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Rutherford atom in quantum theory
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We predict the existence of a self-sustained one-electron wave packet moving on a circular orbit in the
helium atom. The wave packet is localized in space, but does not spread in time. This is a reaizhtion
guantum theonyof a classical object that has been called a “Rutherford atom,” a localized planetary electron
on an unquantized circular orbit under the influence of a massive charged core.
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There is growing interest in the quantum-mechanical rethough the major axis of the inner electron’s elliptical orbit
alizations of “classical” atoms: atoms with electron wave adiabatically follows the outer electron, the two electrons
packets that are fully localize@in three space dimensions orbit the core in opposite directions. When the frequency of
yet do not spreafll]. Such behavior was recently shown to the orbital motion of the outer electron approaches zero it
exist for so-called Trojan states, rotating and nonspreadingeduces exactly to the frozen planet configurafib8l.
wave packets in hydrogen exposed to a monochromatic cir- In this paper we provide the first demonstration of the
cularly or linearly polarized electric fielf2—4]. Similar be- ~ existence of what has been callgidt] a “Rutherford atom,”
havior has been shown with the addition of a magnetic field-e., the wave function for a single electron moving on an
[5]. There are several motivations for studies of such quantnquantized stable and nonspreading planetary orbit about a
tum states: They provide an experimental opportunity tonassive charged core. Such an object would have seemed a
study quantum versus classical correspond¢@hequantum ~ much more “natural” realization of hydrogen in 1913 com-
softening of classical chad§], and possibly even Arnol'd pared to Bohr’s new quantized atom. Satirger and Lor-
diffusion [8]. Experimental methods now exist to manipulate €ntz later sought to construct such a more natural hydrogen
quantum states of atoms and molecules using strong las&iem wave mechanics without succdds$].
pulses[9] and microwave field§10], making the generation ~ As we show, in contrast to the polar molecule cgkH, a
of fully localized, nondispersing states sustained by externa$ingle electron is sufficient to provide a dipole moment ca-
fields a feasible near-future challenge for experimental physPable of stabilizing the atom. Two important differences are
ics [3]. that here the outer classical electron plays an active role by

Nonspreading electron states in bare atgmihout the  polarizing the core, and the system does not reduce to a
assistance of external fields quite another matter. Such “frozen planet,” as the orbital period of the outer electron
states are superficially and obviously implied by the plan-gets very large.
etary picture that was first suggested by Rutherford’s discov- We start our analysis from the time-dependent Hartree-
ery of massive highly localized nuclei, but they are contra-Fock equations for a two-electron atdr6] in the Hartree
dicted by the highly nonlocalized stationary wave functionslimit,
familiar from elementary quantum theory. However, it was
recently shown that nondispersing, fully localized wave 9y

packets moving around circular orbits without the assistance Hii=1—r, 1=1.2 @
of external fields can exist in polar molecu[d4]. A class of
guasisteady states in bare atoms is known in two-electron v2 2 ’

- - pj(r’,t) o
atoms[12]. These atomic states correspond to the classical H=————1 dr’, i#j 2
situation in which the inner electron performs rapid linear 2 r| [r—r'|

oscillatory motion near the nucleus. The oscillation of the

inner charge generates a stabilizing field for the outer elecirom which the electron density can be found as

tron, which then remains almost frozen in spftg]. This is

called the frozen planet configuration. A nontrivial extension p(r,t)=pa(r,t)+ po(r,t) =] (r,0)|2+]o(r,0)]2. (3

of this phenomenon has recently been discovéi&l The

dynamics of the inner electron on an elliptical orbit can leadThe exchange potential can be safely neglected since we will
to stabilization of circular motion in the outer electron. In seek a split-packet solution, a packet that is spatially local-
that case the outer electron sees the nucleus with cliargeized in two distinct places so that the prodpe(r) p,(r) is

=2 but screened by the inner electron as one anisotropieffectively zero for all values of. This is obtained if one
effective chargeZ.¢¢, which is significantly less than 1 but electron is far from the nucleusuter componenp,) and
neverless provides stabilization of the circular motion. Al-the other is very near to {inner componenp,).
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Our assumption that one electron is near and the other D(q)=q,
very far from the nucleus allows us retain the dipole term in
one of the HamiltonianfEg. (2)] and the monopole term in and
the other. This permits us to look at the Hartree equatitns
as the Schmdinger equations of two separate electrons—one s(@)=V(1—-a)(1+2q). (12)

in a Coulomb plus dipole potential with a Hamitonian . , . . .
The relative angular confinement of this nondispersing

V21 dt)ery packet can be estimated asAé{) R and the solution rep-
Hi=- > T Tt (4)  resents a dropletlike electron moving around the circular or-
L&l |4l bit in the laboratory frame. In the case of the inner electron

e will seek a solution in the form of an elliptical stdtEs]

hat adiabatically follows the internal fiel, generated by
the outer electron13]. The average angular momentum of
V2 o 1 this state is oriented along the angular-momentum vector of

2 . .
-t (5)  the outer electron. In the rotating frame this state can be
2 g [r=R()] written in a compact form as a generalized rotation of the
circular statdn,,n,—1,n,—1), namely,

and the other in a time-dependent modified Coulomb fiel
with the Hamiltonian

H2: -

where
Bo(r)=(rle " *M|ny,n,— 1~ 1), (13)

thf*r,tr ro,tydry,
® YirsUrada(ry, bdry whereA, is they component of the Runge-Lentz vectar

for the He" ion,

d(t):f W5 (1o, a4hp(rp,t)dry. (6) n, (pxL—Lxp| 2r
=2 - (14
We consider the case where bdthandd are rotating with 2 2 '
the same angular frequenay, and the parameter satisfies the conditiofil 3]
R(t)=R(x coswt+ysinwt), 3n,E,
tana= P (15

d(t) =d(xcoswt+ysinwt), (7)
and then we can linearize the time-dependent terms i;|'he dipole momend for this state can be found analytically

Hamiltonians (4) and (5). In the corotating frame, the as[18]
coupled stationary Hartree equations can be now written as

d=f @5 (1)Xo(r)dr=—3ny(n,— 1) e~ — 3ae,

VZ
—?—m_Elx_sz b1=€191, (16
v where we definedi=n3/2 as the Bohr radius of the inner
electron and sim is the eccentricity of this state, related to
- + — — ) L]
2 r] Eox—ol,|$2= €26 ®  the average angular momentum,
Here the coupling is vi€E; and E,, which are effective e=sina=+1—(L,)?/n5. 17

electric fields defined by
The equilibrium of forces for the outer electron and the

E;=2d/R®, E,=1/R% (9)  self-consistency of the equatio), (9), and (15) leads to

) the following system of equations:
For the outer electron we use our previous regi8,17

that in the rotating frame we have a Gaussian packet solu- 1-0g=3pgQe,
tion, which in the harmonic approximation can be written as

. ) 8 &
by(r)= Neleye—(w/Z)[Ay2+ B(x—R)Z]e—(wIZ)[Zlc(x—R)y+ Dzz], pg= AT
(10) (1—¢€9)

where A, B, C, and D depend only on the dimensionless Where we have introduced another dimensionless parameter
parameteq= 1/R3w?, p=a/R, which is the ratio between the Bohr radius of the
inner state and the radius of the outer packet orbit. Figure 1
A(Q)= \/(l—q)(8+4q—9q2—85(q)/3q, (11) shows the parametgr as a function of eccentricity for q
within the limits of harmonic stability2].

(18

B(a)=s(q)A(a)/(1—q), Our Mathieu theory for the wave functiap, of the outer
electron[3] provides the explicit decomposition of this func-
C(q)=[2+q—2s(q)]/3q, tion on aligned hydrogenic eigenstaigg, |,
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FIG. 1. The ratigp between the inner Bohr radius and the radius
of the outer electron orbit as a function of the eccentricity of the
inner orbite. The plot shows values appropriate to the harmonic
stability domain 8/9<q<1.

$1() =2 Andnn-1a-a(F), (19) =143

o o FIG. 3. The stroboscopic snapshots of the time-dependent prob-
where the coefficienta, can be found from ther-periodic ability density of the inner and outer electron. The outer electron
zero-order Mathieu functiosy(¢,s), (Gaussian distributionis prepared in the Trojan packet state for

n,=60 andg=0.9562, while the inner electron is in the elliptical
state with eccentricitye=0.25 andn,=21. The outer electron is
a,= f eo(€,5)e 2é—ng g (20 preserved in the Trojan state with some shape escillations, wr;ile the
inner follows with the elliptical state polarization. We plog,|
+0.03 ¢,|2. The outer electron square covers the space region of
where nfzw_m&vR and S=(4/3)(E2/w2) is the dimen- 10800 10800 a.u., while the inner is magnified to 1600000.

sionless parameter in the Mathieu equation for the generating'® iMe is in units of cycles of rotation.

function, Note that the above result cannot be obtained within the

perturbation theorj3]. An analogous expansion for the inner

9%eg(&,S) electron in the elliptical state in terms of hydrogeniclike
(9—52[5—25005 Zleo(¢,5)=0. (2D statesb,, of He" is [19]
I=n271
ba(N)= 2 )Py (1), (22)
I=—ny+1
where
1 [2(n,—1)]! VT J1- 2]
C =
(e) o1 (Ny+ =) (ny—I—1)1 | | 1- 1 ¢2
X e2=1), (23)

Equationg10) and(13) together with Eqs(18) constitute
our final result: namely, the existence of the class of states of
helium in which the inner electron is tightly bound to the
nucleus, producing a core with a positive charge 1, slightly
polarized by the outer electron, which moves around a circu-
lar orbit without spreading This solution corresponds to
classical solutions in which both classical electrons orbit
around the nucleus in the same direction. Figure 2 shows the
corresponding classical two-electron orbit of this type. The
inner electron is moving around an ellipse with its major axis
adiabatically following the circular motion of the outer elec-
FIG. 2. The classical two-electron orbit in the laboratory frametron.
corresponding to the predicted quantum state der0.061. The It is useful to introduce a natural radius for the outer elec-
inner electron moves around a nearly circular orbit whose majotron,
axis follows the position of the outer electron. In the lower right
corner we plot the magnified trajectory of the inner electron. Msc= Rw2/3:q—1/3’ (24
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which is the radius of the outer electron orbit scaled to the Summarizing, we have found stable quantum states of
Bohr radius for the Kepler frequenay. For the hydrogen two-electron atoms. These are interesting because the atom
atom,r.=1, andr. can be used to represent the deviationfesembles hydrogen without the quantization restrictions first
of the given circular orbit from hydrogenic. Fay=8/9,  Proposed by Bohr, but requiring the compact nuclear core
which is the border of classical stability of a Trojan state,diScovered by Rutherford. Following an earlier convention
r<=(9/8)Y3~1.0040. This shows that, for the class of solu-[14] we call them *Rutherford atoms.” Our theory predicts
S¢ A ’ that a subtle adjustment of the state of the inner electron to
tions (_jlscussed here, the two-electron atom Iooks_almost e state of the outer one must be obtained. The time-
actly like a hydrogen atom, but the outer well-localized elec-yependent mean-field numerical simulations confirmed the
tron is moving around an unquatized Keplerian circular orbitexistence of our state. The method of preparation of this state
with frequencyw. Analogous to Trojan states, this state iswill be discussed elsewhere.

expected to be a resonant state with a negligible radiative Note addedSince submission, reports have appeared that
and ionization decay raterqwmagub!ngﬁo) if the param- extend in ve_lrious ways the induced circular stabilization we
eterq is within the interval of harmonic stability21]. discovered in Refd2,3]. Recent examples are in R¢22]

In order to confirm our predictions we have solved the part of this research was supported by NSF Grant Nos.
time-dependent Hartree equatiofiy and (2) starting with  PHY94-15583 and PHY95-11582 and the Army Research
the initial state predicted from our theory and using the inneiOffice and by the Messersmith Foundation at the University
electron multipole expansiofi20]. We applied the split- of Rochester. This work is part of the research program of
operator method used in our single-electron simulat{@s the Foundation for Fundamental Research on M4E&M),
Figure 3 shows the total electron density for both electronsvhich is subsidized by the Netherlands Organization for the
as it develops with time from the predicted state. The outeAdvancement of ResearctNWO). We acknowledge the
packet propagates in a well-confined way, while the polarizahelpful cooperation of H. G. Muller in connection with nu-
tion of the inner state follows. merical calculations.
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