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Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms
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Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice
systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coef-
ficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices
to bounded error is examined. We find that the number of Fourier components required to bound the error in
the free energy due to the broadening of the density of states scales polynomially with the number of spins in
the lattice. However, the precision with which the Fourier components must be calculated is found to be an
exponential function of the system size.
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I. INTRODUCTION an approximation for the density of states directly translates

into an estimatd=' for the free energy per spin.

Spin-lattice models are useful for the study of magnetic  Algorithms for quantum computers have been proposed to
ordering. The dynamics of these models are specified by getermine information about the eigenvalues of Hermitian
Hamiltonian 7 involving spin operators for each of the  operator§8—14]. We focus on algorithms based on the phase
lattice sites. Of particular interest is the behavior of thermo-estimation algorithm[11,12] that efficiently generate esti-
dynamic functions—such as the magnetization, specific-heanates of individual Fourier components of p(E); they
capacity, and magnetic susceptibility—across phase transwill be reviewed in detail in Sec. IN iterations of the algo-
tions. These functions are encapsulated in the dependencerithms yield N Fourier components, from which an estimate
the Helmholtz free energy per spifR, on system parameters of the density of states can be calculated.
such as the temperature or applied magnetic field; partial An important issue that has not been addressed in the
derivatives ofF vyield the thermodynamic functions. Thus, literature is the efficiency of these algorithms for calculating
the calculation of over a wide range of parameters sufficesthermodynamic functions. For the calculation to be deemed
for the determination of the finite temperature behavior ofefficient, it must be shown that the computation time—and,
the spin-lattice model. thus, the number of Fourier components—required to calcu-

Calculation of the free energy for a general spin lattice bylate an estimatéd=’ to bounded error scales polynomially
conventional means is difficult. A brute-force approachwith n. The bounded error criterion we adopt is

would be enumerate the eigenenerdigs,} of , since
Prol(|F' —F|< ykg8)>1—e, ©)
| a1 - BE
- " keflnz n kBeln( % © m)’ @ wherey and e are small constants. Thus, the absolute error
in the estimated free energy per spin must be smaller than a
wherekg 8= B~ 1 is the thermal energy ardis the partition  fraction of the thermal energy with probability arbitrarily
function. However, as the number of eigenstates grows exslose to 1.
ponentially with the number of spins in the lattice, the time We examine the primary sources of error involved in the
required to perform the calculation is prohibitively large. A calculation ofF’ to determine the efficiency of the spectral
variety of quantum Monte Carlo methods exist to calculateaigorithms. First, as only a finite number of Fourier compo-
the free energy, including thermodynamic integratidi2],  nentsf, of the density of states are calculated, the estimated
histogram methodg3,4], and cumulant expansids,6] tech-  density of states is broadened relative to the actual function.
niques. However, the “sign problentsee, for example, Ref.  Thijs deterministicsource of errofi.e., it is unchanged if the
[7]) prevents the application of these methods to arbitrarygalculation is repeatéds reduced by increasing the number
lattice Hamiltonians. of componentd\, and thus the computation time. We denote
An alternate approach is available if one can efficientlyan estimate of the free energy per spin subject to this broad-
generate an estimate of the density of stas). As Eq.(1)  ening error byF’. Second, there is an inheresttochastic
may be written in the form source of error reflected in the deviations in the estiméted
from their actual values. Subject to both deterministic and

Fe —nlkBeln< f* p(E)e FEd E), @ stochas~tic errors, an estimate of the free energy per spin is
—o labeledF'.
In this paper, we will show that if thé, are known ex-
actly, the bound in Eq(3) may be met by a function that
*Electronic address: cpmaster@stanford.edu scales polynomially wittn. Thus, the deterministic error due
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to the broadening of the density of states does not prevent 1 || || I

efficient estimation of the free energy per spin. However, the g2 - - I—

free energy becomes increasingly sensitive to random errors B— W U(tg) — W —

in each of thef , as the number of spins is increased. We will e :

show that the precision of the output of the quantum algo- qn 1 ]

rithm must improve exponentially with in order to sustain

the condition in Eq(3). FIG. 1. Logic diagram of an elementary algorithm to estimate

The paper is organized as follows. Section Il reviews the9el-
guantum algorithms used to generate the comporfgrasd ) . )
discusses assumptions and expected properties of the spie expectation value of the summand in [4). must lie
Hamiltonian. Section Ill describes the calculatiorFdffrom bggg}een—b(zl\lél E"LGt%nd (aﬁ" th"]?l)t'h-.rhe enetrg); bar:jd-th
the Fourier components and discusses the influence of sarft! IS bounded Dy the product of this constant and the
pling and window functions. In Sec. IV, we analyze the de_r_wmbe_r of |ntera_ct|_ng pairs in _the lattice, which IS a func_’uon
terministic error due to broadening and determine the numl—me"?lr inn. By 3|r_n||a_1r reasoning, for any Hamlltom_an in-
ber of samples required to satisfy E@). In Sec. V, we vo_Ivmg only pairwise interactions between Sp."(s’f.
analyze the impact of random deviations in the component -independent interaction enejgythe energy bandwidth is

2
f, on the estimated free energy. (n%) [22]. _ _
Second, we assume that the time-evolution operator

U(t)=exp(=iHt) can be implemented as a sequence of el-
ementary single-qubit and two-qubit gates, where the num-
In this section, we review quantum algorithms for the ber of gates is a polynomial function of In cases where the
calculation of the Fourier transform of the density of statesHamiltonian consists of commuting pairwise interactions

We first describe a simple algorithm applicable only to(€.g., the Ising modgl this decomposition is elementary.
Hamiltonians that are diagonal in the computational basisPtherwise, one may use a Trotter-Suzuki expansion of non-
and then discuss a more general algorifiif] applicable to  commuting terms to implemend (t) to arbitrarily small er-
ensemble quantum computers. ror [18,19.

As regards notation, we use the standard model for quan- Finally, we assume that the energy scale is shifted such
tum computation, assuming oprqubits to be two-level sys- that the eigenenergies fall betweBs=0 andE=AE. This
tems with logical statef0); and|1);, je{0,1,... p—1}, last assumption is made for mathematical convenience and
corresponding to eigenstates of t&&) Pauli spin operator does not affect the results of our analysis.
with eigenvaluest 1. The computational basis states for the  The following algorithms are based on the fact that the
quantum computer are denoted [a5=x;)1|X,)2- - - [Xp)p, Fourier transform of the'densny of state€E) is equal to the
where{x;} are the binary digits of the integer|t is assumed ~{race of the time-evolution operator:
that the quantum computer is capable of implementing a uni-
versal set of elementary single-qubit and two-qubit gates. f =f

. . . . : ()=
The evolution time of these gates is an implementation-
dependent constant, such that the overall computation time is
reflected by the number of gates used in the algorithm.  As |f(t)|<2", it is convenient to define a function
We will restrict our discussion to lattices of spin-1/2 par-

Il. QUANTUM ALGORITHMS

©

p(E)e EdE=Tr(e ). (5)

ticles, as it is straightforward to map the eigenstates 9 f(t) 1 .
in the spin system to the logicf0); and|1); states of qubit g(t)y=——=—Tr(e"") (6)
j of the quantum computer. Note that this restriction does not 2 2

preclude the treatment of lattices of particles with spins ) ) o )
larger than 1/2. Generalized Jordan-Wigner transformationg§uch thajg(t)|<1. The algorithms described in this section,
exist[16,17) to represent the dynamics of such lattices by abased on Kitaev's algorithri9] and the phase estimation
collection of spin-1/2 particlesia intermediate fermioniza- ?Igonthm[ll,la, calculate samples @f(t) at discrete times
tion. iz

Prior to the discussion of individual algorithms, we state Before discussing the general case, it is illuminating to
three assumptions regarding the nature of the spin-latticxamine a simple algorithm restricted to spin lattices for
Hamiltonian. First, we assume that the energy bandwidtiwhich H is diagonal in the computational basis. As an ex-
AE—the energy difference between the ground state and th@mple, one might consider a nearest-neighbor Ising model in
highest excited state—is bounded by a polynomial functiora longitudinal magnetic field:
of n. This assumption is likely to be valid for models of
physical interest. As an example, consider a lattice of par-

ticles interacting by an nearest-neighBoX Z interaction: H:Jz{% (1_09)09))4‘*12 (1-o). 0
F= (6050 4 50530y 4 350 53007 4 The gates shown in Fig. 1.for amqubit computer can be
<i§,j:> oot ayioy)+ 3oy o7 ] @ used to calculate the magnitudegift,)=g,. The quantum

032311-2



EFFICIENCY OF FREE-ENERGY CALCULATIONS 6. .. PHYSICALREVIEW A 67, 032311 (2003
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FIG. 2. Logic diagram of an algorithm to estimate the real and FIG. 3. Logic diagram of an ensemble algorithm to estintate
imaginary parts ofy, for diagonal. for arbitrary H.

computer is initialized to thé0) state. The gatdV corre- By executingR iterations of the algorithm with th& gate

sponds to a sequence of Walsh-Hadamard gatefor each andR iterations with theY gate, one can derive estimatqrs
qubitj, for the probabilities. Unbiased estimates of the real and

imaginary parts ofj, are

1 R&(G¢)=(Pyo—Pva), (12)
|0>1HE(|O>J‘+|1>1) 9= (Pvo=Py1
W;: 1 (8) IM(9¢) = (Px1— Pxo)- (13
|1>i_>ﬁ(|o>j_|1>i)- We use the tilde to distinguish estimates of the Fourier com-
ponents obtained from the quantum algorithm from the exact
values.

The gateU(t,) corresponds to the time-evolution operator.  The algorithm described above depends on our ability to
As a final step, a projective measurement is performed igonstruct an equally weighted coherent superposition of the

the computational basis. It is straightforward to show that theeigenstates off: hence the restriction to Hamiltonians that

probability of observing all qubits in the logicd) state is are diagonal in, the computational basis. One may instead

2.
equal to|g|*: consider an algorithm involving an ensemble of quantum
computers, such that the ancilla qubit is still initialized to the
w1 27l v g T |0), state, but the remaining qubits are in a fully mixed
|0)——— >, |m) — > e Ente|m) state[15]. The initial density matrix for the system is
@ m=0 \/? m=0
- 1 . I A
w pi:2n+1(|(a)+0-§a))|(ql)l(q2)' 1@ (14)
—g¢|0)+orthogonal components. (9)

where (9 is the identity operator for qubit. The operator

1@0](@2). . .7 js equal to the resolution of the identity
5 el ) (|, where{|,)} is an orthogonal set of states in
the subspace spanned by qulgjisto g,,. One could use as

{l#)} the eigenstates of the Hamiltonizh We do not need

By assumption, the computational basis stéwesare eigen-
states of the Hamiltonian, and the time-evolution operato
appends a phase proportional to the eigenvéeto each
term. An unbiased estimator fog,| can be derived by per-

forming R repetitions of the algorithm, and counting thet licitl ve for th ; tates the initial densit
number of times all qubits are found in the logi¢@) state. 0 explicitly solve Tor Inese eigenstates, the Initial gensity

The magnitude off, is insufficient to reconstruct the den- matrix can be conS{dergdAas an incoherent mixture of eigen-
sity of states. By adding an ancilla qukitas shown in Fig. States for any Hamiltoniah(.
2, one may extract estimates of both the real and imaginarx| It the coherent superposition created by the Walsh-
parts f g, The X-—expiril¥6) and Y=—expirolie) L0 gales s fepaced by uch an bernt mixure
gates correspond te/2 rotations of the ancilla qubit. If th& 9 y

gate is used, the probabilities of observing theo) for any choice off{, as shown jn Fig. 3. The final measure-
E|o>a|o>ql. . .|o>qn or |¢1>E|1>a|0>ql' . .|0>qn states are ment is the expected value 0f§a) averaged over the en-

semble.
1+ig,|2 1-ig,|? If the X gate is used for the ancilla qubit, the expected
pxo:T{{ T Y el °, (10 value of ot is

(e@)y=1m(g,), (15)

whereas theY gate leads to

respectively. Ther gate leads to probabilities

2 2

1+g,

_ 1-g,
Pvo o

, lezT (11 <a'§a)>:Re(ge)- (16)
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N iterations dow sizeT, reduces the width of the broadening function,
~ and thus the error in the estimage.
te Y, | Quantum Je > Zr p The effect of sampling on the estimated density of states
Algoritin ? ’ can be determined by multiplyinf(t)b,(t) by an impulse
be ¢ train s(t) of spacingAt:

]

FIG. 4. Block diagram of the calculation &f'. s()=At D S(t—CAt). (18)
{=—x
Thus, the real and imaginary components of the estingtor
can be calculated from two iterations of the ensemble quanSampling leads to periodic replication of the broadened den-
tum algorithm. sity of states. The resultant function is given by the Fourier
The ensemble algorithm is interesting for two reasonstransform off(t)b,(t)s(t):

First, it is applicable to any spin-1/2 lattice Hamiltonizh o
provided that the time-evolution operator can be decomposed p'(E)=p(E)*by(E)* z
into a sufficiently small number of elementary gates. Second, ! K=o
initial-state preparation lends itself to ensemble quantum

computation proposals involving spin resonance, where thevhere the asterisk denotes convolution.

Zeeman splitting between qubit spin states is small compared To avoid aliasing in the estimated density of states, the
to the thermal energy. In equilibrium, the initial density ma- Nyquist sampling condition requires that

trix of the system is well approximated by the identity op-

sl e 27k 19
3] (19

erator. One pseudopure-state qubit can be created from two _ 2
thermal sping20]. At<3E- (20
lll. FREE-ENERGY ESTIMATION The spacing between samplesff) is determined solely by

_ the estimate of the energy bandwidthEE. We assume that

In this section, we discuss how an estimbateof the free  sampling is performed at the Nyquist rate, in which case the
energy is generated from the Fourier components of the derequality in Eq.(20) holds.
sity of states, and examine the effects of discretization on the As the number of samples is equal to the ratio of the
estimated density of states. windowing function widthT, to the sampling time, one

A conceptual overview of the free energy calculation in-could determine the minimum value f required to satisfy
cluding post-processing is shown in Fig. Ntsamples of (t)  Eq. (3) as a function oh. However, the rectangular window-
are estimated via the quantum algorithi®3], and are ing function leads to poor results. The envelope of the asso-
weighted by a windowing functiobg(t), described below. ciated broadening functiob,(E) falls off weakly as 1E;
Fourier transformation yields an estimate for the density othe oscillating side lobes are amplified at low energies by the
states, which may be integrated to compute the partitiolBoltzmann factor in the calculation of the free energy. The
function and, thus, the free energy. window width required to mitigate the resultant error scales

Let us first leave aside the consideration of stochastipoorly with n. In contrast to using wider rectangular win-
sources of error. As iterations of the quantum algorithm yielddows, one may adopt more elaborate window shapes, whose
discrete samples df(t), the reconstructed estimgté(E) is  corresponding broadening functions exhibit envelopes that
distorted relative to the exact density of states. Any quantityare more sharply peaked. We consider the functiogét)
calculated from discretized Fourier components will be la-formed by the successive convolution®frectangular win-
beled by a primdi.e., p’(E)]. The distortion in the density dows, each of widtiT,. ® is referred to as the order of the
of states translates into error K. It is convenient to view  windowing function. Fo® =2, the window is triangular and
this error in the context of the windowing and sampling of of width 2T,. With increasing order, the window approaches
the exact Fourier transfornfi(t) of the density of states. a Gaussian shape, and is of widlT,. The resulting broad-
Truncation off(t) to a window of widthT, centered about ening function is then
t=0 [i.e., multiplication of f(t) by a windowing function o

7E\ |"

leads to a convoluton of the density of be(E)=ae sm% Ae
states with a broadening functidm (E)= a;sinc(wE/Ae€)
= ay[ sin(mE/Ae)J/(mE/A€), where the energy resolutiake  which exhibits a 1#® envelope. The value ofg is deter-

b,(t) that is constant forlt|<Ty/2 and zero elsewhefe 2

is given by mined by constraining the area undgs(E) to equal 1. In
practice, a given window shape is constructed by obtaining
Ae= 2m (17  Samplesf, within the window width©T, centered at=0,
Ty’ and weighting each sample Iy, (=bg(t,).

As the envelope of the side lobes lof,(E) falls off ex-
The window is scaled such that the broadening function igonentially with®, windowing functions of large order sig-
normalized to unit area; i.eq;=1/Ae. Increasing the win- nificantly reduce the error in the calculated free energy.
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However, the trade-off is a wider window, leading to more As it is more convenient to work with the partition func-
Fourier components, and thus more iterations of the quanturtion than the free energy, we use a more stringent bound

algorithm: based upon the relative error in the calculated partition func-
tionZ'. As
0T,
= F (22) 7 —
|F' —F|<ykgbee M-1< <eM-1, (29

Therefore, the question of holw scales with the number of
spins, n, translates into the determination of the minimumit is sufficient to demand that
values of® andT, required to satisfy Eq3). r_

An estimateZ’ for the partition function can be calculated Prot{ r= — <§> >1—¢, (26)

directly from the estimated Fourier components without in-
termediate calculation of the density of states. The Fourie\rNhere £=1—exp(—yn)=0(n). In other words, satisfaction
transform off(t)bg(t)s(t) may be evaluated explicitly via of Eq. (26) automatically implies Eq(3). '

Eqg. (18) to give an estimate’(E) of the broadened, peri- = Egs.(17). (20 d(22). if the Nvaquist l
odically replicated density of states in terms of the compo-con(;ﬁirgn i(S:]SS.E(iti7S)f,ie(d 2[h2r? (22), if the Nyquist sampling

nentsf,: OAE
1 (=~ - ) N= Ae (27)
p'(E)= z—f f(t)be(t)| At >, S(t—€At)|eEtdt
T (=== It has been asserted th&E is a polynomial function of. In
At _ the remainder of this section, we examine the dependence of
— 2 fgb@),ge'E‘f, (23 ® andAe on n such that Eq(26) is satisfied. We require a

2 {) pair of intermediate results:

where we have defineg=¢At, and the sum is performed Lemma .1 If.b‘”)(E) ["?‘? deﬁ”id in Eq(21)] is subject to
over allt, within the window described blgg , . Integrating the normalization condition % J~..bg(E)dE, then
Eq. (23) over the energy bandwidth, using E¢8) and(20), cw
and labeling quantities with a tilde to acknowledge stochastic @<=\ 7o (28)
: Ae Vb6
errors, one finds
wherec~2.0367.

Z,:f »'(E)e PEJE Lemma 2
O A 1 fAeb (E)dE ¢ \/® (29
N/2 side— + €] < . ~
S e 5 by ot 2>, be e me e
2mp 00T, T

where® is an even integer.
_ t,/ G )H Lemma 1 places an upper bound @g such thatog(E)
m(ge) | (-

X 2Re(gg)— 5! is normalized. Lemma 2 defines an upper bound on the area

1+(t/B) 1+(t/B) of be(E) that is outside of the intervdl—Ae,Ae] (i.e.,

(24) outside the main lobe of the broadening funcjidhis bound
decreases exponentially with. Both lemmas are proved in
Note that an estimaté’ of the free energy may be obtained the Appendix.
from the logarithm of Eq(24). One can relate the relative ermoin the calculated parti-

In addition to describing how an estimate of the free en-ion function to the parametefd andAe via Lemma 2. As
ergy per spin is calculated from the Fourier components, Ecthe exact density of statgg E) may be expressed as a sum
(24) will serve as a starting point to determine the stochasti®f § functions for each eigenenerdy,, Egs.(19) and(20)
error inE’ due to imprecise values @f; . evaluated at the Nyquist condition yield

AE
r_ ’ —-BE
IV. ERROR ANALYSIS: BROADENING z fo p'(B)e dE

In this section, we determine an upper bound on the num- o AE
ber of sample& of g(t) required to calculate the free energy => > be(E—E,+KAE)e PEdE
to the tolerance prescribed by E®). At this point, we con- m k=-% J0
sider the individual samples @, to be known exactlyal-

lowing us to omit the tilde over all quantitigsand only :2
consider the error iff’ due to the finite number of Fourier m
components—i.e., due only to the broadening of the density

of states. With this restriction, we can show thais a poly- EE 7! (30)
nomial function of the number of spins m

* (k+1)AE
> f be(E—E,,)e AEKEJE
k=-o JKAE
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The change of variables allows one to vi&yy as an integral 1—(1—Aggoe Pre—Agge PAEEm
of the broadening function, centerede),, and weighted by
periodically replicated segments of an exponential function. f § ~BAE| 1 _ é
- ; ; _ <-+ze 1 <¢, (38
Z' is found by summing over all eigenenergies. 2 2 2

The maximum relative errar in the partition function is
bounded by the largest contribution from any single eigenenand
ergy, which we define as,=max,|(Z,,~Z)/Z,|, where

Zn=e PEm Defining y,= Z1Z.,, it follows that (1— Aggo €728+ AgigEm— 1<§ + ge*B(AE* Em< ¢
(39
2 (ZhZw)| |2 (ym=DZn e
m m Therefore, the conditions in Eq86) and(37) guarantee that

r<r,<§¢, as desired.
% Z % Znm Using Lemma 2, one can manipulate E6) and(37) to
show thatN scales polynomially with.

N m{z‘”_z"‘ @1 In(L+¢/2)
s=maxym,—1|=m =Inp- n
mo T Tz T Ae=——", (40
B
This ar_gur_nent shOV\_/s that one may consider a simplified n BAE  In(1/g)
system with just one eigenstate at an endfgysomewhere + K, (42)

in the energy bandwidth. An upper bound on the ergfor 27 Inm In

this simplified system at ank,, suffices to bound the error B _
for an arbitrary energy spectrum over the same bandwidth_wherex—5(2+In(20/J§)/Inw~2.9443. As IlD<6, a suf-
ficient condition to satisfy Eq41l) is

Lower and upper bounds af}, (Z{, min @A Z{, oy T€-
spectively are now derived to bound,,, since @/2=[uwBAE+ pu IN(L/E) + k'] (42)
o] [Zmin=Znl |Zimac Znl 3z Wherew=1/(2In7-1) andx'=pxIn .
m Zmn | Zmn \ ' In summary, the error bound on the partition function is

. o satisfied if the energy resolution scales linearly with tempera-
In the main lobe, the minimum value of the Boltzmann factortyre, and if® scales linearly with3AE.

is e A(Em™4e) QOutside of the main lobe, the minimum value  As a final step, we substitute the conditions in E@)

is e #AE. Thus, and (42) into Eq. (27), disregarding the weak logarithmic
dependence o andAe onn.
J(k+l)AE aE-keEgE
Zy= be(E—Em)e OAE (BAE)(AE
oo TKaE N="Ze A 1/); L (A <polyn),  (43)
=(1-Aggde PEnTA L AGue FE=Z] . (33)

by the assertion that the energy bandwidth is a polynomial
Similarly, as the maximum value of the Boltzmann factor isfunction of the number of spins in our system. This result
e A(En=29) jnside the main lobe and 1 outside, shows that in the absence of error in the calculated Fourier
(34) components of the density of states, the free energy per spin

! —B(En— A =
Zh<(1-Aggde PEn 29+ Ay =7 can be determined efficiently to bounded error.

m, max*

Substituting Eqs(33) and (34) into Eq. (32), we see that
V. ERROR ANALYSIS: FOURIER COMPONENTS

_ _ . —BAe__ . —B(AE—E)
Fm<max1-(1-Asae Asi ™ Ultimately, the precision with which the expected value of

the ancilla qubit may be measured is determined by the num-
ber of ensemble members over which the measurement is
It is difficult to invert Eq. (35) explicitly to find optimal — averaged. Treating Rg() and Im(g,) as random variables,
conditions onAgyd ®) and Ae, which ensure that,,<¢. these fluctuations are modeled by their variances. We assume
However, one can show that the following conditions arethat the variancesré are independent of. In this section,
sufficient: the dependence of the maximum allowable valueg)bn n

such that Eq(3) is maintained is derived.

(1 Agigd €48+ AggPEm—1]. (35

BAe=In(1+£/2), (36) Recall thaiZ’ represents an estimate of the partition func-
¢ tion calculated from discrete and imprecise Fourier compo-
Aside<§e*’3AE. (37) nents of the density of states. & is a linear cornbination
of the independent random variables §g(and Im(,), the
As proof of their sufficiency, note that variance ofZ’ can be calculated from Eq4):
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2N At)2 N/2 2 This result can be simplified if we consider the limin
2 99 EAE 2 Eyn__ 1+ H H
05,= (1—-e E —2 (44 <1, such thae=""~1= yn, that is, for small desired abso-
e >0 1+(t,/B) lute error in the free energy relative to the number of spins:

If we assume thaZ’ is Gaussian distributed, then the prob- Zyn [BAE Zyn

ability of Z' deviating from its exact valuZ can be related e=erfc V203, ~erf 2 ong | 49
to the variance. Thus, the sum in Ed4) is evaluated by ¢

making two simplifications. First, we model the windowing The argument of the erfe} function must be of order unity
function bg(t) as a Gaussian. Recall thag(t) is con-  or larger fore<0.1, so

structed by the convolution o® rectangular windows of

width Tq. In the limit of large®, bg(t) may be approxi- 5 Z2poly(n)
mated by 0g=0| ——|. (50)
4
_i2 V2 . i .
be(t)~e """, (45 By the above argument, the variance in the measured Fourier

components must decrease exponentially witBxponential
where »?=@T¢/12 [24]. Although this approximation over- precision in the calculated Fourier components is required to
estimateshg(t) away fromt=0, the fractional error in Eq. satisfy Eq.(3).
(44) incurred by the approximation is less thax 02 for
©®>40. Second, it is assumed thatAt= BAE/27>1, im- VI. CONCLUSION
plying that the energy bandwidth is much larger than the

thermal energy. This condition assures that the sum can be We examined the applicability of selected spectral quan-
well approximated by the integral tum algorithms for the calculation of the free energy of spin-

lattice models. Provided that the time-evolution operator for

2o At e~ gy the system is decomposable into an efficient number of el-
g§,~( g ) f — ementary gates, an ensemble quantum algorithm exists to
5B 0 1+t%p? At generate estimates of the density of states by calculating in-
n 2 dividual Fourier components gf(E). We analyzed the effi-
— 9B 1—erf(Blv)]. (46)  ciency of this algorithm in calculating the free energy per
" BAE spin of the system to bounded absolute error.

The error in the calculated free energy arises from the

Equation(46) indicates that the standard deviationZf  calculation of only a discrete number of Fourier components
scales exponentially witm; i.e., as 2 [25]. Note that the f,, as well as from deviations in the measured value$,of
exact partition functiornz will typically be a more slowly due to statistical errors. The first source of error, attributable
increasing function ofi. If the energy eigenvalues are lim- to broadening in the estimated density of states, was shown
ited to the domaifi0,AE], then 2' is an upper bound for the to lead to bounded error with a number of Fourier compo-
value of the partition functioachieved at infinite tempera- nents that is polynomial in. Thus, if the components, are
ture, or if all eigenstates are degenerate with zero epergyknown exactly, the spectral algorithm is an efficient means to
Consider two simple examples. For the casenafoninter-  calculate the free energy per spin. However, the effect of
acting spins in a magnetic field with Zeeman enehgyz ~ random deviations in the calculated valuesf pigrows with
=(1+e PMN<2" for a linear-chain Ising model in zero increasingn. As the size of the system increases, the maxi-
magnetic field, described by Eq7), Z=(1+e ?/)" for  mum tolerable variance in measured Fourier components de-
periodic boundary conditions. Thus, if the distribution func- creases ag?/4" for largen and small absolute error.

tion for Z’ is Gaussian, one expects that the standard devia-
tion increases exponentially fas{@6] than the mearz. ACKNOWLEDGMENTS
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Ze M<Z'<Ze™M. (47 APPENDIX: PROOFS OF LEMMAS 1 AND 2

Assuming a Gaussian distribution fé@f centered abolZ, Proof of Lemma 1A lower bound is first derived for

e=1—Prohze "M<Z'<ze™) IEJ [sinc(x)](")dx=f e? lsincklgy. (A1)

— o0

1 Z(eyn 1) Z(1-e ™) o .
= +erfg ———|;. (480 We exclude infinitesimal regions around=mm (me 2)
\/—T' V203 from the integral to avoid divergence of the logarithm; as
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sinc(x) approaches a finite value in these regions, the contri- Consider a random variablé with supporty=0; i.e.,Y
bution of these regions to the integral can be made arbitraril@nly takes non-negative values. Markov's inequality bounds
small. the probability of deviations from the mean:

Using a series expansion for finc(x)] [21],
E(Y)

x2 Zox* (I PY=6)< ——, (A8)
In[sinax)]=——— —r g
[ (( )] 6 =) k7T2k = n2k
X2 [ 72\ Z x2k whereE(Y) is the expectation value of. Define a second
>— ——(—) E — (A2) random variableX, such thatY=[X—E(X)]", wherem is
6 6 /k=2 km? an even integer. Then,
Thus, m
o EIX=E(X)]™)
. O F 2 PH[X—-E(X)] /5}\f
I>| e @Yexp — —— dx. (A3
Jloo 6 = sz‘() A3
_ m
The integrand is positive over the entire domainxpfand =>Pr{|X—E(X)|>e}$w. (A9)

both exponential factors monotonically decrease With e
Thus, one may place a lower bound brby reducing the

limits_of integration to any finite interval, such d%|  This hound is expressed in terms of tinéh central moment

<\6/0. Thus, of X, if it exists. The result reduces to Chebyshev's inequality
for m=2.
2 = K\
| >exd — 97 5 (6/0) f“‘m e~ Odx. (Ad) Note that if one treatbe (E) as a probability distribution
6 =2 ka2 | )o@ ' function for a zero-mean random varialife the above in-

equality provides a bound for the area outside the main lobe
The integral isy67/0 erf(1). Thesummation can be per- (i.e., e=Ae). The central moment is evaluated for=0
formed explicitly to yield —-2:

6
1+ 720 In(1-6/m20)/6 [~ %
|>e ) erf(l) E{[X—E(X)]m}:f E®72b®(E)dE

&2
e 6 | O o =
—e o2 erf(1) \/ 0 =ag
2
6 /6 \/a
>|1-— erf(1) R (A5) <ag

™

Ae\ 971 r= sin®x
f dx

e 2

~—-dx=ay

T — X

Ae)(”)lfw Sirx (Ae)(”’l
— ar.

where we make use of the fact that{1/x)* is a monotoni- (A10)
cally increasing function foxk>1.
This lower bound fot is used to establish an upper bound |f we define the area outside the main lobe as

for ag:
Ae
! _T 1((3‘/2 Asige=1- f be(E)dE, (A1D)
_C<7TE) o Ael Ae 6/’ —Ae
Sin

ae= -
f_m Ae dE

wherec is defined as

(A6) then

Q@Ae

Asge= PRIX-E(X)[zAe}<s——.  (A12)
T

w216
L ! ! 2.0367 A7
“eliem? emy 2% A7

Combining Eq.(A12) with Lemma 1, we find
Proof of Lemma 2For ® even,bg(E) is a hon-negative

function with unit area. If one treatsg(E) as a probability 0

density function, one can use the Markov inequality to bound Ao <L\ / (A13)
. . side ®—3 6

the area outside of the main lobe. T ™
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