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Quantum random walks with decoherent coins
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The quantum random walk has been much studied recently, largely due to its highly nonclassical behavior.
In this paper, we study one possible route to classical behavior for the discrete quantum walk on the line: the
presence of decoherence in the quantum ‘‘coin’’ which drives the walk. We find exact analytical expressions for
the time dependence of the first two moments of position, and show that in the long-time limit the variance
grows linearly with time, unlike the unitary walk. We compare this to the results of direct numerical simulation,
and see how the form of the position distribution changes from the unitary to the usual classical result as we
increase the strength of the decoherence.
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I. INTRODUCTION

In the classical discrete random walk, a particle is loca
at one of a set of definite positions~such as the set of integer
on the line!. In response to a random event—for examp
the flipping of a coin—the particle moves either right or le
This process is iterated, and the motion of the particle
analyzed statistically. These systems provide good mo
for diffusion and other stochastic processes.

Considerable work has been done recently on quan
random walks, which are unitary~and hence reversible! sys-
tems designed as analogues to the usual classical case.
are two general approaches to the problem:continuous@1–3#
anddiscrete@4–22# unitary walks. This paper is exclusivel
concerned with the discrete walk. In this discrete case,
introduce an extra ‘‘coin’’ degree of freedom~usually a
single quantum bit! into the system. Just as in the classic
random walk, the outcome of a ‘‘coin flip’’ determines whic
way the particle moves; but in the quantum case, both
‘‘flip’’ of the coin and the conditional motion of the particle
are unitary transformations. Different possible classical pa
can interfere with each other.

In this paper we look at quantum walks on the infin
line. The particle is initially at positionx50 and is free to
travel off to infinity in either direction. We will look at both
the probability distribution inp(x,t)5^xur tux&, and at the
long-time behavior of the momentŝx̂& and ^x̂2&2^x̂&2 as
functions oft.

For a classical random walk,p(x,t) has the form of a
binomial distribution, with a width which spreads likeAt;

the variancex2̄ 2 x̄2 grows linearly with time. The variance
in the quantum walk, by contrast, growsquadraticallywith
time; and the distributionp(x,t) has a complicated, oscilla
tory form. Both of these are effects of interference betwe
the possible paths of the particle.
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It should be possible to recover the classical behavior
some kind of limit of the quantum system. There are tw
obvious ways to regain the classical result. If the quant
‘‘coin’’ is measured at every step, then the record of t
measurement outcomes singles out a particular class
path. By averaging over all possible measurement reco
one recovers the usual classical behavior@11#.

Alternatively, rather than reusing the same coin eve
time, one could replace it with anewquantum coin for each
flip. After a timet one would have accumulatedt coins, all of
them entangled with the position of the particle. By meas
ing them, one could reconstruct an unique classical p
averaging over the outcomes would once again produce
classical result.

These two approaches, which are equivalent in the cla
cal limit, give two different routes from quantum to classic
@23#. We might increase the number of coins used to gene
the walk, cycling amongM different coins, in the limit using
a new coin at each step. Or we mightweaklymeasure the
coin after each step, reaching the classical limit with stro
projective measurements. This is equivalent to having a c
which is subject todecoherence.

In another paper@24# we have considered the quantu
random walk with multiple coins. In this case, the quantu
behavior remains qualitatively unchanged until we reach
limit of a new coin for each step, at which point classic
behavior is recovered.

In this paper, we consider the quantum random walk w
a single coin subject to decoherence. We will see that in
case, the behavior is qualitatively quite different from t
unitary quantum random walk. The usual classical solutio
recovered in the limit where the coin decoheres comple
every step; but even with weaker decoherence, the varia
of the position distribution grows linearly with time, rathe
than quadratically~as in the unitary case!.

In Sec. II we present an analytical result for the mome
of the decoherent walk, and compare them to the results f
direct numerical simulations. In Sec. III, we see how t
probability distributionp(x,t) changes as we introduce de
coherence. Finally, in Sec. IV we summarize our results a
state conclusions.
©2003 The American Physical Society04-1
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II. MOMENTS OF THE DECOHERENT WALK

A. The unitary walk on the line

Let us now consider a fairly general quantum rand
walk on the line. The particle degree of freedom has a b
of position eigenstates$ux&%, wherex can be any integer. The
position operator isx̂, and x̂ux&5xux&. We will assume that
the particle begins the walk at the origin, in stateu0&. The
walk is driven by a separate ‘‘coin’’ degree of freedom:
D-dimensional system with an initial-stateuF0&. Let P̂R,P̂L
be two orthogonal projectors on the Hilbert space of
‘‘coin,’’ such that P̂R1P̂L5 Î . These represent the two po
sible outcomes of the coin flip: heads or tails, right or le
We also define a unitary transformationÛ that ‘‘flips’’ the
coin by rotating a coin showing heads or tails into a sup
position of the two. One step of the quantum random walk
given by the unitary operator

Ê[~Ŝ^ P̂R1Ŝ†
^ P̂L!~ Î ^ Û !, ~2.1!

where Ŝ,Ŝ† are unitary shift operators on the particle po
tion:

Ŝux&5ux11&, Ŝ†ux&5ux21&. ~2.2!

The full initial state of the system~particle and ‘‘coin’’! is

uC0&5u0& ^ uF0&. ~2.3!

We can identify the eigenvectorsuk& of Ŝ,Ŝ†,

uk&5(
x

eikxux&, ~2.4!

with eigenvalues

Ŝuk&5e2 ikuk&,

Ŝ†uk&5e1 ikuk&. ~2.5!

The inverse transformation is

ux&5E
2p

p dk

2p
e2 ikxuk&. ~2.6!

In particular, the initial state of the particle is

u0&5E
2p

p dk

2p
uk&. ~2.7!

These state vectorsuk& are not renormalizable, but if use
with caution they greatly simplify the calculations. In thek
basis, the evolution operator becomes

Ê~ uk& ^ uF&)5uk& ^ ~e2 ikP̂R1eikP̂L!ÛuF&[uk& ^ ÛkuF&,

~2.8!

whereÛk is also a unitary operator.
03230
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The usual case considered in the literature has taken
coin to be a simple two-level system, and the ‘‘flip’’ operat
Û to be the usual Hadamard transformationĤ:

ĤuR&5
1

A2
~ uR&1uL&),

ĤuL&5
1

A2
~ uR&2uL&). ~2.9!

The projectors areP̂R5uR&^Ru, P̂L5uL&^Lu. The walk on
the line in this case has been exactly solved by Nayak
Vishwanath@6#.

For the present, we will continue without assuming a p
ticular form for Û, P̂R, or P̂L . Later we will specialize to
make comparison to numerical simulations.

B. Decoherence

We now generalize to allow for decoherence. Supp
that before each unitary ‘‘flip’’ of the coin, a completely pos
tive map is performed on the coin~note, not on both the coin
and the particle!. This map is given by a set of operato

$Ân% on the coin degree of freedom which satisfy

(
n

Ân
†Ân5 Î . ~2.10!

A density operatorx for the coin degree of freedom is tran
formed

x→x85(
n

ÂnxÂn
† . ~2.11!

If we apply this to a general density operator for the jo
particle or coin system

r5E dk

2pE dk8

2p
uk&^k8u ^ xkk8 , ~2.12!

then after one step the state becomes

r→r85E dk

2pE dk8

2p
uk&^k8u ^ (

n
ÛkÂnxkk8Ân

†Ûk8
† .

~2.13!

The initial state is

r05E dk

2pE dk8

2p
uk&^k8u ^ uF0&^F0u. ~2.14!

Let the quantum random walk proceed fort steps. Then the
state evolves to

r t5E dk

2pE dk8

2p
uk&^k8u ^ (

n1 , . . . ,nt

ÛkÂnt
•••ÛkÂn1

uF0&

3^F0uÂn1

† Ûk8
†
•••Ânt

† Ûk8
† . ~2.15!
4-2
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We define thesuperoperatorLkk8 on the coin degree of free
dom

E dk

2pE dk8

2p
uk&^k8u ^ (

n
ÛkÂnxkk8Ân

†Ûk8
†

[E dk

2pE dk8

2p
uk&^k8u ^ Lkk8xkk8 . ~2.16!

In terms of the superoperator,

r t5E dk

2pE dk8

2p
uk&^k8u ^ Lkk8

t uF0&^F0u. ~2.17!

Note that fork5k8 this superoperator preserves the tra
This implies that

Tr$L kk
n Ô%5Tr$Ô%, ~2.18!

for any operatorÔ. This identity will prove useful later.
The probability to reach a pointx at time t is

p~x,t !5Tr$ux&^xu ^ Îr t%5
1

~2p!2E dkE dk8^kux&

3^xuk8&Tr$Lkk8
t uF0&^F0u%

5
1

~2p!2E dkE dk8e2 ix(k2k8)Tr$Lkk8
t uF0&^F0u%.

~2.19!

C. Moments of position

Equation~2.19! for p(x,t) will be difficult to evaluate, in
general. However, we can get considerably further by
stricting our interest to themomentsof this distribution.

^x̂m& t5(
x

xmp~x,t !

5 (
x

xmE dk

2pE dk8

2p
e2 ix(k2k8)Tr$Lkk8

t uF0&^F0u%.

~2.20!

We can then invert the order of operations and do thex sum
first. This sum can be exactly carried out in terms of deri
tives of thed function:

1

2p (
x

xme2 ix(k2k8)5~2 i !md (m)~k2k8!. ~2.21!

Inserting this result back into our expression for^x̂m& t yields

^x̂m& t5
~2 i !m

2p E dkE dk8d (m)~k2k8!Tr$Lkk8
t uF0&^F0u%.

~2.22!

We can then integrate this by parts.
03230
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In carrying out this integration by parts, we will need

d

dk
Tr$Lkk8Ô%5(

n
Tr$~dÛk /dk!ÂnÔÂn

†Ûk8
† %, ~2.23!

where

dÛk

dk
52 i ~P̂02P̂1!Ûk[2 i ẐÛk ,

dÛk
†

dk
5 iÛ k

†~P̂02P̂1![ iÛ k
†Ẑ ,

Ẑ5P̂R2P̂L5 Î 22P̂L . ~2.24!

Substituting this back into Eq.~2.23! we get

d

dk
Tr$Lkk8Ô%52 iTr$ẐLkk8Ô%52 iTr$~Lkk8Ô!Ẑ%

52
d

dk8
Tr$Lkk8Ô%.

~2.25!

Making use of Eqs.~2.18! and~2.25!, when we carry out
the integration by parts for the first moment we get

^x̂& t52
1

2p (
j 51

t E dkTr$ẐL kk
j uF0&^F0u%. ~2.26!

We can simplify our notation slightly by defining

Lk[Lkk . ~2.27!

We can carry out a similar integration by parts to get t
second moment:

^x̂2& t52
1

2pE dkF (
j 51

t

(
j 851

j

Tr$ẐL k
j 2 j 8~ ẐL k

j 8uF0&^F0u!%

1(
j 51

t

(
j 851

j 21

Tr$ẐL k
j 2 j 8@~L k

j 8uF0&^F0u!Ẑ#%G . ~2.28!

Note that this form is rather similar to that for a correlatio
function.

For the unitary walk@23,24#, we were able to separate th
expressions for the moments into oscillatory and nonosc
tory terms, and consider only the nonoscillatory terms for
long-time limit. In the present case, this will not work; b
cause of the presence of decoherence, the oscillations
damped. However, the long-time limit still simplifies in an
other way. If we think ofLk as a linear transformation, all it
eigenvalues must clearly obeyulu<1 in order for it to be
completely positive. In finding the long-time limit, we nee
4-3
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FIG. 1. The~a! expectation̂ x̂&, and~b! variancê x̂2&2^x̂&2, for the Hadamard walk on the line without decoherence. The coin be
in stateuR&. Note that the first moment exhibits a linear drift with time, which seems to reflect a peculiar ‘‘memory’’ for the initial st
system starting with the coin in stateuL& would drift symmetrically in the other direction. The variance grows quadratically in time
contrast to the linear growth in the classical random walk. Note that if viewed at a finer scale, both of these curves would exhibit os
about the simple power-law behavior.
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pick out only those components of the expressions~2.26! and
~2.28! which do not die away at larget.

D. The Hadamard walk with decoherence

To get any further than this, we need to specialize t
particular model. Let’s choose the standard two-dimensio
‘‘coin’’ and the Hadamard walk as described above. T
makes our operatorÛk,

Ûk5
1

A2
S e2 ik e2 ik

eik 2eikD . ~2.29!

We need also to pick a particular form for the decoherenc
will choose the decoherence produced by the three opera

Â05ApuR&^Ru,

Â15ApuL&^Lu,

Â25A12pÎ. ~2.30!

This resembles a coin which has a probabilityp per step of
being measured; however, this is equivalent to a large c
of other decoherence models, such aspure dephasing,

Â085
1

A2
~eiuuR&^Ru1e2 iuuL&^Lu!,

Â185
1

A2
~e2 iuuR&^Ru1eiuuL&^Lu!, ~2.31!
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or weak measurement,

Â095AquR&^Ru1A12quL&^Lu,

Â195A12quR&^Ru1AquL&^Lu. ~2.32!

All three of these decoherence processes represent the
completely positive map on the density matrix; one c
transform from one to the other by invoking the relationsh
between the parameters,

12p5cos 2u52Aq~12q!. ~2.33!

We will generally use the first in our derivations, for simpli
ity; but the second is more convenient for numerical cal
lations. Note that this equivalence applies to theaverage
behavior over all outcomes; for a single sequence of o
comes, the conditional dynamics of these three decohere
~or weak measurement! models can look quite different.

In the absence of decoherence, the Hadamard walk ex
its a linear drift in^x̂& and a quadratic growth in the varianc

^ x̂2&2^x̂&2. We plot these moments in Fig. 1.
BecauseLk is linear, we can represent it as a matrix acti

on the space of two-by-two operators. A convenient rep
sentation is to write

Ô5r 0Î 1r 1s11r 2s21r 3s3 , ~2.34!

where s1,2,35sx,y,z are the usual Pauli matrices. We ca
then representÔ by a column vector

Ô[S r 0

r 1

r 2

r 3

D . ~2.35!
4-4
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The action ofLk on Ô is then given by

LkÔ[S 1 0 0 0

0 0 2~12p!sin 2k cos 2k

0 0 2~12p!cos 2k 2sin 2k

0 12p 0 0

D S r 0

r 1

r 2

r 3

D .

~2.36!

Note that sincer 05Tr$Ô%, it is unaffected byLk , which is
trace preserving. So the only nontrivial dynamics result fr
the three-by-three submatrix

Mk[S 0 2~12p!sin 2k cos 2k

0 2~12p!cos 2k 2sin 2k

12p 0 0
D . ~2.37!

We also need to know the effects of left multiplying an
right multiplying by Ẑ. These are given by the two matrice

ZL[S 0 0 0 1

0 0 i 0

0 2 i 0 0

1 0 0 0

D , ZR[S 0 0 0 1

0 0 2 i 0

0 i 0 0

1 0 0 0

D .

~2.38!

Finally, taking the trace picks out the 0 component of t
column vector and drops the rest.

Let us take these expressions and apply them to Eq.~2.26!
for the first moment. In the integrand, the initial density m
trix for the coin is multipliedj times byLk , then left multi-
03230
e
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plied by Ẑ, and finally the trace is taken. Given the abo
expression forZL , we see that this is the same as multiplyin
the three-vector (r 1 ,r 2 ,r 3) j times byMk and then keeping
only the r 3 component of the result. This gives us the ne
expression

^x̂& t52
1

2pE dk~0 0 1!F (
j 51

t

Mk
j G S r 1

r 2

r 3

D
52

1

2pE dk~0 0 1!@~12Mk!
21~Mk2Mk

t11!#

3S r 1

r 2

r 3

D . ~2.39!

The eigenvalues ofMk are complicated, but fortunately w
do not need to evaluate them. All we need to know is that
of them obey 0,ulu,1 ~where both these inequalities a
strict!. In the long time limit, therefore,Mk

t11→0, and the
moment becomes approximately

^x̂& t'2
1

2pE dk~0 0 1!@~12Mk!
21Mk#S r 1

r 2

r 3

D .

~2.40!

Note that all t dependence has vanished. Therefore, in
long-time limit, the first moment tends to a constant.

As it happens, the matrix 12Mk is exactly invertible:
~12Mk!
215

1

p~22p! S 11~12p!cos 2k 2~12p!sin 2k ~12p!1cos 2k

2~12p!sin 2k 12~12p!cos 2k 2sin 2k

~12p!@11~12p!cos 2k# 2~12p!2sin 2k 11~12p!cos 2k

D . ~2.41!
lts
e
es
lly.
or
or

cal-
Inserting this and Eqs.~2.37! into ~2.40! yields

^x̂& t'2
1

2pE dk
12p

p~22p!
@~12p!r 31r 1

1@r 31~12p!r 1#cos 2k2~12p!r 2 sin 2k#

5
12p

p~22p!
@~12p!r 31r 1#

5
12p

p~22p!
@~12p!~ uau22ubu2!1~a* b1ab* !#,

~2.42!
where the initial state of the coin isuF0&5auR&
1buL&.

In Fig. 2, we compare this result to the resu
of direct numerical simulation for the initial-stat
uF0&5uR&. As we can see, the first moment do
tend to drift towards a constant value asymptotica
What variation there is a result of statistical err
in the Monte Carlo simulation rather than a po
fit.

The second moment is a somewhat more complicated
culation. Let us rewrite the Eq.~2.28! in terms of our four-
by-four matrices:
4-5
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^x̂2& t52
1

2pE dkF (
j 51

t

(
j 851

j

Tr$ẐL k
j 2 j 8~ ẐL k

j 8uF0&^F0u!%

1(
j 51

t

(
j 851

j 21

Tr$ẐL k
j 2 j 8~~L k

j 8uF0&^F0u!Ẑ!%G
5t2

1

2pE dk~1 0 0 0!

3FZL(
j 51

t

(
j 851

j 21

L k
j 2 j 8~ZL1ZR!L k

j 8G S 1

r 1

r 2

r 3

D
5t2

1

2pE dk~0 0 0 1!

3F (
j 51

t

(
j 851

j 21

L k
j 2 j 8~ZL1ZR!L k

j 8G S 1

r 1

r 2

r 3

D . ~2.43!

The initial t term comes from thej 5 j 8 components of Eq.
~2.28!, where the two factors ofẐ cancel out.

Recall the block-diagonal form Eq.~2.36! of Lk , and note
that

~ZL1ZR!5S 0 0 0 2

0 0 0 0

0 0 0 0

2 0 0 0

D ~2.44!

FIG. 2. ^x̂& vs t for the Hadamard walk on the line with deco
herence, foru5p/16,p/8,3p/16,p/4. For all cases the coin bega

in the initial stateuR&. Note that^x̂& goes asymptotically to a con
stant value at long times, which matches our analytical estim
this drift goes to zero with increasing decoherence, vanishingu
5p/4 ~i.e., p51). Note that the irregularities in the broken curv
reflect statistical errors in the Monte Carlo calculations.
03230
is extremely sparse. In this case, it makes sense to sep
the 0 and 1,2,3 components of the expression:

^x̂2& t5t2(
j 51

t

(
j 851

j 21
1

2pE dk~0 0 0 1!

3F L k
j 2 j 8~ZL1ZR!L k

j 8S 1

0

0

0

D
1L k

j 2 j 8~ZL1ZR!L k
j 8S 0

r 1

r 2

r 3

D G . ~2.45!

We can drop the second term, because it will be cance
in the inner product with~0 0 0 1!. This means that̂x̂2& t has
no dependenceon the initial state! The remaining term be
comes

^x̂2& t5t2(
j 51

t

(
j 851

j 21
1

2pE dk~0 0 0 1!L k
j 2 j 8S 0

0

0

2

D
5t2

1

2pE dk~0 0 1!F (
j 51

t

(
j 851

j 21

Mk
j 2 j 8G S 0

0

2
D

5t2
1

2pE dk~0 0 1!@ t2~12Mk!
21Mk

1~12Mk!
21Mk

t #~12Mk!
21MkS 0

0

2
D . ~2.46!

In the long-time limit, we can drop theMk
t terms as neg-

ligible. We can thereby substitute the exact expressi
~2.37! and ~2.41! for the remaining matrices and simplify

^x̂2& t5t1
1

2pE dk
12p

p~22p! F2t~12p1cos 2k!

2
1

p~22p!
@4~222p1p2!cos 2k1~12p!

3~71cos 4k!#G5tS 11
2~12p!2

p~22p! D2
7~12p!2

p2~22p!2
.

~2.47!

Thus, in the case of the decoherent coin the variance
grow linearly with time at long times, just as in the classic

e;
4-6
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QUANTUM RANDOM WALKS WITH DECOHERENT COINS PHYSICAL REVIEW A67, 032304 ~2003!
case, though the rate of growth will be greater than for
classical random walk. Note that asp→1, ^x̂2& t→t, which
is the classical result.

Because of the dependence of the first moment on
initial condition, the variance will have some residual depe
dence on the initial condition; but since this is only a co
stant it is quite unimportant. Upon comparison to the num
cal results~see Fig. 3!, we see that this analytical expressio
for the variance matches extremely well.

Since this approximation holds in the long-time limit, it
reasonable to ask how long is a ‘‘long time.’’ For weak d
coherence (p!1), the evolution exhibits the same behavi
as the unitary walk for short times, with the second mom
growing quadratically in time, and only switches over to li
ear growth past some critical timescale. This changeove
visible in Fig. 3.

We take the long-time approximation by neglecting t
Mk

t term in ~2.46!. If we examineMk
2 , we see that it can be

written as (12p) multiplying a matrix whose norm is les
than one. Therefore, if we want this term to be negligib
then

iMk
t i,~12p! t/2,e ~2.48!

for some positivee!1. This implies that

p.~2/t !ln~1/e![c/t ~2.49!

which implies in turn that the second moment of positi
will grow linearly at t.c/p, for a large enough constantc.
For t,c/p there will be a transition over to quadratic tim
dependence. For smallp, Eq. ~2.47! becomes

^x̂2& t5t~111/p!27/4p2. ~2.50!

FIG. 3. ^x̂2&2^x̂&2 vs t for the quantum random walk with de
coherence, foru5p/16,p/8,3p/16,p/4. For all cases the coin be
gan in the initial stateuR&. Note that the variance goes asympto
cally to a linear growth at long times that matches our analyt
estimate; the rate of growth goes to one with increasing deco
ence, matching the classical case atu5p/4 ~i.e., p51). The inset
shows the time dependence of the variance at short times, whe
still exhibits quadratic growth.
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III. THE POSITION DISTRIBUTION

As mentioned before, Eq.~2.19! for p(x,t) is difficult to
evaluate analytically. It is straightforward, however, to sol
this system numerically. Rather than solve for the dens
matrix r, we instead have used quantum trajectory te
niques@25# to do a quantum Monte Carlo simulation, ave
aging over many runs to find both the distribution itself a
its moments.

For the purposes of these simulations, it proved more c
venient to use the form Eq.~2.31! for the decoherence pro
cess. We have therefore labeled the figures with the ap
priate values of the dephasing parameteru instead ofp. In
performing the simulations, after each step of the quant
walk we randomly applied either operatorA2Â08 or A2Â18
from Eq. ~2.31! to the state, choosing them with equal pro
ability. BecauseA2Â0,18 are unitary operators, it was unne
essary to renormalize the state. We then found the m
probability distributionsp(x) by averaging over many runs
each distribution plotted in this paper represents an ave
over 10000 runs of the Monte Carlo program. In Fig. 4 w
see how the probability distribution changes as we go to
classical limit of complete decoherence at every stepu
5p/4).

As we see from the figure, the presence of decohere
quickly wipes out the most conspicuous signs of interf
ence, the peaks at6t/A2 and the oscillations in the distri
bution. A new peak, centered att50, makes its appearance
though for weak decoherence it does not have the usua
nomial form. However, some residual effects of interferen
persist up until just short of the classical limit. In particula
the distribution is broadened, with long ‘‘tails,’’ and dis
placed somewhat from the central position. This is reflec
in our long-time solution for the variance~2.47!, which is
higher in the quantum case than the classical except in
limit p→1.

In the unitary case, interference effects cause the ev
tion to ‘‘remember’’ the starting state in a nonintuitive wa
As we saw in Fig. 1, if we start the coin in stateuR&, the
system retains a linear drift to the right for all time. If we ha
instead started in the stateuL&, the system would have drifted
symmetrically to the left. This ‘‘memory’’ also makes th
position distribution asymmetric, as we see in Fig. 4~a!.

The presence of decoherence eliminates this effect at
times: the system ‘‘forgets’’ the initial conditions after
while. This effect will still persist at short times, howeve
and produce a tendency for the particle to move repeated
the same direction. No doubt this tendency produces
broadening in the position distribution and the significa
tails.

IV. CONCLUSIONS

We have examined a possible route from quantum to c
sical for the quantum random walk: letting the quantum c
undergo decoherence with time. Using the long-time beh
ior of the position moments as a qualitative marker of cl
sicality, we see that even very weak decoherence change
growth of the variance from a quadratic to a linear functi

l
r-

it
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FIG. 4. The probability distributionsp(x,t) at t5500 for the quantum random walk with decoherence:~a! u50 ~unitary case!, ~b! u
5p/16, ~c! u5p/8, ~d! u53p/16, ~e! u5p/4 ~classical case!. A central peak appears when decoherence is included, which bec
increasingly dominant; however, the peak is broadened compared to the classical case, with nontrivial tails, which disappear o
classical limit, whenp(x,t) goes over to the binomial distribution.
e
im

m

ry
e
rs

al’’

ant
ari-
ical
bi-
ce
is
of time. Since the usual classical random walk has a lin
growth of the variance, in a particular sense we can cla
that the decoherent walk is indeed classical.

This situation is quite different from the quantum rando
walk with multiple coins @24#; for that system, quadratic
growth remained except in the limit of a new coin for eve
step. One might reasonably claim that the multicoin syst
remains ‘‘quantum’’ even in the limit of very large numbe
03230
ar

m

of coins, while the decoherent system remains ‘‘classic
even in the limit of very weak noise.

In spite of this, some effects of interference are import
even in the presence of decoherence. In particular, the v
ance grows more rapidly in the quantum than the class
case. This may reflect a tendency for the particle to be ‘‘
ased’’ in one direction for short times, while interferen
effects enable it to ‘‘remember’’ its starting state. This
4-8
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consistent with the position distributions, which are broa
than the classical binomial distribution, and have nontriv
tails.

In the long time limit, the time dependence of the m
ments becomes tractable because the evolution superope
has only one eigenvalue of modulus 1. All other compone
decay away exponentially with time. It is interesting
speculate whether a decoherence process with several m
lus 1 eigenvalues might continue to exhibit quantum beh
ior. This is probably possible, at least for higher-dimensio
coins.

We should emphasize that the system we have studie
this paper has decoherence only in the coin degree of f
dom; any effects of decoherence on the particle are indir
It might be arguably natural to include decoherence in
nd

tio
,

a-
m

hy

5
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particle position as well. Such systems have been stud
numerically, and exhibit interesting effects of their ow
@20,22,26#.
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