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In this paper, we derived a Lorentz-covariant quantum Liouville equation for the density operator which
describes the relativistic-quantum-information processing from Tomonaga-Schwinger equation and an exact
formal solution for the reduced density operator is obtained using the projector operator technique and the
functional calculus. When all the members of the family of the hypersurfaces become flat hyperplanes, it is
shown that our results agree with those of the nonrelativistic case, which is valid only in some specified
reference frame. To show that our formulation can be applied to practical problems, we derived the polarization
of the vacuum in quantum electrodynamics up to the second order. The formulation presented in this work is
general and could be applied to related fields such as quantum electrodynamics and relativistic statistical
mechanics.
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Recently, there has been growing interest in the relativissult, it is expected that the usual nonrelativistic definition of
tic formulation [1-7] of quantum operations for possible the reduced density operator and its functionals such as
near future applications to relativistic-quantum-informationquantum entropy have no invariant meaning in special rela-
processing such as teleportati@], entanglement-enhanced tivity. Another conceptual barrier for the relativistic treat-
communication[9], and quantum clock synchronization ment of quantum-information processing is the difference of
[10,11]. the role played by the wave fields and the state vectors in the

In the nonrelativistic case, the key element for studyingguantum-field theory. In nonrelativistic quantum mechanics
guantum-information processing is the density operator of doth the wave function and the state vector in Hilbert space
guantum register which is derived from the solution of agive the probability amplitude which can be used to define
quantum Liouville equatiofQLE) [12], [13] for the total conserved positive probability densities or density matrix.
system including an environment. The QLE is an integrodif-On the other hand, in relativistic-quantum-field theory, cova-
ferential equation and it is in general nontrivial to obtain theriant wave fields are not probability amplitudes at all, but
solution of the form operators which create or destroy particles in states defined

as containing definite numbers of particles or antiparticles in
£ . each normal modEgL7]. The role of the fields is to make the
p—p'=Elpl, @) interaction orS matrix satisfy the Lorentz invariance and the
) , cluster decomposition principle. The information of the par-
wherep is the reduced density operator of the quantum regyicje states is contained in the state vectors of the Hilbert
ister and¢ is the superoperator describing the evolutiopof space spanned by states containing 0,1,2 particles as in
by the quantum-information processing. In the previousthe case of nonrelativistic quantum mechanics. So it seems
works, we have employed a time-convolutionless reducedike that one needs to obtain the covariant equation of motion
density-operator formalism to model quantum devitk$]  for the state vector and derive the covariant QLE out of it.
and noisy quantum channdl$5,16. Some time ago, Tomonadd8] and Schwingef19] de-

The first step toward the relativistic-quantum-informationrived a covariant equation of motion for the quantum state
theory would be the formulation of Lorentz-covariant QLE vector in terms of the functional derivative, known as
and the derivation of the reduced density operator which is Fomonaga-Schwing€T-S) equation,
solution of the covariant QLE. The goal of this paper is to

derive Lorentz-covariant quantum Liouville equation which SV o]
describes the relativistic-quantum-information processing i =Hin( X)¥[ ], 2
and obtain a formal solution for the reduced density operator 6 (X)

pertaining to the systerfor electrong part alone.
It is well known that neither the nonrelativistic Schro in the interaction picture. Hereis a space-time four-vector,
dinger equation nor the QLE is Lorentz covariant. As a re-o is the spacelike hypersurfac#[ o] is the state vector
which is a functional ofo, H;nt(X) =Hin ¢.(X)] is the in-
teraction Hamiltonian density which is a functional of quan-
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sV[o]  VY[o']-¥[o] In order to extract the information of the system or the
5 (X) = T sw 3 electrons alone, it is convenient to use the projection opera-

000 tors[12,23,24 that decompose the total system by eliminat-
ing the degrees of freedom for the environment, say, the
photon field in the case of QED. The information of the
system is then contained in the reduced density operator
p[ o] which is defined as

where dw is an infinitesimal four-dimensional volume be-
tween two hypersurfaces and ¢’. The formal solution of
Eq. (2) is given by

V[o]=U [o,00]¥[00], 4

where the generalized transformational functional satisfies plol=treprlo]=trePprl ], (19

the T-S equation

where the projection operatd® and Q are defined a$X
U [o,00] = pptrg(X),Q=1-P, for any covariant dynamical variable
Sa(X) =Hin(X)U [0,00] ) X, pg Is the density matrix for the quantum environment at
oo, and tg indicates a partial trace over the quantum envi-
with the boundary conditiot [ 0y,0¢]=1. The generalized ronment. The projection operators satisfy the operator iden-
transformation functionald [o,00] is a unitary operator. tites P?=P,Q2=0Q, PQ=QP=0 and [6/5o(x),P]

We also have19] =[6l8a(x),Q]=0. Furthermore, we would like to note that
[8/80(x)] 1= [d*x [20], and the system and the environ-
ment are decoupled at,. We also note that the projection
operatorsP and Q are functionals of the initial hypersurface

(6) oo (# o for all x) and unless otherwise specified, we will
omit the functional argument. However, one needs to keep

from the unitary condition. Throughout the paper, we assumerack of the functional argument especially in the four-
hi=c=1. The expectation value of some field variablex)  dimensional integration.

pecomes The CQLE(9) can be decomposed into two coupled equa-
(F(X))=(Y[o],F(x)¥[a]) tions for Pp[ o] and Qps[o]:
=tr(F(X)¥[o]¥[a])
=tr(F(x)p7[a]). 7)

From Eq.(7), we notice that the total density operataf o]
can be written a$21,22

57/{_1[(7,0'0] B

- U [a,00]
50_()() =-U 1[0-10-0]

50_()() u_l[gao'o].

o “ -
F(X)PPT[ o]=—1PL(X)Pprl o] =IPL(X)Qpr[ o],
(119

o oA s
prlo]=Y[o]¥ o] 3o (X) Qprlo]=—1QL(X)Qp1[a]—1QL(X)Pp+[].
11b
=U [0,00]¥[a0]¥ o0l Y[o,00].  (8) (1o
Then, In order to obtain the formal solution, we solve first Eq.

(11b) using the integrating factor. L& o] be an integrating

S )
;;([;T)] :5_0{1’{ [0 0o W[ ool W ool o 0ol) factor such that
— o .
- 57/{5([;(7),(;1'0]1,{—1[0,00]4){0] h ]| 5o Qerlo1+1QL() Qorl o]
= —j . i 5
i[Hin(X), prl o] =—ih[o]QL(X)Qp[a]= 5—{h[g] Qp[a]}.
=—iL(X)p7lo], ©) o (X)

(12)
whereZ(x) is the Liouville superoperator. Since E§) de-
scribes the Lorentz-covariant equation of motion for the totak-, . . Sh[ o]/ 80(x) =ih[ 7] QZ(x) Q and we obtain
density operator, we denote it as the covariant quantum Liou- ’
ville equation(CQLE). Note that the Liouville superoperator
is not an operator in the Hilbert space of state vectors but a . N
linear operator in the Hilbert-Schmidt space of density ma- h[o]=T"ex 'J:r d*x' QLX) Q¢ . (13
trices[16]. Herep+[ o] contains the information for the total 0
system, for example, an interacting sgirmassive particles
and photons in the case of quantum electrodyna@&sD). From Eq.(12),
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QpT[o]=h—l[o]h[ao]gp[oo]—if”d“x'h—l

o0
X[o(x)]h[a(x')]QL(X") Pprlo(x")]
=—if”d“x'wa),a(x')]QZ<x’>7>pT[a<x'>],
(TO

19

where we assume that[ o] is decoupled whewr= o and

. (x) .
H[cr(x),cr(x’)]=Texp[—if( ,)d“x”QE(x”)Q).
(15
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Here T and T¢ are time-ordering and antitime-ordering op-
erators, respectively, antl[ o (x),o(x’)] is the projected
propagator. In order to derive the convolutionless equation of
motion, we define the retarded propaga®x{ o(x),o(x')]
such that

a(x)

GR[U(X),U(X’)]ZTCexp[i d4x”ﬁ(x”)}, (16)

a(x")

which satisfies

prlool=Grla,a0lpl o). (17

Then,

Qplo]=—i f:d4xlH[O-(X)1U(X,)]Qz(X’)PéR[U(X)yg(X,)]pT[U(X)]

— f " A% H[ (%), 0(x' ) JQL(X Y PG o(X), o(x ) ] Ppr[ (%) ]

i f T i HL (%), (X" QL (X ) PER (X), (X )| Qprl o(X)] (19

90

and
Qpilol={0[a]—1}Ppl ], (19

where

0‘1[o]=1+ifad“x’H[a(x),cr(x’)]QZ(X')

90

X PG o(X),a(x")]. (20)

Z:IS[U,GO]=Texp[—iJUd“X’PZZ(X’)P]. (24)

Herel{ o,0,] is the generalized transformation functional
or the propagator for the reduced system.

It is remarkable to note that when hypersurfaocgsand
all the members of the familyo} are hyperplane flat sur-
faces parametrized Hy=const[20], then the transformation
functional such asl/]o(x),o(x')] can be written as

Once the solution foQp+[ o] is obtained, it is substituted (t,t"). Then, if we sety=0,
for the equation fofPp¢[ o]. Then, after some mathematical
manipulations, we obtain using the integrating factor tech-

nique again,

Pprlal=W Y o,00llfo,00]Ppilae],  (21)
or

plol=trg{W Yo, 00lit o,00lpslploo], (22
where
V\I[(r,oo]:l+ifad4x’Z:IS[(r(X),a(x’)]Pﬁ(x’){G[a(x’)]

—1}PGrla(X),0(x")]6[o(X)] (23

and

W(t,0)=W(t)=1+f;d“x'z)s(t,t')m(x',t){a(t')

—1}PGRg(t,t") (1) =1+ jtds&S(t,s)trB[L‘(s)
0
x{6(s)— 1}pg]trg[ Gg(t,s) O(t) pgl, (25

with £(s)=[d3x’ £(x',s). As a result, the covariant forms
of Egs. (21)—(24) become reduced to those of the nonrela-
tivistic case which is valid only in some specified reference
frame given by Eqs(18)—(25) of Ref.[15].

By comparing, Eqs(1) and(22), the covariant superop-
erator for the relativistic quantum operatié’r[o,ao] can be
written as
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o ool =tra{W o UO]Z:IS[U oolPs)- (26) If we set the initial hypersurface be the flat surfacg
=—, p[—]=py and A ,(x)=trg[ A ,(X)pg] which is a
So far all our results are exact and E(&1)—(26) would be  classical external field, we get
the key steps in the analysis of relativistic-quantum-
information processing. Apart from describing quantum- 1 B I ,
information processing, QLE and reduced density operator pULo]=po+i ﬂcd X'[J (X )ALX") Pl (29)
have been essential in solving various quantum optics and

non-Markovian optical problems in the nonrelativistic do- The polarization of the vacuum is the expectation value of

main [12_14]'.8.0 it m.ig.ht_ be interesting to extend .this ap- I#(x), computed for the state of the system as modified by
proach to revisit relativistic quantum electrodynamics prob

‘the external electromagnetic figl@5,26 and is given b
lems, which were solved relying on renormalization g d 8 g y

procedures in field theory, using the covariant form of quan-
tum Liouville equation. On the other hand, relativistic ther- <]M(X)>:tr{jﬂ(x)p(l)[g]}
modynamics or statistical mechanics look like an area where
the knowledge of the density operator or the reduced density
operator might come in handy provided the ambiguity of the
temperature concept in special relativity is resolved. We be- i
lieve our formalism is general and could be applied to related +i J( d4X'tr{[iy(X')AV(X'),Po]iM(X)}
fields such as QED and relativistic statistical mechanics. As a —»
matter of fact, these related fields would also play an impor-
tant role in relativistic-quantum-information processing be- B A, . ,
cause these processes would cause the decoherence as in the = J_wd Xtr{[J (), (X ) ]po}Au(X’)
nonrelativistic case.

To show how to apply the formalism we developed to -
practical problems, we give a derivation of the polarization =if A% ([] .01 (X)) oAL(X")
of the vacuum by an external field starting from Eg2). -
The Hamiltonian for the coupling between an electron and

electromagnetic fields is given by @

1
—_——— 2 DY
15 kSD J. )+, (30

=t} ,(X)po]

H(X)=—] ,(0A,(x), 27

where iu(x) and AM(x) are current and electromagnetic where .tr(-r-]-) is the _trace lovefr thﬁ ellectron ]ft?ées Hand
four-vector potential operators, respectively. Then from Eq " )0 IS the expectation value for the electron fields. Here

. . ~. J,(X) is the external current generating the electromagnetic
y2
E)ZGZC)(,):::Sreduced density operator up to the first ordecin field, ky=mqoc/h, a=e?dmhc, Dzzaﬂaﬂl andm, is the

electron mas$25,26. Equation(30) describes the vacuum
- polarization due to the external electromagnetic fields in
p(l)[o]=trB{ 1—i j d“x’PE(x’)P] ploo] quantum electrodynamics. We proceed to derive the second-
70 order correction to the vacuum polarizatiop),(x))?. The
- second-order correction term to the reduced density operator
=(1—i f d4X’trB[£(X')pB]>p[o'o]. (28  Ap@[o] becomes
(7'0

2p@o1=—i [ dxtafW o, ~= )i, ~ =)ol

a(x) a(x") o “
= —Zf d4x’f d*x"trg[ L(x") L(X") pglpo

— 00 — o0

a(x) a(x’ ~ ~ - - ~ ~ A ~
=-2 f d*x’ f ( )d“x”{—<Aﬂ<x')Ay<x">>ojM(x')JV<x">po+<A,L<x'>AV<x">>ojV<x”>pojﬂ(x'>

+(ALXMALX) )0l (X ) ol w(X) = (AL(X)A LX) opoi o(X")] u(X)}. (31)

Then,
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(1,00)P=tr{] ,(0 2 p P o]}

o (X) X " " " " " "
=2 "at [T = A ORI 06T (ALl

©

X[ (0),] u(X) 1o}

a(X) a(x ~
——2 f d*x’ f (ALY AL DolLT 0] u (XD T (X))

— o0

o™ o(x')
o f d*x’ f A%’ 8,,,D(x" — X" N[00} (X))o

— o0 — o

o(X) pe
= —ai [t [ "ane17,00.7.00 )17, DK =), 32

— o0

whereD(x) is the invariant function defined by E®.17) of  The knowledge of vacuum polarization would be important
Ref.[19]. The above result can be further simplified by usingin understanding the decoherence process in the relativistic
that[25] domain. At this stage, we would like to leave the detailed
) calculations of the second- and higher-order corrections for
fa(x )d4X"D(X' _XH)]‘M(XH) future work. . .
— In summary, we have derived Lorentz-covariant quantum
. Liouville equations for the density operator in functional of
:f d*x" e(x’,x")D(X’ _X")]M(X") hypersurface from the T-S equation and obtained formal so-
- lution for the reduced density operator, which is also in co-
" . variant form, using the projection operator technique and the
=f d“x”D(x’—x")]M(x”): —25AM(X’). functional calculus. When all the members of the family of
o the hypersurfaces become flat hyperplanes, our results agree
(33 with those of the nonrelativistic case. We have shown that
our formalism can be applied to the practical cases such as
Here 6A «(X) is the four-vector potential induced by the po- the vacuum polarization. Our formulation is exact and gen-
Iarlzat|0n of the vacuum or the reaction of the virtual eral so it could be applied not only to the relativistic-
electron-positron coupling. Then the vacuum polarization ugyuantum-information processing but also to the related fields

to the second-order interaction becomes such as QED, field theory, and relativistic statistical mechan-
. e . . ics.
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