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If a generalized measurement is performed on a quantum system and we do not know the outcome, are we
able to retrodict it with a second measurement? We obtain a necessary and sufficient condition for perfect
retrodiction of the outcome of a known generalized measurement, given the final state, for an arbitrary initial
state. From this, we deduce that, when the input and output Hilbert spaces havéfiagaatimension, it is
impossible to perfectly retrodict the outcome of any fine-grained measurémilesite each positive, operator-
valued measuréPOVM) element corresponds to a single Kraus opelfator all initial states unless the
measurement is unitarily equivalent to a projective measurement. It also enables us to show that every POVM
can be realized in such a way that perfect outcome retrodiction is possible for an arbitrary initial state when the
number of outcomes does not exceed the output Hilbert space dimension. We then consider the situation where
the initial state is not arbitrary, though it may be entangled, and describe the conditions under which unam-
biguous outcome retrodiction is possible for a fine-grained generalized measurement. We find that this is
possible for some state if the Kraus operators are linearly independent. This condition is also necessary when
the Kraus operators are nonsingular. From this, we deduce that every trace-preserving quantum operation is
associated with a generalized measurement whose outcome is unambiguously retrodictable for some initial
state, and also that a set of unitary operators can be unambiguously discriminated iff they are linearly inde-
pendent. We then examine the issue of unambiguous outcome retrodiction without entanglement. This has
important connections with the theory of locally linearly dependent and locally linearly independent operators.
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[. INTRODUCTION The statistical properties of a generalized measurement
are determined by a set of positive operators forming a posi-
One of the most contentious issues in the development dfve, operator-valued measuf®OVM). Generalized mea-
guantum mechanics was, and continues to be, the measumirements enable one to acquire certain kinds of information
ment process. The fact that measurement appears explicithbout quantum states which are unobtainable using only pro-
in the quantum formalism represents a significant break withiective measurements, especially if the possible initial states
the implicit assumption in classical mechanics that all quanare nonorthogond4—7]. However, they do have some dis-
tities which enter into the description of the state of a physi-advantages. One is the fact that they do not possess the afore
cal system are observable and that the measurement procesentioned repeatability property of projective measure-
requires no special treatmefit]. It does in quantum me- ments. The repeatability of these measurements is
chanics. Among the consequences of the nature of the quaimdependent of the initial state, which may be arbitrary and
tum measurement process as expounded by, for example, vamknown. It enables us to predict not only the outcome of a
Neumann[2], are indeterminism, the impossibility of mea- future repetition of the measurement, but also the future
suring the state of a quantum system and uncertainty relgost-measurement state, provided that there is no irreversible

tions. evolution between the measurements. Furthermore, these
However, the projective measurements introduced by vompredictions will be fulfilled with unit probability.
Neumann and defined in full generality by ders[3] do As well as enabling us to predict the outcome of an iden-

retain one significant feature of classical physics. This is theical measurement, repeatability also enables uet@dict
property of repeatability. Simply stated, if we perform such athe outcome of a projective measurement and also the post-
measurement on a quantum system twice, and if we are ablaeasurement state, given that we know which observable
to reverse any evolution of the state between the measuresas measured and again, in the absence of subsequent irre-
ments, then the outcome of the second measurement will beersible evolution.
the same as that of the first. The fact that the repeatability of projective measurements
Subsequent developments in quantum measuremehis so many aspects and consequences suggests that, while
theory have shown that the combination of projective meathese may not all hold for generalized measurements, some
surements with unitary interactions leads to a broader rangeestiges of repeatability could be made to hold for these
of state transformations and information-acquisition proceimeasurements in some circumstances if we are willing to
dures. These, which are known as quantum operations argécrifice others. This is the issue we investigate in this paper.
generalized measurements respectively, are closely related Tine particular aspect of the repeatability of projective mea-
each other. surements we would like to retain is outcome retrodictability.
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As one might expect, when this is possible, the measuremeiient condition for such perfect retrodiction to be possible for
which carries out the retrodiction will, in general, differ from an arbitrary initial state and show that there is no advantage

the original measurement in this wider context. to be gained if the initial state, though arbitrary, is known.
It is well established that the implementation of a gener_The remainder of this section is devoted to unravelling some

alized measurement will often involve a projective measurelMPlications of this condition. We show that it implies that,

ment on an extended spag8], for example, a projective when the input and output Hilbert spaces have equal dimen-

{ Cartesi deaimark extension or sion, the only fine-grained measurements with perfectly ret-
measurement on a Cartesian prodiMaimark) extension or -, jiiaple outcomes for arbitrary initial states are those
a unitary-projection scheme on a direct, or tensor produ

. o : Cvhich are unitarily equivalent to projective measurements.
extension. However, it is typically the case that we do NOtowever, we also show that there exists a large class of

have access to this extension, which is assumed to be th@arse-grained generalized measurements which are highly
case throughout this paper. When we address the issue gfssimilar to projective measurements for which perfect out-
measurement outcome retrodictability, the retrodiction operacome retrodiction, with an arbitrary initial state, is possible.
tors will act only on the space of system post-measuremenie show that a necessary and sufficient condition for a par-
states and not on such an extension. We shall, however, aicular POVM to have an associated, typically coarse-
low for the possibility that the space of post-measuremengrained, generalized measurement whose outcome is per-
states differs from that of the preparation states wheneveiectly retrodictable for all initial states is that the number of
making this distinction is necessary for a fully general analy-outcomes does not exceed the dimension of the output Hil-
sis. bert space. We also show how such measurements can be

We should also emphasize the distinction between theealized in terms of the unitary-projection picture of gener-
idea of retrodicting the outcome of a generalized measurealized measurements, when the input and output Hilbert
ment and the formalism of retrodictive quantum mechanicsspaces have equal dimensionality.

The latter was proposed originally by Aharonov and co- In Sec. lll we drop the condition of perfect retrodiction
workers[8] and has recently been extended and applied irand require instead that the outcome can be retrodicted, un-
numerous interesting ways by Barnett and co-work8fsin ~ ambiguously, with some probability instead. We also, for the
retrodictive quantum mechanics, the aim is to use accessibl@ost part, drop the condition that the initial state may be
measurement data to retrodict the initial state of a quanturarbitrary, and require only that the outcome is retrodictable
system. The retrodicted information is then quantum infor-for at least one known, initial state. We focus on fine-grained
mation. In the present context, although a measurement haseasurements and allow for the possibility of the system
been carried out, the result is not accessible and it is thibeing initially entangled with an additional, ancillary system.
classical measurement result that we aim to retrodict. We show that, when such entanglement is permitted, the

Our motivation for focusing on this particular aspect of measurement operations for which this is possible are closely
repeatability is as follows: if we know the result of a known related to the “canonical” representations of general quan-
measurement then in practical situations we would seldontum operations, first studied by Chdi0]. These canonical
have any reason to carry it out again. The issue of repeatabitepresentations have linearly independent Kraus operators.
ity, or nonrepeatability, will be important in situations when We find that a general sufficient and, for “finite-strength”

a measurement has been performed and the result has beapasurement$ll], which, in the fine-grained case, have
lost or otherwise made inaccessible to us. If we do not knowonsingular Kraus operators, necessary condition for unam-
the measurement result then, in the most favorable scenaribiguous retrodiction of the outcome of a fine-grained gener-
we will at least have access to the final state. This is a mixalized measurement for some, possibly entangled, initial
ture of the post-measurement states corresponding to thetate is that the Kraus operators are linearly independent.
various possible outcomes weighted by their respective prolEvery CPLTP map has a Choi canonical representation, and
abilities. When we do have access to the system followingo every trace-preserving quantum operation has an associ-
the measurement, which we shall assume to be the case, wiged fine-grained, generalized measurement amenable to un-
will be concerned with how its state has been transformed bgmbiguous outcome retrodiction. A further consequence of
the measurement process. If the initial state is represented lgur analysis, relating to unitary operator discrimination, is
a density operatop, then the final state will be obtained by that a necessary and sufficient condition for unambiguous
a completely positive, linear, trace-preservil@PLTP map  discrimination among a set of unitary operators is that they
D:p—D(p). are linearly independent.

In projective measurements, repeatability and thus perfect We finally examine the issue of unambiguous outcome
outcome retrodiction are possible for an arbitrary, unknownretrodiction without entanglement. We focus on finite-
initial state. At the outset, we make a distinction between twastrength, fine-grained measurements. For such measure-
kinds of generalized measurement: fine-grained and coarsesents, we find that a necessary and sufficient condition for
grained measurements. These correspond, respectively, tmambiguous outcome retrodiction for some nonentangled
situations where each POVM element is related to a singlanitial pure state is that the Kraus operators are Inoally
or multiple Kraus transformation operators. The former islinearly dependent. We use this, together with some results
clearly a special case of the latter. Section Il is devoted to theecently obtained by &nrl and co-worker$12,13 relating
examination of perfect outcome retrodiction, that is, deterto locally linearly dependent operators, to explore the rela-
ministic, error-free retrodiction of the outcome of a known tionship between unambiguous outcome retrodiction without
generalized measurement. We derive a necessary and suffintanglement and local linear dependence. We then explore
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the possibility of unambiguous outcome retrodiction for ev- In a coarse-grained measurement, corresponding to the
ery initial, pure, separable state. For fine-grained, finite-operatorll,, there is a set oR Kraus operatorg\,,, where
strength measurements, we find that this is possible onlye{1,... R}, some of which may be zero, such that

when the Kraus operators are locally linearly independent. o

O,=> Al A, . 2.
Il. PERFECT OUTCOME RETRODICTION k 21 krkr @9
FOR ARBITRARY INITIAL STATES

) o o The final, normalized state of the system when the outcome
Consider a quantum syste@. Its initial state lies in a 5 ks given by the transformation

Hilbert space which we will denote by{,. Except where

explicitly stated otherwise, this will have finite-dimension R

Do. A generalized measureme, is carried out on this E AkrpAL

system. We assume that the number of possible outcomes of p—p _r=t (2.6
this measurement is also finite and shall denote thidlby T P(Klp) '

The possible outcomes of the measureméfi, will be ) o
labeled by the indek e {1, ... N}. Associated with th&th ~ Where, in both case®(k|p) is given by Eq.(2.2). We can
outcome is a linear, positive, quantum detection operator, orasily see from these definitions that fine-grained measure-

POVM elementll,:Ho—Hy. These satisfy ments are a special case of coarse-grained measurements.
Given the post-measurement system, to retrodict the mea-
N surement outcome we must be able to distinguish between
kz M=1,, (2.1  thek possible post-measurement statgs We will say that
=1

the retrodiction is perfect if the probability of error is zero
_ ) ) - and the retrodiction is deterministic, i.e., the probability of
where 1o is the identity operator oo . The probability of  the attempt at retrodiction giving an inconclusive result is
outcomek when the initial state is described by the density 5150 zero. Perfect retrodiction will be possible only if {he
operatorp IS are orthogonal, that is

P(klp)=Tr(II,p). (2.2 Tr(pwrp) = Tr(p?) S (2.7)

Suppose that the measuremettty is carried out onQ and  or equivalently, that
that the outcome is withheld from us. We do, nevertheless,
have access to the final state of the system. On the basis of pkrpk=p§5kk, . (2.8
this, can we retrodict the measurement outcome?

To proceed, we must account for the manner in which théven if, for every initial state, the final statep, are or-
state of the system is transformed by the measurement préogonal, it could be the case that a different measurement is
cess. Let7-£Q be the Hilbert space of post-measurementr,equ'red to distinguish between the final states for each ini-

states. These definitions enable us to allow for the possibilitgal state. So, it would appear that there are two distinct cases
that the initially prepared system and the system correspond® consider when examining the issue of whether the out-

ing to the space of post-measurement states, which will su ! S |
sequently be subjected to a retrodiction attempt, may be difcted for an arbitrary initial state, corresponding to whether
the initial state is known or unknown. The former case is

ferent. For example, the initial state may be that of an atom; ; ,
yet the final state that of an electromagnetic field mode.dearIY at least as ‘f"’,‘VOfab'e_ as the latter, since in the former
However, for the sake of notational convenience, we shalfhere is the possibility of tailoring the retrodicting measure-

denote both the initially prepared system and the final, interMeNt to suit the possible final states, and by implication the

rogated system by the symb@), as it will be clear from the initial state, which we cannot do in the latter case. It follows
context which system is beimj referred to that if perfect retrodiction of the outcome of a generalized

We distinguish between two kinds of generalized mea neasurementq is possible for an arbitrary, known, initial

surement. We will refer to these as fine-grained measurestate, then it is also possible if the initial state is unknown.
ments and coarse-grained measurements. In a fine-graindd€ following theorem gives a necessary and sufficient con-

measurement, corresponding to each detection opeiator dition for perfect outcome retro_d|c_t|on for all initial states,
. . ~ and moreover shows that there is, in fact, no advantage to be
there is a single Kraus operatdy :Ho— Ho such that

gained when the initial state, though arbitrary, is known.

grome of a generalized measurement can be perfectly retrod-

I = AlA 2.3 Theorem 1A quantum systenQ is initially prepared in
the statd /) e Ho . A generalized measuremef ; with N
and the final, normalized state of the system when the ouPOVM elementdI, and Kraus operator8,, satisfying Eq.

come isk is given by the transformation (2.5 is carried out onQ. The Hilbert space of the post-
t measurement statéé, has dimensio ;. A necessary and
L BeeAx (0.4  Sufficient condition for the outcome of1, to be perfectly
PPk P(k|p) ' retrodictable for every initial state)) e H is
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T T R
Ak’ IAk :5kk’Ak /Ak (29) ~
e o H ox=sup Zl AGAL (2.14
for all r,r'e{1,... R} and irrespective of whether or not "~

|4) is known. that is, Hoy is the support of the operatdt, A Al :Ho

Proof. We will prove this theorem by establishing the ne- —Ho. Let Py :Ho—Ho be the projector ontd{g,. We
cessity of condition2.9) when the initial state is arbitrary will prove that when Eq(2.9) is satisfied, these projectors
and known. Subsequently, we will show that this condition isare orthogonal and form a projective measurement which can
sufficient when the initial state is arbitrary and unknown.always be used to distinguish perfectly between the pdg-
Thus, knowing the state confers no benefits in the context atates.
this problem. To prove necessity, we will make use of the To show that they form a projective measurement, define

unnormalized final density operators R

R G = }_)l AGAL (2.15
P= 2, A W) (WIA (2.10 "~
Equation(2.9) implies that
We do this to avoid unnecessary complications which arise
when the probability of one of the outcomes is zero. When
this is so, the corresponding unnormalized final density op
erator will also be zero, but shall see that this causes n
problems.

From Eg.(2.7), we see that the necessary condition for
perfect outcome retrodiction given the initial staie is

Gka’:akk’Gi' (216)

It follows from this, and the positivity of th&,, that, when
R+ k', every eigenvector o6, corresponding to a nonzero
eigenvalue is orthogonal to every eigenvectoiGgf corre-

sponding to a nonzero eigenvalue. k¢ be the support of
the operatorEk,AkrAL, having dimensiorDg . It follows

Tr(prr pr) =0, (2.1  from Eq.(2.16 that Hg has an orthonormal basf$g;)} in
terms of which we can write

whenk#k’ and for all|¢) e Hg. This is the sole condition
for perfect retrodictability we will impose in order to estab-
lish the necessity of Eq2.9). It says that the final states are Gk:jgl 9ikl9;)(gjl (217
orthogonal, which must be true if we can distinguish be-
tween them perfectlyusing a projective measuremgriiVe  where
do not require that the same distinguishing measurement is o
suitable for all initial states, so we take the initial state to be 9ik9jk = w9ik9i'k YV J.j"e{l, ... Dg}.
known, and assume that the appropriate distinguishing mea- (2.18
surement can always be carried out.

Substituting(2.10 into (2.17), we find that It follows from Eq. (2.17) that

Dg

R ) . Pe= 2 gl (2.19
Trl 2 Aco 9 A Al ) (UIAL iG>0
=1
o Making use of Eq(2.18, we see that these projectors are

R orthogonal, i.e.,

= 2 KvlAu Addw)?=0 (2.12
rr'=1 PkPkr=5kkr Pk- (22@

for k#k'. From this, we see that They are also complete on the spakg. To prove that a
+ _ t projective measurement based on these projectors can distin-
(A Ael 8= S (U A Ael ) guish perfectly between the,, we make use of the fact that

. : the support ofp, is a subspace of{q,. To prove this, we
= (A Ar= i A Arr) [ 1) =0 (213 make use of the fact that the positivity 0§+ p implies that

forallr,r’ e{1,... R} and all|) € Ho, which implies Eq. Pk<Gy. (2.20)
(2.9). This proves necessity.

We now prove that Eq2.9) is a sufficient condition for In other words,
perfect outcome retrodiction when the initial state is both 5 _
arbitrary and unknown. We show that there exists a projec- (Plpil d)<(d|Gildp) V |p)eHo. (2.22
tive measurement which is independent of the initial state g
and can be used to distinguish perfectly between the postence, every states) which is in the support gby is also in
Teasurement stateg . Consider the following subspaces of ﬂgk, the support of3, . Furthermore, for any final stajs,
Ho: with nonzero outcome probability, the support @f is the
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same as that op,. The fact that the subspacésy, are A=Ull. (2.29
orthogonal and can thus be perfectly distinguished using upbstituting this into Eq(2.26 gives

projective measurement on the spz‘fﬁg based on the pro- _
jectors P, enables us to distinguish between the statgs I = 1T - (2.30

with the same projective measurement, irrespective of theg the POVM elements of the measuremai, form a set
initial state|y). This completes the proaf. of orthogonal projectors. Thus, if perfect retrodiction of the
The fact that Eq(2.19 is a sufficient condition for perfect  outcome of a fine-grained measurement is possible for every
outcome retrodiction whepy) is an arbitrary, unknown pure initial state, even if the actual state is known, then when the
state|¢) can easily be seen to imply that it is also sufficientinput and output Hilbert spaces have the same dimension, the

when the initial state is an arbitrary mixed state measurement is a projective measurement followed by a uni-
Theorem 1 implies the following for fine-grained mea- tary transformation. This completes the proof. |
surements.

It is natural to examine in more detail the issue of out-
come retrodictability for more general, coarse-grained mea-
surements. As we shall see, there do exist coarse-grained
i : ~ _ measurements which are highly dissimilar to projective mea-
My is carried out orQ. If Dg=Dg, the outcome ofMgis  syrements for which perfect outcome retrodiction is possible.
perfectly retrodictable for allly) e Ho, irrespective of  prior to showing this, we make the following observation
whether or nof) is known, if and only ifMg is & projec-  which will put our findings in context. The statistical prop-
tive measurement followed by a unitary transformation fromerties of a generalized measurement are determined solely by
Hg to Hg, that is the POVM element$l,. These operators can always be de-

composed in the manner of E@.5). This decomposition is
o 1= S i, (223 nonunique, so a POVM with elemerik, defines arequiva-

i ) _lence clas€({I1,}) of measurements, each element of which
where each POVM element is related to its correspondingqrresponds to a particular coarse-grained operator-sum de-
Kraus operator in the following way: composition of the form E¢(2.6) with fine-grained decom-
positions being special cases. Having these ideas in mind, we
can ask the following question: under what circumstances
does the equivalence class associated with a particular
POVM contain a generalized measurement whose outcome

Proof. For a fine-grained measurement, we see that it foliS Perfectly retrodictable for an arbitrary pure initial state?

lows from Eq.(2.9) that a necessary and sufficient condition FOr generalized measurements with a finite number of out-
for perfect outcome retrodiction with an arbitrary, known or €omes, this is answered by the following theorem:

Theorem 2A quantum systen® is initially prepared in the
state |¢y) e Ho. A fine-grained generalized measurement

and U is a unitary transformation frofi, to H,,.

unknown, initial statgy) e Hg is Theorem 3Let £({I1,}) be the equivalence class of gen-
T t eralized measurements associated with a particular POVM
A A= e Ak - (225 with N<= elementsIT,, where these operators act on the

Hilbert spaceH, of a quantum systen®. This space has
dimensionDy. The Hilbert space of the post-measurement
states,Ho, has dimensioD,. A necessary and sufficient
condition for the existence of a measuremently

e E({I1,}) whose outcome is perfectly retrodictable for an
arbitrary pure initial state is

Sufficiency is easily proven. When Ed2.23 and(2.24) are
Satisfied, we see thﬁerk:Hk'Hk: 5kk’Hk: 5kk’AlAk'
This proves sufficiency. To prove necessity, we notice that
for fine-grained measurements, E¢&.3) and (2.9) imply

Al’Ak:Hkékk’ . (226)
, o N<D,. (2.31)
If we sum both sides of this with respect koandk’, and
make use of the resolution of the identi{®.1), we find that Proof. To prove the necessity, we make use of the fact that
for every generalized measurement with<c outcomes,
N there exists a state vectdiy)eHo such that P(k|¢)
k§=:1 Ac|=1q, (2279 >0Vke{l,...N}. To see why this is so, lek, be the
kernel ofII,.. None of thell, are equal to the zero operator,
o N ) ) ) o so the spacéCy is at mostD,—1 dimensional. It follows
which implies that=,_ ;A is an isometry, which, ifDg  that if there is no vecto /) e Hg such that(y{IL,| i)

i

k'=1

=Dy, is necessarily unitary. We will write >0Vke{l,... N}, then evenyjy) e H, is an element of at
N least one of theC,. We conclude that{o=U}_ K, . This
S A=U. (2.28 statement, _th_at th@Q-dimensional Hilbert spacélo is t_he
k=1 union of a finite set of Hilbert spaces of strictly lower dimen-

sion, is clearly false. For example, a two-dimensional plane
Summing both sides of Eq2.26 overk’, and making use is not the union of a finite set of one-dimensional rays.
of the adjoint of Eq(2.28), we obtain Hence, for each generalized measurement with a finite num-
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ber of potential outcomes, there exists a pure initial state fofor some operatorsBy :HQ—>7~1Q. Let us introduce a
which all of these outcomes have nonzero probability of 0C-p,-dimensional ancillad; with Hilbert spacel 4 , initially

currence[14]. . 1
o . repared in the state/). For any operatorB, satisfying Eq.
Suppose tha@ is initially prepared such a state. The final FZ.SpS) and the resoﬂlz(t%on of ch idpentit(32.1)k, ther;yex?stsqa

state corresponding to theh outcome iy . If Eq. (2.30) is ) ‘ i ) ~ h
not satisfied, then the number of final states will exceed th&nitary transformationUg , “Ho®H 4, —Ho®H,, SUC

dimensionD , of 7. To retrodict the outcome of the mea- that

surement perfectly, we must be able to distinguish between Dy

the stategp, perfectly. The supports of these states must be U ® _ B ®Ix 23
orthogonal, which is clearly impossible if their number ex- QAlw,)Q |X>A1 gl (Bl ¥ o] k>A1' (239

ceeds the dimension 0719. This proves necessity. ) )

We will prove sufficiency constructively, which is to say where{|x)} is an orthonormal basis set fot,,. Ameasure-
that we will explicitly derive a measurement in the equiva-ment onA4; in this basis, yielding the resutf transforms the
lence class corresponding to any POVM which satisfies Egstate of Q from |¢) into By|#)/VP(k|), with probability
(2.3)) for which the outcome is perfectly retrodictable for an P(k| ) = (4|11, ). We will refer to this construction as a
arbitrary pure initial state. To begin, we write thig in spec-  standard implementation of a POVM.

tral decomposition form To obtain from this measurement a perfectly retrodictable
one which is also in the equivalence class of the same
Do POVM, we introduce a further ancilla4, with
Hk_rzl Tl ) (i, (2.32 Do-dimensional Hilbert spac# 4, also initially prepared in

the statd x). Following the action ofJ, 4, we apply a uni-

where them, are real and non-negative and, for e&clthe  tary copying transformation ad;.4, which perfectly copies

set{|my,)} is an orthonormal basis fdo. We require a set the orthogonal statds,), that is,

of Kraus operatorg\,, :HQ—>7~1Q satisfying

COPY 4 | Xi) 4, ® [ X) 4, = [Xi) 4, ® XD, (2.37)
Dg
— T ~
Hk—zl ArAkr (233 since Do=Dg, we can carry out theswap operation on

QA,, which exchanges the states of these two systems. The

for theIl, defined by Eq(2.32 and which satisfy the perfect entire unitary interaction betweean and the ancillad,.4, is

retrodiction condition in Eq(2.9). To this end, consider then
A= T X (], (2.34 SWAP 4, COPY 4, 4,U 04,1 4) 0® [ X) 4,2 X) 4,
Dg
where the sef|x,)} is any set ofN orthonormal states in :k§=:1 |Xk>g®(Bk|lﬂ>)Al®|Xk>,42- (2.39

ﬂg. Notice that this construction is possible only if Eq.
(2.3)) is satisfied. The orthonormality of the,) implies that
the A, satisfy the perfect outcome retrodictability condition
Eqg. (2.9. One can also easily verify that they are related to
theIl, in Eq. (2.33 through Eq.(2.34). This completes the Pe=1 40 (|x) () 4. (2.39
proof. | 1 2

The forgoing discussion has been somewhat abstract.
would be helpful to have a concrete physical understandin
of how these measurements can be implemented. Gener
ized measurements are commonly understood as resultir}
from a unitary interaction with an ancillary system, followed

by a projective measurement on the latter. 5@: Do, we

;hall see here how tq form a gnltary—prOJectlon mplementa—wherev is clearly unitary, then when outconkeis obtained

tion of any POVM which satisfies E¢2.31) whose outcome . :

) . . for the measurement based on the projectBisin Eg.

is perfectly retrodictable given what we shall shortly refer to . :

as a standard implementation. (2.39, the state pr is transforme_d by th.e following com-
We begin with the following well-known fact about gen- pletely positive, linear, trace non-increasing map:

eralized measurements, as described, for example, by Kraus

Following this unitary interaction, we carry out a projective
measurement onl; A,, with the projection operators

he probabilityP (k| ) of the kth outcome is easily shown
) be (4|11,|¢). The final state o0 is obtained by tracing
e entire final state over the ancilla. If we write

V=SWAPg 4 COPY 4 4,U 04, (2.40

_ t
[15. Suppose that we have a POVNI,, with k  CKPD=Tut(PV(poBl)xla @) (xlpVo,
e{1,... Dy} which we wish to measure. This POVM may = xi){(Xu. (2.41)

be factorized as

. So, there is a one-to-one correspondence between the mea-
=By By (235 surement outcomes and the orthonormal stadgs This im-
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plies that the result of the measurement is perfectly retrodthe possible outcomes 0¥, and a further signals the fail-

ictable for an arbitrary initial quantum state. ure of the retrodiction attempt, making this result inconclu-
It is often helpful to make use of the fact that every suchsijye. So, we may represent this measurement by an

map has an operator-sum decomposition. In this case, Wa\ + 1)-element POVM E,E,, ... ,Ey) for which

have

I

k= IQA' (32)

N
Do D
) = AupoAl 2.4 k=0
k(po) 20 AP A (2.42
The condition for error-free unambiguous outcome retrodic-
for some operatord,, . After some algebra, we find that we tion may be written as

may write _ _
Tr(Zw poak) = Tr(E«p gak) Skkr (3.9
A= X (X |Bx. (2.43 _ .

for Tr(Expou)>0V k,k'e{l,... N}. The probability

These are given by E@2.34) if we take that the retrodiction attempt gives an inconclusive result is
Dy N
Bi= 2 Vil xe )il (2.44 P(lpon) =Tr| Eo 2 <Ak®1A>pQA<AI®1A>).
(3.4

One can show, using Eq&2.32 and (2.33), that these op-

erators satisfy E¢(2.35. We have thus shown how to form Under what conditions does there exist an initial sta¢g

from a standard implementation of a POVM one whose outfor which the outcome of the fine-grained measuremehs

come is perfectly retrodictable for an arbitrary initial stateis unambiguously retrodictable? To address this question, we

whenf)Qz Do may, without loss of generality take the initial state to be a
pure statepoa=|wona)(¥onl, since any mixed state can be

purified by considering a sufficiently large ancild The

Schmidt decomposition theorem implies that we can always

A. With entanglement take the dimensionality ot 4 to be at mosiD,. We will

[ll. UNAMBIGUOUS OUTCOME RETRODICTION

In the preceding section, we addressed the issue of peP—OW prove.
fectly retrodicting the outcome of a generalized measurement Theorem 4A sufficient condition for the existence of an
Mg on a quantum syster@ by examining the final state initial state|#oa) € Hoa for which the outcome of a fine-
when the initial state is arbitrary. Here we impose the lesgyrained measuremeri!, is unambiguously retrodictable is
stringent condition that for some known, initial state, thethat the corresponding Kraus operators are linearly indepen-
outcome can always be retrodicted, unambiguously, which igent. When this is the case, the outcomedt, is unam-
to say with zero probability of error, with some nonzero biguously retrodictable for any Knowfyon) € Hoa With
probability instead. We allow for the possibility that the ret- maximum Schmidt rank. When the Kraus operators are non-
rodiction attempt gives an inconclusive result. singular, linear independence is also a necessary condition
The issues that we discuss in this subsection are insensor the existence of an initial staf@/on) € Hoa for which
tive to the dimensioD, of H, provided thatD ,=D,.  the outcome ofM, can be unambiguously retrodicted.
For maximum generality, we should assume, and take advan-
tage of the fact tha can be initially entangled with some
ancillary systemA, with corresponding Hilbert spac¥ 4,
having.finite_-d.imensiorDA. These systems are in?tially pre- |oa) =P (K| hon) " YAAR L) Pop)- (3.5
pared in a joint state with corresponding density operator
poa. The measurementi, is carried out onQ. For the If the A, are nonsingular, then the corresponding probabili-
sake of simplicity, we will consider only fine-grained mea- tiesP(k|¢oa) will be nonzero for all ga) € Hon . If the Ay
surements. Here, the final, normalized state corresponding tre linearly dependent, then there exist coefficients not
outcomek is obtained by the transformation all of which are zero, such that,« A=0. It is then a
N simple matter to show thaE,B|¢oa) =0, where By
(Ak®1 )poalA®1y) = aP(K|op)Y? and that these are not all zero. Hence the
PoA™ Poak™ P(klpon) . (3.1 final states are linearly dependent and cannot be unambigu-
ously distinguished7], so for no initial state can the out-
Our aim is to retrodict the outcome of the measurementome of the measuremeui!, be unambiguously retrod-
M by distinguishing between the statega,. To do this, icted.
we must perform a second measuremémg, on QA. This We now prove, again by contradiction, that linear inde-
will be tailored so that its outcome matches thatlefi, as  pendence of thé, is a sufficient condition for being able to
closely as possible. As we are interested in situations wherenambiguously retrodict the outcome.®f o when the initial
the outcome is retrodicted unambiguously, the measuremestate|op) € Hoa has maximum Schmidt rank. To do this,
Ma will have (N+ 1) outcomesN of these correspond to we make use of the fact that linear independence of the

Proof. We will first prove necessity for nonsingular Kraus
operators. Consider the final states
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final states is a sufficient condition for them being amenablestates are unamenable to unambiguous discrimination, which
to unambiguous discriminatioh7]. We write |¢ga) in is to say that they are linearly dependent, then the Kraus

Schmidt decomposition form operators are also linearly dependent. This completes the
5 proof. |
Q This theorem has some interesting consequences that we
|¢QA>:J_21 Cj|Xj>Q® |Yj>A: (3.6 shall now describe. The first is in relation to general quantum

operations. These are described by completely positive, lin-

where{|x;)} is an orthonormal basis fdo and{|y;)} isan  €ar, trace nonincreasing maps— @ (p) = Zi_ 1 ApAL,
orthonormal subset df ,. When outcomé is obtained, the ~Where=_;AfA<14. In a well-known theorem, ChgiL0]
post-measurement state is showed that every such map has an operator-sum decompo-
sition in terms of linearly independent Kraus operata(s
Combining this fact with Theorem 4, we see that for each
|¢QAk>:P(k|l//QA)_1/2_Zl ¢i(AlX)Q®lYj)as (B7)  trace-preserving quantum operatidn there exists a fine-
= grained generalized measurement whose Kraus operators
where the probability of outcomieis form an operator-sum decomposition ®f and whose out-
come is unambiguously retrodictable for all pure initial states
Do with maximum Schmidt rank.
P(k|on) =, | ;2% T ;) (3.9 A second consequence of this theorem relates to the prob-
=1 lem of distinguishing between unitary operators. Chétsal.
[16] and Acn [17] have addressed the problem of distin-
guishing between a pair of unitary operators. Theorem 4 en-
ables us to say something about the more general problem of
distinguishing betweel unitary operators.

Do

We will assume thaltyyo,) has maximum Schmidt rank, that
is, that all of thec; are nonzero. For any initial state with this
property, all of the outcome probabilitiéy k| o,) are non-

zero, even if some of thd, are singular. To prove this, let The problem is this: a quantum systaghand an ancilla
C>g Dbe the smallt;,-st of thelc|. Then _P,(kw/QA) A are initially prepared in the possibly entangled siagg .
=2 9 (x| i|x;) = c*Tr(Il). Thell, are positive opera- it probability p,, Q is subjected to one of thid unitary
tors, which, while not necessarily being positive definite, aregperatorsU, . The entire state undergoes the transformation
nevertheless nonzero. Hence, IMg)>0 Vke{1,... N}.
From this, it follows thatP(k|#oa) >0 Vke{l, ... N}. poa—poak=(U®1 )poa(Ufe®1,) (3.13
Suppose now that unambiguous outcome retrodiction is
impossible, that is, that the final stathggai) are linearly  with probability p,. The aim is to determine which unitary
dependent. There would then exist coefficiemfs not all of  operator has been applied. This is done by distinguishing
which are zero, such that between the final statgsya-
Comparison of Eq(3.13 with Eqg. (3.1) shows that this
2 o _o (3.9 procedure can be regarded as a particular example of retrod-
e Yon =0. ' iction of the outcome of a fine-grained generalized measure-
ment, specifically one which has the Kraus operators
If we again letB,= a, P(K|#0a) "% then we see that these
are not all zero and that, with the help of E§.7), this linear A= pUx. (3.14
dependence condition can be written as

N

Clearly, when all of thep, are nonzero, then linear indepen-
N dence of theA, is equivalent to that of th&J, . It follows
> Br 2 Cj'(Adxj)o)@lyj) 4=0. (3.10  from this and the nonsingularity of unitary operators that a
necessary and sufficient condition for being able to unam-
biguously discriminate betweel unitary operatordJ, for

Taking the partial inner product of this wi(ly]-| and dividing X et ! X
some, possibly entangled, initial state is that they are linearly

the result byc;, we find

independent.
N Theorem 4 gives a special status to generalized measure-
> BkAlXj)=0V je{l, ... Dg}. (3.1)  ments with nonsingular Kraus operators. Measurements of
k=1

this kind might appear to be somewhat artificial construc-
. tions. After all, neither projective measurements nor many of
Finally, we make use of the completeness of e and see e optimal generalized measurements for the various kinds
that this, when combined with E¢3.11), gives of state discrimination have this propef#—7]. However, it
N N Do hashrecently been tsuggest_ed by Fuch; atr;1d Je[:ﬂdﬂastt?]at "
_ _ such measurements may, in practice, be the rule rather than
A= A Xi)(X;|=0, 3.1 . !
kzl B k; P kal i)l G132 e exception. They argue that a measurement for which a
particular outcome is impossible to achieve for some initial
that is, theA, must be linearly dependent. So, for an initial state is an idealization that would require infinite resources to
state which is pure with maximum Schmidt rank, if the final implement(infinite precision in tuning interactions, timings
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etc) Accordingly, realisticfinite-strengthmeasurements do be more convenient to enquire as to when unambiguous ret-
not possess this property and have nonsingular POVM eleodiction isimpossiblefor every pure initial state ift{y. Let
ments or equivalently, for fine-grained measurements, Kraus() be the subset df1, . . . N} for which A | )# 0 when

operators.

ke o(4). Then unambiguous retrodiction of the outcome of

Of course, this reasoning also applies to the measurement!, is impossible for every pure initial statey) e H, iff

which retrodicts the outcome afy. Unambiguous out-

there exist coefficienta, (), not all of which are zero for

come retrodiction will, in general, require that the Kraus op-ke (), such that
erators of the retrodicting measurement are highly singular.

While, for the reasons given above, this is difficult, even
impossible to achieve in practice, there are, as far as we are

( > (3.20
ke o(

ea(y

) ay( lﬁ)Ak) ly)=0

aware, no fundamental limitations on how well these ideal-

ized measurements can be approximately implementedor all |) e Ho, Which is to say iff the possible final states
Finite-strength measurements will have a special status withre linearly dependent for all initial states. In particular, for a
regard to unambiguous outcome retrodiction if the measurefinite-strength measurement, tig are nonsingular and so
ment whose outcome we are trying to retrodict is not asy(y)={1,... N}. In this case, the impossibility condition

strong as the retrodicting measurement.

is that for eachy) e Hy, there exist coefficienta,(¢), not

It should also be noted that when some of the Kraus opall of which are zero, such that
erators are singular, linear independence is not, in general, a

necessary condition for unambiguous outcome retrodiction
for some initial state. As a counter example, consider the
case ofH g being three dimensional and spanned by the or-

thonormal vectorgx),|y) and |z). Consider now a fine-

N
( > akw)Ak) lyy=0. (3.2

k=1

OperatorsA, with this property are said to Hecally linearly

grained measurement with the singular, linearly dependerjependent

Kraus operators

x)(x]
A= N (3.19
_ly)yl
A,= 7z (3.16
As=|2)(Z], (3.1
POt a0 (3.18

) 2

If the initial state is|z), then we knowa priori that the only

Locally linearly dependent sets of operators have been
investigated in detail by &nrl and co-worker$12,13. No-
tice that local linear dependence is weaker than linear depen-
dence, which is the special case of tlagbeing independent
of [ ).

Equivalently, it is necessary, though not sufficient for a set
of operators to be linearly independent to not be locally lin-
early dependent. Consequently, it is sufficient for the out-
come of a finite-strength, fine-grained measurement to be
unambiguously retrodictable for a single unentangled pure
state for it to be unambiguously retrodictable for all maxi-
mum Schmidt rank entangled states, but not vice versa. Con-
sider, for example, the four, nonsingular, Pauli operators
(L,04,0y,0,). Though linearly independent, these operators
are locally linearly dependent. So, as far as pure states are

possible outcome is 3, so knowing that this state was presoncerned, an entangled initial state is required to unambigu-
pared enables us to perfectly retrodict the outcome withoudusly determine which operator has been implemented, as in

having access to the measurement record.

B. Without entanglement

dense codin@i18]. More generally, the nonsingularity of uni-

tary operators implies that a necessary and sufficient condi-
tion for a set of unitary operators to be unambiguously dis-
tinguishable with a pure, nonentangled initial state is that

The final issue we shall investigate is unambiguous OUtthey are not locally linearly dependent.
come retrodiction without entanglement. For the sake of sim- Having made the distinction between linear dependence

plicity, we again confine our attention to fine-grained mea-

and local linear dependence, which is responsible for the fact

surements. Wher@ is initially prepared in the pure state ot there exist finite-strength measurements whose out-

| ), then the final state corresponding to #tke outcome is,
up to a phase

Ad )

9= By

when the probabilityP(k| ) of the kth outcome is nonzero.
Unambiguous retrodiction of the outcome .M 5 with the

(3.19

comes are unambiguously retrodictable for some entangled
but no unentangled, pure, initial states, one particular ques-
tion forces itself upon us: given that the outcome of a mea-
surement is unambiguously retrodictable with an entangled,
pure initial state, what subsidiary conditions must the mea-
surement satisfy for its outcome to be unambiguously retro-
dictable for some nonentangled, pure initial state? For finite-
strength measurements, this question is equivalent to: under

initial state| ) is possible only if the final states which have what conditions is a linearly independent set of Kraus opera-
nonzero probability are linearly independent. Actually, intors, subject, of course, to the resolution of the identity, not a
what follows it will, for reasons that will become apparent, locally linearly dependent set?
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The problem of determining when a linearly independent, 4

set of operators is not a locally linearly dependent set hage gatisfiedexcept in the trivial case of the equality and a
been solved for the special cadés-2,3[12]. The solutions single, nonsingular operatorlt is easy to see that locally

for N=4 are not known at this time. Progress has, howevelinearly independent operators must be nonsingular, so that
beep made with regard to this proplem. I hgs been shown b%ﬁis condition cannot be satisfiedif,<D,. To prove that
Bresar and @mrl[12] that the solution for arbitraril can be Q=raQ:

deduced from that of the problem of classifying the maximalit cannot be satisfied wheld o=D 4 either, we make use of

vector spaces dfl X N matrices with zero determinant. How- the fact that any subsgt of a !ocaIIy linearly independent set

ever, this is also currently unknown. must also be locally linearly independent. Let us then con-
We will examine here the solution fdd=2 and unravel ~Sider just two operatorsy; andA,. These operators must be

its implications. Here, we are considering a fine-graineonofs'”gmar- This implies, in the finite-dimensional case, that

measurement with two outcomes haying correspondingf Do=Dg, each of them has a unique left and right inverse.

Kraus operatorsA; and A,. Bresar and @mrl [12] have  These are, of course, also nonsingular.

shown that the following two statements are equivalent: Given thatA; and A, are nonsingular, it follows that

) i A1_1A2 must also be nonsingular. It then hBs, linearly

(1) Ay andA,; are locally linearly dependent. : independent eigenvectors with nonzero eigenvalues.\Let

(i) (@ A4 andALz are linearly dependent @b) there exists a #0 be an eigenvalue MIlAZ with corresponding eigen-

vector |¢)eHg such~ that spa£m1|¢/>:|¢/f) e Ho} vector|#). Now consider

=spafA,|¢):|y)e Hot=H,, where H, is the one-

dimensional subspace @t, spanned by¢). AT (= NALHAY) ) =(—N+N)[¢)=0. (3.29

H, are finite dimensional anB <D, then it cannot

It follows that if A; and A, are linearly independent and Operating throughout this equation wity, we find that
also locally linearly dependent, then conditi@i) must be

satlsﬂe-d. ThIS gond!tlon, When_comblned with the resolution (—NAL+A)| ) =0, (3.26
of the identity, implies thaD o=2 and that}, has an or-

thonormal basig|x),|y)} such that and so the operator&; and A, cannot be locally linearly

A, =| )X (3.22 independent. From this, it follows that, for finite-dimensional
! ’ ' quantum systems, if the dimension of the output Hilbert
Ay=|p)y|. (3.23  space does not exceed that of the input Hilbert space, then

fine-grained measurements with locally linearly independent
These operators are clearly singular. It follows that forKraus operators are impossible. However, one can devise
every two-outcome, fine-grained, finite-strength measureexamples of such measurements for finite-dimensional quan-
ment, if the Kraus operators are not linearly dependent, thetum systems if the output Hilbert space has higher dimension
they are not Iocglly linearly dependent either.. So, for suchhan the input Hilbert space. L&,=2 andBQ:4. Also,
measurements, if the outcome can be unambiguously retrociie—t {1%0),|x2)} and{l?l),|§<2>,|§<3>,|§<4>} be orthonormal ba-

icted for some entangled initial state, then it can also be ; 47 Vel id

unambiguously retrodicted for some nonentangled initiaS's sets forflg andHo, respectively. Consider now a two-

pure state. outcome, fine-grained measurement whose Kraus operators
Let us conclude with an examination of the possibility of have the following matrix representations in these bases:

unambiguous outcome retrodiction for all initial states

e Ho. For a finite-strength, fine-grained measurements, the 10 00

necessary and sufficient condition for this to be possible is 1/0 1 1/0 O

that for every pure, initial state, the set bf pure, post- A1=—2 0 ol AZZE 1 ol (3.27
0 0 0 1

measurement states is a linearly independent set. Formally,
this requirement can be expressed as

3o

k=1

that is, the rowj’, columnj element ofA, is &j,|Ak|xj>.

One can easily verify thaA]A;+AJA,=1,, and so these
operators constitute a fine-grained measurement. To prove
for all nonzero|y) e Hy and all complex coefficientsy,  that they are locally linearly independent, let us write an
unlessay=0 Vke{l,... N}. A set of operators\, with  arbitrary pure initial state iy as |#)=c|x)+C,|Xy).

this property can be said to bbecally linearly independent Then,

Local linear dependence and local linear independence are

not, like linear dependence and independence, complemen- (a1 AL+ aAy) | )

tary concepts. For example, no set of two Pauli operators is

|)#0, (3.29

either locally linearly dependent or locally linearly indepen- Crlaq|X1) + aa|Xp)) + Col @q[X3) + az[X,4))

dent. = V2 :
Local linear independence is a considerably stronger con-

dition than linear independence. So strong, in fact, thatdf (3.28
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As a consequence of the Orthonormaiity of iﬁ@% when This task is Simple if the initial measurement is a prOjeC'
either or boti‘nl andc2 are nonzero, this expression is nevertive measurement; if there is no irreversible evolution fol-
equal to the zero vector unless and «, are equal to 0. lowing this measurement, then we can simply reverse any
Hence, the operato’s, andA, are locally linearly indepen- evolution that occurs and perform the same measurement
dent. In fact, these operators satisfy the condition in(E®) again. Generalized measurements do not, however, possess
for perfectretrodiction for an arbitrary initial state condition the repeatability property which is responsible for the
inHg. straightforward nature of outcome retrodiction for projective
There also exist interesting examples of measurementsieasurements. In Sec. I, we derived a necessary and suffi-
with locally linearly independent Kraus operators on infinite- cient condition on the Kraus transformation operators for the
dimensional quantum systems. Consider a bosonic modgutcome of a generalized measurement to be perfectly ret-
with Hilbert space spanned by the orthonormal occupatiorodictable for an arbitrary initial state. We also showed that

number stategn), n=0,1,2.... Now consider a two- there is no advantage to be gained if the initial state, though
outcome generalized measurement with the Kraus operatoggpitrary, is known.
Ar=pZi_oln+1)n| and A= 1—|u[*=7_oln)(n|, When the input and output Hilbert spaces have the same

where 0<|u|<1. It is a simple matter to show th@t]/A;  dimension, the only fine-grained measurements which satisfy
+AJA,=37_In)(n|=1, so that these operators do indeedthis condition are projective measurements, possibly fol-
form a fine-grained generalized measurement. To show thadbwed by an outcome-independent unitary transformation.
these operators are locally linearly independent, let the initialMe also showed that every POVM can be realized by a mea-
state of the system be the pure state==,_,c,|n), where  surement whose outcome is perfectly retrodictable for all ini-
at least one of the, is nonzero. The operatoss, andA, tial states iff the number of outcomes does not exceed the
will be locally linearly independent iff, for every such state, output Hilbert space dimension. We also described an algo-
and for every pair of complex coefficients anda,, atleast  rithm by which such an implementation can be constructed

one of which is nonzero, using a standard implementation. This applies when the input
and output Hilbert spaces have equal dimensionality and es-
(arA1+ ayAy)| ) #0. (3.29 sentially involves swapping the information contained in the

measuring apparatus and the system following the measure-
To show that this is so, laty be the smallest value aof for  ment.

which ¢,#0. It follows then that(nyA,|#)=0 and We then addressed the problem of unambiguously retrod-
(nol Ayl )= \1— |,u|zcn0. Hence icting the outcome of a generalized measurement, with zero

probability of error but with a possible nonzero probability
(Nol (1AL + aAz) | ) = azmcno, (3.30  Oof the retrodiction attempt giving an inconclusive result. We
addressed this issue in Sec. lll, focusing on fine-grained
measurements. The fact that only linearly independent pure,
final states can be unambiguously discriminated places con-
straints on the Kraus operators of such measurements. We
showed that if entanglement with an ancillary system is pos-
. . ible, then a sufficient and, for finite-strength measurements,
true. We can see this, for example, by making use of the fa ecessary condition is that the Kraus operators are linearly
that (no+ 1[Aq|¢h) = ucn, #0. independent. This result has interesting connections with a
The key property which makes the operatdkg and  theorem due to Choi and also with the problem of unambigu-
A2 defined above a |Oca||y Iinearly independent set is th)usiy discriminating between unitary Operators_
fact that A; has no eigenvalues/eigenvectors. In fact, it \When the initial state is pure and entanglement is not
is straightforward to prove that, for any pair of nonsingularpermitted, we have shown that the issue of unambiguous
operatorsA; and A, if A; is proportional to the identity, outcome retrodiction is closely related to the concepts of
then local linear independence &f and A; is equivalent operator local linear dependence and local linear indepen-
to the condition thatA; has no eigenvalues/eigenvectors dence. While being interesting in their own right, our dem-
[19]. onstration that these concepts are relevant to quantum mea-
surement theory gives a further incentive to explore them.

which is nonzero for nonzera,, implying that whena,
#0, Eq.(3.29 is satisfied. To show that it is also satisfied
whena,=0, we simply make use of the fact that if this were
not the case, then we would hawg|4)=0, which is not

IV. DISCUSSION

In this paper, we have addressed the following problem:
suppose that a generalized measurement has been carried out B
on a quantum system. We do not know the outcome of the We would like to thank Peteresnrl and Leo Livshits for
measurement. We do, however, know which measuremertelpful correspondence and Stephen M. Barnett for illumi-
has been carried out and have access to the system followingating discussions about retrodiction. We also thank Osamu
the measurement. We are free to interrogate the final state iirota, Jerry Finkelstein, and Paul Busch for suggesting
any way which is physically possible. Our aim is to devise ahelpful clarifications. This work was supported by the UK
suitable “retrodicting” measurement which will reveal the Engineering and Physical Sciences Research Council and by
outcome of the first measurement. the British Council.
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