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Cavity QED and quantum-information processing with ‘‘hot’’ trapped atoms
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We propose a method to implement cavity QED and quantum-information processing in high-Q cavities
with a single trapped but nonlocalized atom. The system is beyond the Lamb-Dicke limit due to the atomic
thermal motion. Our method is based on adiabatic passages, which make the relevant dynamics insensitive to
the randomness of the atom position with an appropriate interaction configuration. The validity of this method
is demonstrated from both approximate analytical calculations and exact numerical simulations. We also
discuss various applications of this method based on the current experimental technology.
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I. INTRODUCTION

Trapping of single atoms in high-Q cavities opens up ex
citing possibilities for the observation and manipulation
the dynamics of single particles and for control of their
teractions with single-mode photons@1,2,4,5#. Such possi-
bilities could have wide applications, such as for the gene
tion of nonclassical or entangled optical pulses@6,7#, for
observing strong cavity-QED effects@4,5,8# and, more re-
markably, for implementation of quantum communicati
and computation@9–13#. The trapping potential for confining
single atoms can be created by diverse avenues, includin
the cavity-QED light itself @4,5#, by additional far-off-
resonant trapping~FORT! beams @2#, and by combining
single trapped ions with high-finesse optical cavities@14,15#.
In this paper, we will direct our attention principally to trap
ping in cavity QED by way of an additional FORT beam
although our results are applicable to broader settings.

The first experiment to achievestrong couplingin cavity
QED with trapped atoms was that of Ref.@2#, which em-
ployed an intracavity FORT beam and reported trapping l
times of 28 ms. By now, this experiment has attained m
longer trapping times, with recent work demonstrating li
times in excess of 1 s@3,16#. By contrast, atomic localization
by way of the cavity-QED field itself has led to trappin
within a single axial well with mean trapping timet
'340 ms @4# and to localization across many axial we
with mean timet'280 ms @5#.

The long trapping times achieved with an intracav
FORT beam set the stage for diverse applications
quantum-information science, which motivates the curr
analysis. However, one of the main obstacles to the exp
mental demonstration of these applications is that the p
tion of the trapped atom is not well fixed within the cavit
The coupling rateg between the atomic internal levels an
the cavity mode depends on the atom’s positionr through the
relation

g~r !5g0x~r ! ~1!
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with the mode function

x~r !5sin~k0z!exp@2~x21y2!/w0
2#, ~2!

whereg0 is the peak coupling rate,w0 andk052p/l0 are,
respectively, the width and the wave vector of the Gauss
cavity mode, andz is assumed to be along the axis of th
cavity. Due to the randomness of the atom’s positionr , we
have an unknown randomly changing coupling rateg(r ).
Most of the applications of this setup assumed a fixed kno
coupling rateg. Therefore, before the experimental demo
stration of these schemes, first one needs to solve the p
lem associated with the random coupling.

Intense experimental efforts have been taken to loca
the atom inside the cavity so as to fix the coupling rateg(r ),
with notable recent success attained via ion traps@14,15#. In
the cavity-QED experiments employing cold atoms a
without FORT beams@1,17,18#, atoms were dropped throug
the cavity and followed random trajectories with large ax
heating. As a result, the magnitude and the sign ofg(r ) were
not well controlled. With a FORT beam and with curre
experimental capabilities@2,3,16#, an atom can be trappe
inside one potential well along the cavity axis with a fixe
sign of g(r ). But the atom still has appreciable kinetic e
ergy and is not fully localized, leading to significant vari
tions in the magnitude of the coupling rateg(r ).

The randomness of the coupling rateg(r ) comes from
several contributions: first, the trapped atom is still quite h
in the current experimental setup. Its kinetic energy from
thermal motion is typically lower but not much lower tha
the depth of the trapping potential. The atom’s oscillati
amplituded in the trap is comparable to the optical wav
lengthl0, so it does not satisfy the usually assumed Lam
Dicke conditiond!l0. Due to the thermal motion of the
atom, the coupling rateg(r ) typically has a variation within
a factor of 2 with the current experimental technique. C
tainly, the atom will become better localized as cooling tec
niques are adapted to cavity QED and its energy is redu
@19,20#. However, due to the presence of the cavity and
trapping potential, it is still experimentally hard to achie
efficient cooling inside the cavity@19–21#. Furthermore,
even if we assume that the atom has been precooled
localized initially to the Lamb-Dicke limit, the implemente
©2003 The American Physical Society05-1
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application protocols will still tend to heat the atom due
photon recoils from the spontaneous emissions@22,23#. As a
result of the heating, the atom may go out of the Lamb-Dic
limit after a short time. Finally, even if we neglect all th
motional and the heating effects of the trapped atom, ther
still some uncertainty of the coupling rate. The intracav
field of the FORT beam forms many potential wells insi
the cavity, and in current experiments, one cannot con
and does not know precisely in which well the atom
trapped. The FORT beam has a wavelengthlF different from
the cavity-QED wavelengthl0, so, even if the atom is kep
very cold and well localized at the bottom of the trappi
potential well, we still might not know exactly the couplin
rate, since the bottoms of different potential wells have d
ferent coupling rates@24#.

Here, to overcome these difficulties, we propose a met
to do cavity-QED and quantum-information processing
rectly with hot atoms with an inhomogeneous distribution
position and/or a time-varying location. The method is ba
on adiabatic passages with a new interaction configurat
Adiabatic passages have been studied in the context of ca
QED @6,13,26,27#, and have been adopted in some rec
experiments@17,18#. Normally, schemes based on adiaba
passages are more insensitive to certain parameter cha
compared with the corresponding Raman schemes. Some
tial indication of insensitivity of the adiabatic passa
scheme to certain parameter changes was already illust
in Ref. @27# for a certain cavity-QED scheme. However,
make the whole system dynamics insensitive to variation
the coupling rateg(r ), the direct use of the usual adiabat
passage schemes is not enough to achieve this goal, an
also need to design a different and appropriate interac
configuration. The relevant dynamics of adiabatic passa
are determined by the relative ratio between different c
pling rates, and are almost independent of their absolute
ues. Thanks to this property, with an appropriate design
the interaction configuration, we can make different coupl
rates have the same dependence on the atom’s positior ,
and, therefore, the system dynamics, determined by t
relative ratios, will become independent ofr . As a result,
though the atom’s position may be unknown and time dep
dent, the output signal from the cavity is still controllab
and has definitely known properties. This is the differen
between the scheme here and the usual adiabatic pas
schemes@13,17,18,27#. Note that the method described he
is also different from some previous quantum computat
schemes with hot trapped ions@28,29#, where the Lamb-
Dicke condition is still required.

The paper is arranged as follows: In Sec. II, we expl
the basic idea of the method, and then describe and solve
model Hamiltonian analytically following some well-know
approach based on the adiabatic approximation. This
proximate analytical approach is still not enough to fu
understand the experiments, so in Sec. III, we give an e
numerical simulation of the model, with the emphasis
checking the validity of the introduced approximations a
calculating various kinds of noise magnitudes relevant
the on-going experimental efforts. The calculations show t
we can get reasonably good signal-to-noise ratios with ty
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cal experimental values for the parameters. In Sec. IV,
briefly review some known cavity-QED and quantum
information processing schemes, and then discuss how
incorporate the present method into these schemes to
prove their performance against the randomness in the
om’s position. After this incorporation, with hot nonlocalize
atoms, one can still realize many kinds of cavity-QED a
quantum-information processing schemes, including, for
stance, the controllable single-photon or entangled-pho
source, quantum communication between cavities, ato
entanglement generation, teleportation, and Bell inequa
detection. Section V gives a synopsis of parameters rele
to our current experiment for a single-atom trapping with
FORT beam at Caltech@2,3,16#. We summarize the results i
the final section.

II. CAVITY QED WITH A NONLOCALIZED TRAPPED
ATOM: THE SCHEME

A. Basic idea

First, we explain the basic idea of this method by cons
ering a single trapped atom, which has three effective lev
ug&, ue&, us&, as shown in Fig. 1. The two ground statesug&
andus& can correspond, for instance, to sub-Zeeman level
the F53 andF54 manifolds, respectively, for the cesium
atom. The transitionue&→us& is coupled resonantly to the
cavity-QED modea with a coupling rateg(r ) in the form of
Eq. ~1!. A classical laser field«(t) incident from one mirror
of the cavity ~see Fig. 1! drives the transitionug&→ue&
through another cavity modea8. We assume for simplicity
that a anda8 have the same spatial mode structure with
same frequency~for example, they can be of different pola
izations! @25#. The driving laser«(t) is resonant to the tran
sition ug&→ue&, so it is far-off-resonant to the cavity mod
a8 with a large detuningvgs , wherevgs denotes the split-
ting between the levelsug& and us&. Due to the off-resonan
driving by «(t), a8 can be described classically by its me
value ^a8&5a(t)e2 ivget (vge is the frequency splitting be
tween the levelsug& and ue&), which couples resonantly to
the transitionug&→ue& with a Rabi oscillation frequency
V(r ,t). Sincea anda8 have the same spatial mode structu
the Rabi frequencyV(r ,t) will depend on the atom’s posi
tion r by the same mode functionx(r ), i.e., V(r ,t) can be
factorized as

V~r ,t !5V0~ t !x~r !5r og0a~ t !x~r !, ~3!

FIG. 1. Schematic setup. Left side: a single atom trapped i
high-Q cavity, which is driven by a classical laser pulse«(t). Right
side: the relevant atomic level structure.
5-2
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where r o represents the fixed ratio of the Clebsch-Gord
coefficients for the transitionsug&→ue& and us&→ue&.

To understand the basic idea of this method, let us fi
look at a very simplified picture by neglecting the coupli
of the modea to the cavity output. The system is then d
scribed by the following simple Hamiltonian in the rotatin
frame ~setting\51):

Hsim5V~r ,t !seg1g~r !ases1H.c., ~4!

wheresmn5um&^nu (m,n5g,e,s) are the atomic transition
operators, and H.c. stands for the Hermitian conjugate.
Hamiltonian Hsim has the well-known dark stateuD& ~the
instantaneous eigenstate with a zero eigenvalue! with the
form @27#

uD&5
1

Aug~r !u21uV~r ,t !u2
@g~r !ug&u0&2V~r ,t !us&u1&]

5
1

A11ur oa~ t !u2
@ ug&u0&2r oa~ t !us&u1&], ~5!

where u0& and u1& represent the zero- and the one-phot
state of the cavity modea. Note that the dark stateuD& ac-
tually only depends on the ratio between the parametersg(r )
andV(r ,t), so it becomes independent of the random at
positionr with the interaction configuration specified abov
If we start with the atom in the ground stateug&, and gradu-
ally increase the Rabi frequencyV(r ,t), under the adiabatic
approximation, the system will remain in the dark stateuD&,
which gradually evolves into the final stateus&u1&. Due to
the independence of the stateuD& on the variabler , the rel-
evant dynamics of this adiabatic evolution also becomes
dependent of the random atom siter . This is the basic idea o
the method to eliminate the influence of the randomness
the coupling coefficientg(r ).

Note that to make the dark state and the relevant dyn
ics independent of the random atom positionr , the driving
pulse and the cavity mode need to have the same sp
mode structure. This is why the classical driving pulse
matched to the spatial mode of the cavity field, both alo
the cavity axis and transversely, which is routinely acco
plished by way of illumination from one side mirror of th
cavity. This configuration is different from the original pro
posals for adiabatic dynamics in cavity QED@27# in which
the propagation direction of the driving pulse is perpendi
lar to the cavity axis with uniform illumination intensity. It i
also distinct from the configuration employed in some rec
interesting experiments directed toward achieving a sin
photon source@17,18#, which likewise employed uniform il-
lumination transverse to the cavity axis and for which t
atom is not localized axially. As a result, in these expe
ments some of the dynamics, such as the output pulse s
and phase, still depend on the unknown position of the at
and are thus not fully controllable, as has been seen from
experiments.

We also would like to mention that in this configuratio
the driving field and the quantized cavity output are coll
ear, and they need to be separated afterwards. The sepa
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can be done through either polarization or frequency se
tion. This separation is actually pretty easy in the pres
case. In typical experimental configurations, the class
field drives one cavity mode from one cavity mirror~say 1!
with a large detuning, and the single-photon quantum fi
together with some transmitted driving field are output fro
the other cavity mirror~say 2, with the transmission ratet2
.t1). Most of the driving field has been filtered already b
the high-finesse cavity itself. The ratio between the inten
ties of the classical driving field and the quantum field outp
from side 2 is the same as their ratio inside the cavity, wh
does not need to be very large, since both of the ato
transitions are enhanced by the cavity and thus have com
rable strength. As will be seen in the numerical simulatio
in Sec. III, inside the cavity, the driving field is typicall
assumed to be about five times stronger than the sin
photon field, and it is pretty easy to separate such a w
field with a polarization beam splitter at output side 2.

To guarantee an adiabatic evolution, we need to fulfill t
adiabatic condition, which means that the evolution timeT
should be significantly longer than the frequency gapd be-
tween the dark state and some other eigenstates of the Ha
tonianHsim. The error probability due to the nonadiabatici
is estimated bypad51/(dT)2. For the HamiltonianHsim, the
frequency gapd is given byd5Aug(r )u21uV(r ,t)u2. Thus,
the adiabatic condition@ ug(r )u21uV(r ,t)u2#T2@1 depends
on the atom positionr . If the coupling coefficientg(r )
changes by a factor of 2, the error probabilitypad will
change by a factor of 4 for the same evolution timeT. How-
ever, if T is sufficiently long, the error probabilitypad re-
mains small, and the relevant system dynamics will be s
very insensitive to the randomness of the atom’s position.
estimatepad , we can use the average value of the coupl
rateg(r ).

In the above simple picture, we neglect the coupling
the modea to the cavity output. This is only a valid pictur
in the good-cavity limit with the evolution timeT!1/k,
wherek is the cavity decay rate. However, in practice, it
better to operate the system in the limit withT>1/k. There
are several advantages of operating the system in this li
first, without the requirementT!1/k, it is easier to satisfy
the adiabatic condition for whichT should be sufficiently
long; second, in this limit it is easier to modulate the Ra
frequencyV(r ,t) by changing the intensity of the driving
laser«(t) incident from one side mirror of the cavity. In thi
way, one can efficiently control the pulse shape of the cav
output by modulating the shape«(t) of the driving laser,
which is useful for many applications. In the limitT>1/k,
we need to take into account, from the beginning, the c
pling of the modea to the continuum cavity output, and th
whole system will then have infinite levels. We will describ
in the section this more involved interaction configuratio
The above simple three-level picture, though it does not
scribe the real experimental configuration, does help in
derstanding the basic idea of the adiabatic method.

B. Theoretical model and its approximate analytical solution

Now we look at the more complicated theoretical mod
which includes the coupling of the modea to the continuum
5-3
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cavity output. If we adiabatically apply a classical drivin
pulse«(t) as shown in Fig. 1, one photon will be emitte
from the transitionue&→us&, and the cavity will output a
single-photon pulse. We want to show below that this sing
photon pulse has a definite pulse shape which is indepen
of the randomness in the atom’s positionr and in the cou-
pling rateg(r ). In this way, although the atom’s position an
the absolute value of the light-atom coupling rate are
fully controlled, we can nevertheless fully control the pro
erties of the output single-photon pulse by modulating
driving laser pulse«(t). This is an important feature fo
many applications of this setup, which we will discuss
Sec. IV. There are several equivalent ways to describe
coupling of the modea to the continuum cavity outpu
@9,30,31#. Since we want to calculate the output pulse sha
within the adiabatic approximation, it is convenient to u
the Hamiltonian approach@30,31#. The derivation here is
similar to the calculation in Ref.@30# for the pulse shape
from an ensemble of atoms. The whole Hamiltonian, inclu
ing the coupling to the cavity output, has the following for
in the rotating frame@31#:

H5~D2 igs/2!see1@V~r ,t !seg1g~r !ases1H.c.#

1 iAk/2pE
2vb

1vb
dv@a†b~v!2ab†~v!#

1E
2vb

1vb
dv@vb†~v!b~v!#, ~6!

where b(v), with the standard commutation relatio
@b(v),b†(v8)#5d(v2v8), denote the one-dimensiona
free-space modes that couple to the cavity modea. We only
need to consider the free-space modes within a finite ba
width @vse2vb ,vse1vb# with the carrier frequencyvse
(vse is the frequency splitting between the levelsus& and
ue&), since all the modes outside of this bandwidth ha
negligible contributions to the dynamics due to the large
tuning ~larger thanvb). Within this bandwidth, the coupling
betweenb(v) and the cavity modea is approximately a
constant, and we denote it byAk/2p for convenience, where
k is the effective cavity decay rate, as we will see. T
bandwidthvb should be chosen to be much larger thank,
but still much smaller thanvse.

We have assumed that the driving laser and the ca
mode a couple resonantly to the corresponding free-sp
atomic transitions. However, we emphasize that our sch
still works for the case of off-resonant coupling. By cons
ering the off-resonant scheme, there is no win with respec
losses due to the atomic decay, since in this case the
scale also slows down. So it suffices here to consider
resonant coupling case. However, in the Hamiltonian~6!, it
is still helpful to include a single-photon-transition detuni
D to account for the trapping potential difference for t
levelsug& andue& induced by the FORT beam~this potential
is basically the same for the levelsus& and ug& for a FORT
beam with linear polarization as in our current experimen!.
The potential difference between the levelug& and ue&, in
general, depends as well on the random atom positionr .
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The imaginary part of the Hamiltonian~6! accounts for
the spontaneous emission loss, wheregs denotes the tota
spontaneous emission rate of the upper levelue&. In writing
this form, we have assumed that the spontaneous emis
photon escapes and that the atom after a spontaneous
sion will not be repumped. This is a good assumption for
interesting region where the spontaneous emission loss is
big, and the atom thus has a very small probability to
repumped after emitting a spontaneous emission photon
a result of this assumption, the spontaneous emission
contributes to the leakage error which is properly represen
by Eq. ~6! @32#.

We treat the atom’s positionr in the Hamiltonian~6! as a
classical stochastic variable, and neglect its quantum na
This is a good approximation for the current experimen
situation where the atom is still quite hot. There have be
some analyses of the noise from quantum motion effect
high-Q cavities with very cold atoms@33#.

We start with the atom in the ground stateug&, and then
apply a classical driving pulse«(t). This pulse can effi-
ciently control the time evolution of the Rabi frequenc
V(r ,t) in the Hamiltonian~6!. To see this, we write the
input-output equation for the cavity modea8 @31#

ȧ852 ivsea82
k

2
a82Akain8 ~ t !, ~7!

whereain8 (t) is the field operator for the input driving puls
coupling to the mode a8, with ^ain8 (t)&5«(t) and
@ain8 (t),ain8

†(t8)#5d(t2t8). By assumption, the modea8 has
the same frequency as the modea, which is resonant to the
free-space atomic transitionus&→ue&, so the eigenfrequency
of a8 is vse. Such a situation corresponds, for example,
the case of the (a,a8) modes of orthogonal polarization, bu
degenerate in frequency, although this is not an essentia
quirement. In Eq.~7!, we have neglected the small depletio
of a8 caused by the coupling to the atomic transitionseg ,
since a8 is driven by a strong classical pulse«(t) which
dominates its time evolution. We write the mean values ofa8
and ain8 (t) as ^a8&5a(t)e2 ivget and ^ain8 (t)&5«(t)

5 «̃(t)e2 ivget, where«̃(t) is the slowly varying amplitude of
the driving laser. From Eq.~7!, we get a time evolution equa
tion for the mean valuea(t), which has the following im-
mediate solution:

a~ t !5E
0

t

«̃~t!e( ivgs2k/2)(t2t)dt. ~8!

The variation rate of«̃(t) is characterized by the inverse o
the operation timeT ~the pulse duration!, which is typically
much smaller than the hyperfine frequency splittingvgs
~about 9 GHz for cesium atoms!. Hence, a partial integration
of Eq. ~8! yields

a~ t !.
«̃~ t !2e( ivgs2k/2)t«̃~0!

2 ivgs1k/2 F11oS 1

vgsT
D G . ~9!
5-4
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CAVITY QED AND QUANTUM-INFORMATION . . . PHYSICAL REVIEW A 67, 032305 ~2003!
We assume that«̃(t) gradually increases from zero wit
«̃(0).0. Then, within a good approximation, we hav
a(t)}«̃(t) from Eq. ~9!. In the following, without loss of
generality, we assumea(t) to be real by choosing an appro
priate constant phase of«̃(t). The time behavior of the Rab
frequencyV(r ,t) is completely determined bya(t) @note
thatV(r ,t)5r og0a(t)x(r ) from Eq.~3!#, that is, by the am-
plitude «̃(t) of the driving laser.

The dark state~5! can be rewritten asuD&5cosuug&u0&
2sinuus&u1&, with cosu51/A11ur oa(t)u2 independent of the
atom’s positionr . The stateuB& complementary to the dar
state is usually called the bright state withuB&5sinuug&u0&
1cosuus&u1&. To solve the dynamics governed by the Ham
tonian~6!, we can expand the stateuC& of the whole system
into the following superposition:

uC&5~cduD&1cbuB&1ceue&u0&) ^ uvac&1us&u0& ^ uw1&,
~10!

where uvac& denotes the vacuum state of the free-sp
modesb(v), and

uw1&5E
2vb

1vb
dvcvb†~v!uvac& ~11!

represents the state~not normalized! of the single-photon
output pulse. The coefficientscd , cb , ce , andcv in Eq. ~10!
are time dependent. At the timet50, we havecd51, cb
5ce5cv50, and cosu51. After applying a classical driv-
ing pulse«(t), cosu slowly changes witha(t), and we need
to compute the time evolution of all the coefficien
cd ,cb ,ce ,cv in Eq. ~10! by substituting uC& into the
Schrödinger equationi ] tuC&5HuC&.

To go on with this task, let us first take the adiaba
approximation, which assumes the time derivative] t cosu
'0. As a result,] tuD& and] tuB& become negligible. We will
check the validity of the adiabatic approximation and cal
late various nonadiabatic corrections in the following sect
through numerical methods. In the adiabatic limit, the po
lations in the bright stateuB& and in the excited stateue& are
negligible, so we assumecb'ce'0. The coefficientscd and
cv satisfy the following evolution equations:

ċd52Ak/2psinuE
2vb

1vb
cvdv, ~12!

ċv52 ivcv1Ak/2pcd sinu. ~13!

Equation~13! has the solution

cv~ t !5Ak/2pE
0

t

e2 iv(t2t)cd~t!sinu~t!dt, ~14!

which, substituted into Eq.~12!, leads to

ċd52
k

2p
sinuE

0

tsin@vb~ t2t!#

t2t
cd~t!sinu~t!dt

.2~k/2!cd sin2u. ~15!
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The approximation in Eq.~15! is valid since the bandwidth
vb satisfiesvbT@1, where the operation timeT character-
izes the time scale for a significant change ofcd and sinu.
Therefore, the dark-state coefficientcd satisfies the cavity
free-decay equation, with the decay ratek replaced by the
effective ratek sin2u. This can be easily understood sinc
sin2u is the probability of the componentus&u1& in the dark
stateuD&, and it is exactly this component that couples to t
cavity output. Equation~15! has the straightforward solutio

cd5expS 2
k

2E0

t

sin2u~t!dt D . ~16!

We want to know the single-photon pulse shapef (t) of the
cavity output stateuw1&. Suppose now thatT is the final time
of the interaction~i.e., the operation time determined by th
driving laser pulse is from 0 toT). The pulse shapef (t) is
connected with the coefficientscv(t) before the frequency
components inuw1& by the Fourier transformation@31#

f ~ t !5
1

A2p
E

2vb

1vb
dvcv~T!e2 iv(t2T). ~17!

From Eqs.~14!, ~16!, and~17!, we finally obtain

f ~ t !5Aksinu~ t !expS 2
k

2E0

t

sin2u~t!dt D . ~18!

Note that the single-photon pulse shapef (t) is completely
determined byu(t), i.e., by the driving pulse shape«̃(t), and
is independent of the random atom’s positionr and the ab-
solute value of the coupling coefficientg(r ). As we have
mentioned before, this is the main advantage of this adiab
method compared with either the Raman scheme or p
proposals based upon adiabatic passages with uniform
mination @17,18,27#, and this feature is essential for man
applications of this setup.

The above result is obtained within the adiabatic appro
mation, and in the adiabatic limit, the solution is independ
of the atomic spontaneous emission rategs and the detuning
D. This is only a rough picture. In the following, we wil
solve exactly the dynamics governed by the Hamiltonian~6!
without the use of the adiabatic approximation. The ex
solution is necessary in the following two senses: first,
need to verify the above ideal picture and to find out un
what condition this picture is approximately valid. Though
the three-level case, we have some simple estimation of
condition for the adiabatic following, it is not easy to figu
out the exact adiabatic following condition for the more r
alistic situation of a continuum of external modes. In th
case, the argument based on the level spacing is not v
We need to know how long the operation timeT should be to
satisfy the adiabatic following condition. We also expect th
the atomic spontaneous emission cannot be made neglig
simply by increasing the operation timeT. Its rategs should
be small enough to satisfy the strong-coupling condit
kgs!ḡ2, whereḡ denotes the average of the coupling ra
g(r ) @34#. Second, in real experiments, the operation timeT
5-5
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is not infinitely long, and the coupling rateḡ cannot be arbi-
trarily larger than the decay ratesk andgs due to limitation
of the technology~for instance, in Caltech experiments, typ
cally, ḡ/2p is around 20 MHz, and k/2p;gs/2p
;6 MHz). In this case, there would be various nonadiaba
corrections to the above ideal picture, for instance, the a
may go down from the levelue& to us& through a spontaneou
emission, and then we lose the emitted photon and thus h
no output from the cavity; or we have a single-photon outp
but it is in a wrong and unknown pulse shape due to
sensitivity to the random atom position induced by the no
diabatic contributions. It is desirous and important to cal
late quantitatively the magnitudes of these noises to pre
the real experiments. The exact solution of the system
namics is only available with the numerical methods, wh
is the main task of the following section.

III. EXACT NUMERICAL SIMULATIONS

A. The numerical calculation method

In this section, we solve exactly the system dynam
governed by the Hamiltonian~6! through numerical simula
tions, and calculate various nonadiabatic corrections
noise magnitudes. For numerical simulations of the Ham
tonian~6!, we need to discretize the free-space fieldb(v) by
introducing a finite but small frequency intervaldv between
two adjacent modes. Then, in total we have aboutN
'2vb /dv free-space modes, with thej mode denoted by
bj . The frequency detuningv j of the j mode is given by
v j5( j 2N/2)dv. To assure that there is no change of t
physical result after the discretization, we should choose
frequency intervaldv much smaller than the inverse of th
operation timeT, and the bandwidthvb much larger than the
cavity decay ratek.

For the numerical simulation, we can similarly expand t
stateuC& of the whole system in the form of Eq.~9!, with the
single-photon pulse state replaced by

uw1&5(
j 51

N

cjbj
†uvac&. ~19!

From the Hamiltonian~6!, we get the following complete se
of equations for the coefficientscd , cb , ce , andcj :

ċd52 u̇cb2k8sinu(
j 51

N

cj , ~20!

ċb5 u̇cd2 iAV2~r ,t !1g2~r !ce1k8cosu(
j 51

N

cj , ~21!

ċe5~2 iD2gs/2!ce2 iAV2~r ,t !1g2~r !cb , ~22!

ċ j52 i ~ j 2N/2!dvcj1k8sinucd2k8cosucb , ~23!

where the effective decay ratek8[Akdv/2p. We obtain the
solutions of these coefficients by numerically integrati
Eqs. ~20!–~23! from the timet50 to t5T, whereT is the
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duration of the driving pulse«̃(t). We assume that«̃(t) is a
Gaussian pulse so thata(t) is a Gaussian function of the
time t, with its peak value atT/2, and a widthtw significantly
smaller thanT/2. All the functions ofu in Eqs.~20!–~23! are
decided from cosu51/A11ur oa(t)u2 andAV2(r ,t)1g2(r )
5g(r )/cosu. To simulate the randomness of the atom po
tion r , we vary the value ofg(r ) in the simulation to look at
whether the final result changes with this variation.

B. Shape of the output single-photon pulse

The output single-photon pulse shapef (t) can be easily
constructed from the solution of the coefficientscj through a
discrete version of Eq.~17!. The result is shown in Fig. 2 fo
g(r )53k and g(r )56k. Although we have not made de
finitive measurements, we estimate thatg(r ) varies within a
factor of roughly 2 in the current Caltech experime
@2,3,16#. Here and in the following, the pulse-shape functi
f (t) is always renormalized according to* u f (t)u2dt51 for
convenience of comparison. We see that the two curves o
lap very well, which confirms the prediction that the outp
pulse shape is very insensitive to the randomness of the
pling coefficientg(r ) when the adiabatic condition is satis
fied ~we takeT520/k for this figure!. We also draw in this
figure the pulse shapef (t) given by Eq.~18! derived in the
ideal adiabatic limit, which agrees well with the exact n
merical results. Therefore, within the adiabatic condition,
can use the analytical result~18! to design the shape of th
output single-photon pulse by modulating the driving pu
shape«̃(t).

C. Noise magnitudes and the adiabatic condition

To quantify the noise magnitudes in this setup, we c
define several error probabilities. First, we have the leak

FIG. 2. The shape of the output single-photon pulse descri
by the amplitudeu f (t)u vs the timet for the coupling ratesg(r )
53k ~solid curve! andg(r )56k ~dotted curve!. The dashed curve
represents the pulse shape in the ideal adiabatic limit calcul
from Eq. ~16!. In this figure, we have takengs5k, D50, andT

520/k. The driving pulse«̃(t) is in a Gaussian shape with the pea
at t5T/2 and a widthtw5T/5.
5-6
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error due to the atomic spontaneous emission. A photon
be emitted to modes other than the principal cavity mo
through the spontaneous emission with the rategs . As a
result, the normucdu21ucbu21uceu21( j 51

N ucj u2 of the state
~10! decays with the timet, and we can use

Pspon512ucd~T!u22ucb~T!u22uce~T!u22(
j 51

N

ucj~T!u2

~24!

at the final timeT to quantify the total possibility of the
spontaneous emission loss. Second, due to the finitene
the operation timeT and the pumping field amplitude«̃(t),
the initial excitation in the dark state is not necessarily fu
transferred to the output quantum signal at the final time,
we can use

Ptran5ucd~T!u21ucb~T!u21uce~T!u2 ~25!

at the timeT to quantify the transmission inefficiency. I
principle, we can arbitrarily decrease the transmission ine
ciency by increasing the durationT or the amplitude«̃(t) of
the pumping field. Finally, even if a photon is emitted in
the cavity output field, it is not necessarily in the right pul
shape as given by Eq.~18! due to the nonadiabatic correc
tion. This nonadiabatic correction depends on the rand
atom position and is unknown, so it is also a source of no
To quantify this noise, we denote the ideal pulse shape g
in Eq. ~18! as f id(t), and the real pulse shape calculated fro
the numerical simulation asf real(t), then the shape mis
matching error can be described by

Pmis5U12

E
0

T

f real* ~ t ! f id~ t !dt

F E
0

T

u f real~ t !u2dtE
0

T

u f id~ t !u2dtG1/2U . ~26!

This quantity is directly related to the visibility of the fringe
if we interfere two single-photon pulses from two such s
ups.

For the example shown in Fig. 2, withg(r )53k53gs
~the other parameters are given in the figure caption!, we
have Pspon'4.0%, Ptran'0.04%, Pmis'0.18%. The domi-
nant source of noise is the leakage errorPsponinduced by the
spontaneous emission. If we increase the operation timeT so
that the adiabatic condition is better satisfied, the abo
defined noise magnitudes can be reduced a little bit, but
too much. For instance, with the above example but withT
530/k, we havePspon'3.33% andPmis'0.15%. On the
other hand, ifT is reduced so that the adiabatic condition
not well satisfied, the error probabilities can significantly
crease. Figure 3 shows the output pulse shapes forg(r )
53k andg(r )56k with T55/k. The two curves are obvi
ously different from each other and are also different fro
the ideal shape as given by Eq.~18!. For the example with
g(r )53k53gs and T55/k, we have Pspon'36%, Ptran
'3.2%, Pmis'2.7%. All the noise magnitudes significant
increase. In particular, the spontaneous emission loss
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comes very big. This can be easily understood since with
the adiabatic condition, the excited stateue& will be popu-
lated during the operation, and thus we have a correspo
ingly larger spontaneous emission loss.

D. The strong-coupling condition

Next we look at the requirement of the strong-coupli
condition. Let ḡ denote the average value of the coupli
rate g(r ). Normally one requiresḡ2@kgs to satisfy the
strong-coupling condition. We can define the strong-coupl
parameterdsc as dsc5ḡ2/kgs , and calculate the above
defined noise magnitudesPspon, Ptran, Pmis under different
values of the parameterdsc . We assumedT530/k and D
50 in the calculation so that the adiabatic condition is w
satisfied. It turns out that the spontaneous emission lossPspon
is always the dominant loss~about ten times larger than othe
sources of noise!. Thus, in Fig. 4, we only show the calcu
lation result forPspon under different values ofdsc . The re-
sult can be approximately simulated by an empirical cu
with Pspon'1/(4dsc).

We can use this simple formula to estimate the sponta
ous emission loss under different experimental conditio
Actually, in current experiments, the strong-coupling con
tion is only marginally satisfied. For instance, for the cesiu
atom in the Caltech group, (k,gs)/2p'(8,5.2) MHz ~note
that k andgs here denote the energy decay rates, which
two times the corresponding amplitude decay rates! @2,3#,
and ḡ/2p is expected to be'15 MHz for the transition
(6S1/2,F54,m514)→(6P3/2,F54,m514) @Note that
the transition (6S1/2,F54,m514)→(6P3/2,F55,m5
15) cannot be used as aL configuration though it has a
slightly larger coupling rateḡ]. These values lead todsc

5ḡ2/kgs'5.4 and a resulting spontaneous emission l
around 4.6%, which is quite accessible with the present te

FIG. 3. The shapeu f (t)u of the output single-photon pulse fo
the coupling ratesg(r )53k ~solid curve!, g(r )56k ~dotted curve!,
and in the ideal adiabatic limit~dashed curve!. We assumed the
same condition as in Fig. 2, except thatT55/k, which does not
satisfy well the adiabatic condition.
5-7
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DUAN, KUZMICH, AND KIMBLE PHYSICAL REVIEW A 67, 032305 ~2003!
nology. As another example, in the recent experiment@18#,
one has (k,gs)/2p'(1.25,6.0)MHz andḡ/2p'2.5 MHz
according to the estimation there. With these paramet
ḡ2/kgs'0.83 and we estimate that the spontaneous emis
loss is aboutPspon'30% if one uses the scheme here. If t
usual adiabatic scheme is adopted with a uniform driv
pulse perpendicular to the cavity axis, the spontaneous e
sion loss should be still significantly larger, as will be se
from the simulation in the last section.

E. The influence of the single-photon transition detuning

In the above calculations, we assumedD50. Finally, we
discuss the influence of a nonzero single-photon detuningD.
In Fig. 5, we show the calculation result of the exact pul
shape functionf real(t) with a significant detuningD5k, and
compare it with the ideal pulse shape functionf id(t) given by
Eq. ~18! for both the amplitude and the phase. The oth
parameters for this example are given in the figure capt
From the figure, we see that the two amplitudesu f real(t)u and
u f id(t)u still overlap very well, but their phases become a
different due to the detuning.

This phase difference is determined by the the detun
D, whereas the latter depends on the different level s
between ground and excited states, and hence varies wit
atom position within the FORT beam. In the case of t
simple level scheme depicted in Fig. 1, the statesug& andue&
would have spatially dependent level shifts of opposite si
which would lead to variations inD comparable to the trap
depth. Fortunately, there is a simple way to mitigate t
difficulty by considering the multilevels involved for th
FORT beam, as described in Ref.@35#, so that the trapping
potentials for the statesug& andue& are very nearly the same
For example, for the experiment of Ref.@16#, the difference
in trap depth forug& and ue& is roughly 10% of the trap

FIG. 4. The spontaneous emission lossPspon vs the average

coupling rateḡ ~in the units of the cavity decay ratek). We as-
sumedD50 and gs5k, so the strong-coupling parameterdsc is

simply (ḡ/k)2. The circles represent the results from the numeri
calculation, and the dashed curve is from the empirical form
Pspon'1/(4dsc) which simulates well the numerical results.
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depth. Relative to the current analysis, there is then a va
tion in D as the atom moves in the FORT potential, which
unknown when the adiabatic protocol is implemented. T
curve in Fig. 5 is an attempt to estimate the impact of su
random detunings by settingD5k, which exceeds the actua
magnitude of any spatially dependent detunings for FO
depths up to about 50 MHz. The phase difference in
pulse-shape function caused by the unknown detunings
source of noise, which contributes to the shape mismatch
error defined in Eq.~26!. For this example withg(r )53k,
we havePspon'3.33%,Ptran'1024, which are basically the
same as the corresponding case without detuning, butPmis
'3.33%, which becomes significantly larger due to the c
tribution of the phase difference.

F. Comparison with the usual adiabatic scheme

In our scheme, the driving pulse is matched to a cav
mode which has basically the same spatial mode, structur
the cavity-QED light. In usual adiabatic schemes@18,27#, the
driving laser is assumed to be perpendicular to the ca
axis with uniform illumination intensity. We expect that wit
the present interaction configuration, our scheme is more
sensitive to the randomness in the atom position. To comp
the two configurations more quantitatively, we have calc
lated the output pulse shapes and noise magnitudes for
schemes.

First, let us assume that the atom has been trapped in
potential well, but the coupling rateg(r ) may vary within a
factor of 2 due to the unknown atom’s position. In Fig. 6, w
show the calculation results of the output pulse shapes.
solid curve shows the pulse-shape functionu f (t)u when
g(r )53k andVm(r )515k, whereVm(r ) is the maximum
of V(r ,t) with respect to timet @V(r ,t) is assumed to be a
Gaussian function oft as specified in the caption of Fig. 2#.

l
a

FIG. 5. The amplitude~the modulus! and the phase~divided by
p/2) of the real pulse shapef real(t) ~two solid curves! and the ideal
pulse shapef id(t) ~two dashed curves! vs the timet with the single-
photon transition detuningD5k. We assumedg(r )53k, gs5k,
andT530/k. In this case, the main difference betweenf real(t) and
f id(t) lies in the phase difference.
5-8
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Now, if g(r ) varies by a factor of 2 due to change of th
atom’s position, in our scheme the Rabi frequency will c
respondingly change by the same ratio. The dashed c
shows the pulse shape forg(r )56k andVm(r )530k. One
can see that the two curves overlap very well with the mo
mismatching noise smaller than 0.2%. In contrast, in us
adiabatic schemes with uniform illumination intensit
Vm(r ) does not change asg(r ) varies with the atom posi
tion, so we have the sameVm(r )515k. The dotted curve in
Fig. 6 shows the pulse shape forg(r )56k and Vm(r )
515k. It is significantly different from the above two curve
with a notable mode mismatching noisePmis'6.9%. The
improvement by this scheme would become more impres
if g(r ) has a larger variation, both in its magnitude and in
sign. If g(r ) gets a random sign as the atom goes throu
different axial positions of the cavity, in the usual adiaba
scheme, the pulse-shape functionf (t) will also pick up a
random sign. However, in the present scheme, this rand
sign in f (t) can be eliminated. Therefore, by this interacti
configuration, the scheme is more robust to the rand
variation of the atom’s position.

The improvement by this protocol is also very remarka
if we consider the case where the atom is not fixed in o
potential well, and may move from well to well in the axi
direction. The variation of the atom’s position in the ax
direction is typically fast compared with the operation tim
T, so we have a time-varying atom positionr and coupling
rate g(r ). Here, we consider an explicit form of the tim
variation of g(r ) by assumingg„r (t)…56k sin(4pt/T1w0),
where the phasew0 is randomly chosen corresponding to t
randomness in the initial atom’s position. It is enough
illustrate the general result by considering this special
ample. First, let us calculate the output pulse shapef (t) for
the usual adiabatic scheme, whereVm(r ) is fixed as a con-
stant@17,18,27#. The solid and the dash-dotted curves in F
7 show the real parts off (t) with initial phasew050 and

FIG. 6. The shapeu f (t)u of the output single-photon pulse fo
the following pairs of coupling rates and the driving Rabi freque
cies: first,g(r )53k and Vm(r )515k ~solid curve!; second,g(r )
56k and Vm(r )530k ~dashed curve!, and finally,g(r )56k and
Vm(r )515k ~dotted curve!. The other parameters are the same
in Fig. 2.
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w05p/2, respectively@the imaginary parts off (t) are actu-
ally small and negligible#. The two curves do not overlap a
all. Neither the magnitude nor the phase of the pulse sh
f (t) can be controlled with this scheme. We also calcul
the spontaneous emission lossPspon for this example. The
average spontaneous emission loss is aboutPspon'25%.

Similarly, we can calculate the pulse shape for the sa
example with the present scheme. In this case, due to
atomic motion,Vm(r ) varies with time in the same way a
g(r ), but the ratioVm(r )/g(r ) is kept constant. Figure 8
shows the real part of the shape functionf (t) in this case,
with the solid and the dash-dotted curves corresponding
the initial phasew050 andw05p/2, respectively. Although
the two curves do not overlap very well, they still look sim
lar with the same phase. They also roughly agree with
ideal shape function given by Eq.~18!, which is shown as the
dashed curve in Fig. 8. The average mode mismatching n

-

s

FIG. 7. The real part of the pulse-shape function Re@ f (t)# as
g(r ) varies with time in the formg(r )56k sin(4pt/T1w0) in the
usual adiabatic scheme withw050 ~solid curve! and w05p/2
~dash-dotted curve!, respectively. The dashed curve shows the id
pulse shape calculated from Eq.~18!. The other parameters in thi
figure are the same as those in Fig. 2.

FIG. 8. The real part of the pulse-shape function Re@ f (t)# cal-
culated for the same example as in Fig. 7, but now for the pre
adiabatic scheme where the driving Rabi frequency varies in
same way as the the coupling rate when the atom moves.
5-9
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DUAN, KUZMICH, AND KIMBLE PHYSICAL REVIEW A 67, 032305 ~2003!
for these two curves is given byPmis'1.1%, and the aver
age spontaneous emission loss isPspon'9.4%. The sponta-
neous emission loss is also significantly reduced with
present scheme. This can be understood as follows: if
has a constantVm(r ) as the usual adiabatic scheme, wh
the atom moves to the place withg(r ) near to zero, the
adiabatic condition is not well satisfied, and as a result,
has a considerably large spontaneous emission loss; how
in the present scheme, in the place whereg(r ) is near zero,
Vm(r ) is also near zero. The excitation probability of th
atom is then reduced, and the adiabatic condition is be
satisfied. Consequently, one has a smaller spontaneous
sion loss.

IV. APPLICATIONS

There have been many proposals to use the setup
single atoms in high-Q cavities for various applications, suc
as for the single-photon or entangled-photon source@6,7#, for
quantum communication between different cavities@9#, for
atomic quantum teleportation@11,12#, and for quantum com-
putation @13#. In these proposals, one always assumed
the atom is well localized so that the Lamb-Dicke conditi
is satisfied. However, one can apply the method here to a
the schemes mentioned above, to eliminate the challen
Lamb-Dicke condition. Basically, what one needs to do is
replace the Raman scheme with the adiabatic scheme, a
keep the pumping laser collinear with the cavity axis, so t
the driving pulse and the cavity mode have the same sp
mode structure. All the calculation results~for the noise mag-
nitudes, pulse shape, etc.! in this paper apply to thes
schemes. After the improvement, it becomes considera
easier to implement these schemes with the current tech
ogy. Here, we briefly review these schemes and discuss
to incorporate the present method into these schemes.

A. Controllable single-photon or entangled-photon source

It is desirable to have a single-photon source with all
properties fully controllable, including its emission directio
emission time, and pulse shape. This kind of source has
portant applications in some recent quantum-informat
processing schemes@36#, which are normally based on th
interference of different single-photon pulses. To get inter
ence between different single-photon pulses, one require
the pulses to be directional and have the same time sh
Recently, there have been significant experimental adva
in the realization of the single-photon source@17,18,37–39#.
In the experiments based on the solid-state material@37–39#,
the single-photon emitter has a fixed position, and one c
in principle, control the pulse shape well. However, the em
ted pulse is typically not directional. On the other hand,
current experiments@17,18# with high-Q cavities, the emitted
pulse is directional, but its shape is not well controlled sin
with uniform illumination of a perpendicular driving pulse
the waveformf (t) depends on the time history of the co
pling rateg(r ), which in turn depends on the atom’s pos
tion. As the atom falls through the cavity, it has basically
random trajectory, leading to unknown variations ing(r )
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both in magnitude and sign. It is a challenging experimen
endeavor to demonstrate a single-photon source with all
properties mentioned above fully controllable.

The method in this paper shows that the single at
trapped in a high-Q cavity is a good candidate for the rea
ization of the fully controllable single-photon sourc
Though the coupling rateg(r ) is not completely fixed in
current setups due to the difficulty in fully localizing th
atom, the emitted single-photon pulse has a definitely w
controllable time shape and emission direction with an
propriate design of the interaction configuration as has b
shown before.

As shown in Ref.@7#, with a more involved atomic leve
structure, it is possible to engineer entanglement betw
different single-photon pulses. It is straightforward to co
bine the method here with that scheme to eliminate the
quirement of the Lamb-Dicke condition in Ref.@7# so that
one can get an entangled single-photon source with
‘‘hot’’ trapped atom as well.

B. Quantum communication between different cavities

The dynamics governed by the Hamiltonian~6! is revers-
ible if we neglect the atomic spontaneous emissiongs .
Therefore, if one directs the emitted single-photon pu
back to the cavity, and at the same time reverses both of
time shapes of the single-photon pulse and the driving pu
the single-photon pulse will be completely absorbed as lo
as the noise effects are negligible. It was first proposed
Ref. @9# that one can use this kind of a phenomenon
achieve quantum communication between different cavit
that is, to transfer quantum states of a trapped atom from
cavity to another cavity. For this purpose, one can requ
that the emitted single-photon pulse has a time-symme
shape by modulating the driving pulse shape. For a tim
symmetric pulse, its time reversal is itself, so we can direc
input this pulse to another cavity with the same configurat
but with a time-reversed driving pulse, then the sing
photon pulse will be completely absorbed by this cavi
which transfers the atomic state from one cavity to the ot
one. The scheme in Ref.@9# is based on the Raman configu
ration, but it is straightforward to transfer it to the adiaba
configuration discussed in this paper so that it works wit
hot trapped atom. Note that the same setup can also be
for storage of a single-photon pulse with a known sha
@30,40,41#.

To get a time-symmetric single-photon pulse for a co
plete absorption of the second cavity, Ref.@9# gives a nu-
merical solution to the shape of the driving pulse. For t
adiabatic configuration, one has an analytic expression~18!
which connects the shape of the output single-photon p
to the shape of the driving pulse, and this expression
been verified to be a good approximation under reason
experimental parameters in Sec. III through the exact
merical calculations. With this analytical expression, it b
comes easier to design the shape«̃(t) of the driving pulse.
The form of sinu(t) can be easily solved from Eq.~18! ~see
also Ref.@40#! with the expression
5-10



-

o

,

y
a

ng
fe
lly

lly

tr

ca
w
at

a

int
u

te
r

ity
th

d
t

n

ulse
n as
e

it for
on

eds
me

le-
era-
ed

om
. It
tic
a

a-
-bit
vity
tom

uch
n.

si-

on

as
an

uf-
si-

m-
b-
ng
.
pu-
ns

l, so

on
ch
igh-

CAVITY QED AND QUANTUM-INFORMATION . . . PHYSICAL REVIEW A 67, 032305 ~2003!
Aksinu~ t !5
f ~ t !

A12E
0

t

f
2
~t!dt

. ~27!

The form of sinu(t) is immediately available from this equa
tion for any desirable output pulse shapef (t) ~which has
been assumed to be real and positive for simplicity!. Then,
the shape of the driving pulse can be easily decided fr
«̃(t)}a(t) and sinu(t)5roa(t)/A11ur oa(t)u2, where r o is
the ratio of the Clebsch-Gordan coefficients. For instance
we want to have a time-symmetricf (t) in the period 0<t
<T with the form f (t)5Ab/2sech@b(t2T/2)#, where we
have assumed sech(2bT/2)!1, sinu(t) should be in the
form sinu(t)5Ab/kA11tanh@b(t2T/2)#. Note that we only
have a solution ofu(t) when the rateb,k/2, which is con-
sistent with the observation that any pulse from the deca
a cavity cannot vary with time faster than the cavity dec
rate. From sinu(t), we see that the shape«̃(t) of the driving
pulse should be chosen according to

«̃~ t !}A 11tanh@b~ t2T/2!#

~k/b21!2tanh@b~ t2T/2!#
. ~28!

As a special case, ifk/b52, «̃(t)}eb(t2T/2), which grows
exponentially with the timet for the operation period 0<t
<T. Therefore, we have a simple solution to the drivi
pulse shape for quantum communication between two dif
ent cavities: for the first cavity, we apply an exponentia
increasing pulse with«̃(t)5 «̃(0)ekt/2, and for the second
cavity we apply its time reversal, that is, an exponentia
decreasing pulse with the decay ratek/2. The pulse duration
T should satisfykT@1, and the initial value«̃(0) is deter-
mined by the requirementr oa(T/2)51. The single-photon
pulse connecting the two cavities then has a time-symme
shape withf (t)}sech@k(t2T/2)/2#.

C. Entanglement generation and atomic quantum
teleportation

If one has two cavities, each with an atom inside, one
maximally entangle these two atoms 1 and 2 by the follo
ing method: The two atoms are initially prepared in the st
ug&, and then we excite them to the stateus& with a small
possibility p0'12exp@2k*0

T sin2 u(t)dt# through an incom-
plete adiabatic passage. The output pulses from the two c
ties, each with a mean photon numberp0, have a definite
pulse shape as we have shown before, so that they can
fere with each other at a 50%-50% beam splitter. The outp
of the beam splitter are detected by two single-photon de
tors, and if we register a photon from one of the detecto
due to the interference, we do not know from which cav
the registered photon comes. The two atoms 1 and 2 are
projected to a quantum superposition state (ug&1us&2

6us&1ug&2)/A2, which is maximally entangled. The metho
described here is just an adiabatic passage version of
scheme in Refs.@11,12#. By transformation from the Rama
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version to the adiabatic passage version, the output p
shapes become insensitive to the random atom’s positio
is required for interference, which is important for th
scheme to work with hot atoms.

After entanglement has been generated, one can use
atomic Bell inequality detection, for quantum teleportati
of atomic states@12#, or even for realization of quantum
repeaters@42#. To realize quantum repeaters, what one ne
to do is to simply replace the atomic ensemble in the sche
in Ref. @42# by the setup of a single atom in a high-Q cavity.

For the above applications, in addition to the entang
ment generation, we also need to do some single-bit op
tions. These single-bit operations should also be perform
in a suitable way so that they are insensitive to the rand
atom positionr . One way is to still use adiabatic passages
is possible to realize any single-bit operation with adiaba
passages@43,44#, but for this purpose one needs to use
four-level scheme instead of theL configuration. There is
actually a simpler way for getting robust single-bit oper
tions based on the Raman transitions. Note that for single
operations, we do not need to use any cavity mode or ca
effect. We can shine two traveling-wave beams on the a
coupling to the transitionsug&→ue& and us&→ue&. They are
assumed to be collinear and propagating along thex axis,
which is perpendicular to the cavity axisz. The two
traveling-wave beams are broad with the beam radius m
larger than the typical variation length of the atom’s positio
With this condition, the two Rabi frequencies for the tran
tions ug&→ue& and us&→ue& are given by V1(r )
5V10e

ivgex/c and V2(r )5V20e
ivsex/c, respectively, where

V10 andV20 are basically independent of the atom positi
r . Under a large detuningD, the effective Raman coupling
rateVR;V1(r )V2* (r )/D}eivgsx/c is very insensitive to the
random atom’s positionr , since c/vgs is typically much
larger than the variation length of the position. Therefore,
long as we do not need to use the cavity effect, a Ram
scheme with two broad collinearly propagating beams s
fices to eliminate the sensitivity to the random atom’s po
tion.

D. Quantum computation

In principle, we can also use this setup for quantum co
putation @13#, and eliminate the requirement of the Lam
Dicke condition by performing all the quantum gates usi
adiabatic passages@43,45# with appropriate configurations
However, the requirements for a universal quantum com
tation are more challenging compared with the applicatio
mentioned above, and this is somewhat a long-term goa
we do not discuss here the details of this possibility.

V. DISCUSSION OF THE EXPERIMENTAL SITUATION

Finally, let us mention the current experimental situati
related to this work at the Caltech group. In the Calte
experiment, a single cesium atom is trapped inside the h
finesse cavity with a FORT beam. The atomic statesug&, us&,
and ue& correspond to the hyperfine levels (6S1/2,F53,m5
13), (6S1/2,F54,m514), and (6P3/2,F54,m514), re-
5-11
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spectively. The FORT beam is incident on one of the cav
mirrors and resonant to a longitudinal mode of the cav
Presently, the FORT wavelengthlFORT is 936 nm. This
wavelength was chosen because with such a beam, the
ping potentials for the ground 6S1/2 manifold and the excited
6P3/2 manifold are nearly identical. Considering only th
reduced manifold of states, we find that the expression
the FORT potential of the ground statesug& and us& is given
@46# by

UFORT~r !5
pc2gs

2v0
3 S 2

D2
1

1

D1
D I ~r !. ~29!

Here, D1 (D2) is the detuning of the FORT light of fre
quencyvFORT52pc/lFORT from the P1/2 (P3/2) level, and
gs/2p'5.2 MHz is the spontaneous decay rate of the le
6P3/2. The intensityI (r ) of the standing-wave mode insid
the cavity is given by

I ~r !5
8P

pw0
2
sin2S 2pz

lFORT
DexpS 2

x21y2

w0
2 D , ~30!

wherew0'25 mm is the waist of the Gaussian mode, andP
is the power of the FORT beam inside the cavity. The t
frequenciesnaxial, n radial in the axial and radial direction
follow from these expressions as

~naxial,n radial!

5
1

2p\ SA2U0

\2vFORT
2

mc2
,A2U0

\2

m~w0!2D ,

~31!

whereU05UFORT(0) is the trap depth. The typical power o
the FORT beam measured outside the cavity is about 1 m
and the powerP inside the cavity is enhanced by a factor
the cavity finesse, which is about 2200 at the wavelength
the FORT beam. With this number, the typical values for
trap depth and frequencies are given byU0'38 MHz,
naxial'510 kHz, andn radial '4.3 kHz, respectively. The cur
rent achievable temperatureTtem of the trapped atom is a
significant fraction of the trap depthU0 ~such as a half!. With
such a temperature, the spatial extent of the atomic motio
the axial and radial directions are estimated, respectively

dz/lFORT'~1/2p!arcsinAkBTtem/U0, ~32!

dr''w0A2 ln~12kBTtem/U0!, ~33!

which will induce significant variation of the coupling ra
g(r ) given by Eq.~1!. For example, for the temperature
half of the trap depth, the axial uncertainty is 120 nm, wh
the radial one is 15mm. These uncertainties cause variatio
in g of 30% due to the radial motion, and 35% due to t
axial one. Therefore, within the current experimental te
nique, it is important to use the method given in this pape
make the application schemes insensitive to the variatio
g(r ). The time scale for the variation ofg(r ) is estimated by
03230
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the inverse of the trap frequenciesnaxial andn radial in the axial
and radial directions, respectively. The operation timeT is
typically significantly shorter than 1/n radial, but longer or
comparable to 1/naxial. So, we can take the static average
g(r ) in the radial direction, and the dynamical average
g(r ) in the axial direction as discussed in Ref.@34#.

We also would like to note that although the method
this paper shows that many application schemes of
cavity-QED setup can be demonstrated before the achi
ment of efficient cooling of the trapped atom inside the ca
ity, the cooling is still an important and desirable technolo
yet to be achieved to significantly increase the trapping ti
of the atom. In addition, a combination of the cooling tec
nology and the method here could further improve the p
formance of various application schemes.

VI. SUMMARY

In summary, we have shown that the setup with a sin
trapped atom in a high-Q cavity can be used to realize man
cavity-QED and quantum-information processing schem
even if the atom is still hot and not fully localized in spa
~the Lamb-Dicke condition is not yet satisfied!. This could
significantly simplify the on-going experiments, since
means many interesting schemes can be demonstrated
the present technology before the achievement of effic
cooling inside the cavity. Even with further advances
atomic localization in cavity-QED, our scheme should le
to a greater robustness against certain experimental non
alities. The basic idea of this method is to design an app
priate adiabatic passage so that the relevant dynamics
depend on the ratio of two coupling rates. Though each
the coupling rates is sensitive to the unknown or tim
varying atom’s position, their ratio is fixed and controllab
as the two rates depend on the random atom position in
same way with the appropriate interaction configuration t
we have described. We confirm the validity of this method
solving the complete model, which describes the realis
setup. The approximate analytical solution and the exact
merical simulations agree with each other. From the num
cal simulations, we also calculate quantitatively vario
noise magnitudes in this setup, and show that one
achieve reasonably good performance with the values of
parameters based on the present technology. Finally,
show that this method can be incorporated into many pre
ous schemes, allowing the demonstration of these applica
schemes without the requirement of the full localization
the atom.
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