements and one (Coth) containing all
other terms. In the cases of 4p3/2, 4d5/2, and 4f 7/2 @Figs.
4~a!, 4~b!, and 4~c!, respectively#, CRDZ is dominant forv up
to about 100 keV and it is largely responsible for the posit
value of C23 at low energies. CRDZ and Coth do display
someZ dependence, which is apparent in comparing Fig
with Figs. 5~a!, 5~b!, and 5~c! when Z592. However, the
general behavior is similar at allZ. Dependence on the pri
mary quantum numbern is generally very small. Coth is
generally small~sometimes becoming negative for higherZ!
over a broad energy range, reflecting partial cancellat
among its terms as they individually begin to increase
size. In all casesCRDZ is sufficiently dominant to prevent an
sign change inC23 at lower energies and to cause a zero
C23 close tov0. It should be noted thatC23 vanishes at both
forward and backward angles; it tends to be largest at an
between about 20° and 50°. The effects of RDZ’s inds/dV
may best be observed over this range of angles, for ener
ranging from 100 to about 300 keV.

FIG. 3. Same as Fig. 2 but for~a! 4d3/2; ~b! 4 f 5/2.
1-3
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III. PROPERTIES OF RDZ MATRIX ELEMENTS:
GENERAL PROOF OF ZEROS AND EXPLICIT

ANALYTIC EXPRESSIONS

Now that we have established a link between zeros inC23
and the RDZ matrix element, we try to explain how and w
RDZ’s occur. We first give a proof that RDZ exists atv0

5mc2/( l b11) whenkb1kc50 for anyn, Z, and potential
V. We then obtain explicit expressions for RDZ matrix e
ments under simplifying assumptions and see how they
plicitly exhibit the zeros.

For our proof we use the following two sets of commu
tors:

Hkc
@2 ia r j l 21~r!#5@2 ia r j l 21~r!#Hkb

2k
d j l 21~r!

dr

1
b j l 21~r!~kc1kb!

r
12ia rb j l 21~r!,

~3!

HkcS d j l 21~r!

dr D5S d j l 21~r!

dr DHkb
2 ia rkS d2 j l 21~r!

dr2 D
2

ia rb~kc2kb!

r S d j l 21~r!

dr D , ~4!

FIG. 4. CRDZ represents all terms inC23 for which SC23 con-
tains a RDZ matrix element. All remaining terms are contained
Coth5C232CRDZ . CRDZ5((lkc

Mk
c8 ,kb

1
Mkckb

l )/S. Mkckb
con-

tain the matrix elements of multipolarityl phase shifts and the
vector coupling coefficients as described in@10#. HereZ560 and
n54. The calculation is the same as described in Fig. 1, for the c
u525°. ~a! 4p3/2, v05255.5 keV,kb522 (p3/2), kc852 (d3/2);
~b! 4d5/2, v05170.3 keV;kb523 (d5/2), kc853 ( f 5/2); ~c! 4 f 7/2,
v05127.75 keV,kb524 ( f 7/2), kc854 (g7/2).
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where j l is a spherical Bessel function,a r andb are radial
Dirac matrices,r5kr, k is the photon momentum,e,Eb are
the electron kinetic and bound-state energies correspon
to the kc and kb states, andHk is the radial Dirac Hamil-
tonian@see@18#, Eq. ~53.11!#. We take expectation values o
the operator Eqs.~3! and ~4! between bound and continuum
radial states. We utilize the fact that the Dirac Hamiltonian
Hermitian, Hkc

ckc
5eckc

and Hkb
ckb

5Ebckb
, with k5e

2Eb , and we require the conditionkb1kc50. Then sub-
traction of the expectation values of Eq.~4! from those of
Eq. ~3!, and utilizing identities for the derivatives of spher
cal Bessel functions@@19#, Eqs. ~11.162! and ~11.171!#,
yields

2S 2k

3 D ^ ia r@ j 0~r!1 j 2~r!#&

12K ia rbFkkc

3
@ j 0~r!1 j 2~r!#2 j 0~r!G L 50.

~5!

The electric-field dipole matrix element whenkb1kc50
@@20#, Eq. ~11a!# is

M522kcK ia rbS j 0~r!2
1

3
@ j 0~r!1 j 2~r!# D L

2
2

3
^ ia r@ j 0~r!1 j 2~r!#&. ~6!

Subtracting Eq.~5! from Eq. ~6! yields

M5
2

3k
~12kkc!^ ia r j 0~r!&, ~7!

n

se

FIG. 5. Same as Fig. 4 but forZ592.
1-4
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RELATIVISTIC ELECTRIC-DIPOLE MATRIX-ELEMENT . . . PHYSICAL REVIEW A 67, 032701 ~2003!
which confirms that, wheneverkb1kc50 with kb,0, M
50 whenk5v05mc2/kc5mc2/( l b11) (k5v in our di-
mensionless units withm5\5c51). Note in the nonrela-
tivistic limit of Eq. ~7!, whenv!mc2, 12kkc→1 and the
zero no longer occurs.

We now illustrate RDZ behavior in explicit analytic ca
culations of the matrix elements. The result forv0 was in-
dependent of the potentialV, so we use the Coulomb poten
tial, which in fact is quite accurate for matrix elements
these energies~except for normalization!. Since one can
show that the result forv0 is also independent of retardatio
~for these energies retarded and nonretarded dipole m
elements only differ by 10–20%!, we consider the nonre
tarded case@i.e., j 051, j l50 if l .1; see Eq.~6!# whenkb
1kc50. Using the Coulombic radial wave function
@21,22#, we integrate overr by a Laplace transform@@23#, Eq.
~7.621!# and follow with a Kumar transformation@@23#, Eq.
~9.31!#, which yields a terminating series for the resultin
hypergeometric function, and we obtain

M5~2/3!F ~2kc21!E gFr2dr1~2kc11!E f Gr2dr G
52An8@~2kc21!U1 Im~Bn8

1
!

1~2kc11!U2 Re~Bn8
2

!#. ~8!

This equation only applies tol b→ l b61 transitions when
kb1kc50. ~G,g! and ~F,f ! are the large and small compo
nents of the bound~upper case! and continuum~lower case!
radial wave functions, respectively.An8 , Bn8

6 , and U6 are
given in the Appendix.

In Eq. ~8! one finds that* f Gr2dr always has a zero a
2mc2 and *gFr2dr one at22mc2. In the nodeless cas
(n850) Eq. ~8! becomes

M52Q0A0@~2kc21!~v12!1~2kc11!~v22!#

54Q0A0~12kcv!, ~9!

where Q05(2v)1/2kc(aZ), showing the zeros in the two
radial integrals~first equation! and showingv0 as the posi-
tion of the RDZ~second equation!. Note thatkc in the poly-
nomial (12kcv) which determinesv0 comes from the ra-
dial integral coefficients 2k61 shown in Eq.~8!. Equation
~9! can be generalized for anyn8 ~i.e., A0→An8 and Q0
→Qn8) due to the relationship*gFr2dr/* f Gr2dr5(v
12)/(v22), an identity that can be established as gener
valid by considering*(d/dr)(gG1 f F)r 2dr50 and apply-
ing the Dirac equation. HereQn8 can involve polynomials in
v. As a consequence, the square brackets in Eq.~9! ~first
equation! and the quantity (12kcv) ~second equation!, as
well as the resultv05mc2/( l b11), are general, indepen
dent ofn andV, and arise from the energy,k, andmc2 terms
in the Dirac equation@@18#, Eq. ~53.15!#. Note that there is
no zero in (12kcv) for l b→ l b21 transitions, in whichkc
is negative, so that (12kcv) can only vanish for negativev.

We can confirm the relativistic character of the RDZ’s
considering the nonrelativistic limit ofM @Eq. ~8!#. If we
take a partial limit, lettingg5uku, but not otherwise drop-
03270
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ping terms of order (aZ)2, the position of the zeros become
dependent onn andZ. If we complete taking the nonrelativ
istic limit by dropping the remaining (aZ)2 consistently and
introducing the low-energy approximation (v6mc2'
6mc2), we can show both numerically and analytically th
there are no photoionization zeros inM. Numerical examples
for Z592 which illustrate this behavior are shown in Fig.
for M1s1/2→ep1/2

and M4d5/2→e f 5/2
. In general, wheng is re-

placed byuku the deviation in the matrix element fromv0

increases with increasingZ but decreases with increasingn.
Both graphs show that the zeros disappear in the nonrela
istic limit. The disappearance of RDZ’s is illustrated in th
analytic RDZ matrix-element expression forn850, which in
the nonrelativistic limitMnrl becomes

Mnrl54A0
nrl~kc

21q2!1/2~n2kb!~2v!1/2kcaZ, ~10!

whereq is defined in the Appendix. A0
nrl is the nonrelativ-

istic limit of A0 . There are no terms in Eq.~10! that can
change sign with any change in energy. Similar expressio
though more complicated, can also be obtained forn8.0,
again reflecting the absence of any photoionization zeros

FIG. 6. ~a! Dipole nonretarded matrix elementM1s1/2→ep1/2
for

Z592; ~1! relativistic; ~2! g replaced byuku; ~3! nonrelativistic
limit. ~b! Same as~a! but for M4d5/2→e f 5/2

.
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IV. CONCLUSIONS

We have shown that RDZ’s are a special class of ze
whose positionsv0 depend only onl b , according tov0

5mc2/( l b11), wherev0 is thus independent ofV and the
inclusion of dipole retardation. The fact that RDZ’s disa
pear in the nonrelativistic limit forms of their matrix ele
ments due to their dependence onmc2 confirms that RDZ’s
are relativistic. We have found these zeros for the case
Dirac relativistic dipole matrix elements; the condition f
the occurrence of a zero for givenl b is that bound and con
tinuum Dirac quantum numberskb1kc50. Finally, RDZ’s
have observable physical consequences, particularly for
polarization correlationC23, at energies for which cross se
tions and spin-polarization correlations have already b
measured.

APPENDIX

An85DHkb

2~g11! exp$22y tan21@Nkb
p~aZ!21#%

3)
k51

n8

~2g1k!,

Bn8
6

5TH Jkb,0
6 Ckb

1(
j 51

n8 ~21! j

j !
Jkb , j

6 ~2aZ! jS Ckb
*

Hkb

D j 21

3SjF11 (
m51

j
~21!m

m! S 2Nkb
p

iCkb
* D m

Wm jG J .
A

A

ys

ta
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Here U65(w61)1/2(17jkb
)1/2; the photoelectron energ

w5v2Eb11; jkb
5$11@aZ/(n81g)#2%21/2; n85n

2ukbu; g5gb5gc5@ uku22(aZ)2#1/2. An8 , collecting all
real terms common to both radial integrals, depends on

Nkb
5@n222n8~ ukbu2g!#1/2; Hkb

5~aZ!21~Nkb
p!2;

y5aZw/p; p5~w221!1/2;

D52g11321Pg21/2exp~py/2!~2aZ/Nkb
!g11/2uG~g2 iy !u/

@4pn8!Nkb
~Nkb

2kb!G~2g11!#1/2.

Bn8
6 collects all complex terms, the imaginary part corr

sponding to*gFr2dr and the real part to* f Gr2dr. In Bn8
6 ,

T5(kc2 iq)1/2(g1 iy)1/2; q5y/w; Ckb
5aZ1 iNkb

p; Jkbj
6

5Nkb
2kb6(n82 j ); Sj5) l 51

j (n8112 l ); and Wm j

5)s51
m ( j 112s)(g1s1 iy)(2g1s)21.
n-
B.
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