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Cavity QED and quantum-information processing with “hot” trapped atoms
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We propose a method to implement cavity QED and quantum-information processing i@ highities
with a single trapped but nonlocalized atom. The system is beyond the Lamb-Dicke limit due to the atomic
thermal motion. Our method is based on adiabatic passages, which make the relevant dynamics insensitive to
the randomness of the atom position with an appropriate interaction configuration. The validity of this method
is demonstrated from both approximate analytical calculations and exact numerical simulations. We also
discuss various applications of this method based on the current experimental technology.
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I. INTRODUCTION with the mode function
Trapping of single atoms in hig@- cavities opens up ex- x(r)=sin(koz)exd — (x>+y?)/w3], (2

citing possibilities for the observation and manipulation of
the dynamics of single particles and for control of their in-whereg, is the peak coupling ratey, andky=2x/\ are,
teractions with single-mode photof$,2,4,9. Such possi- respectively, the width and the wave vector of the Gaussian
bilities could have wide applications, such as for the generaeavity mode, andz is assumed to be along the axis of the
tion of nonclassical or entangled optical puld€s7], for  cavity. Due to the randomness of the atom’s positipnwve
observing strong cavity-QED effec{,5,8 and, more re- have an unknown randomly changing coupling rg{e).
markably, for implementation of quantum communication Most of the applications of this setup assumed a fixed known
and computatiofi9—13]. The trapping potential for confining coupling rateg. Therefore, before the experimental demon-
single atoms can be created by diverse avenues, including Isfration of these schemes, first one needs to solve the prob-
the cavity-QED light itself[4,5], by additional far-off- lem associated with the random coupling.
resonant trapping FORT) beams[2], and by combining Intense experimental efforts have been taken to localize
single trapped ions with high-finesse optical cavifit4,15.  the atom inside the cavity so as to fix the coupling Gte),
In this paper, we will direct our attention principally to trap- with notable recent success attained via ion t{dgs15. In
ping in cavity QED by way of an additional FORT beam, the cavity-QED experiments employing cold atoms and
although our results are applicable to broader settings. without FORT beam§1,17,1§, atoms were dropped through
The first experiment to achiev@rong couplingin cavity  the cavity and followed random trajectories with large axial
QED with trapped atoms was that of R¢R], which em-  heating. As a result, the magnitude and the sigg(o) were
ployed an intracavity FORT beam and reported trapping lifenot well controlled. With a FORT beam and with current
times of 28 ms. By now, this experiment has attained muclexperimental capabilitief2,3,16, an atom can be trapped
longer trapping times, with recent work demonstrating life-inside one potential well along the cavity axis with a fixed
times in excess of 1[8,16]. By contrast, atomic localization sign of g(r). But the atom still has appreciable kinetic en-
by way of the cavity-QED field itself has led to trapping ergy and is not fully localized, leading to significant varia-
within a single axial well with mean trapping time tions in the magnitude of the coupling rajér).
~340 us [4] and to localization across many axial wells  The randomness of the coupling ragér) comes from
with mean timer~ 280 us|[5]. several contributions: first, the trapped atom is still quite hot
The long trapping times achieved with an intracavityin the current experimental setup. Its kinetic energy from the
FORT beam set the stage for diverse applications irthermal motion is typically lower but not much lower than
quantum-information science, which motivates the currenthe depth of the trapping potential. The atom’s oscillation
analysis. However, one of the main obstacles to the experamplituded in the trap is comparable to the optical wave-
mental demonstration of these applications is that the posiength\,, so it does not satisfy the usually assumed Lamb-
tion of the trapped atom is not well fixed within the cavity. Dicke conditiond<\,. Due to the thermal motion of the
The coupling rateg between the atomic internal levels and atom, the coupling ratg(r) typically has a variation within
the cavity mode depends on the atom’s positithrough the  a factor of 2 with the current experimental technique. Cer-
relation tainly, the atom will become better localized as cooling tech-
niques are adapted to cavity QED and its energy is reduced
[19,20. However, due to the presence of the cavity and the
g(r)=gox(r) (1)  trapping potential, it is still experimentally hard to achieve
efficient cooling inside the cavity19-21]. Furthermore,
even if we assume that the atom has been precooled and
*Email address: Imduan@caltech.edu localized initially to the Lamb-Dicke limit, the implemented
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application protocols will still tend to heat the atom due to

|e)
photon recoils from the spontaneous emissi@®23. As a
result of the heating, the atom may go out of the Lamb-Dicke (%)
limit after a short time. Finally, even if we neglect all the
motional and the heating effects of the trapped atom, there it o
still some uncertainty of the coupling rate. The intracavity
|s)
&)

field of the FORT beam forms many potential wells inside
the cavity, and in current experiments, one cannot control
and does not know precisely in which well the atom is
trapped. The FORT beam has a wavelengthdifferent from
the cavity-QED wavelength, so, even if the atom is kept
very cold and well localized at the bottom of the trapping
potential well, we still might not know exactly the coupling
rate, since the bottoms of different potential wells have dif-
ferent coupling ratef24].

Here, to overcome these difficulties, we propose a metho
to do cavity-QED and quantum-information processing di-

rectly with hot atoms with an inhomogeneous distribution in*™" -/ - e : . )
position and/or a time-varying location. The method is base@™MS position. After_ this Incorporation, with hot n_onlocallzed
on adiabatic passages with a new interaction configuratiorﬁtomts’ OUefca” ?.t'" realize many krl]nds of .Ca\{'%'TQEI? and
Adiabatic passages have been studied in the context of cavi antum-information processing schemes, inciuding, for in-
QED [6,13,26,27, and have been adopted in some recen tance, the controllable single-photon or entangled-photon
experimentd17,18. Normally, schemes based on adiabaticSOU'Ce. quantum communication b_etween cavities, atomic
! y tanglement generation, teleportation, and Bell inequality

passages are more insensitive to certain parameter chan / - . .
compared with the corresponding Raman schemes. Some i etection. Section V.glves a synopsis of parameters re[evant
to our current experiment for a single-atom trapping with a

tial indication of insensitivity of the adiabatic passage . i
scheme to certain parameter changes was already illustrat (&Z F;-L ;Iesgt?gnCaltecﬂﬁ,S,lq. We summarize the results in

in Ref. [27] for a certain cavity-QED scheme. However, to
make the whole system dynamics insensitive to variations of
the coupling rateg(r), the direct use of the usual adiabatic 1l. CAVITY QED WITH A NONLOCALIZED TRAPPED
passage schemes is not enough to achieve this goal, and we ATOM: THE SCHEME
also need to design a different and appropriate interaction
configuration. The relevant dynamics of adiabatic passages
are determined by the relative ratio between different cou- First, we explain the basic idea of this method by consid-
pling rates, and are almost independent of their absolute vakring a single trapped atom, which has three effective levels
ues. Thanks to this property, with an appropriate design ofg), |e), |s), as shown in Fig. 1. The two ground statg$
the interaction configuration, we can make different couplingand|s) can correspond, for instance, to sub-Zeeman levels in
rates have the same dependence on the atom’s position the F=3 andF =4 manifolds, respectively, for the cesium
and, therefore, the system dynamics, determined by thegitom. The transitiorje)—|s) is coupled resonantly to the
relative ratios, will become independent of As a result, cavity-QED modea with a coupling ratey(r) in the form of
though the atom’s position may be unknown and time depenkg. (1). A classical laser field (t) incident from one mirror
dent, the output signal from the cavity is still controllable of the cavity (see Fig. 1 drives the transitiong)—|e)
and has definitely known properties. This is the differencethrough another cavity moda’. We assume for simplicity
between the scheme here and the usual adiabatic passagata anda’ have the same spatial mode structure with the
scheme$13,17,18,27. Note that the method described here same frequencyfor example, they can be of different polar-
is also different from some previous quantum computatiorizations [25]. The driving lasek(t) is resonant to the tran-
schemes with hot trapped ioi28,29, where the Lamb- sition |g)—|e), so it is far-off-resonant to the cavity mode
Dicke condition is still required. a’ with a large detuningv,s, wherewys denotes the split-
The paper is arranged as follows: In Sec. Il, we explainting between the levellg) and|s). Due to the off-resonant
the basic idea of the method, and then describe and solve thgiving by £(t), a’ can be described classically by its mean
model Hamiltonian analytically following some well-known value(a')=a(t)e o (wge is the frequency splitting be-
approach based on the adiabatic approximation. This apween the leveldg) and|e)), which couples resonantly to
proximate analytical approach is still not enough to fully the transition|g)—|e) with a Rabi oscillation frequency
understand the experiments, so in Sec. lll, we give an exagh(r t). Sinceaanda’ have the same spatial mode structure,
numerical simulation of the model, with the emphasis onihe Rabi frequency)(r,t) will depend on the atom’s posi-

checking the validity of the introduced approximations andijon 1 by the same mode functiop(r), i.e., Q(r,t) can be
calculating various kinds of noise magnitudes relevant fokactorized as

the on-going experimental efforts. The calculations show that
we can get reasonably good signal-to-noise ratios with typi- Qr,t)=Qqu(t) x(r)=rygoa(t)x(r), 3

FIG. 1. Schematic setup. Left side: a single atom trapped in a
high-Q cavity, which is driven by a classical laser pulsg). Right
side: the relevant atomic level structure.

cal experimental values for the parameters. In Sec. IV, we
briefly review some known cavity-QED and quantum-

Bﬁformation processing schemes, and then discuss how to
Incorporate the present method into these schemes to im-
prove their performance against the randomness in the at-

A. Basic idea
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wherer, represents the fixed ratio of the Clebsch-Gordancan be done through either polarization or frequency selec-

coefficients for the transitiong)—|e) and|s)—|e). tion. This separation is actually pretty easy in the present
To understand the basic idea of this method, let us firs€ase. In typical experimental configurations, the classical

look at a very simplified picture by neglecting the coupling field drives one cavity mode from one cavity mirr@ay 1

of the modea to the cavity output. The system is then de-With & large detuning, and the single-photon quantum field

scribed by the following simple Hamiltonian in the rotating together with some transmitted driving field are output from

frame (settingh =1): the other cavity mirror(say 2, with the transmission ratg
>t,). Most of the driving field has been filtered already by
Hsim=Q(r,t)oegtg(r)aocestH.c., (4)  the high-finesse cavity itself. The ratio between the intensi-

ties of the classical driving field and the quantum field output
whereo,,=|u)(v| (1,v=g,e,s) are the atomic transition from side 2 is the same as their ratio inside the cavity, which
operators, and H.c. stands for the Hermitian conjugate. Thgoes not need to be very large, since both of the atomic
Hamiltonian Hg, has the well-known dark stat®) (the  transitions are enhanced by the cavity and thus have compa-
instantaneous eigenstate with a zero eigenyaliéh the  raple strength. As will be seen in the numerical simulations
form [27] in Sec. Ill, inside the cavity, the driving field is typically
assumed to be about five times stronger than the single-
photon field, and it is pretty easy to separate such a weak
field with a polarization beam splitter at output side 2.
To guarantee an adiabatic evolution, we need to fulfill the
1 adiabatic condition, which means that the evolution time
= m“g)m_ roa(t)[s)|1)], (5 should be significantly longer than the frequency gape-
0 tween the dark state and some other eigenstates of the Hamil-

where|0) and |1) represent the zero- and the one—photontoniaanim' The error probability due to the nonadiabaticity

state of the cavity mode. Note that the dark stai®) ac- IS estimated byaq=1/ (8T)%. For the H?miltonian-lzsim, the
tually only depends on the ratio between the paramet@ns ~ "eduency gaps is given by5j Vlg(n)] +2|Q§r,t)| - Thus,
andQ(r,t), so it becomes independent of the random atonfe adiabatic conditio|g(r)|*+|Q(r,t)|*]T*>1 depends
positionr with the interaction configuration specified above. ©n the atom positiorr. If the coupling coefficientg(r)

If we start with the atom in the ground stdts), and gradu- changes by a factor of 2, the error probabiliyy will

ally increase the Rabi frequenéy(r,t), under the adiabatic change by a factor of 4 for the same evolution tieow-
approximation, the system will remain in the dark st@¢,  €Ver, if T is sufficiently long, the error probabilitp,q re-
which gradually evolves into the final stas)|1). Due to ~ Mains small, and the relevant system dynamics will be still
the independence of the std@) on the variable, the rel-  VETY insensitive to the randomness of the atom’s position. To
evant dynamics of this adiabatic evolution also becomes in€Stimatép,q, we can use the average value of the coupling

dependent of the random atom siteThis is the basic idea of "at€9(r). _ , ,
the method to eliminate the influence of the randomness on !N the above simple picture, we neglect the coupling of
the coupling coefficieng(r). f[he modea to the_ ca\_/lty oquut. This is o_nly a.valld picture

Note that to make the dark state and the relevant dynani? the good-cavity limit with the evolution tim&<1/x,
ics independent of the random atom positignthe driving where k is the cavity decay rate. However, in practice, it is
pulse and the cavity mode need to have the same spatiBftter to operate the system in the limit witk> 1/x. There
mode structure. This is why the classical driving pulse is2'® several advantages of operating the system in this limit:
matched to the spatial mode of the cavity field, both alondirst, without the requirement<1/k, it is easier to satisfy
the cavity axis and transversely, which is routinely accom-he adiabatic condition for whicf" should be sufficiently
plished by way of illumination from one side mirror of the 10Ng; second, in this limit it is easier to modulate the Rabi
cavity. This configuration is different from the original pro- frequencyQ(r,t) by changing the intensity of the driving
posals for adiabatic dynamics in cavity QER7] in which lasere(t) |nC|den_t from one side mirror of the cavity. In th|§
the propagation direction of the driving pulse is perpendicuvay, one can efficiently control the pulse shape of the cavity
lar to the cavity axis with uniform illumination intensity. Itis output by modulating the shapg(t) of the driving laser,
also distinct from the configuration employed in some recentvhich is useful for many applications. In the limit=1/x,
interesting experiments directed toward achieving a singleWe need to take into account, from the beginning, the cou-
photon sourcé17,18, which likewise employed uniform il- Pling of the modea to the continuum cavity output, and the
|umination transverse to the Cavity axis and for Wh|Ch theWhOle SyStem will then have infinite levels. We will describe
atom is not localized axia”y. As a result, in these experi_in the section this more involved interaction Conﬁguration.
ments some of the dynamics, such as the output pulse shap8€ above simple three-level picture, though it does not de-
and phase, still depend on the unknown position of the aton$cribe the real experimental configuration, does help in un-
and are thus not fully controllable, as has been seen from th@erstanding the basic idea of the adiabatic method.
experiments.

We also would like to mention that in this configuration,
the driving field and the quantized cavity output are collin- Now we look at the more complicated theoretical model,
ear, and they need to be separated afterwards. The separatiwhich includes the coupling of the modeto the continuum

D) [9(N)]g)|0) = Q(r,1)]s)|1)]

Nk

B. Theoretical model and its approximate analytical solution
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cavity output. If we adiabatically apply a classical driving The imaginary part of the Hamiltonia{®) accounts for
pulsee(t) as shown in Fig. 1, one photon will be emitted the spontaneous emission loss, whetedenotes the total
from the transition|e)—|s), and the cavity will output a spontaneous emission rate of the upper l¢ggl In writing
single-photon pulse. We want to show below that this singlethis form, we have assumed that the spontaneous emission
photon pulse has a definite pulse shape which is independephoton escapes and that the atom after a spontaneous emis-
of the randomness in the atom’s positiorand in the cou- sion will not be repumped. This is a good assumption for the
pling rateg(r). In this way, although the atom’s position and interesting region where the spontaneous emission loss is not
the absolute value of the light-atom coupling rate are nobig, and the atom thus has a very small probability to be
fully controlled, we can nevertheless fully control the prop-repumped after emitting a spontaneous emission photon. As
erties of the output single-photon pulse by modulating thea result of this assumption, the spontaneous emission only
driving laser pulses(t). This is an important feature for contributes to the leakage error which is properly represented
many applications of this setup, which we will discuss inby Eq. (6) [32].

Sec. IV. There are several equivalent ways to describe the We treat the atom’s positionin the Hamiltonian(6) as a
coupling of the modea to the continuum cavity output classical stochastic variable, and neglect its quantum nature.
[9,30,31. Since we want to calculate the output pulse shapd&his is a good approximation for the current experimental
within the adiabatic approximation, it is convenient to usesituation where the atom is still quite hot. There have been
the Hamiltonian approach30,31. The derivation here is some analyses of the noise from quantum motion effects in
similar to the calculation in Ref.30] for the pulse shape high-Q cavities with very cold atomE33].

from an ensemble of atoms. The whole Hamiltonian, includ- We start with the atom in the ground stdg®, and then

ing the coupling to the cavity output, has the following form apply a classical driving pulse(t). This pulse can effi-

in the rotating fram¢31]: ciently control the time evolution of the Rabi frequency
) Q(r,t) in the Hamiltonian(6). To see this, we write the
H=(A—iyd2)oeet[Q(r 1) oegt g(r)aoest H.C] input-output equation for the cavity modé [31]
+o
i \/Klzwf "dw[a’b(w)—ab(w)] o p
~op a’'=—iwsa' —5a'~ Vral (1), )
+ w
+ [ " aatob! @b ©® - N
—wp wherea; (t) is the field operator for the input driving pulse

coupling to the modea’, with (ai(t))=e(t) and
where b(w), with the standard commutation relation [a/ (t),a/ (t')]=&(t—t'). By assumption, the mode has
[b(w),b'(w")]=8(w—w'), denote the one-dimensional the same frequency as the maalewhich is resonant to the
free-space modes that couple to the cavity madé/e only  free-space atomic transitide)—|e), so the eigenfrequency
need to consider the free-space modes within a finite bandf a’ is wg.. Such a situation corresponds, for example, to
width [wge— wp, wset wp] With the carrier frequencyws,  the case of theg,a’) modes of orthogonal polarization, but
(wse is the frequency splitting between the levéss and  degenerate in frequency, although this is not an essential re-
le)), since all the modes outside of this bandwidth haveguirement. In Eq(7), we have neglected the small depletion
negligible contributions to the dynamics due to the large deof a’ caused by the coupling to the atomic transitiog,
tuning (larger thanw,). Within this bandwidth, the coupling sincea’ is driven by a strong classical pulsgt) which
betweenb(w) and the cavity mode is approximately a dominates its time evolution. We write the mean valuea’of
constant, and we denote it hi/27 for convenience, where and a/.(t) as (a’)=a(t)e st and (a(t))=s(t)
« is the effective cavity decay rate, as we will see. The_7(t)e-iwge!| wheres(t) is the slowly varying amplitude of
bandwidthw,, should be chosen to be much larger than  the driving laser. From Eq7), we get a time evolution equa-

but still much smaller thawge. _tion for the mean valuex(t), which has the following im-
We have assumed that the driving laser and the cavity,egiate solution:

mode a couple resonantly to the corresponding free-space

atomic transitions. However, we emphasize that our scheme ‘

still works for the case of off-resonant coupling. By consid- a(t)= J e(r)eliwgs™KA=7)q . (8)
ering the off-resonant scheme, there is no win with respect to 0

losses due to the atomic decay, since in this case the time

scale also slows down. So it suffices here to consider thgpe yariation rate ok (7) is characterized by the inverse of
resonant coupling case. However, in the Hamiltori@n it e operation timer (the pulse duration which is typically

is still helpful to include a single-photon-transition detuning ,,ch smaller than the hyperfine frequency splittingg

A to account for the trapping potential difference for the(about 9 GHz for cesium atornHence, a partial integration
levels|g) and|e) induced by the FORT beaithis potential Eq. (8) yields

is basically the same for the levels) and|g) for a FORT

beam with linear polarization as in our current experiments ~ A

The potential difference between the le\gh and |e), in a(t)= e(t) —e'¥es” e (0) 1+0( 1 ” )
general, depends as well on the random atom position —lwgst /2 wgsT ) |
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We assume thak(t) gradually increases from zero with The approximation in Eq(15) is valid since the bandwidth

E(O):O. Then, within a good approximation, we have

a(t)xs(t) from Eq. (9). In the following, without loss of

generality, we assume(t) to be real by choosing an appro-
priate constant phase eft). The time behavior of the Rabi

frequencyQ(r,t) is completely determined bw(t) [note
thatQ(r,t) =r,goa(t) x(r) from Eq.(3)], that is, by the am-
plitudez(t) of the driving laser.

The dark statg5) can be rewritten a$D)=cos#|g)|0)
—sin#s)|1), with cos#=1/\1+]r ,a(t)|? independent of the

atom’s positionr. The statd B) complementary to the dark

state is usually called the bright state w(t)= sin 6|g)|0)

wp satisfiesw, T>1, where the operation timé character-
izes the time scale for a significant changecgfand siné.
Therefore, the dark-state coefficiea satisfies the cavity
free-decay equation, with the decay ratereplaced by the
effective ratex sirfé. This can be easily understood since
sirfé is the probability of the componems)|1) in the dark
state| D), and it is exactly this component that couples to the

cavity output. Equatioril5) has the straightforward solution

cd:exp( - g fotsinze( T)dr) . (16)

+cosds)|1). To solve the dynamics governed by the Hamil- We want to know the single-photon pulse shdgg of the

tonian(6), we can expand the stat#) of the whole system
into the following superposition:
|W)=(cd|D)+cy|B)+cele)[0)) @ [vag +[s)[0) @[ ¢1),
(10

cavity output statée, ). Suppose now thdk is the final time
of the interaction(i.e., the operation time determined by the
driving laser pulse is from 0 t@). The pulse shapg(t) is
connected with the coefficients,(t) before the frequency
components ifg,) by the Fourier transformatiof81]

where |vac) denotes the vacuum state of the free-space

modesb(w), and

o= [ "duc bl (@lvay (11

represents the stat@not normalizedl of the single-photon
output pulse. The coefficients, ¢, C., andc,, in Eq. (10)
are time dependent. At the timte=0, we havecy=1, ¢y
=c.=C,=0, and cog=1. After applying a classical driv-
ing pulsee(t), cose slowly changes withw(t), and we need

to compute the time evolution of all the coefficients

C4,Ch,Ce,C, iN EQ. (10) by substituting |¥) into the
Schralinger equationd,|W)=H|W¥).

To go on with this task, let us first take the adiabatic

approximation, which assumes the time derivatiyeosd
~0. As a resultg,|D) andd,|B) become negligible. We will

check the validity of the adiabatic approximation and calcu
late various nonadiabatic corrections in the following sectio
through numerical methods. In the adiabatic limit, the popu

lations in the bright statéB) and in the excited state) are
negligible, so we assung,~c.~0. The coefficientg, and
c,, satisfy the following evolution equations:

w

. +Top
Cyq= — \Vk/2msing

@p

c,dw, (12

c,=—iwc,+ Jk/2mwcysiné. (13

Equation(13) has the solution
t
c,(t)=kl2m f e e (r)sing(r)dr, (14
0

which, substituted into Eq12), leads to

“ in HJJW%(T)SM o(7)dr

=—(kl2)cysirt. (15)

n

1 +
f(t)= —

NPT

From Egs.(14), (16), and(17), we finally obtain

wb .
dwc,(T)e '@t

—wp

17

f(t)= Jxsin 0(t)exp( —gftsinza( T)dT) .19
0

Note that the single-photon pulse shaige) is completely

determined byi(t), i.e., by the driving pulse shapst), and

is independent of the random atom’s positioand the ab-
solute value of the coupling coefficient(r). As we have
mentioned before, this is the main advantage of this adiabatic
method compared with either the Raman scheme or prior
proposals based upon adiabatic passages with uniform illu-
mination [17,18,27, and this feature is essential for many

applications of this setup.

The above result is obtained within the adiabatic approxi-
‘mation, and in the adiabatic limit, the solution is independent
of the atomic spontaneous emission rateand the detuning

A. This is only a rough picture. In the following, we will
solve exactly the dynamics governed by the Hamiltor{&n
without the use of the adiabatic approximation. The exact
solution is necessary in the following two senses: first, we
need to verify the above ideal picture and to find out under
what condition this picture is approximately valid. Though in
the three-level case, we have some simple estimation of the
condition for the adiabatic following, it is not easy to figure
out the exact adiabatic following condition for the more re-
alistic situation of a continuum of external modes. In this
case, the argument based on the level spacing is not valid.
We need to know how long the operation tifishould be to
satisfy the adiabatic following condition. We also expect that
the atomic spontaneous emission cannot be made negligible
simply by increasing the operation tinie Its rateyg should

be small enough to satisfy the strong-coupling condition

kys<g% whereg denotes the average of the coupling rate
g(r) [34]. Second, in real experiments, the operation tifne
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is not infinitely long, and the coupling ratecannot be arbi- 0.16
trarily larger than the decay ratasand vy, due to limitation 0.4l
of the technology(for instance, in Caltech experiments, typi- '

cally, g/2m is around 20 MHz, and «/27~ y(/2m 0.12]

~6 MH2z). In this case, there would be various nonadiabatic
corrections to the above ideal picture, for instance, the atom| f (¢)| 0.1
may go down from the levek) to|s) through a spontaneous olosl
emission, and then we lose the emitted photon and thus have
no output from the cavity; or we have a single-photon output, 0.061
but it is in a wrong and unknown pulse shape due to its

sensitivity to the random atom position induced by the nona- 0.04r J

diabatic contributions. It is desirous and important to calcu- 0.02} g

late quantitatively the magnitudes of these noises to predict

the real experiments. The exact solution of the system dy S 3 4 6 & 0 12 14 16 1520

namics is only available with the numerical methods, which

is the main task of the following section. Kt

FIG. 2. The shape of the output single-photon pulse described

Il. EXACT NUMERICAL SIMULATIONS by the amplitudeff(t)| vs the timet for the coupling rateg(r)
) . =3k (solid curve andg(r) =6« (dotted curveé The dashed curve
A. The numerical calculation method represents the pulse shape in the ideal adiabatic limit calculated

In this section, we solve exactly the system dynamicdrom Eq.(16). In this figure, we have takeps=«, A=0, andT
governed by the Hamiltonia(6) through numerical simula- =20/k. The driving pulse:(t) is in a Gaussian shape with the peak
tions, and calculate various nonadiabatic corrections andétt=T/2 and a widtht,,=T/5.
noise magnitudes. For numerical simulations of the Hamil- B 5
tonian(6), we need to discretize the free-space fie{c)) by  duration of the driving pulse(t). We assume that(t) is a
introducing a finite but small frequency interv@b between Gaussian pulse so thait(t) is a Gaussian function of the
two adjacent modes. Then, in total we have abdut timet, with its peak value at/2, and a width,, significantly
~2wpldw free-space modes, with tjemode denoted by smaller tharil/2. All the functions ofé in Egs.(20)—(23) are
b;. The frequency detuning; of the j mode is given by decided from cog=1/y/1+]rya(t)|* and yQ2(r,t) +g*(r)
w;=(j—N/2)éw. To assure that there is no change of the=g(r)/cosé. To simulate the randomness of the atom posi-
physical result after the discretization, we should choose théon r, we vary the value ofj(r) in the simulation to look at
frequency intervalbw much smaller than the inverse of the whether the final result changes with this variation.
operation timeT, and the bandwidtlw,, much larger than the

cavity decay ratec. . o B. Shape of the output single-photon pulse

For the numerical simulation, we can similarly expand the ) )
state| W) of the whole system in the form of E¢Q), with the The output single-photon pulse shaff¢) can be easily
single-photon pulse state replaced by constructed from the solution of the coefficienfsthrough a

discrete version of Eq17). The result is shown in Fig. 2 for
N g(r)=3«k and g(r)=6«. Although we have not made de-
le1)=2>, c;bjlvag. (19 finitive measurements, we estimate toét) varies within a
=1 factor of roughly 2 in the current Caltech experiment
[2,3,16. Here and in the following, the pulse-shape function
f(t) is always renormalized according fof(t)|2dt=1 for
convenience of comparison. We see that the two curves over-
N lap very well, which confirms the prediction that the output
éd: — 9Cb— x'sin 92 ci, (20) pulse shape is very insensitive to the randomness of the cou-
=1 pling coefficientg(r) when the adiabatic condition is satis-
N fied (we takeT =20/« for this figure. We also draw in this
N . , figure the pulse shap|t) given by Eq.(18) derived in the
Co=0Ca—I VO, 1)+ g*(NCet k COSGJZI C» (2D ideal adiabatic limit, which agrees well with the exact nu-
merical results. Therefore, within the adiabatic condition, we

- . : the analytical result8) to design the shape of the
A _ \/_ﬁ_ can use_ . PE
Ce=(—1A—ys/2)Ce=IVQAr D) +g%(r)Cy, (22 output single-photon pulse by modulating the driving pulse

From the Hamiltoniari6), we get the following complete set
of equations for the coefficients;, c,, c., andc;:

S . hapee(t).
¢j=—i(j—N/2)dwc;+ k'sinfcy— k'cosbc,, (23) shapez(t)
where the effective decay raié = \/k Sw/2. We obtain the C. Noise magnitudes and the adiabatic condition

solutions of these coefficients by numerically integrating To quantify the noise magnitudes in this setup, we can
Egs. (20—(23) from the timet=0 to t=T, whereT is the  define several error probabilities. First, we have the leakage
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error due to the atomic spontaneous emission. A photon may 0.14
be emitted to modes other than the principal cavity mode
through the spontaneous emission with the rae As a 0.12r 5
result, the normjcy|?+|cp|?+|ce|?+ =L y|cj|? of the state %
(10) decays with the timé, and we can use 0.1} i
N 0.08} -
Ppor=1=Ica(I*~leo(I*~lesMI*~ 2, Ie(DI? iyl
(24) s
at the final timeT to quantify the total possibility of the 0. /I-"
spontaneous emission loss. Second, due to the finiteness c )t
the operation timé and the pumping field amplitucie(t), 0.0 ,
the initial excitation in the dark state is not necessarily fully 0 , ) . . , , , A
0 05 15 2 25 3 35 4 45 5

transferred to the output quantum signal at the final time, and

Kt

we can use
FIG. 3. The shapéf(t)| of the output single-photon pulse for
the coupling rateg(r) =3« (solid curve, g(r) =6« (dotted curve,
at the timeT to quantify the transmission inefficiency. In and in the ideal adiabatic limitdashed curye We assumed the
same condition as in Fig. 2, except thet5/k, which does not

principle, we can arbitrarily decrease the transmission ineffi=< S i
. . . . ) ~ satisfy well the adiabatic condition.
ciency by increasing the duratidnor the amplitudes(t) of
the pumping field. Finally, even if a photon is emitted into bia. Thi b i derstood si ithout
the cavity output field, it is not necessarily in the right pulsecomes_very_ 'g. ThiS can be easily understood since withou
shape as given by E@18) due to the nonadiabatic correc- the adiabatic condition, the excited stagy will be popu-
rJdated during the operation, and thus we have a correspond-

tion. This nonadiabatic correction depends on the rando L alv larger Spontaneous emission loss
atom position and is unknown, so it is also a source of noisg9!Y 1arger sp u ISSI '

To quantify this noise, we denote the ideal pulse shape given
in Eqg. (18) asfiy(t), and the real pulse shape calculated from
the numerical simulation a$,.,(t), then the shape mis-
matching error can be described by

Ptran:|Cd(T)|2+|Cb(T)|2+|Ce(T)|2 (29

D. The strong-coupling condition

Next we look at the requirement of the strong-coupling
condition. Letg denote the average value of the coupling

rate g(r). Normally one requiregy®>«ys to satisfy the
strong-coupling condition. We can define the strong-coupling
Pmis= | 1— 77 T 3| - parameterds. as ds.=g°/k7ys, and calculate the above-
[J |frea(t)|2dtf |fid(t)|2dt} defined noise magnitudeByyon, Pyan, Pmis under different
0 0 values of the parametat,.. We assumed =30/k and A
) L N ) =0 in the calculation so that the adiabatic condition is well
This quantity is directly related to the visibility of the fringes giigfieq. It turns out that the spontaneous emissionAgss:
if we interfere two single-photon pulses from two such setsg giyays the dominant logabout ten times larger than other
ups. h le sh in Fig. 2. wi N sources of noige Thus, in Fig. 4, we only show the calcu-
hFor:] e example shown in Fig. ’hW"?.'(r)_gK_?’VS lation result forPgp,, under different values ods.. The re-
(the other parameters are given in the figure cap),tlwg sult can be approximately simulated by an empirical curve
have Pspon%4.0%, Ptran%0.04%, Pm|5%018% The domi- with P ~1/(4d c)
. ; . spon sc/-
nant source of noise is the leakage eifPgg,,induced by the We can use this simple formula to estimate the spontane-
spontaneous emission. IT We increase the ngratlonﬁm ous emission loss under different experimental conditions.
that the adiabatic condition is better satisfied, the aboveActuaIIy in current experiments, the strong-coupling condi-
defined noise magnitudes can be reduced a little bit, but ngto, js only marginally satisfied. For instance, for the cesium
too much. For instance, with the above example but With ;0 in the Caltech group«(yJ)/2m~(8,5.2) MHz (note
_ _ B s 5.
=30/, we ha\{ePSPO“~3'33% andeiS~.O.15%. On't.he ._that k and v here denote the energy decay rates, which are
other hand, ifT is reduced so that the adiabatic condition isy, o times the corresponding amplitude decay rafes3]
not well satisfied, the error probabilities can significantly in-and W2 is expected to be<15 MHz for the transitic;n
crease. Figure 3 shows the output pulse shapesgyfoy (65 9 F=4m:F:L4)—>(6P F—4m=+4) [Note that
=3k andg(r)=6« with T=5/«. The two curves are obvi- the Uziransit,ion (& F=3212;n= +,4)—>(6P Fo5m=
ously different from each other and are also different fr0m+ 5) cannot be useélzésza éonfiguration tr?gllgh it’has a

the ideal shape as given by Ed.8). For the example with ) ) =
9(r)=3x=3y and T=5/k, we have Pgy,~36%, Pyan sllghtly larger coupling rateg]. These values lead td,
~3.2%, Pnis~2.7%. All the noise magnitudes significantly =g%/ kys~5.4 and a resulting spontaneous emission loss
increase. In particular, the spontaneous emission loss befround 4.6%, which is quite accessible with the present tech-

T
JO ffea(t)fid(t)dt

(26)
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FIG. 5. The amplitudéthe modulug and the phasédivided by
7/2) of the real pulse shaffe.,(t) (two solid curvegand the ideal

FIG. 4. The spontaneous emission ldg,,, vs the average
coupling rateg (in the units of the cavity decay rate). We as-

dA=0 and ys= the st - li i . . .
sgmel o zar_:_hys . Kl’ S0 the rona coup ||ngfparanr:etﬂgc 'S . Ipulse shapé;y(t) (two dashed curvews the timet with the single-
simply (g/«)“. The circles represent the results from the numerica photon transition detunind = x. We assumed)(r)="3x, ye=«,

calculation, and the dashed curve is from the empirical formulaandT:3O/K In this case, the main difference betwefgg(t) and
Pspor=1/(4dso) which simulates well the numerical results. f(t) lies in.the phase di;‘ference
i .

nology. As another example, in the recent experinas, depth. Relative to the current analysis, there is then a varia-
one has k,vys)/2m~(1.25,6.0)0MHz andg/2m~2.5 MHZ  tjon in A as the atom moves in the FORT potential, which is
according to the estimation there. With these parametergnknown when the adiabatic protocol is implemented. The
g%/ kys~0.83 and we estimate that the spontaneous emissiocurve in Fig. 5 is an attempt to estimate the impact of such
loss is abouPg,,~30% if one uses the scheme here. If therandom detunings by settiniy= «, which exceeds the actual
usual adiabatic scheme is adopted with a uniform drivingnagnitude of any spatially dependent detunings for FORT
pulse perpendicular to the cavity axis, the spontaneous emislepths up to about 50 MHz. The phase difference in the

sion loss should be still significantly larger, as will be seenpulse-shape function caused by the unknown detunings is a

from the simulation in the last section. source of noise, which contributes to the shape mismatching
error defined in Eq(26). For this example withlg(r) =3«,
E. The influence of the single-photon transition detuning we haveP g~ 3.33%, Pyar~ 10~ 4, which are basically the

same as the corresponding case without detuning Phit

In the above calculations, we assumke 0. Finally, we o . T
discuss the influence of a nonzero single-photon detufing ~3.33%, which becom_es significantly larger due to the con-
tribution of the phase difference.

In Fig. 5, we show the calculation result of the exact pulse-
shape functiorf o,(t) with a significant detuning = «, and
compare it with the ideal pulse shape functigyit) given by
Eg. (18) for both the amplitude and the phase. The other In our scheme, the driving pulse is matched to a cavity
parameters for this example are given in the figure captionmode which has basically the same spatial mode, structure as
From the figure, we see that the two amplitugies,(t)| and  the cavity-QED light. In usual adiabatic scheni#8,27], the
|fia(t)| still overlap very well, but their phases become a bitdriving laser is assumed to be perpendicular to the cavity
different due to the detuning. axis with uniform illumination intensity. We expect that with
This phase difference is determined by the the detuninghe present interaction configuration, our scheme is more in-
A, whereas the latter depends on the different level shifsensitive to the randomness in the atom position. To compare
between ground and excited states, and hence varies with tiiee two configurations more quantitatively, we have calcu-
atom position within the FORT beam. In the case of thelated the output pulse shapes and noise magnitudes for both
simple level scheme depicted in Fig. 1, the sti¢gsand|e)  schemes.
would have spatially dependent level shifts of opposite sign, First, let us assume that the atom has been trapped in one
which would lead to variations idh comparable to the trap potential well, but the coupling rag(r) may vary within a
depth. Fortunately, there is a simple way to mitigate thisfactor of 2 due to the unknown atom'’s position. In Fig. 6, we
difficulty by considering the multilevels involved for the show the calculation results of the output pulse shapes. The
FORT beam, as described in REB5], so that the trapping solid curve shows the pulse-shape functidfift)] when
potentials for the statdg) and|e) are very nearly the same. g(r)=3« andQ,(r)=15«, whereQ,(r) is the maximum
For example, for the experiment of R¢L6E], the difference  of Q(r,t) with respect to time [Q(r,t) is assumed to be a
in trap depth for|g) and |e) is roughly 10% of the trap Gaussian function of as specified in the caption of Fig].2

F. Comparison with the usual adiabatic scheme
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) FIG. 7. The real part of the pulse-shape functiorf fRe] as

FIG. 6. The _shap¢f(t)| pf the output smgle_—p_hoton pulse for g(r) varies with time in the forng(r) =6« sin(dmt/T+¢) in the
the folllowmg pairs of coupling rates and.the driving Rabi frequen- gyal adiabatic scheme witho=0 (solid curve and ¢y= /2
cies: first,g(r) =3« and Qn(r)= 15« (solid curve; secondg(r) (dash-dotted curyerespectively. The dashed curve shows the ideal
=6« andQ(r) =30« (dashed curve and finally,g(r)=6« and  pyise shape calculated from Ed8). The other parameters in this
Q(r)=15« (dotted curve The other parameters are the same aSfigure are the same as those in Fig. 2.
in Fig. 2.

o= m/2, respectivelythe imaginary parts of(t) are actu-

Now, if g(r) varies by a factor of 2 due to change of the ally small and negligiblg The two curves do not overlap at
atom’s position, in our scheme the Rabi frequency will cor-all. Neither the magnitude nor the phase of the pulse shape
respondingly change by the same ratio. The dashed curvi€t) can be controlled with this scheme. We also calculate
shows the pulse shape fg(r)=6« and(,(r)=30«. One the spontaneous emission 0B, for this example. The
can see that the two curves overlap very well with the modewverage spontaneous emission loss is aBQy~25%.
mismatching noise smaller than 0.2%. In contrast, in usual Similarly, we can calculate the pulse shape for the same
adiabatic schemes with uniform illumination intensity, example with the present scheme. In this case, due to the
Q(r) does not change agr) varies with the atom posi- atomic motion,,(r) varies with time in the same way as
tion, so we have the san&,,,(r) = 15«. The dotted curve in g(r), but the ratioQ,(r)/g(r) is kept constant. Figure 8
Fig. 6 shows the pulse shape fo(r)=6« and Q(r) shows the real part of the shape functibft) in this case,
=15«. It is significantly different from the above two curves with the solid and the dash-dotted curves corresponding to
with a notable mode mismatching noisg,~6.9%. The the initial phasep,=0 andey= 7/2, respectively. Although
improvement by this scheme would become more impressivthe two curves do not overlap very well, they still look simi-
if g(r) has a larger variation, both in its magnitude and in itslar with the same phase. They also roughly agree with the
sign. If g(r) gets a random sign as the atom goes throughdeal shape function given by E@L8), which is shown as the
different axial positions of the cavity, in the usual adiabaticdashed curve in Fig. 8. The average mode mismatching noise
scheme, the pulse-shape functibft) will also pick up a
random sign. However, in the present scheme, this random 0.2
sign inf(t) can be eliminated. Therefore, by this interaction
configuration, the scheme is more robust to the random 0.15}
variation of the atom’s position. )

The improvement by this protocol is also very remarkable
if we consider the case where the atom is not fixed in one 0.1r
potential well, and may move from well to well in the axial Re[f (t)]
direction. The variation of the atom’s position in the axial 0.05!
direction is typically fast compared with the operation time
T, so we have a time-varying atom positiorand coupling

rate g(r). Here, we consider an explicit form of the time 0

variation of g(r) by assumingg(r(t))= 6« sin(4=t/T+ ¢),

where the phase, is randomly chosen corresponding to the 005

randomness in the initial atom’s position. It is enough to 0 4 8 12 16 20
illustrate the general result by considering this special ex- Kt

ample. First, let us calculate the output pulse shigp for FIG. 8. The real part of the pulse-shape functior iRg] cal-

the usual adiabatic scheme, whélg,(r) is fixed as a con-  culated for the same example as in Fig. 7, but now for the present
stant[17,18,27. The solid and the dash-dotted curves in Fig.adiabatic scheme where the driving Rabi frequency varies in the
7 show the real parts df(t) with initial phasepy=0 and same way as the the coupling rate when the atom moves.
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for these two curves is given by,,<~1.1%, and the aver- both in magnitude and sign. It is a challenging experimental
age spontaneous emission losPig,,~9.4%. The sponta- endeavor to demonstrate a single-photon source with all the
neous emission loss is also significantly reduced with theroperties mentioned above fully controllable.
present scheme. This can be understood as follows: if one The method in this paper shows that the single atom
has a constanf),(r) as the usual adiabatic scheme, whentrapped in a highQ cavity is a good candidate for the real-
the atom moves to the place wit(r) near to zero, the ization of the fully controllable single-photon source.
adiabatic condition is not well satisfied, and as a result, on@hough the coupling ratg(r) is not completely fixed in
has a considerably large spontaneous emission loss; howevelrrent setups due to the difficulty in fully localizing the
in the present scheme, in the place wheg(e) is near zero, atom, the emitted single-photon pulse has a definitely well-
Qm(r) is also near zero. The excitation probability of the controllable time shape and emission direction with an ap-
atom is then reduced, and the adiabatic condition is bettgfropriate design of the interaction configuration as has been
satisfied. Consequently, one has a smaller spontaneous emigiown before.
sion loss. As shown in Ref[7], with a more involved atomic level
structure, it is possible to engineer entanglement between
IV. APPLICATIONS different single-photon pulses. It is straightforward to com-

There have been many proposals to use the setup Witlﬁin_e the method here with that sch.e.me.to eliminate the re-
single atoms in higl® cavities for various applications, such duirement of the Lamb-Dicke condition in Refr] so that
as for the single-photon or entangled-photon so{6¢#, for ~ one can get an entangled single-photon source with the
quantum communication between different cavifiey for ~ “hot” trapped atom as well.
atomic quantum teleportatigid1,12, and for quantum com-
putation[13]. In these proposals, one always assumed that B. Quantum communication between different cavities
the atom is well localized so that the Lamb-Dicke condition
is satisfied. However, one can apply the method here to all o e if | h . e
the schemes mentioned above, to eliminate the challengi g'e " we neg ect t e atomic sp.ontane.ous emissian
Lamb-Dicke condition. Basically, what one needs to do is to! Nerefore, if one directs the emitted single-photon pulse
replace the Raman scheme with the adiabatic scheme, andR3ck to the cavity, and at the same time reverses both of the
keep the pumping laser collinear with the cavity axis, so thafime Shapes of the single-photon pulse and the driving pulse,
the driving pulse and the cavity mode have the same spatidi€ Single-photon pulse will be completely absorbed as long
mode structure. All the calculation resulfsr the noise mag- @s the noise effects are negligible. It was first proposed in
nitudes, pulse shape, etcin this paper apply to these Ref.[9] that one can use this kind of a phenomenon to
schemes. After the improvement, it becomes considerablgchieve gquantum communication between different cavities,
easier to implement these schemes with the current techndbat is, to transfer quantum states of a trapped atom from one
ogy. Here, we briefly review these schemes and discuss howavity to another cavity. For this purpose, one can require
to incorporate the present method into these schemes. that the emitted single-photon pulse has a time-symmetric
shape by modulating the driving pulse shape. For a time-
symmetric pulse, its time reversal is itself, so we can directly
A. Controllable single-photon or entangled-photon source input this pulse to another cavity with the same configuration

It is desirable to have a single-photon source with all itsbut with a time-reversed driving pulse, then the single-
properties fully controllable, including its emission direction, Photon pulse will be completely absorbed by this cavity,
emission time, and pulse shape. This kind of source has infhich transfers the atomic state from one cavity to the other
portant applications in some recent quantum-informatiorPn€. The scheme in ReP] is based on the Raman configu-
processing schemd86], which are normally based on the ration, but it is straightforward to transfer it to the adiabatic
interference of different single-photon pulses. To get interferconfiguration discussed in this paper so that it works with a
ence between different single-photon pulses, one requires dot trapped atom. Note that the same setup can also be used
the pulses to be directional and have the same time shapl®r storage of a single-photon pulse with a known shape
Recently, there have been significant experimental advancég0,40,41.
in the realization of the single-photon soufd&,18,37-3% To get a time-symmetric single-photon pulse for a com-
In the experiments based on the solid-state matg8ia+39,  Pplete absorption of the second cavity, REJ] gives a nu-
the single-photon emitter has a fixed position, and one carherical solution to the shape of the driving pulse. For the
in principle, control the pulse shape well. However, the emit-2diabatic configuration, one has an analytic expresgin
ted pulse is typically not directional. On the other hand, inwhich connects the shape of the output single-photon pulse
current experimentsl 7,18 with high-Q cavities, the emitted to the shape of the driving pulse, and this expression has
pulse is directional, but its shape is not well controlled sinceeen verified to be a good approximation under reasonable
with uniform illumination of a perpendicular driving pulse, experimental parameters in Sec. lll through the exact nu-
the waveformf(t) depends on the time history of the cou- merical calculations. With this Enalytlcal expression, it be-
pling rateg(r), which in turn depends on the atom’s posi- comes easier to design the sha{¢) of the driving pulse.
tion. As the atom falls through the cavity, it has basically aThe form of sind(t) can be easily solved from E{L8) (see
random trajectory, leading to unknown variations gfr) also Ref[40]) with the expression

The dynamics governed by the Hamiltoni@) is revers-
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version to the adiabatic passage version, the output pulse

\/;sine(t)z f(t) @27) shapes become insensitive to the random atom’s position as
' is required for interference, which is important for the
4 /1_ thZ(T)dT scheme to work with hot atoms.
0 After entanglement has been generated, one can use it for

atomic Bell inequality detection, for quantum teleportation
The form of sing(t) is immediately available from this equa- of atomic stateg12], or even for realization of quantum
tion for any desirable output pulse shap@) (which has repeater$4?2]. To realize quantum repeaters, what one needs
been assumed to be real and positive for simpliciihen,  to do is to simply replace the atomic ensemble in the scheme
ihe shape of the driving pulse can be easily decided frony, Ref. [42] by the setup of a single atom in a highcavity.
e(t)<a(t) and sind(t)=rya(t)/\V1+r,a(t)[?, wherer, is For the above applications, in addition to the entangle-
the ratio of the Clebsch-Gordan coefficients. For instance, iment generation, we also need to do some single-bit opera-
we want to have a time-symmetri¢t) in the period Gst  tions. These single-bit operations should also be performed
<T with the form f(t)=/B/2sechB(t—T/2)], where we in a suitable way so that they are insensitive to the random
have assumed sech(8T/2)<1, sind(t) should be in the atom positiorr. One way is to still use adiabatic passages. It
form siné(t)= 8/ k\/1+tanf B(t—T/2)]. Note that we only s possible to realize any single-bit operation with adiabatic
have a solution of)(t) when the ratg8<<«/2, which is con- passage$43,44), but for this purpose one needs to use a
sistent with the observation that any pulse from the decay ofgr-level scheme instead of the configuration. There is
a cavity cannot vary with time faster t~han the cavity decayactually a simpler way for getting robust single-bit opera-
rate. From sirg(t), we see that the shapgt) of the driving  tions based on the Raman transitions. Note that for single-bit

pulse should be chosen according to operations, we do not need to use any cavity mode or cavity
effect. We can shine two traveling-wave beams on the atom
~ 1+tanf B(t—T/2)] coupling to the transitionky)— |e) and|s)—|e). They are
e(t)o — — : (28 . . i
(klB—1)—tanH B(t—T/2)] assumed to be collinear and propagating alongxta«is,

which is perpendicular to the cavity axiz The two
As a special case, k/B8=2, :;(t)oceﬁ(t*-r/z), which grows traveling-wave beams are broad with the beam radius much
exponentially with the time for the operation period €t larger than the typical variation length of the atom’s position.
<T. Therefore, we have a simple solution to the drivingWith this condition, the two Rabi frequencies for the transi-
pulse shape for quantum communication between two differtions |g)—|e) and [s)—|e) are given by Q(r)
ent cavities: for the first cavity, we apply an exponentially = Q16€'“9¢¢ and Q,(r)=Q,e'“s¢’°, respectively, where
increasing pulse witls (t)=3(0)e"?, and for the second Oq0andQ,, are basica_lly independen_t of the atom position
cavity we apply its time reversal, that is, an exponentially- Under a large detuning, th? effective Raman coupling
decreasing pulse with the decay ra#. The pulse duration ate Qr~Q;(r)Q3 (r)/Axe'“ss is very insensitive to the

T should satisfyxT>1, and the initial valug(0) is deter- andom atom’s positiorr, since ¢/wgs is typically much
mined by the requirement,a(T/2)=1. The single-photon larger than the variation length of the position. Therefore, as

pulse connecting the two cavities then has a time-symmetritlcOng as we do not need to use the cavity e_ﬁect, a Raman
shape withf (t) = sechi x(t— T/2)/2] scheme with two broad collinearly propagating beams suf-

fices to eliminate the sensitivity to the random atom’s posi-

tion.
C. Entanglement generation and atomic quantum

teleportation D. Quantum computation

If one has two cavities, each with an atom inside, one can
maximally entangle these two atoms 1 and 2 by the follow-
ing method: The two atoms are initially prepared in the stat

19). and thenN we excite thT]zto the stas} with a.small adiabatic passagd43,45 with appropriate configurations.
possibility po~1—exy —«/o sin” #(7)d7] through an incom- 5 yever, the requirements for a universal quantum compu-

plete adiabatic passage. The output pulses from the two CaVztion are more challenging compared with the applications
ties, each with a mean photon numigy, have a definitt  entioned above, and this is somewhat a long-term goal, so

pulse shape as we have shown before, so that they can intgfz o not discuss here the details of this possibility.
fere with each other at a 50%-50% beam splitter. The outputs

of the beam splitter are detected by two single-photon detec-
tors, and if we register a photon from one of the detectors,
due to the interference, we do not know from which cavity Finally, let us mention the current experimental situation
the registered photon comes. The two atoms 1 and 2 are thuslated to this work at the Caltech group. In the Caltech
projected to a quantum superposition stat@){/s),  experiment, a single cesium atom is trapped inside the high-
+|s)1]/9),)/+/2, which is maximally entangled. The method finesse cavity with a FORT beam. The atomic stéaggs|s),
described here is just an adiabatic passage version of trend|e) correspond to the hyperfine levelsSg,,F =3 m=
scheme in Refd.11,12. By transformation from the Raman +3), (6S;,,F=4m=+4), and (@3, F=4m=+4), re-

In principle, we can also use this setup for quantum com-
utation[13], and eliminate the requirement of the Lamb-
icke condition by performing all the quantum gates using

V. DISCUSSION OF THE EXPERIMENTAL SITUATION
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spectively. The FORT beam is incident on one of the cavitythe inverse of the trap frequencies, andv,agiz in the axial
mirrors and resonant to a longitudinal mode of the cavity.and radial directions, respectively. The operation times
Presently, the FORT wavelengthzogr is 936 nm. This typically significantly shorter than &/, but longer or
wavelength was chosen because with such a beam, the tragomparable to /.. S0, we can take the static average of
ping potentials for the groundsg,, manifold and the excited g(r) in the radial direction, and the dynamical average of
6P3, manifold are nearly identical. Considering only this g(r) in the axial direction as discussed in RES4].

reduced manifold of states, we find that the expression for We also would like to note that although the method in
the FORT potential of the ground statgs and|s) is given  this paper shows that many application schemes of the
[46] by cavity-QED setup can be demonstrated before the achieve-
ment of efficient cooling of the trapped atom inside the cav-
ity, the cooling is still an important and desirable technology
yet to be achieved to significantly increase the trapping time
of the atom. In addition, a combination of the cooling tech-
Here, A; (A,) is the detuning of the FORT light of fre- nology and the method here could further improve the per-
quency wrorr=2mC/ N rort from the Py, (Psj) level, and ~ formance of various application schemes.

vJ/2m~5.2 MHz is the spontaneous decay rate of the level

6P3,. The intensityl (r) of the standing-wave mode inside

the cavity is given by VI. SUMMARY

2
C™ys

Urorn)="—3" . (9
0

!
A, A

8p 2 o In summary, we have shown that the setup with a single
I(r)= —sinz( "z )exp( Xty ) , (30  trapped atom in a higl® cavity can be used to realize many
wwg NEORT Wg cavity-QED and quantum-information processing schemes
even if the atom is still hot and not fully localized in space
wherewy~25 um is the waist of the Gaussian mode, @hd (the Lamb-Dicke condition is not yet satisfjed his could
is the power of the FORT beam inside the cavity. The tragsignificantly simplify the on-going experiments, since it
frequenciesv,yia, Vragial IN the axial and radial directions means many interesting schemes can be demonstrated with

follow from these expressions as the present technology before the achievement of efficient
cooling inside the cavity. Even with further advances in
(Vaial Vradia) atomic localization in cavity-QED, our scheme should lead

> 5 to a greater robustness against certain experimental nonide-
_ L \/ZU hwrort \/ZU h alities. The basic idea of this method is to design an appro-
T onh  me& Om(w0)2 ' priate adiabatic passage so that the relevant dynamics only
depend on the ratio of two coupling rates. Though each of
(3D the coupling rates is sensitive to the unknown or time-
varying atom’s position, their ratio is fixed and controllable,
s the two rates depend on the random atom position in the
ame way with the appropriate interaction configuration that
e have described. We confirm the validity of this method by
olving the complete model, which describes the realistic
etup. The approximate analytical solution and the exact nu-
merical simulations agree with each other. From the numeri-
. . cal simulations, we also calculate quantitatively various
“?”P"?‘Ch'e"ab"? temperatuie, of the trapped atom.|s a noise magnitudes in this setup, and show that one can
significant fraction of the trap depthl, (such as a halfWith 5 opieye reasonably good performance with the values of the

such a temperature, the spatial extent of the atomic motion i arameters based on the present technology. Finally, we
the axial and radial directions are estimated, respectively, bghow that this method can be incorporated into .many pr,evi-

ous schemes, allowing the demonstration of these application

whereU,=Ugor(0) is the trap depth. The typical power of
the FORT beam measured outside the cavity is about 1 m
and the poweP inside the cavity is enhanced by a factor of
the cavity finesse, which is about 2200 at the wavelength o
the FORT beam. With this number, the typical values for theS
trap depth and frequencies are given bly~38 MHz,
Vayiar= 510 kHz, andv,,q4iq =4.3 kHz, respectively. The cur-

62/ \porr= (1/2m)arcsivVkg Tiem/ Uo, (32 schemes without the requirement of the full localization of
the atom.
ory %WO\/_ IN(1—KkgTiem/Uo), (33

which will induce significant variation of the coupling rate
g(r) given by Eq.(1). For example, for the temperature of
half of the trap depth, the axial uncertainty is 120 nm, while L.-M.D. thanks Axel Kuhn for discussions. This work was
the radial one is 1%wm. These uncertainties cause variationssupported by the Caltech MURI Center for Quantum Net-
in g of 30% due to the radial motion, and 35% due to theworks under ARO Grant No. DAAD19-00-1-0374, by the
axial one. Therefore, within the current experimental tech-National Science Foundation under Grant No. EIA-0086038,
nique, it is important to use the method given in this paper tand by the Office of Naval Research. L.-M.D. also acknowl-
make the application schemes insensitive to the variation ofdge support from the Chinese Science Foundation, Chinese
g(r). The time scale for the variation gfr) is estimated by Academy of Sciences, and the national “97.3" project.
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