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Lorentz-covariant reduced-density-operator theory
for relativistic-quantum-information processing
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In this paper, we derived a Lorentz-covariant quantum Liouville equation for the density operator which
describes the relativistic-quantum-information processing from Tomonaga-Schwinger equation and an exact
formal solution for the reduced density operator is obtained using the projector operator technique and the
functional calculus. When all the members of the family of the hypersurfaces become flat hyperplanes, it is
shown that our results agree with those of the nonrelativistic case, which is valid only in some specified
reference frame. To show that our formulation can be applied to practical problems, we derived the polarization
of the vacuum in quantum electrodynamics up to the second order. The formulation presented in this work is
general and could be applied to related fields such as quantum electrodynamics and relativistic statistical
mechanics.
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Recently, there has been growing interest in the relati
tic formulation @1–7# of quantum operations for possib
near future applications to relativistic-quantum-informati
processing such as teleportation@8#, entanglement-enhance
communication @9#, and quantum clock synchronizatio
@10,11#.

In the nonrelativistic case, the key element for study
quantum-information processing is the density operator o
quantum register which is derived from the solution of
quantum Liouville equation~QLE! @12#, @13# for the total
system including an environment. The QLE is an integrod
ferential equation and it is in general nontrivial to obtain t
solution of the form

r→
E

r85 Ê @r#, ~1!

wherer is the reduced density operator of the quantum r
ister andÊ is the superoperator describing the evolution or
by the quantum-information processing. In the previo
works, we have employed a time-convolutionless reduc
density-operator formalism to model quantum devices@14#
and noisy quantum channels@15,16#.

The first step toward the relativistic-quantum-informati
theory would be the formulation of Lorentz-covariant QL
and the derivation of the reduced density operator which
solution of the covariant QLE. The goal of this paper is
derive Lorentz-covariant quantum Liouville equation whi
describes the relativistic-quantum-information process
and obtain a formal solution for the reduced density opera
pertaining to the system~or electrons! part alone.

It is well known that neither the nonrelativistic Schr¨-
dinger equation nor the QLE is Lorentz covariant. As a
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sult, it is expected that the usual nonrelativistic definition
the reduced density operator and its functionals such
quantum entropy have no invariant meaning in special re
tivity. Another conceptual barrier for the relativistic trea
ment of quantum-information processing is the difference
the role played by the wave fields and the state vectors in
quantum-field theory. In nonrelativistic quantum mechan
both the wave function and the state vector in Hilbert sp
give the probability amplitude which can be used to defi
conserved positive probability densities or density matr
On the other hand, in relativistic-quantum-field theory, cov
riant wave fields are not probability amplitudes at all, b
operators which create or destroy particles in states defi
as containing definite numbers of particles or antiparticles
each normal mode@17#. The role of the fields is to make th
interaction orSmatrix satisfy the Lorentz invariance and th
cluster decomposition principle. The information of the p
ticle states is contained in the state vectors of the Hilb
space spanned by states containing 0,1,2, . . . particles as in
the case of nonrelativistic quantum mechanics. So it se
like that one needs to obtain the covariant equation of mo
for the state vector and derive the covariant QLE out of

Some time ago, Tomonaga@18# and Schwinger@19# de-
rived a covariant equation of motion for the quantum st
vector in terms of the functional derivative, known a
Tomonaga-Schwinger~T-S! equation,

i
dC@s#

ds~x!
5Hint~x!C@s#, ~2!

in the interaction picture. Herex is a space-time four-vector
s is the spacelike hypersurface,C@s# is the state vector
which is a functional ofs, Hint(x)5Hint@wa(x)# is the in-
teraction Hamiltonian density which is a functional of qua
tum fieldwa@x#, andd/ds(x) is the Lorentz invariant func-
tional derivative@20#. The functional derivative ofC@s# is
defined as
©2003 The American Physical Society09-1
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dC@s#

ds~x!
5 lim

dv→0

C@s8#2C@s#

dv
, ~3!

where dv is an infinitesimal four-dimensional volume be
tween two hypersurfacess and s8. The formal solution of
Eq. ~2! is given by

C@s#5U @s,s0#C@s0#, ~4!

where the generalized transformational functional satis
the T-S equation

i
dU @s,s0#

ds~x!
5Hint~x!U @s,s0# ~5!

with the boundary conditionU @s0 ,s0#51. The generalized
transformation functionalU @s,s0# is a unitary operator.
We also have@19#

dU 21@s,s0#

ds~x!
52U 21@s,s0#

dU @s,s0#

ds~x!
U 21@s,s0#,

~6!

from the unitary condition. Throughout the paper, we assu
\5c51. The expectation value of some field variableF(x)
becomes

^F~x!&5~C@s#,F~x!C@s#!

5tr„F~x!C@s#C†@s#…

5tr „F~x!rT@s#…. ~7!

From Eq.~7!, we notice that the total density operatorrT@s#
can be written as@21,22#

rT@s#5C@s#C†@s#

5U @s,s0#C@s0#C†@s0#U 21@s,s0#. ~8!

Then,

drT@s#

ds~x!
5

d

ds
$U @s,s0#C@s0#C†@s0#U 21@s,s0#%

5FdU @s,s0#

ds~x!
U 21@s,s0#,rT@s#G

52 i †Hint~x!,rT@s#‡

52 i L̂~x!rT@s#, ~9!

whereL̂(x) is the Liouville superoperator. Since Eq.~9! de-
scribes the Lorentz-covariant equation of motion for the to
density operator, we denote it as the covariant quantum L
ville equation~CQLE!. Note that the Liouville superoperato
is not an operator in the Hilbert space of state vectors b
linear operator in the Hilbert-Schmidt space of density m
trices@16#. HererT@s# contains the information for the tota
system, for example, an interacting spin-1

2 massive particles
and photons in the case of quantum electrodynamics~QED!.
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In order to extract the information of the system or t
electrons alone, it is convenient to use the projection ope
tors @12,23,24# that decompose the total system by elimin
ing the degrees of freedom for the environment, say,
photon field in the case of QED. The information of th
system is then contained in the reduced density oper
r@s# which is defined as

r@s#5trBrT@s#5trBPrT@s#, ~10!

where the projection operatorP and Q are defined asPX
5rBtrB(X),Q512P, for any covariant dynamical variabl
X, rB is the density matrix for the quantum environment
s0, and trB indicates a partial trace over the quantum en
ronment. The projection operators satisfy the operator id
tities P 25P,Q 25Q, PQ5QP50 and @d/ds(x),P#
5@d/ds(x),Q#50. Furthermore, we would like to note tha
@d/ds(x)#215*d4x @20#, and the system and the environ
ment are decoupled ats0. We also note that the projectio
operatorsP andQ are functionals of the initial hypersurfac
s0 (Þs for all x) and unless otherwise specified, we w
omit the functional argument. However, one needs to k
track of the functional argument especially in the fou
dimensional integration.

The CQLE~9! can be decomposed into two coupled equ
tions for PrT@s# andQrT@s#:

d

ds~x!
PrT@s#52 iPL̂~x!PrT@s#2 iPL̂~x!QrT@s#,

~11a!

d

ds~x!
QrT@s#52 iQL̂~x!QrT@s#2 iQL̂~x!PrT@s#.

~11b!

In order to obtain the formal solution, we solve first E
~11b! using the integrating factor. Leth@s# be an integrating
factor such that

h@s#H d

ds~x!
QrT@s#1 iQL̂~x!QrT@s#J

52 ih@s#QL̂~x!Qr@s#5
d

ds~x!
$h@s#Qr@s#%.

~12!

Then,dh@s#/ds(x)5 ih@s#QL̂(x)Q and we obtain

h@s#5TcexpH i E
s0

s

d4x8QL̂~x8!QJ . ~13!

From Eq.~12!,
9-2
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QrT@s#5h21@s#h@s0#Qr@s0#2 i E
s0

s

d4x8h21

3@s~x!#h@s~x8!#QL̂~x8!PrT@s~x8!#

52 i E
s0

s

d4x8H@s~x!,s~x8!#QL̂~x8!PrT@s~x8!#,

~14!

where we assume thatrT@s# is decoupled whens5s0 and

Ĥ@s~x!,s~x8!#5TexpH 2 i E
s(x8)

s(x)

d4x9QL̂~x9!QJ .

~15!
al
ch

03230
Here T and Tc are time-ordering and antitime-ordering o
erators, respectively, andH@s(x),s(x8)# is the projected
propagator. In order to derive the convolutionless equation
motion, we define the retarded propagatorGR@s(x),s(x8)#
such that

ĜR@s~x!,s~x8!#5TcexpH i E
s(x8)

s(x)

d4x9L̂~x9!J , ~16!

which satisfies

rT@s0#5ĜR@s,s0#r@s#. ~17!

Then,
Qr@s#52 i E
s0

s

d4x8H@s~x!,s~x8!#QL̂~x8!PĜR@s~x!,s~x8!#rT@s~x!#

52 i E
s0

s

d4x8H@s~x!,s~x8!#QL̂~x8!PĜR@s~x!,s~x8!#PrT@s~x!#

2 i E
s0

s

d4x8H@s~x!,s~x8!#QL̂~x8!PĜR@s~x!,s~x8!#QrT@s~x!# ~18!
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QrT@s#5$u@s#21%PrT@s#, ~19!

where

u21@s#511 i E
s0

s

d4x8H@s~x!,s~x8!#QL̂~x8!

3PGR@s~x!,s~x8!#. ~20!

Once the solution forQrT@s# is obtained, it is substituted
for the equation forPrT@s#. Then, after some mathematic
manipulations, we obtain using the integrating factor te
nique again,

PrT@s#5W21@s,s0#Ûs@s,s0#PrT@s0#, ~21!

or

r@s#5trB$W21@s,s0#Ûs@s,s0#rB%r@s0#, ~22!

where

W@s,s0#511 i E
s0

s

d4x8Ûs@s~x!,s~x8!#PL̂~x8!$u@s~x8!#

21%PGR@s~x!,s~x8!#u@s~x!# ~23!

and
-

Ûs@s,s0#5TexpH 2 i E
s0

s

d4x8PL̂~x8!PJ . ~24!

Here Ûs@s,s0# is the generalized transformation function
or the propagator for the reduced system.

It is remarkable to note that when hypersurfacess0 and
all the members of the family$s% are hyperplane flat sur
faces parametrized byt5const@20#, then the transformation
functional such asUs@s(x),s(x8)# can be written as
Us(t,t8). Then, if we sett050,

W~ t,0!5W~ t !511E
0

t

d4x8Ûs~ t,t8!PL~x8,t !$u~ t8!

21%PGR~ t,t8!u~ t !511E
0

t

dsÛs~ t,s!trB@L~s!

3$u~s!21%rB#trB@GR~ t,s!u~ t !rB#, ~25!

with L̂(s)5*d3x8L(x8,s). As a result, the covariant form
of Eqs. ~21!–~24! become reduced to those of the nonre
tivistic case which is valid only in some specified referen
frame given by Eqs.~18!–~25! of Ref. @15#.

By comparing, Eqs.~1! and ~22!, the covariant superop
erator for the relativistic quantum operationÊ @s,s0# can be
written as
9-3
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Ê @s,s0#5trB$W21@s,s0#Ûs@s,s0#rB%. ~26!

So far all our results are exact and Eqs.~21!–~26! would be
the key steps in the analysis of relativistic-quantu
information processing. Apart from describing quantu
information processing, QLE and reduced density opera
have been essential in solving various quantum optics
non-Markovian optical problems in the nonrelativistic d
main @12–14#. So it might be interesting to extend this a
proach to revisit relativistic quantum electrodynamics pro
lems, which were solved relying on renormalizatio
procedures in field theory, using the covariant form of qu
tum Liouville equation. On the other hand, relativistic the
modynamics or statistical mechanics look like an area wh
the knowledge of the density operator or the reduced den
operator might come in handy provided the ambiguity of
temperature concept in special relativity is resolved. We
lieve our formalism is general and could be applied to rela
fields such as QED and relativistic statistical mechanics. A
matter of fact, these related fields would also play an imp
tant role in relativistic-quantum-information processing b
cause these processes would cause the decoherence as
nonrelativistic case.

To show how to apply the formalism we developed
practical problems, we give a derivation of the polarizati
of the vacuum by an external field starting from Eq.~22!.
The Hamiltonian for the coupling between an electron a
electromagnetic fields is given by

Ĥ~x!52 ĵ m~x!Âm~x!, ~27!

where ĵ m(x) and Âm(x) are current and electromagnet
four-vector potential operators, respectively. Then from E
~22!, the reduced density operator up to the first order inL̂
becomes

r (1)@s#5trBH 12 i E
s0

s

d4x8PL~x8!PJ r@s0#

5S 12 i Es

d4x8trB@L~x8!rB# D r@s0#. ~28!

s

03230
-
-
or
d

-

-

re
ity
e
-
d
a

r-
-

the

d

.

If we set the initial hypersurface be the flat surfaces0

52`, r@2`#5r0 and Am(x)5trB@Âm(x)rB# which is a
classical external field, we get

r (1)@s#5r01 i E
2`

s

d4x8@ ĵ m~x8!Am~x8!,r0#. ~29!

The polarization of the vacuum is the expectation value
ĵ m(x), computed for the state of the system as modified
the external electromagnetic field@25,26# and is given by

^ ĵ m~x!&5tr$ ĵ m~x!r (1)@s#%

5tr@ ĵ m~x!r0#

1 i E
2`

s

d4x8tr$@ ĵ n~x8!An~x8!,r0# ĵ m~x!%

5 i E
2`

s

d4x8tr$@ ĵ m~x!, ĵ n~x8!#r0%An~x8!

5 i E
2`

s

d4x8^@ ĵ m~x!, ĵ n~x8!#&0An~x8!

52
a

15

1

k0
2

h2Jm~x!1•••, ~30!

where tr(•••) is the trace over the electron states a
^•••&0 is the expectation value for the electron fields. He
Jm(x) is the external current generating the electromagn
field, k05m0c/\, a5e2/4p\c, h25]m]m, and m0 is the
electron mass@25,26#. Equation~30! describes the vacuum
polarization due to the external electromagnetic fields
quantum electrodynamics. We proceed to derive the seco
order correction to the vacuum polarization^ j m(x)& (2). The
second-order correction term to the reduced density oper
nr (2)@s# becomes
0

nr (2)@s#52 i E
2`

s

d4x8trB$~W21@s,2`#Ûs@s,2`#!(2)rB%r0

522E
2`

s(x)

d4x8E
2`

s(x8)
d4x9trB@L̂~x8!L̂~x9!rB#r0

522E
2`

s(x)

d4x8E
2`

s(x8)
d4x9$2^Âm~x8!Ân~x9!&0 ĵ m~x8! ĵ n~x9!r01^Âm~x8!Ân~x9!&0 ĵ n~x9!r0 ĵ m~x8!

1^Ân~x9!Âm~x8!&0 ĵ m~x8!r0 ĵ n~x9!2^Ân~x9!Âm~x8!&0r0 ĵ n~x9! ĵ m~x8!%. ~31!

Then,
9-4
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^ ĵ m~x!& (2)5tr$ ĵ m~x!nr (2)@s#%

522E
2`

s(x)

d4x8E
2`

s(x8)
d4x9$2^Âm~x8!Ân~x9!&0^@ ĵ l~x!, ĵ m~x8!# ĵ n~x9!&01^Ân~x9!Âm~x8!&0^ ĵ n~x9!

3@ ĵ l~x!, ĵ m~x8!#&0%

522E
2`

s(x)

d4x8E
2`

s(x8)
d4x9^@Âm~x8!,Ân~x9!#&0^@ ĵ l~x!, ĵ m~x8!# ĵ n~x9!&0

522i E
2`

s(x)

d4x8E
2`

s(x8)
d4x9dmnD~x82x9!^@ ĵ l~x!, ĵ m~x8!# ĵ n~x9!&0

522i E
2`

s(x)

d4x8E
2`

s(x8)
d4x9^@ ĵ m~x!, ĵ n~x8!# ĵ n~x9!&0D~x82x9!, ~32!
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whereD(x) is the invariant function defined by Eq.~2.17! of
Ref. @19#. The above result can be further simplified by usi
that @25#

E
2`

s(x8)
d4x9D~x82x9! ĵ m~x9!

5E
2`

`

d4x9e~x8,x9!D~x82x9! ĵ m~x9!

5E
2`

`

d4x9D̄~x82x9! ĵ m~x9!522dÂm~x8!.

~33!

HeredÂm(x) is the four-vector potential induced by the p
larization of the vacuum or the reaction of the virtu
electron-positron coupling. Then the vacuum polarization
to the second-order interaction becomes

^ ĵ m~x!&5 i E
2`

s(x)

d4x8^@ ĵ m~x!, ĵ n~x8!#&0$An~x8!

14dAn~x8!%. ~34!
8
v.

d
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The knowledge of vacuum polarization would be importa
in understanding the decoherence process in the relativ
domain. At this stage, we would like to leave the detail
calculations of the second- and higher-order corrections
future work.

In summary, we have derived Lorentz-covariant quant
Liouville equations for the density operator in functional
hypersurface from the T-S equation and obtained formal
lution for the reduced density operator, which is also in c
variant form, using the projection operator technique and
functional calculus. When all the members of the family
the hypersurfaces become flat hyperplanes, our results a
with those of the nonrelativistic case. We have shown t
our formalism can be applied to the practical cases such
the vacuum polarization. Our formulation is exact and ge
eral so it could be applied not only to the relativisti
quantum-information processing but also to the related fie
such as QED, field theory, and relativistic statistical mech
ics.
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