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Some properties of the computable cross-norm criterion for separability

Oliver Rudolph*
Quantum Optics & Information Group, Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica ‘‘Alessandro Volt

Universitàdegli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy
~Received 9 December 2002; published 27 March 2003!

The computable cross-norm~CCN! criterion is a powerful analytical and computable separability criterion
for bipartite quantum states, which is also known to systematically detect bound entanglement. In certain
aspects this criterion complements the well-known Peres positive partial transpose~PPT! criterion. In the
present paper we study important analytical properties of the CCN criterion. We show that in contrast to the
PPT criterion it is not sufficient in dimension 232. In higher dimensions, theorems connecting the fidelity of
a quantum state with the CCN criterion are proved. We also analyze the behavior of the CCN criterion under
local operations and identify the operations that leave it invariant. It turns out that the CCN criterion is in
general not invariant under local operations.
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I. INTRODUCTION

Entanglement of composite quantum systems is a key
source in many applications of quantum information techn
ogy. However, theoretically entanglement is not yet fully u
derstood and to decide whether or not a given state
entangled or useful for quantum information processing p
poses is in general a difficult question. Therefore the cha
terization and classification of entangled states is an imp
tant area of research that has received much attention in
development of quantum information theory. In recent ye
considerable progress has been made towards develop
general theory of quantum entanglement. In particular, cr
ria to decide whether or not a given quantum state is
tangled are of high theoretical and practical interest. Hist
cally, Bell-type inequalities were the first operational crite
to distinguish between entangled and separable states. D
the importance of entanglement in quantum information p
cessing, there has been a dramatic increase in our knowl
and understanding of entangled quantum states. Today
have much more subtle and effective separability crite
than provided by Bell inequalities. Most notably, in Ref.@1#
Peres obtained a powerful computable necessary separa
criterion, the so-called positive partial transpose~PPT! crite-
rion. The Peres criterion stipulates that the partial transp
of any separable quantum state is again a state. The H
decki family formulated a necessary and sufficient ma
ematical characterization of separable states in terms of p
tive maps@2#. Subsequently, the study of separability crite
and their relation to positive maps attracted a great dea
attention and several new criteria were formulated@3#. By
now there exists a sophisticated theory based on so-ca
entanglement witnesses@3–5#. However, for a long time the
PPT criterion remained the most powerful and versatile
erational separability criterion. It was only relatively recen
that a novelanalytical separability criterion not based o
entanglement witnesses or positive maps was derived in
@6#. The new criterion was derived within the context of
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approach that aims to characterize entanglement by u
norms@7#. In Ref. @6#, the new criterion was namedcomput-
able cross-norm criterionfor reasons to become clear below
In the present paper I shall adopt this terminology and
brevity also use the acronym CCNcriterion. The CCN cri-
terion is as easy to compute and as versatile as the
criterion, but yet independent of it@6#. The new criterion is
the first analytical separability criterion that is known to sy
tematically detect bound entanglement as well as genu
multipartite entanglement@8#. The power of the new crite-
rion was already demonstrated in Ref.@6# where a number of
examples were discussed. It was shown there that the C
criterion is necessary and sufficient for pure states while
mixed states the CCN criterion is not sufficient in dimensi
d>3. For dimension 232 the question of sufficiency wa
left open.

Recently, a nonanalytical but computationally tractab
generalization of the PPT criterion based on semidefin
programming was presented in Ref.@9#. This powerful
method is also able to detect bound entanglement. It is c
however, that the same ideas can also be applied to the C
criterion. It is therefore natural to conjecture that the te
described in Ref.@9# together with the analog generalizatio
of the CCN criterion will provide a very powerful hierarch
of numerical separability tests.

The CCN criterion complements the Peres criterion
several aspects. The aim of the present paper is to study
clarify some important analytical properties of the CCN c
terion in detail. I shall demonstrate three important results
Sec. III, we study the CCN criterion in dimension 232. We
find that the criterion is in general not sufficient in dimensi
232. We also prove that for two-qubit states with max
mally disordered subsystems, the CCN criterion is neces
and sufficient. In Sec. IV, we study the CCN criterion
arbitrary dimension and prove theorems relating upper
lower bounds for the fidelity of quantum states to the CC
criterion. Finally, in Sec. V we study the behavior of th
CCN criterion under local operations. We show that the CC
criterion is not invariant under local operations and theref
also not under LQCC operations~i.e., quantum operations
that can be implemented locally with classical communi
©2003 The American Physical Society12-1
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OLIVER RUDOLPH PHYSICAL REVIEW A67, 032312 ~2003!
tion between the parties!. We put forward a generalization o
the CCN criterion that is strictly stronger than the CCN c
terion. In the course of the present paper, we employ
techniques and methods that I hope will prove useful also
further studies and applications of the CCN criterion.

Throughout the paper we adopt the following notatio
the set of bounded operators onCd ~i.e., d3d matrices! is
denoted byT(Cd). The canonical real basis ofCd is denoted
by (u i &) i 51

d and the maximally entangled wave function wi
respect to this basis is denoted byuC1&[(1/Ad)( i 51

d u i i &.

II. THE CCN CRITERION

A quantum state% on Cd
^ Cd is calledseparable~disen-

tangled! if it can be expressed as a convex combination
product states@10#, i.e., in the form

%5(
i 51

k

pi% i ^ %̃ i .

Otherwise% is calledentangled.
The CCN criterion is a necessary separability criterion

can be formulated in different equivalent ways. A very use
and instructive way is the following procedure. Conside
quantum state% defined on a tensor product Hilbert spa
Cd

^ Cd. We denote the canonical real basis inCd by (u i &) i 51
d

and expand% in terms of the operatorsEi j [u i &^ j u, i.e., we
write

%5(
i jkl

% i jkl Ei j ^ Ekl . ~1!

Next, we define an operatorA(%) that acts onT(Cd
^ Cd) by

A~% ![(
i jkl

% i jkl uEi j &^Eklu. ~2!

Here uEi j & denotes the ket vector with respect to Hilbe
Schmidt inner product̂A,B&[tr(A†B) in T(Cd). We also
write iAi2[^A,A&1/2. The norm iAi2 is often called the
Hilbert-Schmidt normor the Frobenius normof A and is
equal to the sum of the squares of the singular values oA.
The sum of the absolute values of the singular values ofA is
called thetrace class norm, or simply trace norm, and is
denoted byiAi1.

Criterion 1. The CCN criterion asserts that if% is sepa-
rable, then the trace class norm ofA(%) is less than or equa
to 1. Whenever a quantum state% satisfiesiA(%)i1.1, this
signals that% is entangled.

In Ref. @6# it has been shown that the criterion is indepe
dent of the basis ofCd chosen. In fact, there is the followin
representation foriA(%)i1:

t~% ![iA~% !i15 infH(
i

ixi i2iyi i2 :%5(
i

xi ^ yi J ,

~3!
03231
y
r

:

f

t
l

a

-

where the infimum runs over all decompositions of% into
finite sums of simple tensors. It is easy to see that the n
t satisfies the inequality

t~s1^ s2!<is1i1is2i1 .

This inequality is called thesubcross propertyin the math-
ematical literature, which justifies the namecomputable
cross-norm criterion. From Eqs.~1! and ~2! it is a straight-
forward and trivial exercise to determine the matrix rep
sentation forA(%) in the canonical basis. It turns out tha
A(%) is equal to the so-calledOxenrider-Hill matrix reorder-
ing of % that was studied in Ref.@11#.

We conclude this section by remarking that also the Pe
criterion can be written in the form of a norm criterion, i.e
the Peres criterion is equivalent to the following statemen
a state% satisfiesi%T2i1.1, then% is entangled. HereT2
denotes the partial transpose with respect to the second
system.

III. THE CCN CRITERION FOR TWO QUBITS

In Ref. @6# the CCN citerion was computed for sever
examples, including Werner states, isotropic and Bell dia
nal states. In dimension 232 the CCN criterion turned out to
be necessary and sufficient for all these examples. It is
purpose of this section to study the CCN criterion in dime
sion 232 in more detail. It is known that any two-qubit sta
% can be expressed in terms of Hilbert-Schmidt operator

%5
1

4 S 1^ 11r•s^ 111^ s•s1 (
m,n51

3

tmnsn^ smD .

~4!

Here1 stands for the identity operator,$s i% i 51
3 are the stan-

dard Pauli matrices,r ,sPR3 andr•s5( i 51
3 r is i . We denote

the real matrix formed by the coefficientstmn by T(%). The
separability and distillability properties of two qubit states
the Hilbert-Schmidt space formalism have been discusse
detail in Refs.@12,13#. Here we built on these results to stud
properties of the CCN criterion. First we note thatr and s
equal the Bloch vectors of the reductions%1[tr2% and %2
[tr1% of %, respectively. A state with maximally disordere
subsystems thus hasr5s50 in Eq. 4. We prove that the
CCN criterion is necessary and sufficient for two-qubit sta
with maximally disordered subsystems.

Proposition 2. Let % be a two-qubit state with maximally
disordered subsystems. TheniA(%)i15(11iT(%)i1)/2,
i.e., iA(%)i1<1 if and only if % is separable.

Proof. Since the Hilbert-Schmidt normi•i2 is invariant
under unitaries, it is obvious from the variational express
for iA(%)i1 given above thatiA(%)i1 is invariant under
local unitary operations of the formU1^ U2 acting on%. As
shown in Ref.@13# we can always choose local unitarie
U1 ,U2 such thatT(U1^ U2%U1

†
^ U2

†) is diagonal. These
two facts imply that without loss of generality we can a
sume thatT(%) is diagonal. Then% is of the form%5 1

4 (1
^ 11(m51

3 tmsm^ sm). Correspondingly, we findA(%)
5 1

4 u1&^1u1(m51
3 (tm/4)usm&^sm* u. Here * denotes complex
2-2
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SOME PROPERTIES OF THE COMPUTABLE CROSS- . . . PHYSICAL REVIEW A 67, 032312 ~2003!
conjugation. Note that„1/A2u1&,(1/A2)us&… is an orthonor-
mal basis with respect to the Hilbert-Schmidt inner produ
iT(%)i1 is invariant under local unitary operations acting
%. Thus iA(%)i15(11(m51

3 utmu)/25(11iT(%)i1)/2.
Clearly if % is separable, theniA(%)i1<1. If % is not sepa-
rable, then it follows from Proposition 4 in Ref.@13# that
iTi1.1. This implies iA(%)i1.1. Alternatively, the last
implication also follows from Theorem 2 in Ref.@14#. j

We now wish to relate the CCN criterion with the fideli
of two-qubit states. The fidelity of a state% is defined as
f (%)[maxC^Cu%uC& where the maximum is over all max
mally entangled pure statesC. The fidelity is an important
quantity that is often employed as a measure of the efficie
of quantum communication protocols. We have the followi

Proposition 3. For any two-qubit state% we havef (%)
<iA(%)i1/2.

The proof of Proposition 3 can be found in Appendix A
Proposition 4. Let % be an entangled two-qubit state wi

maximally disordered subsystems. TheniA(%)i152 f (%).
Proof. Let % be an entangled two-qubit state with max

mally disordered subsystems. Sincef (%) and iA(%)i1 are
both invariant under local unitary operations, we can assu
again thatT(%) is diagonal. From Proposition 2 we kno
that iA(%)i15 1

2 @11iT(%)i1#. On the other hand, an argu
ment similar to the proof of Eq.~A1! in Appendix A leads to

f ~% !5
1

4
1max

U
(
n51

3
tn

8
tr~sn

TUsnU†!, ~5!

where the maximum is over all unitariesU on C2 and T
denotes transposition. We observe that for any entan
two-qubit state% with maximally disordered subsystems, th
number of negative eigenvalues of the matrixT(%) is either
exactly one or exactly three. The latter statement is an
mediate consequence of the geometric representation
such states given in Proposition 3 and Proposition 4 in R
@13#. From Proposition 3 above and the proof of Proposit
1 in Ref. @13# @in particular Eq.~13! there#, it follows that
there exists a maximally entangled pure state that comp
sates the signs of the negative eigenvalues ofT(%). More
precisely, if the signature ofT(%) is (2,2,2), then in Eq.
~5! chooseU5eif( 2 i

0
0
i ). Moreover, for the signatures

(1,1,2), (1,2,1), and (2,1,1) chooseU5eif( 1
0

0
1),

U5eif1, and U5eif( 0
1

21
0 ), respectively. This shows tha

2 f (%)5iA(%)i1 . j
It is worthwhile to note that Proposition 4 is in general n

true for separable states. To see this consider a sepa
state with maximally disordered subsystems for whichT(%)
has two nonpositive eigenvalues. Such a state exists by
results of Ref. @13#. To achieve 2f (%)52^cu%uc&
5iA(%)i1 for some maximally entangled pure stateuc&, we
need to have, say,T(uc&^cu)5diag(21,21,1). However, by
the results of Ref.@13# there is no state with such aT matrix.

Notice that all the main examples for two-qubit states
which the CCN criterion was explicitly computed in Ref.@6#
have maximally disordered subsystems. Thus by Propos
2—and in accordance with the results of Ref.@6#—the CCN
criterion is necessary and sufficient for these states. I
03231
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worthwhile to note that there are also families of two-qu
states without maximally disordered subsystems for wh
the CCN criterion is a necessary and sufficient condition
separability. An example is the family of states

%p5puc&^cu1
12p

4
1^ 1,

where uc& is a ~not necessarily maximally entangled! pure
state and wherepP@2 1

3 ,1#. It is straightforward to check
that for this family of statesiA(%p)i1<1 if and only if p
<1/(4Aa1a211) where (a1 ,a2) denote the Schmidt coef
ficients of uc&. Invoking the PPT criterion shows tha
iA(%p)i1<1 iff %p is separable. In view of these exampl
one may thus conjecture that the CCN criterion is necess
and sufficient for two qubits. However, it turns out that th
conjecture is not true. A counterexample can easily be c
structed along the lines of Ref.@15#. Consider a two-qubit
state that can be expressed in the form%5 1

4 @1^ 11s(1
^ s3)1r (s3^ 1)1t(s1^ s1)2t(s2^ s2)1(11r 2s)(s3
^ s3)# where r ,s,tPR and where we assumes.r . A
straightforward calculation shows that the partial transp
of this state is positive if and only ift50. On the other hand
iA(%)i15g(s,r )1utu whereg(s,r ) is a non-negative func-
tion of s andr. Therefore if we pick appropriate values fors,
r, and t such that g(s,r ),1 and such that 0,utu<1
2g(s,r ), then the resulting two-qubit state is entangled~as
the PPT criterion is necessary and sufficient in dimensio
32) but is not detected by the CCN criterion. A possib
choice would be, for instance,s5 1

2 ,r 5 1
4 , andt5 1

16 . Details
of the calculations and the precise form ofg can be found in
Appendix B. Our example proves the following.

Proposition 5. The CCN criterion is not a sufficient crite
rion for separability in dimension 232.

IV. THE CCN CRITERION IN ARBITRARY DIMENSION

The aim of the present section is to prove generaliz
versions of the Propositions 2–4 in arbitrary dimensions.
particular, we prove that (1/d)tr@A(%)# and (1/d)iA(%)i1
are lower and upper bounds for the fidelityf (%), respec-
tively. The examples studied in Ref.@6# imply that the CCN
criterion is not sufficient for separability in dimension grea
than 2. In this section, we use the generalizedd-level spin
matrices that were studied in Refs.@16,17#. If we denote the
canonical basis by (u i &) i 51

d , then thed-level spin matrices
are given by

Sjk[ (
r 50

d21

exp~2p i j r /d!ur &^r % ku,

where % denotes addition modulod. It was shown in Ref.
@17# that

S 1

Ad
SjkD

jk

,

2-3
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OLIVER RUDOLPH PHYSICAL REVIEW A67, 032312 ~2003!
forms an orthonormal basis of the Hilbert-Schmidt space id
dimensions. Moreover, for (j ,k)Þ(0,0) the matrix
(1/Ad)Sjk has vanishing trace. We arrange the matric
(Sjk)( j ,k)Þ(0,0) into a (d221)-vector S5(S01,S02,
. . . ,Sd21 d21)5:(S1 ,S2 , . . . ,Sd221). With this notation,
we can easily generalize the representation in Eq.~4!. We
arrive at that every bipartite quantum state% on Cd

^ Cd can
be expanded in Hilbert-Schmidt space as

%5
1

d2 S 1^ 11r•S^ 111^ s•S* 1 (
m,n51

d221

tmnSn^ Sm* D .

~6!

Herer ands are complex vectors inCd221 and thetmn form
a (d221)3(d221) complex matrixT(%). * denotes com-
plex conjugation. The reduced states of the subsystems%
are given by%15tr2(%)5(11r•S)/d and %25tr1(%)5(1
1s•S* )/d. From Eq.~6! we infer

A~% !5
1

d2 S u1&^1u1(
i

r i uSi&^1u1(
i

si u1&^Si u

1 (
m,n51

d221

tmnuSn&^Smu D . ~7!

We now wish to relate the operatorA(%) to the fidelity f (%)
of %. The results of Refs.@6,18# imply that if % is pure or an
isotropic state, thend f(%)5iA(%)i1. In general we will see
that equality does not hold. However, Proposition 3 imme
ately generalizes to arbitrary dimension, i.e., we have
following.

Proposition 6. Let %PT(Cd
^ Cd) be a bipartite state. The

d f(%)<iA(%)i1.
For a proof we refer to Appendix A. Moreover, we ha

the following proposition.
Proposition 7. Let % be a bipartite state onCd

^ Cd. Then

d f~% !5max
U

utrA„~1^ U !%~1^ U†!…u,

where the maximum is over all unitary operators U onCd.
Moreover,d ^C1u%uC1&5tr@A(%)#<d f(%). If in addition
A(%)>0, thend f(%)5utr@A(%)#u5iA(%)i1.

Proof. From Eq. ~7! we infer tr@A(%)#5(1/d)(1
1(ntnn). On the other hand, note that@19# f (%)
5maxc^cu%uc&5maxU^C1u(1^ U)%(1^ U†)uC1&. The first
maximum is with respect to all maximally entangled statec
while the second is with respect to all unitary operators
Cd. Moreover,uC1&5(1/Ad)( i u i ,i & where (u i &) denotes the
canonical real basis ofCd. A straightforward calculation
shows that

f ~% !5
1

d2 S 11max
U

1

d (
mn

tmn̂ SmuUTSnU* & D . ~8!

This implies the variational expression in Proposition
and also that tr@A(%)#<d f(%). Moreover, we find
03231
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tr@A(%)#5d^C1u%uC1& ~corresponding to U51). If
A(%)>0, then tr@A(%)#<d f(%)<iA(%)i15tr@A(%)#. j

Corollary 8. Let % be a bipartite state onCd
^ Cd. If

tr@A(%)#.1, then% is distillable.
Proof. This follows immediately from Proposition 7 an

the results of Ref.@18#. j

Corollary 9. Let % be a bipartite state onCd
^ Cd. Then

tr@A(%)#>0.
Note thatA(%) is in general not Hermitian. The following

proposition is our generalization of Proposition 2.
Proposition 10. Let % a bipartite state with maximally

disordered subsystems. TheniA(%)i15(1/d)@11iT(%)i1#.
If T(%)>0 andiA(%)i1.1, then% is distillable.

Proof. Let % be a bipartite state with maximally disor
dered subsystems. Then as in the proof of Proposition 2

A~% !5
1

d2 S u1&^1u1 (
m,n51

d221

tmnuSn&^Smu D .

Since

S 1

Ad
u1&,

1

Ad
uSn& D

forms an orthonormal basis of the Hilbert-Schmidt space
dimension d, we find that iA(%)i15(1/d)@11iT(%)i1#.
This proves the first half of Proposition 10. From Eq.~7! we
see that for states% with maximally disordered subsystem
T(%)>0 if and only if A(%)>0. Now if T(%)>0, then by
Proposition 7d f(%)5iA(%)i1. ThusiA(%)i1.1 is equiva-
lent to f (%).1/d. By the results of Ref.@18# this implies
that % is distillable. This proves the proposition. j

V. THE CCN CRITERION UNDER LOCAL OPERATIONS

In the paradigmatic situation studied in quantum inform
tion theory two parties, traditionally called Alice and Bo
share parts of composite quantum systems and are ab
perform local operations on their respective parts and co
municate classically. An essential requirement for measu
of entanglement is to be nonincreasing under LQCC ope
tions, i.e., operations that can be implemented locally w
classical communication between the parties. In the pre
section, we study the behavior of the quantityiA(%)i1 under
local operations. An operation is a completely positive line
mapL that is trace nonincreasing for positive operators.
the following we are only interested in trace preserving o
erations. Such quantum operations are all those operat
that can be composed out of the following elementary ope
tions @19#: (O1) adding an uncorrelated ancilla system
(O2) tracing out part of the system, (O3) unitary transfor-
mations, (O4) Lüders–von Neumann measuremen
LLvN :T(H)→T(H),LLvN(r)5( i 51

r PirPi where (Pi) i 51
r is

a complete sequence of pairwise orthogonal projection
erators onH.

Proposition 11. The quantityiA(%)i1 remains invariant
under local operations of the type~O3!. It is nonincreasing
under local operations of type~O1! and ~O4!. iA(%)i1 may
2-4
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SOME PROPERTIES OF THE COMPUTABLE CROSS- . . . PHYSICAL REVIEW A 67, 032312 ~2003!
increase, decrease or stay invariant under local operation
type ~O2!.

Corollary 12. The CCN criterion is not invariant unde
local operations.

The statement of the Corollary means that if% is a state
satisfying, say,iA(%)i1<1, then there may be a stateL(%)
obtained from% by a local trace nonincreasing operationL
such thatiA„L(%)…i1.1.

Proof of Proposition 11. The invariance ofiA(%)i1 under
local unitary operations is an immediate consequence of
representation in Eq.~3!. Similarly, it is immediate from Eq.
~3! that iA(%)i1 is nonincreasing under adding a local a
cilla (O1). To see thatiA(%)i1 is nonincreasing under op
erations of type (O4), let (Pk)k be a complete family of
mutually orthogonal projectors onCd and let LLvN(%)
[(k(Pk^ 1)%(Pk^ 1). Then using Eq.~3! yields

iA„LLvN~% !)i1< infH(
i

I(
k

Pkxi PkI 2iyi i2 :%5(
i

xi

^ yi J < infH(
i

ixi i2iyi i2 :%5(
i

xi ^ yi J
5iA~% !i1 ,

where in the second line we used that the Hilbert-Schm
norm is nonincreasing underpinching, i.e., i(kPksPki2
<isi2 for all families of mutually orthogonal projector
with (kPk51 and all s. Finally, consider two bipartite
states%1 and %2 that satisfy iA(%1)i1,1 and iA(%2)i1
.1. TheniA(%1^ %2)i15iA(%1)i1iA(%2)i1. It is imme-
diate that if Alice and Bob locally trace out%1, then the
value of iA(%)i1 will increase, while tracing out%2 de-
creasesiA(%)i1. @If %1 would satisfyiA(%1)i151, tracing
out %1 would obviously leave the value ofiA(%)i1 invari-
ant.# j

Proof of Corollary 12. The argument in the proof o
Proposition 11 also implies that the CCN criterion is n
invariant under local operations. To see this, choose%1 and
%2 such that iA(%1^ %2)i15iA(%1)i1iA(%2)i1,1 and
iA(%2)i1.1, i.e., the state%1^ %2 satisfies the CCN crite
rion. Tracing out%1 leaves Alice and Bob with%2, i.e., with
a state that violates the CCN criterion. j

Proposition 11 and Corollary 12 show that an entang
state% that satisfies the CCN criterion may be transform
into a state violating it by locally tracing out part of th
system. This suggests the following extension of the C
criterion.

Criterion 13. Consider the quantity

A~% !ª sup
KA ,KB

iA„trKa^ KB
~% !…i1 ,

where the supremum is over all local spaces KA and KB ~on
Alice’s and Bob’s side, respectively! that can be traced ou
locally. The extended CCN criterion asserts that if% is sepa-
rable, thenA(%)<1. Whenever a quantum state% satisfies
A(%).1, this signals that% is entangled.

This criterion is stronger than the CCN criterion. A trivi
example has been given above in the proof of Corollary
03231
of

e

t

t

d
d

N

.

Since there are infinitely many ways of realizing an isom
phismCd1d2.Cd1^ Cd2 the quantityA(%) will in general not
be computable and thus Criterion 13 is not fully operation
By fixing an isomorphism it is obviously always possible
pass to a weaker but operational criterion. However, we h
not yet identified a nontrivial example where the extend
criterion detects entanglement that is not already detecte
the CCN criterion. This problem is thus left as an open pro
lem.
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APPENDIX A: PROOF OF PROPOSITIONS 3 AND 6

First we extend the definition of fidelity to arbitrary trac
class operators onÃPT(Cd

^ Cd) by

f ~Ã!ªmax
C

u^CuÃuC&u,

where the maximum is over all maximally entangled pu
statesuC&. Every maximally entangled wave function is o
the form uC&5(1^ U)uC1& for some unitaryU @19#. It is
straightforward to check that for all operators of the for
Ã1^ Ã2 we have

f ~Ã1^ Ã2!5
1

d
max

U
utr~Ã1

TUÃ2U†!u, ~A1!

whereT denotes transposition. This implies that

f ~Ã1^ Ã2!<
1

d
iÃ1i2iÃ2i2 .

In other words,d f satisfies thesubcross propertywith re-
spect to the Hilbert-Schmidt normi•i2. This implies imme-
diately thatd f(Ã)<iA(Ã)i1, as iA(Ã)i1 is the greatest
cross norm with respect to the Hilbert-Schmidt norm.~Note
that this should be carefully distinguished from the great
cross norm with respect to the trace class norm that
studied in Ref.@7#!. Namely, letÃ5( i 51

k xi ^ yi be a decom-
position ofÃ into a finite sum of simple tensors, then

f ~Ã!<(
i 51

k

f ~xi ^ yi !<
1

d (
i 51

k

ixi i2iyi i2 .

Taking the infimum over all possible finite decompositio
on the right-hand side yields@compare Eq.~3!#

d f~Ã!<iA~Ã!i1 .
2-5
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APPENDIX B: THE COUNTEREXAMPLE
IN DIMENSION 2 Ã2

The matrix representation of the state%5 1
4 @1^ 11s(1

^ s3)1r (s3^ 1)1t(s1^ s1)2t(s2^ s2)1(11r 2s)(s3
^ s3)# in the canonical basis is given by

%5
1

2 S 11r 0 0 t

0 0 0 0

0 0 s2r 0

t 0 0 12s
D .

The eigenvalues are given byl150,l25(s2r )/2, and

l3,45
1

2
1~r 2s!/46

1

2
At21

~s1r !2

4
.

% is a state if the parameterss,r ,t are chosen such that eac
l i>0. We assume thats.r . By considering the subsystem
of %, we see thatusu<1 andur u<1. The eigenvalues of the
partial transpose of% are easily confirmed to bel15(1
1r )/2,l25(12s)/2,

l3,45
s2r

4
6

1

2
A~s2r !2

4
1t2.

Therefore,%T2 has a negative eigenvalue if and only ift
Þ0. Now A(%) is given by
A

.
rin

nt

v

03231
A~% !5
1

4
@ u1&^1u1sus3&^1u1r u1&^s3u1~11r 2s!us3&^s3u

1tus1&^s1u1tus2&^s2u#.

The matrix representation ofA(%) is

A~% !5
1

2 S 1 0 0 r

0 t 0 0

0 0 t 0

s 0 0 11r 2s

D .

The trace class norm of this operator is easily computed.
setc(s,r )[(11r )21(s2r )21(12s)2. The eigenvalues of
the operatorA(%)†A(%) are then

l15
1

8
@c~s,r !1Ac~s,r !224~11r !2~12s!2#,

l45
1

8
@c~s,r !2Ac~s,r !224~11r !2~12s!2#,

andl25l35t2/4. Therefore, if we setg(s,r )ªAl11Al4,
we arrive at

iA~% !i15g~s,r !1utu.
v.

d

.
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