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Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms
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Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice
systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coef-
ficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices
to bounded error is examined. We find that the number of Fourier components required to bound the error in
the free energy due to the broadening of the density of states scales polynomially with the number of spins in
the lattice. However, the precision with which the Fourier components must be calculated is found to be an
exponential function of the system size.
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I. INTRODUCTION

Spin-lattice models are useful for the study of magne
ordering. The dynamics of these models are specified b
Hamiltonian Ĥ involving spin operators for each of then
lattice sites. Of particular interest is the behavior of therm
dynamic functions—such as the magnetization, specific-h
capacity, and magnetic susceptibility—across phase tra
tions. These functions are encapsulated in the dependen
the Helmholtz free energy per spin,F, on system parameter
such as the temperature or applied magnetic field; pa
derivatives ofF yield the thermodynamic functions. Thu
the calculation ofF over a wide range of parameters suffic
for the determination of the finite temperature behavior
the spin-lattice model.

Calculation of the free energy for a general spin lattice
conventional means is difficult. A brute-force approa
would be enumerate the eigenenergies$Em% of Ĥ, since

F52n21kBu ln Z52n21kBu lnS (
m

e2bEmD , ~1!

wherekBu5b21 is the thermal energy andZ is the partition
function. However, as the number of eigenstates grows
ponentially with the number of spins in the lattice, the tim
required to perform the calculation is prohibitively large.
variety of quantum Monte Carlo methods exist to calcul
the free energy, including thermodynamic integration@1,2#,
histogram methods@3,4#, and cumulant expansion@5,6# tech-
niques. However, the ‘‘sign problem’’~see, for example, Ref
@7#! prevents the application of these methods to arbitr
lattice Hamiltonians.

An alternate approach is available if one can efficien
generate an estimate of the density of statesr(E). As Eq.~1!
may be written in the form

F52n21kBu lnS E
2`

`

r~E!e2bEdED , ~2!

*Electronic address: cpmaster@stanford.edu
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an approximation for the density of states directly transla
into an estimateF̃8 for the free energy per spin.

Algorithms for quantum computers have been propose
determine information about the eigenvalues of Hermit
operators@8–14#. We focus on algorithms based on the pha
estimation algorithm@11,12# that efficiently generate esti
mates of individual Fourier componentsf , of r(E); they
will be reviewed in detail in Sec. II.N iterations of the algo-
rithms yieldN Fourier components, from which an estima
of the density of states can be calculated.

An important issue that has not been addressed in
literature is the efficiency of these algorithms for calculati
thermodynamic functions. For the calculation to be deem
efficient, it must be shown that the computation time—a
thus, the number of Fourier components—required to ca
late an estimateF̃8 to bounded error scales polynomial
with n. The bounded error criterion we adopt is

Prob~ uF̃82Fu,gkBu!.12e, ~3!

whereg ande are small constants. Thus, the absolute er
in the estimated free energy per spin must be smaller tha
fraction of the thermal energy with probability arbitraril
close to 1.

We examine the primary sources of error involved in t
calculation ofF̃8 to determine the efficiency of the spectr
algorithms. First, as only a finite number of Fourier comp
nentsf , of the density of states are calculated, the estima
density of states is broadened relative to the actual funct
This deterministicsource of error~i.e., it is unchanged if the
calculation is repeated! is reduced by increasing the numb
of componentsN, and thus the computation time. We deno
an estimate of the free energy per spin subject to this bro
ening error byF8. Second, there is an inherentstochastic
source of error reflected in the deviations in the estimatedf ,

from their actual values. Subject to both deterministic a
stochastic errors, an estimate of the free energy per sp
labeledF̃8.

In this paper, we will show that if thef , are known ex-
actly, the bound in Eq.~3! may be met by a function tha
scales polynomially withn. Thus, the deterministic error du
©2003 The American Physical Society11-1
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to the broadening of the density of states does not pre
efficient estimation of the free energy per spin. However,
free energy becomes increasingly sensitive to random er
in each of thef , as the number of spins is increased. We w
show that the precision of the output of the quantum al
rithm must improve exponentially withn in order to sustain
the condition in Eq.~3!.

The paper is organized as follows. Section II reviews
quantum algorithms used to generate the componentsf , and
discusses assumptions and expected properties of the
Hamiltonian. Section III describes the calculation ofF̃8 from
the Fourier components and discusses the influence of s
pling and window functions. In Sec. IV, we analyze the d
terministic error due to broadening and determine the nu
ber of samples required to satisfy Eq.~3!. In Sec. V, we
analyze the impact of random deviations in the compone
f , on the estimated free energy.

II. QUANTUM ALGORITHMS

In this section, we review quantum algorithms for t
calculation of the Fourier transform of the density of stat
We first describe a simple algorithm applicable only
Hamiltonians that are diagonal in the computational ba
and then discuss a more general algorithm@15# applicable to
ensemble quantum computers.

As regards notation, we use the standard model for qu
tum computation, assuming ourp qubits to be two-level sys
tems with logical statesu0& j and u1& j , j P$0,1, . . . ,p21%,
corresponding to eigenstates of theŝz

( j ) Pauli spin operator
with eigenvalues61. The computational basis states for t
quantum computer are denoted asux&5ux1&1ux2&2•••uxp&p ,
where$xj% are the binary digits of the integerx. It is assumed
that the quantum computer is capable of implementing a
versal set of elementary single-qubit and two-qubit ga
The evolution time of these gates is an implementati
dependent constant, such that the overall computation tim
reflected by the number of gates used in the algorithm.

We will restrict our discussion to lattices of spin-1/2 pa
ticles, as it is straightforward to map the eigenstates ofŝz

( j )

in the spin system to the logicalu0& j andu1& j states of qubit
j of the quantum computer. Note that this restriction does
preclude the treatment of lattices of particles with sp
larger than 1/2. Generalized Jordan-Wigner transformati
exist @16,17# to represent the dynamics of such lattices b
collection of spin-1/2 particlesvia intermediate fermioniza-
tion.

Prior to the discussion of individual algorithms, we sta
three assumptions regarding the nature of the spin-la
Hamiltonian. First, we assume that the energy bandw
DE—the energy difference between the ground state and
highest excited state—is bounded by a polynomial funct
of n. This assumption is likely to be valid for models o
physical interest. As an example, consider a lattice of p
ticles interacting by an nearest-neighborXXZ interaction:

Ĥ5(
^ i , j &

@Jx~ ŝx
( i )ŝx

( j )1ŝy
( i )ŝy

( j )!1Jzŝz
( i )ŝz

( j )#. ~4!
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The expectation value of the summand in Eq.~4! must lie
between2(2uJxu1uJzu) and (2uJxu1uJzu). The energy band-
width is bounded by the product of this constant and
number of interacting pairs in the lattice, which is a functi
linear in n. By similar reasoning, for any Hamiltonian in
volving only pairwise interactions between spins~of
n-independent interaction energy!, the energy bandwidth is
O(n2) @22#.

Second, we assume that the time-evolution opera
Û(t)[exp(2iĤt) can be implemented as a sequence of
ementary single-qubit and two-qubit gates, where the nu
ber of gates is a polynomial function ofn. In cases where the
Hamiltonian consists of commuting pairwise interactio
~e.g., the Ising model!, this decomposition is elementar
Otherwise, one may use a Trotter-Suzuki expansion of n
commuting terms to implementÛ(t) to arbitrarily small er-
ror @18,19#.

Finally, we assume that the energy scale is shifted s
that the eigenenergies fall betweenE50 andE5DE. This
last assumption is made for mathematical convenience
does not affect the results of our analysis.

The following algorithms are based on the fact that t
Fourier transform of the density of statesr(E) is equal to the
trace of the time-evolution operator:

f ~ t ![E
2`

`

r~E!e2 iEtdE5Tr~e2 i Ĥt!. ~5!

As u f (t)u<2n, it is convenient to define a function

g~ t ![
f ~ t !

2n
5

1

2n
Tr~e2 i Ĥt! ~6!

such thatug(t)u<1. The algorithms described in this sectio
based on Kitaev’s algorithm@9# and the phase estimatio
algorithm@11,12#, calculate samples ofg(t) at discrete times
t, .

Before discussing the general case, it is illuminating
examine a simple algorithm restricted to spin lattices
which Ĥ is diagonal in the computational basis. As an e
ample, one might consider a nearest-neighbor Ising mode
a longitudinal magnetic field:

Ĥ5Jz(
$ i , j %

~12ŝz
( i )ŝz

( j )!1h(
i

~12ŝz
( i )!. ~7!

The gates shown in Fig. 1 for ann-qubit computer can be
used to calculate the magnitude ofg(t,)[g, . The quantum

FIG. 1. Logic diagram of an elementary algorithm to estima
ug,u.
1-2
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computer is initialized to theu0& state. The gateW corre-
sponds to a sequence of Walsh-Hadamard gatesWj for each
qubit j,

Wj :5 u0& j→
1

A2
(u0& j1u1& j )

u1& j→
1

A2
(u0& j2u1& j ).

~8!

The gateU(t,) corresponds to the time-evolution operato
As a final step, a projective measurement is performe

the computational basis. It is straightforward to show that
probability of observing all qubits in the logicalu0& state is
equal toug,u2:

u0&→
W 1

A2n (
m50

2n21

um& →
U~ t,! 1

A2n (
m50

2n21

e2 iEmt,um&

→
W

g,u0&1orthogonal components. ~9!

By assumption, the computational basis statesum& are eigen-
states of the Hamiltonian, and the time-evolution opera
appends a phase proportional to the eigenvalueEm to each
term. An unbiased estimator forug,u can be derived by per
forming R repetitions of the algorithm, and counting th
number of times all qubits are found in the logicalu0& state.

The magnitude ofg, is insufficient to reconstruct the den
sity of states. By adding an ancilla qubita, as shown in Fig.
2, one may extract estimates of both the real and imagin
parts of g, . The X[exp(ipŝx

(a)/4) and Y[exp(ipŝy
(a)/4)

gates correspond top/2 rotations of the ancilla qubit. If theX
gate is used, the probabilities of observing theuf0&
[u0&au0&q1

•••u0&qn
or uf1&[u1&au0&q1

•••u0&qn
states are

pX05U11 ig,

2 U2

, pX15U12 ig,

2 U2

, ~10!

respectively. TheY gate leads to probabilities

pY05U11g,U2

, pY15U12g,U2

. ~11!

FIG. 2. Logic diagram of an algorithm to estimate the real a

imaginary parts ofg, for diagonalĤ.
2 2
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By executingR iterations of the algorithm with theX gate
andR iterations with theY gate, one can derive estimatorsp̃
for the probabilities. Unbiased estimates of the real a
imaginary parts ofg, are

Re~ g̃,!5~ p̃Y02 p̃Y1!, ~12!

Im~ g̃,!5~ p̃X12 p̃X0!. ~13!

We use the tilde to distinguish estimates of the Fourier co
ponents obtained from the quantum algorithm from the ex
values.

The algorithm described above depends on our ability
construct an equally weighted coherent superposition of
eigenstates ofĤ; hence the restriction to Hamiltonians th
are diagonal in the computational basis. One may inst
consider an algorithm involving an ensemble of quant
computers, such that the ancilla qubit is still initialized to t
u0&a state, but the remainingn qubits are in a fully mixed
state@15#. The initial density matrix for the system is

r̂ i5
1

2n11
~ Î (a)1ŝz

(a)! Î (q1) Î (q2)
••• Î (qn), ~14!

where Î (,) is the identity operator for qubit,. The operator
Î (q1) Î (q2)

••• Î (qn) is equal to the resolution of the identit
(,uc,&^c,u, where$uc,&% is an orthogonal set of states i
the subspace spanned by qubitsq1 to qn . One could use as

$uc,&% the eigenstates of the HamiltonianĤ. We do not need
to explicitly solve for these eigenstates; the initial dens
matrix can be considered as an incoherent mixture of eig
states for any HamiltonianĤ.

If the coherent superposition created by the Wal
Hadamard gates is replaced by such an incoherent mixt
then an algorithm nearly identical to that shown above wo
for any choice ofĤ, as shown in Fig. 3. The final measur
ment is the expected value ofŝz

(a) averaged over the en
semble.

If the X gate is used for the ancilla qubit, the expect
value of ŝz

(a) is

^ŝz
(a)&5Im~g,!, ~15!

whereas theY gate leads to

^ŝz
(a)&5Re~g,!. ~16!

d FIG. 3. Logic diagram of an ensemble algorithm to estimateg,

for arbitraryĤ.
1-3
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MASTER, YAMAGUCHI, AND YAMAMOTO PHYSICAL REVIEW A 67, 032311 ~2003!
Thus, the real and imaginary components of the estimatog̃,

can be calculated from two iterations of the ensemble qu
tum algorithm.

The ensemble algorithm is interesting for two reaso
First, it is applicable to any spin-1/2 lattice HamiltonianĤ,
provided that the time-evolution operator can be decompo
into a sufficiently small number of elementary gates. Seco
initial-state preparation lends itself to ensemble quant
computation proposals involving spin resonance, where
Zeeman splitting between qubit spin states is small compa
to the thermal energy. In equilibrium, the initial density m
trix of the system is well approximated by the identity o
erator. One pseudopure-state qubit can be created from
thermal spins@20#.

III. FREE-ENERGY ESTIMATION

In this section, we discuss how an estimateF̃8 of the free
energy is generated from the Fourier components of the d
sity of states, and examine the effects of discretization on
estimated density of states.

A conceptual overview of the free energy calculation
cluding post-processing is shown in Fig. 4.N samples off (t)
are estimated via the quantum algorithm@23#, and are
weighted by a windowing functionbQ(t), described below.
Fourier transformation yields an estimate for the density
states, which may be integrated to compute the parti
function and, thus, the free energy.

Let us first leave aside the consideration of stocha
sources of error. As iterations of the quantum algorithm yi
discrete samples off (t), the reconstructed estimater8(E) is
distorted relative to the exact density of states. Any quan
calculated from discretized Fourier components will be
beled by a prime@i.e., r8(E)]. The distortion in the density
of states translates into error inF8. It is convenient to view
this error in the context of the windowing and sampling
the exact Fourier transformf (t) of the density of states
Truncation off (t) to a window of widthT0 centered abou
t50 @i.e., multiplication of f (t) by a windowing function
b1(t) that is constant forutu<T0/2 and zero elsewhere#
leads to a convolution of the density o
states with a broadening functionb1(E)[a1sinc(pE/De)
5a1@sin(pE/De)#/(pE/De), where the energy resolutionDe
is given by

De5
2p

T0
. ~17!

The window is scaled such that the broadening function
normalized to unit area; i.e.,a151/De. Increasing the win-

FIG. 4. Block diagram of the calculation ofF̃8.
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dow sizeT0 reduces the width of the broadening functio
and thus the error in the estimateF8.

The effect of sampling on the estimated density of sta
can be determined by multiplyingf (t)b1(t) by an impulse
train s(t) of spacingDt:

s~ t !5Dt (
,52`

`

d~ t2,Dt !. ~18!

Sampling leads to periodic replication of the broadened d
sity of states. The resultant function is given by the Four
transform off (t)b1(t)s(t):

r8~E![r~E!* b1~E!* (
k52`

`

dS E1
2pk

Dt D , ~19!

where the asterisk denotes convolution.
To avoid aliasing in the estimated density of states,

Nyquist sampling condition requires that

Dt<
2p

DE
. ~20!

The spacing between samples off (t) is determined solely by
the estimate of the energy bandwidth,DE. We assume tha
sampling is performed at the Nyquist rate, in which case
equality in Eq.~20! holds.

As the number of samples is equal to the ratio of t
windowing function width T0 to the sampling time, one
could determine the minimum value ofT0 required to satisfy
Eq. ~3! as a function ofn. However, the rectangular window
ing function leads to poor results. The envelope of the as
ciated broadening functionb1(E) falls off weakly as 1/E;
the oscillating side lobes are amplified at low energies by
Boltzmann factor in the calculation of the free energy. T
window width required to mitigate the resultant error sca
poorly with n. In contrast to using wider rectangular win
dows, one may adopt more elaborate window shapes, wh
corresponding broadening functions exhibit envelopes
are more sharply peaked. We consider the functionsbQ(t)
formed by the successive convolution ofQ rectangular win-
dows, each of widthT0 . Q is referred to as the order of th
windowing function. ForQ52, the window is triangular and
of width 2T0. With increasing order, the window approach
a Gaussian shape, and is of widthQT0. The resulting broad-
ening function is then

bQ~E!5aQFsincS pE

DeD GQ

, ~21!

which exhibits a 1/EQ envelope. The value ofaQ is deter-
mined by constraining the area underbQ(E) to equal 1. In
practice, a given window shape is constructed by obtain
samplesf , within the window widthQT0 centered att50,
and weighting each sample bybQ,,[bQ(t,).

As the envelope of the side lobes ofbQ(E) falls off ex-
ponentially withQ, windowing functions of large order sig
nificantly reduce the error in the calculated free ener
1-4
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However, the trade-off is a wider window, leading to mo
Fourier components, and thus more iterations of the quan
algorithm:

N5
QT0

Dt
. ~22!

Therefore, the question of howN scales with the number o
spins,n, translates into the determination of the minimu
values ofQ andT0 required to satisfy Eq.~3!.

An estimateZ8 for the partition function can be calculate
directly from the estimated Fourier components without
termediate calculation of the density of states. The Fou
transform of f (t)bQ(t)s(t) may be evaluated explicitly via
Eq. ~18! to give an estimater8(E) of the broadened, peri
odically replicated density of states in terms of the com
nentsf , :

r8~E!5
1

2pE2`

`

f ~ t !bQ~ t !FDt (
,52`

`

d~ t2,Dt !GeiEtdt

5
Dt

2p (
$t,%

f ,bQ,,eiEt,, ~23!

where we have definedt,[,Dt, and the sum is performe
over all t, within the window described bybQ,, . Integrating
Eq. ~23! over the energy bandwidth, using Eqs.~6! and~20!,
and labeling quantities with a tilde to acknowledge stocha
errors, one finds

Z̃85E
0

DE

r̃8~E!e2bEdE

5
2nDt

2pb
~12e2bDE!H bQ,012(

,.0

N/2

bQ,,

3F 1

11~ t, /b!2
Re~ g̃,!2

t, /b

11~ t, /b!2
Im~ g̃,!G J .

~24!

Note that an estimateF̃8 of the free energy may be obtaine
from the logarithm of Eq.~24!.

In addition to describing how an estimate of the free e
ergy per spin is calculated from the Fourier components,
~24! will serve as a starting point to determine the stocha
error in F̃8 due to imprecise values ofg̃, .

IV. ERROR ANALYSIS: BROADENING

In this section, we determine an upper bound on the nu
ber of samplesN of g(t) required to calculate the free energ
to the tolerance prescribed by Eq.~3!. At this point, we con-
sider the individual samples ofg, to be known exactly~al-
lowing us to omit the tilde over all quantities!, and only
consider the error inF8 due to the finite number of Fourie
components—i.e., due only to the broadening of the den
of states. With this restriction, we can show thatN is a poly-
nomial function of the number of spinsn.
03231
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As it is more convenient to work with the partition func
tion than the free energy, we use a more stringent bo
based upon the relative error in the calculated partition fu
tion Z8. As

uF82Fu,gkBu⇔e2gn21,
Z82Z

Z
,egn21, ~25!

it is sufficient to demand that

ProbS r[UZ82Z

Z U,j D.12e, ~26!

where j[12exp(2gn)5O(n). In other words, satisfaction
of Eq. ~26! automatically implies Eq.~3!.

From Eqs.~17!, ~20!, and ~22!, if the Nyquist sampling
condition is satisfied, then

N5
QDE

De
. ~27!

It has been asserted thatDE is a polynomial function ofn. In
the remainder of this section, we examine the dependenc
Q andDe on n such that Eq.~26! is satisfied. We require a
pair of intermediate results:

Lemma 1. If bQ(E) @as defined in Eq.~21!# is subject to
the normalization condition 15*2`

` bQ(E)dE, then

aQ,
cp

De
A Q

6p
, ~28!

wherec'2.0367.
Lemma 2.

Aside[12E
2De

De

bQ~E!dE,
c

pQ23
A Q

6p
, ~29!

whereQ is an even integer.
Lemma 1 places an upper bound onaQ such thatbQ(E)

is normalized. Lemma 2 defines an upper bound on the a
of bQ(E) that is outside of the interval@2De,De# ~i.e.,
outside the main lobe of the broadening function!; this bound
decreases exponentially withQ. Both lemmas are proved in
the Appendix.

One can relate the relative errorr in the calculated parti-
tion function to the parametersQ andDe via Lemma 2. As
the exact density of statesr(E) may be expressed as a su
of d functions for each eigenenergyEm , Eqs.~19! and ~20!
evaluated at the Nyquist condition yield

Z85E
0

DE

r8~E!e2bEdE

5(
m

(
k52`

` E
0

DE

bQ~E2Em1kDE!e2bEdE

5(
m

F (
k52`

` E
kDE

(k11)DE

bQ~E2Em!e2b(E2kDE)dEG
[(

m
Zm8 . ~30!
1-5
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The change of variables allows one to viewZm8 as an integral
of the broadening function, centered atEm , and weighted by
periodically replicated segments of an exponential functi
Z8 is found by summing over all eigenenergies.

The maximum relative errorr in the partition function is
bounded by the largest contribution from any single eigen
ergy, which we define asr m[maxmu(Zm8 2Zm)/Zmu, where
Zm[e2bEm. Defininggm5Zm8 /Zm , it follows that

r 5UZ82Z

Z U5 U(
m

~Zm8 2Zm!U
(
m

Zm

5

U(
m

~gm21!ZmU
(
m

Zm

<max
m

ugm21u5max
m

UZm8 2Zm

Zm
U5r m . ~31!

This argument shows that one may consider a simpli
system with just one eigenstate at an energyEm somewhere
in the energy bandwidth. An upper bound on the errorr m for
this simplified system at anyEm suffices to bound the erro
for an arbitrary energy spectrum over the same bandwid

Lower and upper bounds onZm8 (Zm,min8 and Zm,max8 , re-
spectively! are now derived to boundr m , since

r m,maxS UZm,min8 2Zm

Zm
U,UZm,max8 2Zm

Zm
U D . ~32!

In the main lobe, the minimum value of the Boltzmann fac
is e2b(Em1De). Outside of the main lobe, the minimum valu
is e2bDE. Thus,

Zm8 5 (
k52`

` E
kDE

(k11)DE

bQ~E2Em!e2b(E2kDE)dE

>~12Aside!e
2b(Em1De)1Asidee

2bDE[Zm,min8 . ~33!

Similarly, as the maximum value of the Boltzmann factor
e2b(Em2De) inside the main lobe and 1 outside,

Zm8 <~12Aside!e
2b(Em2De)1Aside[Zm,max8 . ~34!

Substituting Eqs.~33! and ~34! into Eq. ~32!, we see that

r m,max@12~12Aside!e
2bDe2Asidee

2b(DE2Em),

~12Aside!e
bDe1Asidee

bEm21]. ~35!

It is difficult to invert Eq. ~35! explicitly to find optimal
conditions onAside(Q) and De, which ensure thatr m,j.
However, one can show that the following conditions a
sufficient:

bDe5 ln~11j/2!, ~36!

Aside,
j

2
e2bDE. ~37!

As proof of their sufficiency, note that
03231
.

-

d

.

r

e

12~12Aside!e
2bDe2Asidee

2b(DE2Em)

,
j

2
1

j

2
e2bDES 12

j

2D,j, ~38!

and

~12Aside!e
bDe1Asidee

bEm21,
j

2
1

j

2
e2b(DE2Em),j.

~39!

Therefore, the conditions in Eqs.~36! and~37! guarantee that
r ,r m,j, as desired.

Using Lemma 2, one can manipulate Eqs.~36! and~37! to
show thatN scales polynomially withn.

De5
ln~11j/2!

b
, ~40!

Q2
ln Q

2 lnp
.

bDE

ln p
1

ln~1/j!

ln p
1k, ~41!

wherek55/21 ln(2c/A6)/lnp'2.9443. As lnQ,Q, a suf-
ficient condition to satisfy Eq.~41! is

Q/25 dmbDE1m ln~1/j!1k8e, ~42!

wherem[1/(2 lnp21) andk8[mk ln p.
In summary, the error bound on the partition function

satisfied if the energy resolution scales linearly with tempe
ture, and ifQ scales linearly withbDE.

As a final step, we substitute the conditions in Eqs.~40!
and ~42! into Eq. ~27!, disregarding the weak logarithmi
dependence ofQ andDe on n.

N5
QDE

De
}

~bDE!~DE!

1/b
5b2~DE!2}poly~n!, ~43!

by the assertion that the energy bandwidth is a polynom
function of the number of spins in our system. This res
shows that in the absence of error in the calculated Fou
components of the density of states, the free energy per
can be determined efficiently to bounded error.

V. ERROR ANALYSIS: FOURIER COMPONENTS

Ultimately, the precision with which the expected value
the ancilla qubit may be measured is determined by the n
ber of ensemble members over which the measuremen
averaged. Treating Re(g̃,) and Im(g̃,) as random variables
these fluctuations are modeled by their variances. We ass
that the variancessg

2 are independent of,. In this section,
the dependence of the maximum allowable value ofsg

2 on n
such that Eq.~3! is maintained is derived.

Recall thatZ̃8 represents an estimate of the partition fun
tion calculated from discrete and imprecise Fourier com
nents of the density of states. AsZ̃8 is a linear combination
of the independent random variables Re(g̃,) and Im(g̃,), the
variance ofZ̃8 can be calculated from Eq.~24!:
1-6
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s Z̃8
2

5S 2nsgDt

pb D 2

~12e2bDE!2(
,.0

N/2 bQ,,
2

11~ t, /b!2
. ~44!

If we assume thatZ̃8 is Gaussian distributed, then the pro
ability of Z̃8 deviating from its exact valueZ can be related
to the variance. Thus, the sum in Eq.~44! is evaluated by
making two simplifications. First, we model the windowin
function bQ(t) as a Gaussian. Recall thatbQ(t) is con-
structed by the convolution ofQ rectangular windows of
width T0. In the limit of largeQ, bQ(t) may be approxi-
mated by

bQ~ t !'e2t2/2n2
, ~45!

wheren25QT0
2/12 @24#. Although this approximation over

estimatesbQ(t) away fromt50, the fractional error in Eq
~44! incurred by the approximation is less than 531023 for
Q.40. Second, it is assumed thatb/Dt5bDE/2p@1, im-
plying that the energy bandwidth is much larger than
thermal energy. This condition assures that the sum can
well approximated by the integral

s Z̃8
2

'S 2nsgDt

pb D 2E
0

` e2t2/n2

11t2/b2

dt

Dt

5
4nsg

2

bDE
eb2/n2

@12erf~b/n!#. ~46!

Equation~46! indicates that the standard deviation ofZ̃8
scales exponentially withn; i.e., as 2n @25#. Note that the
exact partition functionZ will typically be a more slowly
increasing function ofn. If the energy eigenvalues are lim
ited to the domain@0,DE#, then 2n is an upper bound for the
value of the partition function~achieved at infinite tempera
ture, or if all eigenstates are degenerate with zero ener!.
Consider two simple examples. For the case ofn noninter-
acting spins in a magnetic field with Zeeman energyh, Z
5(11e2bh)n,2n; for a linear-chain Ising model in zer
magnetic field, described by Eq.~7!, Z5(11e22bJ)n for
periodic boundary conditions. Thus, if the distribution fun
tion for Z̃8 is Gaussian, one expects that the standard de
tion increases exponentially faster@26# than the meanZ.

The above result may be used to derive a condition onsg
2

such that the error bound on the free energy per spin is
filled. By Eq.~1!, the conditionuF̃82Fu,gkBQ in Eq. ~3! is
equivalent to

Ze2gn,Z̃8,Zegn. ~47!

Assuming a Gaussian distribution forZ̃8 centered aboutZ,

e512Prob~Ze2gn,Z̃8,Zegn!

5
1

2 H erfcFZ~egn21!

A2s Z̃8
G1erfcFZ~12e2gn!

A2s Z̃8
G J . ~48!
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This result can be simplified if we consider the limitgn
!1, such thate6gn'16gn, that is, for small desired abso
lute error in the free energy relative to the number of spi

e5erfcS Zgn

A2s Z̃8
D 'erfcSAbDE

2

Zgn

2nsg
D . ~49!

The argument of the erfc(•) function must be of order unity
or larger fore,0.1, so

sg
25OS Z2poly~n!

4n D . ~50!

By the above argument, the variance in the measured Fou
components must decrease exponentially withn. Exponential
precision in the calculated Fourier components is require
satisfy Eq.~3!.

VI. CONCLUSION

We examined the applicability of selected spectral qu
tum algorithms for the calculation of the free energy of sp
lattice models. Provided that the time-evolution operator
the system is decomposable into an efficient number of
ementary gates, an ensemble quantum algorithm exist
generate estimates of the density of states by calculating
dividual Fourier components ofr(E). We analyzed the effi-
ciency of this algorithm in calculating the free energy p
spin of the system to bounded absolute error.

The error in the calculated free energy arises from
calculation of only a discrete number of Fourier compone
f , , as well as from deviations in the measured values off ,

due to statistical errors. The first source of error, attributa
to broadening in the estimated density of states, was sh
to lead to bounded error with a number of Fourier comp
nents that is polynomial inn. Thus, if the componentsf , are
known exactly, the spectral algorithm is an efficient means
calculate the free energy per spin. However, the effect
random deviations in the calculated values off , grows with
increasingn. As the size of the system increases, the ma
mum tolerable variance in measured Fourier components
creases asZ2/4n for largen and small absolute error.
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APPENDIX: PROOFS OF LEMMAS 1 AND 2

Proof of Lemma 1. A lower bound is first derived for

I[E
2`

`

@sinc~x!#Qdx5E
2`

`

eQ ln[sinc(x)]dx. ~A1!

We exclude infinitesimal regions aroundx5mp (mPZ)
from the integral to avoid divergence of the logarithm;
1-7
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sinc(x) approaches a finite value in these regions, the con
bution of these regions to the integral can be made arbitra
small.

Using a series expansion for ln@sinc(x)# @21#,

ln@sinc~x!#52
x2

6
2 (

k52

`
x2k

kp2k S (
n51

`
1

n2kD
.2

x2

6
2S p2

6 D (
k52

`
x2k

kp2k
. ~A2!

Thus,

I .E
2`

`

e2Qx2/6expS 2
Qp2

6 (
k52

`
x2k

kp2kD dx. ~A3!

The integrand is positive over the entire domain ofx, and
both exponential factors monotonically decrease withuxu.
Thus, one may place a lower bound onI by reducing the
limits of integration to any finite interval, such asuxu
,A6/Q. Thus,

I .expS 2
Qp2

6 (
k52

`
~6/Q!k

kp2k D E
2A6/Q

A6/Q
e2Qx2/6dx. ~A4!

The integral isA6p/Q erf(1). Thesummation can be per
formed explicitly to yield

I .e11p2Q ln(126/p2Q)/6A6p

Q
erf~1!

5eS 12
6

Qp2D Qp2/6

erf~1!A6p

Q

.S 12
6

p2D p2/6

erf~1!A6p

Q
. ~A5!

where we make use of the fact that (121/x)x is a monotoni-
cally increasing function forx.1.

This lower bound forI is used to establish an upper bou
for aQ :

aQ5
1

E
2`

` FsincS pE

DeD GQ

dE

5
p

De I
,

p

De S cA Q

6p D ,

~A6!

wherec is defined as

c[
1

e S 1

126/p2D p2/6
1

erf~1!
'2.0367. ~A7!

Proof of Lemma 2. For Q even,bQ(E) is a non-negative
function with unit area. If one treatsbQ(E) as a probability
density function, one can use the Markov inequality to bou
the area outside of the main lobe.
03231
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Consider a random variableY with supporty>0; i.e., Y
only takes non-negative values. Markov’s inequality boun
the probability of deviations from the mean:

Pr~Y>d!<
E~Y!

d
, ~A8!

whereE(Y) is the expectation value ofY. Define a second
random variableX, such thatY5@X2E(X)#m, wherem is
an even integer. Then,

Pr$@X2E~X!#m>d%<
E$@X2E~X!#m%

d

⇒Pr$uX2E~X!u>e%<
E$@X2E~X!#m%

em
. ~A9!

This bound is expressed in terms of themth central moment
of X, if it exists. The result reduces to Chebyshev’s inequa
for m52.

Note that if one treatsbQ(E) as a probability distribution
function for a zero-mean random variableE, the above in-
equality provides a bound for the area outside the main l
~i.e., e5De). The central moment is evaluated form5Q
22:

E$@X2E~X!#m%5E
2`

`

EQ22bQ~E!dE

5aQS De

p D Q21E
2`

` sinQx

x2
dx

<aQS De

p D Q21E
2`

` sin2x

x2
dx5aQS De

p D Q21

p.

~A10!

If we define the area outside the main lobe as

Aside[12E
2De

De

bQ~E!dE, ~A11!

then

Aside5Pr$uX2E~X!u>De%<
aQDe

pQ22
. ~A12!

Combining Eq.~A12! with Lemma 1, we find

Aside,
c

pQ23
A Q

6p
. ~A13!
1-8
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