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Some properties of the computable cross-norm criterion for separability
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The computable cross-norf@CN) criterion is a powerful analytical and computable separability criterion
for bipartite quantum states, which is also known to systematically detect bound entanglement. In certain
aspects this criterion complements the well-known Peres positive partial trangp@$ecriterion. In the
present paper we study important analytical properties of the CCN criterion. We show that in contrast to the
PPT criterion it is not sufficient in dimension<2. In higher dimensions, theorems connecting the fidelity of
a quantum state with the CCN criterion are proved. We also analyze the behavior of the CCN criterion under
local operations and identify the operations that leave it invariant. It turns out that the CCN criterion is in
general not invariant under local operations.
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[. INTRODUCTION approach that aims to characterize entanglement by using
norms[7]. In Ref.[6], the new criterion was namexmmput-
Entanglement of composite quantum systems is a key reable cross-norm criterioffior reasons to become clear below.
source in many applications of quantum information technol4n the present paper | shall adopt this terminology and for
ogy. However, theoretically entanglement is not yet fully un-brevity also use the acronym CCetiterion. The CCN cri-
derstood and to decide whether or not a given state igerion is as easy to compute and as versatile as the PPT
entangled or useful for quantum information processing pureriterion, but yet independent of [i6]. The new criterion is
poses is in general a difficult question. Therefore the charadhe first analytical separability criterion that is known to sys-
terization and classification of entangled states is an impotematically detect bound entanglement as well as genuine
tant area of research that has received much attention in thaultipartite entanglemerii8]. The power of the new crite-
development of quantum information theory. In recent yearsion was already demonstrated in Rf] where a number of
considerable progress has been made towards developingegamples were discussed. It was shown there that the CCN
general theory of quantum entanglement. In particular, criteeriterion is necessary and sufficient for pure states while for
ria to decide whether or not a given quantum state is enmixed states the CCN criterion is not sufficient in dimension
tangled are of high theoretical and practical interest. Historid=3. For dimension X2 the question of sufficiency was
cally, Bell-type inequalities were the first operational criterialeft open.
to distinguish between entangled and separable states. Due toRecently, a nonanalytical but computationally tractable
the importance of entanglement in quantum information progeneralization of the PPT criterion based on semidefinite
cessing, there has been a dramatic increase in our knowledgeogramming was presented in RdB]. This powerful
and understanding of entangled quantum states. Today, waethod is also able to detect bound entanglement. It is clear,
have much more subtle and effective separability criterischowever, that the same ideas can also be applied to the CCN
than provided by Bell inequalities. Most notably, in REf]  criterion. It is therefore natural to conjecture that the tests
Peres obtained a powerful computable necessary separabiliéiescribed in Ref 9] together with the analog generalization
criterion, the so-called positive partial transpdB®T) crite-  of the CCN criterion will provide a very powerful hierarchy
rion. The Peres criterion stipulates that the partial transposef numerical separability tests.
of any separable quantum state is again a state. The Horo- The CCN criterion complements the Peres criterion in
decki family formulated a necessary and sufficient mathseveral aspects. The aim of the present paper is to study and
ematical characterization of separable states in terms of posilarify some important analytical properties of the CCN cri-
tive mapg[2]. Subsequently, the study of separability criteriaterion in detail. | shall demonstrate three important results. In
and their relation to positive maps attracted a great deal o$ec. Ill, we study the CCN criterion in dimensiorx2. We
attention and several new criteria were formulai8l By  find that the criterion is in general not sufficient in dimension
now there exists a sophisticated theory based on so-calleztx 2. We also prove that for two-qubit states with maxi-
entanglement witness¢3-5]. However, for a long time the mally disordered subsystems, the CCN criterion is necessary
PPT criterion remained the most powerful and versatile opand sufficient. In Sec. IV, we study the CCN criterion in
erational separability criterion. It was only relatively recently arbitrary dimension and prove theorems relating upper and
that a novelanalytical separability criterion not based on lower bounds for the fidelity of quantum states to the CCN
entanglement witnesses or positive maps was derived in Refriterion. Finally, in Sec. V we study the behavior of the
[6]. The new criterion was derived within the context of an CCN criterion under local operations. We show that the CCN
criterion is not invariant under local operations and therefore
also not under LQCC operatiorige., quantum operations
*Electronic address: rudolph@fisicavolta.unipv.it that can be implemented locally with classical communica-
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tion between the partigsWe put forward a generalization of where the infimum runs over all decompositionsfinto
the CCN criterion that is strictly stronger than the CCN cri- finite sums of simple tensors. It is easy to see that the norm
terion. In the course of the present paper, we employ key satisfies the inequality
techniques and methods that | hope will prove useful also for
further studies and applications of the CCN criterion. (010 0)<[|o4] 1] o2
Throughout the paper we adopt the following notation: o i
the set of bounded operators 6ff (i.e., dxd matriceg is  1his inequality is called theubcross propertyn the math-
denoted byT(CY). The canonical real basis 6f is denoted ~ematical literature, which justifies the nanmmputable
by (/i))?_, and the maximally entangled wave function with Cross-norm criterion From Egs.(1) and(2) it is a straight-

. _ . forward and trivial exercise to determine the matrix repre-
respect to this ba denoted = ()= ii). . . . .
sP IS basis 1s ) =1L i) sentation forl(¢) in the canonical basis. It turns out that

(o) is equal to the so-calle@xenrider-Hill matrix reorder-
Il. THE CCN CRITERION ing of g that was studied in Refl11].

We conclude this section by remarking that also the Peres
fcriterion can be written in the form of a norm criterion, i.e.,
the Peres criterion is equivalent to the following statement: if
a statep satisfies|e™2|;>1, theng is entangled. Herd,
denotes the partial transpose with respect to the second sub-
system.

A quantum statep on (9 (Y is calledseparable(disen-
tangled if it can be expressed as a convex combination o
product state$10], i.e., in the form

k
Q:izl Pigi®e;.
Ill. THE CCN CRITERION FOR TWO QUBITS
Otherwisep is calledentangled
The CCN criterion is a necessary separability criterion. It
can be formulated in different equivalent ways. A very useful
and instructive way is the following procedure. Consider
guantum statep defined on a tensor product Hilbert space
(9@ (9. We denote the canonical real basisthby ([i})%_,
and expand in terms of the operatorg;;=|i)(j|, i.e., we
write

In Ref. [6] the CCN citerion was computed for several
examples, including Werner states, isotropic and Bell diago-
nal states. In dimension>22 the CCN criterion turned out to

e necessary and sufficient for all these examples. It is the
purpose of this section to study the CCN criterion in dimen-
sion 2X 2 in more detail. It is known that any two-qubit state
o can be expressed in terms of Hilbert-Schmidt operators,

1 3
e=7|lel+tr-ovl+los o+ thmnan®om .

m,n=

QZZ Qijk Eij® Ey . 1)
ijkl (4)

Next, we define an operat@t(p) that acts ofT((% (%) by  Herel stands for the identity operatdig;}>_, are the stan-
dard Pauli matrices, se R® andr- o=32_,r;0;. We denote
the real matrix formed by the coefficiertts,, by T(@). The
A(Q)=2 CijulEij){Exl. (2)  separability and distillability properties of two qubit states in
ikl the Hilbert-Schmidt space formalism have been discussed in
) . detail in Refs[12,13. Here we built on these results to study
Here |E;;) denotes the ket vector with respect to Hilbert- properties of the CCN criterion. First we note thaand s
Schmidt inner proltldzuc(A,B>Etr(A B) in T(C%). We also  gqual the Bloch vectors of the reductiops=tr,0 and g,
write [A[;=(A,A)* The norm||A|, is often called the —{r o of o, respectively. A state with maximally disordered
Hilbert-Schmidt normor the Frobenius normof A and is subsystems thus has=s=0 in Eq. 4. We prove that the

equal to the sum of the squares of the singular values. of ccN criterion is necessary and sufficient for two-qubit states
The sum of the absolute values of the singular valueisf  \yith maximally disordered subsystems.

called thetrace class normor simply trace norm and is Proposition 2 Let ¢ be a two-qubit state with maximally

denoted by|Al;. o - disordered subsystems. ThéaRi(e)|,=(1+|T(e)|)/2,
Criterion 1. The CCN criterion asserts thatdf is sepa- ¢ |2(0)|l,=<1 if and only if ¢ is separable.

rable, then the trace class normfe) is less than or equal Proof. Since the Hilbert-Schmidt norrh ||, is invariant

to 1. Whenever a quantum stagesatisfies|2(¢)|;>1, this  ynder unitaries, it is obvious from the variational expression

signals thai is entangled. for [|2(e)[, given above thaf|2(g)|; is invariant under

In Ref.[6] it has been shown that the criterion is indepen-|gqg) unitary operations of the fortd, ® U, acting ong. As
dent of the basis of chosen. In fact, there is the following shown in Ref.[13] we can always choose local unitaries
representation fof2i(e)s: U;,U, such thatT(U;®U,oUl@U}) is diagonal. These
two facts imply that without loss of generality we can as-
sume thafT (@) is diagonal. Therp is of the forme= (1
®1+ E3m:1tmo-m® om). Correspondingly, we find2()

(3 =3HDA+=3_(tw/d)|omy(or|. Here * denotes complex

m(e)=|A(e)|,=inf EI ||Xi||2||yi||2:Q:2i X ®Yif,
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conjugation. Note thaf1/y2|1),(1/J/2)| o)) is an orthonor-  Worthwhile to note that there are also families of two-qubit

mal basis with respect to the Hilbert-Schmidt inner productstates without maximally disordered subsystems for which

[T(e)|, is invariant under local unitary operations acting onthe CCN 'criterion is a necessary ar_1d sufficient condition for

0. Thus [A(0)]i=(1+23_,|tu)2=(1+|T()]1)/2. separability. An example is the family of states

Clearly if o is separable, thefRl(g)|;=<1. If ¢ is not sepa-

rable, then it follows from Proposition 4 in Ref13] that 1-p

[Tl.>1. This implies||2A(@)|;>1. Alternatively, the last QP=p|'p><'/’|+Tl®l’

implication also follows from Theorem 2 in Rdfl4]. M
We now wish to relate the CCN criterion with the fidelity

of two-qubit states. The fidelity of a state is defined as

f(@)=maxy(¥|e|¥) where the maximum is over all maxi-

mally entangled pure statek. The fidelity is an important that for this family of stateﬂ%l(gp)nlsl it and only if p
' < N + [ -
quantity that is often employed as a measure of the efficienc W(4arapt1) where fu, ap) denote the Schmidt coef

A NCYcients of |#). Invoking the PPT criterion shows that
ofquantur.n. communication protocpls. We have the fOIIOW'ng||2l(Qp)||1$1 iff 0, is separable. In view of these examples
<”I;r(o§)c|)|3|/téon 3 For any two-qubit stat@ we havef(g) one may t.hus conjecture Fhat the CCN priterion is necessary
= v and sufficient for two qubits. However, it turns out that this

The prqqf of Proposition 3 can be found in Appendix A conjecture is not true. A counterexample can easily be con-
Proposition 4 Let ¢ be an entangled two-qubit state with ¢t along the lines of RefL5]. Consider a two-qubit

maximally disordered subsystems. THEX(¢)[,=2f(e). state that can be expressed in the fome i[1®1+s(1
Proof. Let ¢ be an entangled two-qubit state with maxi- ®(r3)+r(0'3®]l)+t(0'1®0'1)—t(02®02)+(1+4r—3)(0'3

maIIy_ disqrdered subsystem;. Sintke) f'and 12(e)]l, are ®o03)] wherer,s,teR and where we assume>r. A

bOth invariant ur)der. local unitary operations, we can asSUMEaightforward calculation shows that the partial transpose

again thatT(e) is diagonal. From Proposition 2 we know ¢ yhis state is positive if and only tf=0. On the other hand,

that[[A(e)ll:=>[1+[T(e)l1]. On the other hand, an argu- [A(e)1=9(s,r) +|t| whereg(s,r) is a non-negative func-

ment similar to the proof of EAL) in Appendix Aleads 10 ion"of s andr. Therefore if we pick appropriate values fr

where ) is a (not necessarily maximally entang)epure
state and wher@e[—3,1]. It is straightforward to check

1 3 r, and t such thatg(s,r)<1 and such that €|t|<1
f(0)= >+ max —ntr(a'IUcrnUT), (5) —g(s,r), then.the. resulting two-qubit s‘ga_te is_ent_ang(aq
4 i1 8 the PPT criterion is necessary and sufficient in dimension 2

X2) but is not detected by the CCN criterion. A possible
where the maximum is over all unitarid$ on C?> and T choice would be, for instance= 3,r =3, andt=%. Details
denotes transposition. We observe that for any entangledf the calculations and the precise formgoéan be found in
two-qubit statep with maximally disordered subsystems, the Appendix B. Our example proves the following.
number of negative eigenvalues of the maffiy) is either Proposition 5 The CCN criterion is not a sufficient crite-
exactly one or exactly three. The latter statement is an imrion for separability in dimension:22.
mediate consequence of the geometric representation for
such states given in Proposition 3 and Proposition 4 in Ref.
[13]. From Proposition 3 above and the proof of Proposition
1 in Ref.[13] [in particular Eq.(13) therd, it follows that The aim of the present section is to prove generalized
there exists a maximally entangled pure state that comperversions of the Propositions 2—4 in arbitrary dimensions. In
sates the signs of the negative eigenvalued (@f). More  particular, we prove that (djtr[2(e)] and (14)||2(e)|,

IV. THE CCN CRITERION IN ARBITRARY DIMENSION

precisely, if the signature of(¢) is (—,—,—), thenin Eq. are lower and upper bounds for the fidelityo), respec-
(5) chooseU=g'¥( f’i o). Moreover, for the signatures tively. The examples studied in R¢6] imply that the CCN
(+,+,-), (+,—,4), and (—,+,+) chooseU=¢e'*(%}), criterion is not sufficient for separability in dimension greater
U=¢€'¢l, and U:ei¢>(tl)701 , respectively. This shows that than 2. In this section, we use the generalizilével spin
2f(e)=|2(0)|;. m  matrices that were studied in Ref46,17. If we denote the

It is worthwhile to note that Proposition 4 is in general not canonical basis by|i)){_,, then thed-level spin matrices

true for separable states. To see this consider a separalsiee given by

state with maximally disordered subsystems for whi¢le)

has two nonpositive eigenvalues. Such a state exists by the d-1

results of Ref. [13]. To achieve 2(o)=2(y|e|¥) Sik= > exp2mijr/d)|r)(rek|,

=|2A(e)|1 for some maximally entangled pure stage, we r=0

need to have, sa¥,(| #)(|)=diag(— 1,— 1,1). However, by N _

the results of Ref{13] there is no state with suchTamatrix. =~ Where® denotes addition moduld. It was shown in Ref.
Notice that all the main examples for two-qubit states forl17] that

which the CCN criterion was explicitly computed in RES]

have maximally disordered subsystems. Thus by Proposition ( 1 <

ik

ﬁ ]

2—and in accordance with the results of Ré&f—the CCN
criterion is necessary and sufficient for these states. It is

jk
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forms an orthonormal basis of the Hilbert-Schmidt spac# in tr[2((¢)]=d(¥,|e|¥.) (corresponding to U=1). If

dimensions. Moreover, for j(k)#(0,0) the matrix

A(e)=0, then tfA(e)]=<df(e)<[|A(e)[,=t[A(e)]. ™

(1/\/H)Sjk has vanishing trace. We arrange the matrices Corollary 8 Let ¢ be a bipartite state ofd®Cd. If

(Sjk) (j,k)#(0,0) into a (dz_ 1)'VeCt0r S= (801,802,

e Sgi1d-1)=:(S1,S,, ... ,Sy2_1). With this notation,
we can easily generalize the representation in @y. We
arrive at that every bipartite quantum stateon (9 (9 can
be expanded in Hilbert-Schmidt space as

d?-1
1
0= 1®1+r-S@l+1®s S+ Eltmnsneas:; .

m,n=

(6)

Herer ands are complex vectors ind’~* and thet,,, form
a (d®>—1)x(d?>—1) complex matrixT(¢). * denotes com-

plex conjugation. The reduced states of the subsystergs of

are given byp,=tr,(¢)=(1+r-S)/d and g,=tri(0)=(1
+s-S*)/d. From Eq.(6) we infer

m<e>=$(|ﬂ>@|+2 nIsy+ S sl

d2-1
v 3 tmnlsn><sm|). @

,n

We now wish to relate the operat?i{ o) to the fidelityf(o)
of ¢. The results of Ref46,18] imply that if ¢ is pure or an
isotropic state, thed f(o) =||2(¢)/1. In general we will see

tr[2A(e)]>1, theng is distillable.
Proof. This follows immediately from Proposition 7 and

the results of Ref[18]. |
Corollary 9. Let ¢ be a bipartite state oftd®CY. Then
tr[2A(e)]=0.

Note thatil( ) is in general not Hermitian. The following
proposition is our generalization of Proposition 2.

Proposition 10 Let ¢ a bipartite state with maximally
disordered subsystems. Thi2((o)||,= (1/d)[1+||T(o)l/1].
If T(e)=0 and||A(e)|;>1, thenp is distillable.

Proof. Let ¢ be a bipartite state with maximally disor-
dered subsystems. Then as in the proof of Proposition 2,

1 d?-1
9l(e)=¥( I+ X tmn|sn><sm|).

Since

(%m%m)

forms an orthonormal basis of the Hilbert-Schmidt space in
dimensiond, we find that|2(e)|;=(1/d)[1+]|T(e)|4].
This proves the first half of Proposition 10. From Eg). we
see that for stateg with maximally disordered subsystems
T(0)=0 if and only if2(¢)=0. Now if T(¢)=0, then by

that equality does not hold. However, Proposition 3 immedi'Proposition df(0)=|2(0)|,. Thus|2A(e)|,>1 is equiva-

ately generalizes to arbitrary dimension, i.e., we have thq:

following.

Proposition 6 Let ¢ e T(C% C% be a bipartite state. Then

df(e)<[A(e) |-

For a proof we refer to Appendix A. Moreover, we have

the following proposition.
Proposition 7 Let ¢ be a bipartite state ofi%@ CY. Then

df(e)=maxtra((1eU)e(1eu"),
U

where the maximum is over all unitary operators U @h
Moreover,d(¥, |o|¥,)=tr{2A(0)]<df(e). If in addition
A(0)=0, thendf(e)=[tr[A(e)]|=|2A(e)s-

Proof. From Egq. (7) we infer tf2(¢)]=(1/d)(1
+3,thn). On the other hand, note thafl9] f(p)
=max{yle|yy=max,(¥.|(1eU)e(1eU")|¥, ). The first

maximum is with respect to all maximally entangled states
while the second is with respect to all unitary operators o

9. Moreover,|¥_ )= (1/{d)=|i,i) where (i)) denotes the

canonical real basis of. A straightforward calculation

shows that

1 1
fle)=4 L+maxs X tno(SulUTSU*) | (8)
U] mn

ent to f(o)>1/d. By the results of Ref[18] this implies
that o is distillable. This proves the proposition. |

V. THE CCN CRITERION UNDER LOCAL OPERATIONS

In the paradigmatic situation studied in quantum informa-
tion theory two parties, traditionally called Alice and Bob,
share parts of composite quantum systems and are able to
perform local operations on their respective parts and com-
municate classically. An essential requirement for measures
of entanglement is to be nonincreasing under LQCC opera-
tions, i.e., operations that can be implemented locally with
classical communication between the parties. In the present
section, we study the behavior of the quanfiy ¢)|, under
local operations. An operation is a completely positive linear
map A that is trace nonincreasing for positive operators. In
the following we are only interested in trace preserving op-
erations. Such quantum operations are all those operations

That can be composed out of the following elementary opera-

tions [19]: (O1) adding an uncorrelated ancilla system,
(02) tracing out part of the system®@) unitary transfor-
mations, (4) Luders—von Neumann measurements:
A T(H) = T(H), Aun(p) =={-1PipP; where P)){_, is
a complete sequence of pairwise orthogonal projection op-
erators orH.

Proposition 11 The quantity||2((¢)|/; remains invariant

This implies the variational expression in Proposition 7under local operations of the tyg®3). It is nonincreasing

and also that [RI(p)]=<df(g). Moreover, we find

under local operations of typ@1) and (04). ||(e)||; may
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increase, decrease or stay invariant under local operations &fince there are infinitely many ways of realizing an isomor-

type (02). phism C%1%= (%1 (%2 the quantityA(e) will in general not
Corollary 12 The CCN criterion is not invariant under be computable and thus Criterion 13 is not fully operational.
local operations. By fixing an isomorphism it is obviously always possible to

The statement of the Corollary means thapifs a state  pass to a weaker but operational criterion. However, we have
satisfying, say||20(e)||;=1, then there may be a statd ) not yet identified a nontrivial example where the extended
obtained fromg by a local trace nonincreasing operatian  criterion detects entanglement that is not already detected by
such that|2A(A(e))|[:>1. the CCN criterion. This problem is thus left as an open prob-

Proof of Proposition 11The invariance of2((¢)|; under  lem.
local unitary operations is an immediate consequence of the
representation in Eq3). Similarly, it is immediate from Eq.

(3) that |4(e)ll; is nonincreasing under adding a local an-
cilla (O1). To see thaf(g)|; is nonincreasing under op-  The author would like to thank Shashank Virmani for
erations of type ©4), let (Py), be a complete family of stimulating discussions. Funding by the EC project ATESIT
mutually orthogonal projectors o and let An(@)  (Contract No. IST-2000-29681s gratefully acknowledged.
=3 (P D)o (P@1). Then using Eq(3) yields
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APPENDIX A: PROOF OF PROPOSITIONS 3 AND 6

@i 3 |3 o dvlzie=3: x

First we extend the definition of fidelity to arbitrary trace
class operators o e T(C4&CY) by

<in| 3 Ixlaylre =3 oy

=[],

where in the second line we used that the Hilbert-Schmid, 1o o the maximum is over all maximally entangled pure
norm is nonincreasing undepinching i.e., ||Ekpk"',3k”2 states|W). Every maximally entangled wave function is of
<| o], for all families of mutually orthogonal projectors y,q form|W)=(1&U)|W ) for some unitaryU [19]. It is

with 2,P,=1 and all 0. Finally, consider two bipartitt g aightforward to check that for all operators of the form
statesg, and g, that satisfy||(¢,)|1<1 and ||2(('92)||1 8w, we have
>1. Then[2(01® @)l =[A(e )] 1[A(e)]1. It is imme-

diate that if Alice and Bob locally trace owi,, then the 1
value of |2(e)||; will increase, while tracing oup, de- f _ T +

- . ® = —maxtr Uw,oU')|, Al
creased2(0)|;. [If ¢; would satisfy|A(e,)|l;=1, tracing (@18w2) = U)d (w U U0 (AD)
out 0, would obviously leave the value df((¢)|; invari-
ant) | . o

Proof of Corollary 12 The argument in the proof of whereT denotes transposition. This implies that

Proposition 11 also implies that the CCN criterion is not
invariant under local operations. To see this, choegsend _ 1
0, such that|[2(e;@ @)l =[2(ey)]:|2(e),<1 and H@em)<gloilalwsl..
[21(02)|l1>1, i.e., the state,® @, satisfies the CCN crite-

rion. Tracing o leaves Alice and Bob witle,, i.e., with - .
I ng ou'e, leav \ wit, i.e., wi In other words,df satisfies thesubcross propertyith re-

a state that violates the CCN criterion. he Hilbert-Schmid This implies i
Proposition 11 and Corollary 12 show that an entangleoSpeCt to the Hilbert-Schmidt norfn |,. This implies imme-

statep that satisfies the CCN criterion may be transformeddiat(':'Iy thatdf.(fr?)sHQl(m)th az”%(m)glhis _t(?e gr;atest
into a state violating it by locally tracing out part of the CroSS norm with respect to the Hilbert-Schmidt nofixote

system. This suggests the following extension of the ccnhat this shoulq be carefully distinguished from the greatest
criterion. cross norm with respect to the trace class norm that was

o _ vk
Criterion 13 Consider the quantity studied in Ref[7]). Namely, letw = 2{_,x;®y; be a decom-
position ofw into a finite sum of simple tensors, then

QY
f(W)==mWa>4<‘1’|ﬁf|‘1’>|,

A(e)= sup||Altrg ek (@)1,

Ka.Kg k

f(m)<§l f(x®y)=

ol

k
3 Ixilelyill-

where the supremum is over all local spacesdfd Kg (on
Alice’s and Bob’s side, respectivelyhat can be traced out
locally. The extended CCN criterion asserts that is sepa-
rable, thenA(g)=<1. Whenever a quantum stagesatisfies
A(e)>1, this signals thap is entangled.

This criterion is stronger than the CCN criterion. A trivial
example has been given above in the proof of Corollary 12. df(w)<||20(®)];.

Taking the infimum over all possible finite decompositions
on the right-hand side yieldgompare Eq(3)]
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APPENDIX B: THE COUNTEREXAMPLE 1
IN DIMENSION 2 X2 A(e) =7 [ +sloa)(1[+r[1){os|+(1+r=s)[os){os|

The matrix representation of the stage=3;[1®1+s(l
®O’3)+r((T3®1)+t(0’1®0’1)_t(0'2®0'2)+(1+r_S)(0'3
®a3)] in the canonical basis is given by

+tlo) (o] +tfor)(os].

The matrix representation &(p) is
1+r 0 O t

X 0 0 0 0 1 0 O r
QZE 0 0 s—r 0 : A :E 0t 0 0
©@©=310 0t o
t 0 0 1-s
s 0 0 1+r-s

The eigenvalues are given by =0\,=(s—r)/2, and . . .
g g 4 2=( ) The trace class norm of this operator is easily computed. We

1 1 (5+T)2 sety(s,r)=(1+r)2+(s—r)?+(1—s)? The eigenvalues of
Nga=5 +(r—s)/dx; t2+ 7 the operatoR((0) (o) are then
o is a state if the parametessr,t are chosen such that each 1
\;=0. We assume that>r. By considering the subsystems )\1=§[¢/(s,r)+ V(s =4(1+n)%(1-9)7],
of p, we see thats|<1 and|r|<1. The eigenvalues of the
partial transpose op are easily confirmed to b&;=(1 1
+1)2\,=(1-9)/2, Na=glu(sr)- Jir(s,1)2—4(1+1)%(1-9)?],
s—r 1 [(s—r)?* |
Nga=—p—*5 2 Tt and\,=\z=t%/4. Therefore, if we sef)(s,r):=vA;+ Ay,
we arrive at
Therefore,0 ™2 has a negative eigenvalue if and onlytif
#0. Now (o) is given by [2a(e)1=g(s,r)+]t].
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