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Quantum random walks with decoherent coins
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The quantum random walk has been much studied recently, largely due to its highly nonclassical behavior.
In this paper, we study one possible route to classical behavior for the discrete quantum walk on the line: the
presence of decoherence in the quantum “coin” which drives the walk. We find exact analytical expressions for
the time dependence of the first two moments of position, and show that in the long-time limit the variance
grows linearly with time, unlike the unitary walk. We compare this to the results of direct numerical simulation,
and see how the form of the position distribution changes from the unitary to the usual classical result as we
increase the strength of the decoherence.
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[. INTRODUCTION It should be possible to recover the classical behavior as
some kind of limit of the quantum system. There are two
In the classical discrete random walk, a particle is locatedbvious ways to regain the classical result. If the quantum
at one of a set of definite positiofsuch as the set of integers “coin” is measured at every step, then the record of the
on the ling. In response to a random event—for example,measurement outcomes singles out a particular classical
the flipping of a coin—the particle moves either right or left. path. By averaging over all possible measurement records,
This process is iterated, and the motion of the particle igne recovers the usual classical behayidi.
analyzed statistically. These systems provide good models Alternatively, rather than reusing the same coin every
for diffusion and other stochastic processes. time, one could replace it with mewquantum coin for each
Considerable work has been done recent|y on quanturﬂip. After a timet one would have aCCUmUIatedOinS, all of
random walks, which are unitaand hence reversiblsys-  them entangled with the position of the particle. By measur-
tems designed as analogues to the usual classical case. Thé}@ them, one could reconstruct an unique classical path;
are two general approaches to the probleantinuoug 13| averaging over the outcomes would once again produce the
anddiscrete[4—22] unitary walks. This paper is exclusively classical result. . , _ ,
concerned with the discrete walk. In this discrete case, we |heSe two approaches, which are equivalent in the classi-
introduce an extra “coin” degree of freedorfusually a cal limit, give two different routes from quantum to classical
single quantum bjtinto the system. Just as in the classicall23l- We mightincrease the number of coins used to generate
random walk, the outcome of a “coin flip” determines which the walk, cycling amond/ different coins, in the limit using

way the particle moves; but in the quantum case, both th@ New coin at each step. Or we migheakly measure the
“flip” of the coin and the conditional motion of the particle C€0IN after each step, reaching the classical limit with strong,

are unitary transformations. Different possible classical pathBrojective measurements. This is equivalent to having a coin
can interfere with each other. which is subject talecoherence

In this paper we look at quantum walks on the infinite " @nother papef24] we have considered the quantum
line. The particle is initially at positiox=0 and is free to random walk with multiple coins. In this case, the quantum
travel off to infinity in either direction. We will look at both P€havior remains qualitatively unchanged until we reach the
the probability distribution inp(x,t)=(x|p,|x), and at the limit of a new coin for each step, at which point classical

. . - - ” behavior is recovered.
- 2y /%\2
Lﬁggtit(')nr:s ;::‘hawor of the momentx) and {x*)—(x)" as In this paper, we consider the quantum random walk with

For a classical random walky(x,t) has the form of a a single coin sub.ject. to dec_ohgrence. We V\_/iII see that in this
. L ) e ) case, the behavior is qualitatively quite different from the
binomial distribution, with a width which spreads like; unitary quantum random walk. The usual classical solution is
the variancex? —x? grows linearly with time. The variance recovered in the limit where the coin decoheres completely
in the quantum walk, by contrast, growsiadraticallywith  every step; but even with weaker decoherence, the variance
time; and the distributiopp(x,t) has a complicated, oscilla- of the position distribution grows linearly with time, rather
tory form. Both of these are effects of interference betweerthan quadraticallyas in the unitary case

the possible paths of the particle. In Sec. Il we present an analytical result for the moments
of the decoherent walk, and compare them to the results from
direct numerical simulations. In Sec. Ill, we see how the
*Electronic address: tbrun@ias.edu probability distributionp(x,t) changes as we introduce de-
"Electronic address: hcartere@cacr.math.uwaterloo.ca coherence. Finally, in Sec. IV we summarize our results and
*Electronic address: ambainis@ias.edu state conclusions.
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. MOMENTS OF THE DECOHERENT WALK

A. The unitary walk on the line

PHYSICAL REVIEW A67, 032304 (2003

The usual case considered in the literature has taken the
coin to be a simple two-level system, and the “flip” operator

U to be the usual Hadamard transformatfén

Let us now consider a fairly general quantum random

walk on the line. The particle degree of freedom has a basis

of position eigenstategx)}, wherex can be any integer. The

position operator i, andx|x)=x|x). We will assume that
the particle begins the walk at the origin, in sté®. The

walk is driven by a separate “coin” degree of freedom: a

D-dimensional system with an initial-stat®,). Let 75R,75,_

H|R>=%<|R>+|L>),

1

HIL)= ﬁ<|R>—|L>>. 2.9

be two orthogonal projectors on the Hilbert space of the

“coin,” such that P+ P_=1. These represent the two pos- The projectors arés=|R)(R|, PL=|L)(L|. The walk on
sible outcomes of the coin flip: heads or tails, right or left.the line in this case has been exactly solved by Nayak and

We also define a unitary transformatith that “flips” the

coin by rotating a coin showing heads or tails into a super-

Vishwanath[6].
For the present, we will continue without assuming a par-

position of the two. One step of the quantum random walk idicular form forU, Pg, or P . Later we will specialize to

given by the unitary operator
E=(SoPr+S'oP)(100), (2.1

where S, S
tion:

Sx)=|x+1), Sfx)=|x—1). (2.2

The full initial state of the systertparticle and “coin”) is

|Wo)=10)@[Do). (2.3
We can identify the eigenvectolk) of S,S,
|k>=§ e¥|x), (2.4
with eigenvalues
Slky=e""*|k),
Stlky=e"k|k). (2.5
The inverse transformation is
= dk
|x)=ﬁwze"kx|k). (2.6
In particular, the initial state of the particle is
0= 5510, @7
2

These state vectorik) are not renormalizable, but if used
with caution they greatly simplify the calculations. In tke
basis, the evolution operator becomes
E(k)®|®))=|k)o (e *Prte P)U|@)=]k) 0 UP),
(2.9

whereU, is also a unitary operator.

are unitary shift operators on the particle posi-

make comparison to numerical simulations.

B. Decoherence

We now generalize to allow for decoherence. Suppose
that before each unitary “flip” of the coin, a completely posi-
tive map is performed on the coinote, not on both the coin
and the particlg This map is given by a set of operators

{A,} on the coin degree of freedom which satisfy

> AlA,=1. (2.10

A density operatoy for the coin degree of freedom is trans-
formed

X—>X’=§ AxAL. (2.11)

If we apply this to a general density operator for the joint
particle or coin system

[akpak
'“fﬂfﬂ' MK'® Xk »

then after one step the state becomes

(2.12

dk [ dk’ A oA
pﬁpfzjzfzwkw@g Oinxiac A0
(2.13

The initial state is

dk  dk’
o= [ [ pesloaiod. (214

Let the quantum random walk proceed fasteps. Then the
state evolves to
_ [ dk [ dK ) .. aa
Pt—fzf oKk |®n12 5 UAn, - - - UiAn [Po)

(2.19
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We define thesuperoperatorZ,,, on the coin degree of free- In carrying out this integration by parts, we will need
dom

d R R i
dk ( dk’ —TH{ L O} =2, Tr{(dU, /dk)AOAI0T ), (2.23
f f |k><k |®z Uk'An)(kk/A Uk' dk kk n K n n=k

where
f f_|k><k |® Liger X - (2.16
dU - o n
In terms of the superoperator, d_ ~i(Po=PyUi=—iZ0y,
—kk®£,<D<D 2.1 d0} s
o= [ | Felbtcle Lhlon@d. 217 WO te-PomOiE
Note that fork=k’ this superoperator preserves the trace.
This implies that Z=Pg—P =1-2P,. (2.24)
TH{L O} =Tr{O}, (218 sybstituting this back into Eq2.23 we get
for any operatoQ. This identity will prove useful later. d R R R L
The probability to reach a pointat timet is &Tr{ﬁkk,0}= —iTH{ZLwO}=—iTr{( L, O)Z}
PO =Tr{Ix)(x| @1 pg = dk | dk'(klx) d
=— ﬁTr{karO}
XK ) TH{ Ly [ @) Pol} (2.29
_ dk C O d D Making use of Eqs(2.18 and(2.25, when we carry out
N (27)2 | Po)}(Pol}- the integration by parts for the first moment we get
(2.19

. 1 .
®=— 5= 3 [ dkmizelogied). 220

C. Moments of position

Equation(2.19 for p(x,t) will be difficult to evaluate, i We can simplify our notation slightly by defining
general. However, we can get considerably further by re-

stricting our interest to thenomentsof this distribution. L= Lk (2.27)
(im>t=2 X"p(x,1) We can carry out a similar integration by parts to get the
X second moment:
dk dk’ .
Z J S—e Xk < )Tr{ﬁkkr|‘1)o><q)o|} ~ 1 : ]
(=5 [ a3 3 e o] [wgid))
(2.20 Tt
t j-1
We can then invert the order of operations and doxtsem +> > THZL (L [ @D ZTH]. (2.28
first. This sum can be exactly carried out in terms of deriva- I=1j =1

tives of theé function:
1 Note that this form is rather similar to that for a correlation
il ma—ix(k—=k') — /i yms(M) /L _ L’ function.
T g e =(=)MaM(k=k).  (2.20 For the unitary walk23,24], we were able to separate the
expressions for the moments into oscillatory and nonoscilla-
Inserting this result back into our expression @W)t yields  tory terms, and consider only the nonoscillatory terms for the
long-time limit. In the present case, this will not work; be-
“m (=)™ / 5 cause of the presence of decoherence, the oscillations are
(X"h= 2 f dkf dk’ & (k—k’ )Tr{ﬁkk'|¢o><®o|} damped. However, the long-time limit still simplifies in an-
(2.22  other way. If we think of{, as a linear transformation, all its
eigenvalues must clearly obéy|<1 in order for it to be
We can then integrate this by parts. completely positive. In finding the long-time limit, we need
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FIG. 1. The(a) expectationx), and(b) variance(x?) —(x)?, for the Hadamard walk on the line without decoherence. The coin begins
in state|R). Note that the first moment exhibits a linear drift with time, which seems to reflect a peculiar “memory” for the initial state; a
system starting with the coin in state) would drift symmetrically in the other direction. The variance grows quadratically in time, in
contrast to the linear growth in the classical random walk. Note that if viewed at a finer scale, both of these curves would exhibit oscillations
about the simple power-law behavior.

pick out only those components of the expressi@26 and  or weak measurement
(2.28 which do not die away at large
Ag=alR)(RI+VI—q[L)(L],
D. The Hadamard walk with decoherence
To get any further than this, we need to specialize to a Aj=\1-q|R)(R|+ Vg|L)(L|. (2.32

particular model. Let's choose the standard two-dimensional
“coin” and the Hadamard walk as described above. ThisAll three of these decoherence processes represent the same

makes our operatdd completely positive map on the density matrix; one can
ko transform from one to the other by invoking the relationships
between the parameters,

e—lk
_eik)' (2.29 1-p=cos20=2q(1—q). (2.33

NA
We need also to pick a particular form for the decoherence. YVe will generally use the first in our.denvatlons, fqr simplic-
Y but the second is more convenient for numerical calcu-

: i
will choose the decoherence produced by the three operato‘;tionsl Note that this equivalence applies to Heerage

behavior over all outcomes; for a single sequence of out-
Ao: \/5| R)(R), comes, the conditional dynamics of these .threg decoherence
(or weak measuremeninodels can look quite different.
In the absence of decoherence, the Hadamard walk exhib-
Alz \/B||_><|_|, it§ a Iingar drift in(§<> and a quadratic growth in the variance
(x?)—(x)?. We plot these moments in Fig. 1.
Becausely is linear, we can represent it as a matrix acting

A,=\1-pl. (2.30  on the space of two-by-two operators. A convenient repre-
sentation is to write

1 —ik

N e
Uk:_

ik

e

This resembles a coin which has a probabiptper step of
being measured; however, this is equivalent to a large class O=rol + 1107+ 05+ 303, (2.34)
of other decoherence models, suchpase dephasing

where o4, 3=0y . are the usual Pauli matrices. We can
1 then represen® by a column vector

Al — _— (Qif —i6
Ao ﬁ(e IR)(R[+e "IL)(L]), -
~ r
1 O= r (2.35
A i i 2
Aizﬁ(e""|R><R|+e'9|L>(L|), (2.30 .
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The action of£, on O is then given by

1 0 0 0
R 0 0 —(1—p)sin2k cosXx
ACkOE .
0 0 —(1-p)cosx —sin2k
0 1-p 0 0

Note that since ,=Tr{O}, it is unaffected byc,, which is

trace preserving. So the only nontrivial dynamics
the three-by-three submatrix

0 —(1-p)sin2k cosXk
M, = 0 —(1-p)cosxk —sin2k
1-p 0 0

We also need to know the effects of left multiplying and
right multiplying byZ These are given by the two matrices

0 0 0 1 00 0 1
ZOOIOZOO—i
“lo —-i o o|" ®Rlo i o
1 0 0 0 10 0

Finally, taking the trace picks out the 0 component of the

column vector and drops the rest.

Let us take these expressions and apply them tdZEg86

for the first moment. In the integrand, the initial d

trix for the coin is multipliedj times by £, then left multi-

o © o

PHYSICAL REVIEW A67, 032304 (2003

plied by Z, and finally the trace is taken. Given the above
expression foZ, , we see that this is the same as multiplying

ro the three-vectorr(;,r,,r3) j times byM, and then keeping
" only thers component of the result. This gives us the new
! expression
I
r3 1 t ry
X)=— — 0 0 1 P
(2.36 (%)t wa dk( )L_El Mk} 2

s

1 - t+1
result from =—Ef dk(0 0 D[(L-MY M —M;"H]
r
@37 x| s (2.39
rs

The eigenvalues o, are complicated, but fortunately we
do not need to evaluate them. All we need to know is that all
of them obey G<|\|<1 (where both these inequalities are
strict). In the long time limit, thereforeM}"*—0, and the
moment becomes approximately

r

) 1 .
(R~ 5= ako 0 DIa-My M| T2

(2.39
K]

(2.40

Note that allt dependence has vanished. Therefore, in the
ensity ma-long-time limit, the first moment tends to a constant.
As it happens, the matrix-2 M is exactly invertible:

1+(1—

(1-My)~*=

p(2—p)

(1-p)[1+(1—p)cos K]

Inserting this and Eqs{2 37 into (2.40 yields
- 1 -p

X~—5—| dk—5——=
| p(z p2—p)!

+[rz+(1l—p)rijcos X—(1—p)r,sin 2k]

(1-p)rg+ry

= P a—pyras
m[( p)rz+rq]
p(2 p)[( —p)(|a|?=|BH) +(a* B+aB*)],

p)cos X —(1-p)sin2k (1—p)+cosxk

p)sin 2k 1-(1-p)cos Xk —sin 2k (2.41

—(1-p)?sin2k 1+ (1—p)cosX

where the initial state of the coin ig®g)=a|R)

+pIL).

In Fig. 2, we compare this result to the results
of direct numerical simulation for the initial-state
|®y)=|R). As we can see, the first moment does

tend to drift towards a constant value asymptotically.
What variation there is a result of statistical error
in the Monte Carlo simulation rather than a poor
fit.

The second moment is a somewhat more complicated cal-
culation. Let us rewrite the Eq2.28 in terms of our four-
by-four matrices:

(2.42

032304-5



BRUN, CARTERET, AND AMBAINIS PHYSICAL REVIEW A67, 032304 (2003

6 o is extremely sparse. In this case, it makes sense to separate
the 0 and 1,2,3 components of the expression:
5r 7 Analytical
/ 9=m/16 ——— A
A / Q=8 e - J 1
r 6=3m/16 - 1 x2), =t— — | dk(0 O 0 1
!; [ 7 —— < >t jzl jgl 20 ( )
1
2t o .
; X £{(7J (ZL+ZR)‘C{( 0
1 1=
’ 0
0 L L 1 L L L L L L
0 50 100 150 200 250 300 350 400 450 500 0
t
- | "
FIG. 2. (x) vst for the Hadamard walk on the line with deco- +Ly " (ZotZr) Ly r : (2.49
herence, ford= w/16,7/8,37/16,m/4. For all cases the coin began
in the initial statelR). Note that(x) goes asymptotically to a con- s

stant value at long times, which matches our analytical estimate;

this drift goes to zero with increasing decoherence, vanishing at ~ We can drop the second term, because it will be canceled

=m/4 (i.e.,p=1). Note that the irregularities in the broken curves in the inner product witf0 0 0 1). This means thd&2>t has

reflect statistical errors in the Monte Carlo calculations. no dependencen the initial state! The remaining term be-
comes

- 1
(x2>t:——f dk| | 0
2m I=1ljr=1 t j-1 1 0
t -1 xP)=t—> > Ef dk(0 0 0 Hcl 0
A i i A ':l S
+3 2 THZLL (L Do) o) 2)} i
i=1j=1 2
:t—if dk(1 0 0 0) 1 L) 0
2m =t——f dk0 0 1| > > M| 0
2 =12,
1 2
Lol Y 1 rl 1
x|z, > Lz +zp Ll =t——f dk(0 0 D[t—(1—My) M,
i=ljr=1 2 2
s 0
1 +(1-M) MEJ(A-Mp M| O]. (2.4
:t__f dk(0 0 0 1) ( K kJ( k) K (2.49
2 2
1
¢ -1 In the long-time limit, we can drop thkl} terms as neg-
i—i’ AL ligible. We can thereby substitute the exact expressions
=i i
X g‘l Zfl Lic (LFZR) Ly ' (243 (2.37 and(2.41) for the remaining matrices and simplify

]
N 1 1-p
2y _

o=t 5 | dp

[4(2—2p+ p?)cos X+ (1—p)

2t(1—p+cos X)
The initial t term comes from thé=j’ components of Eq.

(2.28), where the two factors af cancel out. B
Recall the block-diagonal form E¢R.36) of £,, and note p(2—p)
that

2(1- p)z) _ 7(1-p)?
P(2—p) | p22-p)?
(2.47)

><(7+cos4<)]}=t(1+

(Z +Zg)= (2.44

Thus, in the case of the decoherent coin the variance will
grow linearly with time at long times, just as in the classical

N O O O
o O O ©o
o O O ©o
SO O o N
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7000 I1l. THE POSITION DISTRIBUTION
6000 | As mentioned before, Eq2.19 for p(x,t) is difficult to
evaluate analytically. It is straightforward, however, to solve
5000 ¢ , this system numerically. Rather than solve for the density-
8 4000 | matrix p, we instead have used quantum trajectory tech-
g A niques[25] to do a quantum Monte Carlo simulation, aver-
$ 3000 [~ G aging over many runs to find both the distribution itself and
2000 |- 0=3m16 its moments.
e For the purposes of these simulations, it proved more con-
1000 | ——— ot venient to use the form Eq2.31) for the decoherence pro-
0 —:j.'.'.:..;;:3(’,;;;;:;_..;;_?_—-_-4::I¢-'7:¢;;flp:.;t,:il':-i'-"f-':: cess. We have therefore labeled the figures with the appro-
0 50 100 150 200 250 300 350 400 450 500 priate values of the dephasing parametenstead ofp. In

t performing the simulations, after each step of the quantum

o e _ walk we randomly applied either operatq2A; or \2A;
FIG. 3. (x%)—(x)“ vs t for the quantum random walk with de- from Eq.(2.31) to the state, choosing them with equal prob-

coherence, foW= w/16,7/8,37/16,7/4. For all cases the coin be- ability. Because\/ﬁAéyl are unitary operators, it was unnec-

gan in the initial stat¢R). Note that the variance goes asymptoti- -
cally to a linear growth at long times that matches our analyticalessary to renormalize the state. We then found the mean

estimate; the rate of growth goes to one with increasing decohelprObab_”ity_ dis_tributionsp(?() bY averaging over many runs;
ence, matching the classical casefatw/4 (i.e., p=1). The inset each distribution plotted in this paper represents an average

shows the time dependence of the variance at short times, whereQ€r 10000 runs of the Monte Carlo program. In Fig. 4 we
still exhibits quadratic growth. see how the probability distribution changes as we go to the

classical limit of complete decoherence at every stép (

case, though the rate of growth will be greater than for the~ ml4). i
classical random walk. Note that ps-1 <)A(2> .t which As we see from the figure, the presence of decoherence
is the classical result ' ' v quickly wipes out the most conspicuous signs of interfer-

Because of the dependence of the first moment on th nce, the peaks att/\2 and the oscillatioqs in the disiri-
initial condition, the variance will have some residual depen-thunonh’?‘ new pf%k’ cer:]ntered at;% makets r:ts aptp;learanc?,b
dence on the initial condition; but since this is only a con- ou_gl for we;\ econerence | _doeT nf(f) tavef_ te lstua -
stant it is quite unimportant. Upon comparison to the numeri/1omialform. Fiowever, Ssome residual efiects of interierence

cal results(see Fig. 3 we see that this analytical expression persi;t up ur_ltil jL.JSt ek cl_assical Iimit.. In particu!ar,
for the variance matches extremely well the distribution is broadened, with long “tails,” and dis-

Since this approximation holds in the long-time limit, it is placed somewhat from the central position. This is reflected

reasonable to ask how long is a “long time.” For weak de-!N our I_ong-time solution for the variano(@.{l?), which is_:
coherence§<<1), the evolution exhibits the same behaviorr."g'.her in the quantum case than the classical except in the
as the unitary walk for short times, with the second momen{Imlt p—1. . .

growing quadratically in time, and only switches over to lin- In the unitary case, interference effects cause the evolu-

ear growth past some critical timescale. This changeover i%on to reme_mbgr thg starting state in a r)onlntU|t|ve way.
visible in Fig. 3. s we saw in Fig. 1, if we start the coin in state), the

We take the long-time approximation by neglecting theSystem retains a linear drift to the right for all time. If we had

: ; . instead started in the stgte), the system would have drifted

MI? term in(2.48. If we e>.<am|neMﬁ,'we see that it can be symmetrically to the Ie?t >This “n%emory” also makes the
written as (X p) multiplying a matrix whose norm is less :

than one. Therefore, if we want this term to be negligible,posltIon distribution asymmetric, as we see In Figa)4
then The presence of decoherence eliminates this effect at long

times: the system “forgets” the initial conditions after a
while. This effect will still persist at short times, however,

IMill<(1-p)"*<e (2.48  and produce a tendency for the particle to move repeatedly in
the same direction. No doubt this tendency produces the
for some positivee<<1. This implies that broadening in the position distribution and the significant
tails.
p>(2/t)In(1/e)=clt (2.49

IV. CONCLUSIONS
which implies in turn that the second moment of position
will grow linearly att>c/p, for a large enough constaat
For t<c/p there will be a transition over to quadratic time
dependence. For small Eq. (2.47) becomes

We have examined a possible route from quantum to clas-
sical for the quantum random walk: letting the quantum coin
undergo decoherence with time. Using the long-time behav-
ior of the position moments as a qualitative marker of clas-
sicality, we see that even very weak decoherence changes the
growth of the variance from a quadratic to a linear function

(X2)=t(1+1/p)— 714p>. (2.50
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FIG. 4. The probability distributionp(x,t) att=500 for the quantum random walk with decoheren@g:6=0 (unitary casg (b) 6
=7/16, (c) 6==/8, (d) #=37/16, (e) 6=m/4 (classical cage A central peak appears when decoherence is included, which becomes
increasingly dominant; however, the peak is broadened compared to the classical case, with nontrivial tails, which disappear only in the
classical limit, whermp(x,t) goes over to the binomial distribution.

of time. Since the usual classical random walk has a lineaof coins, while the decoherent system remains “classical”
growth of the variance, in a particular sense we can claineven in the limit of very weak noise.
that the decoherent walk is indeed classical. In spite of this, some effects of interference are important
This situation is quite different from the quantum randomeven in the presence of decoherence. In particular, the vari-
walk with multiple coins[24]; for that system, quadratic ance grows more rapidly in the quantum than the classical
growth remained except in the limit of a new coin for every case. This may reflect a tendency for the particle to be “bi-
step. One might reasonably claim that the multicoin systenased” in one direction for short times, while interference
remains “quantum” even in the limit of very large numbers effects enable it to “remember” its starting state. This is

032304-8



QUANTUM RANDOM WALKS WITH DECOHERENT COINS PHYSICAL REVIEW A67, 032304 (2003

consistent with the position distributions, which are broaderparticle position as well. Such systems have been studied
than the classical binomial distribution, and have nontrivialnumerically, and exhibit interesting effects of their own
tails. [20,22,24.
In the long time limit, the time dependence of the mo-
ments becomes tractable because the evolution superoperator
has only one eigenvalue of modulus 1. All other components
decay away exponentially with time. It is interesting to We would like to thank Bob Griffiths, Lane Hughston,
speculate whether a decoherence process with several modviv Kendon, Michele Mosca, and Bruce Richmond for use-
lus 1 eigenvalues might continue to exhibit quantum behavful conversations. T.A.B. acknowledges financial support
ior. This is probably possible, at least for higher-dimensionafrom the Martin A. and Helen Chooljian Membership in
coins. Natural Sciences, and US DOE Grant No. DE-FGO02-
We should emphasize that the system we have studied iIB0ER40542. A.A. was supported by NSF Grant No. CCR-
this paper has decoherence only in the coin degree of fre®987845, and by the State of New Jersey. H.A.C. was sup-
dom; any effects of decoherence on the particle are indirecported by MITACS, The Fields Institute, and the NSERC
It might be arguably natural to include decoherence in theCRO project “Quantum Information and Algorithms.”
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