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Retrodiction of generalized measurement outcomes
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If a generalized measurement is performed on a quantum system and we do not know the outcome, are we
able to retrodict it with a second measurement? We obtain a necessary and sufficient condition for perfect
retrodiction of the outcome of a known generalized measurement, given the final state, for an arbitrary initial
state. From this, we deduce that, when the input and output Hilbert spaces have equal~finite! dimension, it is
impossible to perfectly retrodict the outcome of any fine-grained measurement@where each positive, operator-
valued measure~POVM! element corresponds to a single Kraus operator# for all initial states unless the
measurement is unitarily equivalent to a projective measurement. It also enables us to show that every POVM
can be realized in such a way that perfect outcome retrodiction is possible for an arbitrary initial state when the
number of outcomes does not exceed the output Hilbert space dimension. We then consider the situation where
the initial state is not arbitrary, though it may be entangled, and describe the conditions under which unam-
biguous outcome retrodiction is possible for a fine-grained generalized measurement. We find that this is
possible for some state if the Kraus operators are linearly independent. This condition is also necessary when
the Kraus operators are nonsingular. From this, we deduce that every trace-preserving quantum operation is
associated with a generalized measurement whose outcome is unambiguously retrodictable for some initial
state, and also that a set of unitary operators can be unambiguously discriminated iff they are linearly inde-
pendent. We then examine the issue of unambiguous outcome retrodiction without entanglement. This has
important connections with the theory of locally linearly dependent and locally linearly independent operators.
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I. INTRODUCTION

One of the most contentious issues in the developmen
quantum mechanics was, and continues to be, the mea
ment process. The fact that measurement appears expl
in the quantum formalism represents a significant break w
the implicit assumption in classical mechanics that all qu
tities which enter into the description of the state of a phy
cal system are observable and that the measurement pr
requires no special treatment@1#. It does in quantum me
chanics. Among the consequences of the nature of the q
tum measurement process as expounded by, for example
Neumann@2#, are indeterminism, the impossibility of mea
suring the state of a quantum system and uncertainty r
tions.

However, the projective measurements introduced by
Neumann and defined in full generality by Lu¨ders @3# do
retain one significant feature of classical physics. This is
property of repeatability. Simply stated, if we perform such
measurement on a quantum system twice, and if we are
to reverse any evolution of the state between the meas
ments, then the outcome of the second measurement wi
the same as that of the first.

Subsequent developments in quantum measurem
theory have shown that the combination of projective m
surements with unitary interactions leads to a broader ra
of state transformations and information-acquisition pro
dures. These, which are known as quantum operations
generalized measurements respectively, are closely relat
each other.
1050-2947/2003/67~3!/032112~12!/$20.00 67 0321
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The statistical properties of a generalized measurem
are determined by a set of positive operators forming a p
tive, operator-valued measure~POVM!. Generalized mea-
surements enable one to acquire certain kinds of informa
about quantum states which are unobtainable using only
jective measurements, especially if the possible initial sta
are nonorthogonal@4–7#. However, they do have some dis
advantages. One is the fact that they do not possess the a
mentioned repeatability property of projective measu
ments. The repeatability of these measurements
independent of the initial state, which may be arbitrary a
unknown. It enables us to predict not only the outcome o
future repetition of the measurement, but also the fut
post-measurement state, provided that there is no irrevers
evolution between the measurements. Furthermore, th
predictions will be fulfilled with unit probability.

As well as enabling us to predict the outcome of an ide
tical measurement, repeatability also enables us toretrodict
the outcome of a projective measurement and also the p
measurement state, given that we know which observa
was measured and again, in the absence of subsequent
versible evolution.

The fact that the repeatability of projective measureme
has so many aspects and consequences suggests that,
these may not all hold for generalized measurements, s
vestiges of repeatability could be made to hold for the
measurements in some circumstances if we are willing
sacrifice others. This is the issue we investigate in this pa
The particular aspect of the repeatability of projective m
surements we would like to retain is outcome retrodictabil
©2003 The American Physical Society12-1



e
m

er
re

u
no

t
e
r
e
,
en
v
ly

th
ur
ic
o

ib
tu
or
h

th

of
n
o

ab
n
b
o
ar
ix
t

ro
in
,
b

d
y

fe
n

w
rs
y,
gl
i
th
e
n

su

for
age
n.
me
t,
en-

ret-
se
ts.
of

ighly
ut-
le.
ar-
e-
per-
of
Hil-
n be
er-
ert

n
un-

he
be
ble
ed
em
m.
the
sely
an-
l
tors.
’’
e
am-
er-
itial
ent.
and
soci-

un-
of
is

ous
ey

me
e-
ure-
for
led

ults

la-
out
lore
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As one might expect, when this is possible, the measurem
which carries out the retrodiction will, in general, differ fro
the original measurement in this wider context.

It is well established that the implementation of a gen
alized measurement will often involve a projective measu
ment on an extended space@5#, for example, a projective
measurement on a Cartesian product~Naimark! extension or
a unitary-projection scheme on a direct, or tensor prod
extension. However, it is typically the case that we do
have access to this extension, which is assumed to be
case throughout this paper. When we address the issu
measurement outcome retrodictability, the retrodiction ope
tors will act only on the space of system post-measurem
states and not on such an extension. We shall, however
low for the possibility that the space of post-measurem
states differs from that of the preparation states whene
making this distinction is necessary for a fully general ana
sis.

We should also emphasize the distinction between
idea of retrodicting the outcome of a generalized meas
ment and the formalism of retrodictive quantum mechan
The latter was proposed originally by Aharonov and c
workers @8# and has recently been extended and applied
numerous interesting ways by Barnett and co-workers@9#. In
retrodictive quantum mechanics, the aim is to use access
measurement data to retrodict the initial state of a quan
system. The retrodicted information is then quantum inf
mation. In the present context, although a measurement
been carried out, the result is not accessible and it is
classical measurement result that we aim to retrodict.

Our motivation for focusing on this particular aspect
repeatability is as follows: if we know the result of a know
measurement then in practical situations we would seld
have any reason to carry it out again. The issue of repeat
ity, or nonrepeatability, will be important in situations whe
a measurement has been performed and the result has
lost or otherwise made inaccessible to us. If we do not kn
the measurement result then, in the most favorable scen
we will at least have access to the final state. This is a m
ture of the post-measurement states corresponding to
various possible outcomes weighted by their respective p
abilities. When we do have access to the system follow
the measurement, which we shall assume to be the case
will be concerned with how its state has been transformed
the measurement process. If the initial state is represente
a density operatorr, then the final state will be obtained b
a completely positive, linear, trace-preserving~CPLTP! map
F:r→F(r).

In projective measurements, repeatability and thus per
outcome retrodiction are possible for an arbitrary, unknow
initial state. At the outset, we make a distinction between t
kinds of generalized measurement: fine-grained and coa
grained measurements. These correspond, respectivel
situations where each POVM element is related to a sin
or multiple Kraus transformation operators. The former
clearly a special case of the latter. Section II is devoted to
examination of perfect outcome retrodiction, that is, det
ministic, error-free retrodiction of the outcome of a know
generalized measurement. We derive a necessary and
03211
nt

-
-

ct
t
he
of

a-
nt
al-
t

er
-

e
e-
s.
-
in

le
m
-
as
is

m
il-

een
w
io,
-
he
b-
g
we
y
by

ct
,

o
e-
to

e,
s
e

r-

ffi-

cient condition for such perfect retrodiction to be possible
an arbitrary initial state and show that there is no advant
to be gained if the initial state, though arbitrary, is know
The remainder of this section is devoted to unravelling so
implications of this condition. We show that it implies tha
when the input and output Hilbert spaces have equal dim
sion, the only fine-grained measurements with perfectly
rodictable outcomes for arbitrary initial states are tho
which are unitarily equivalent to projective measuremen
However, we also show that there exists a large class
coarse-grained generalized measurements which are h
dissimilar to projective measurements for which perfect o
come retrodiction, with an arbitrary initial state, is possib
We show that a necessary and sufficient condition for a p
ticular POVM to have an associated, typically coars
grained, generalized measurement whose outcome is
fectly retrodictable for all initial states is that the number
outcomes does not exceed the dimension of the output
bert space. We also show how such measurements ca
realized in terms of the unitary-projection picture of gen
alized measurements, when the input and output Hilb
spaces have equal dimensionality.

In Sec. III we drop the condition of perfect retrodictio
and require instead that the outcome can be retrodicted,
ambiguously, with some probability instead. We also, for t
most part, drop the condition that the initial state may
arbitrary, and require only that the outcome is retrodicta
for at least one known, initial state. We focus on fine-grain
measurements and allow for the possibility of the syst
being initially entangled with an additional, ancillary syste
We show that, when such entanglement is permitted,
measurement operations for which this is possible are clo
related to the ‘‘canonical’’ representations of general qu
tum operations, first studied by Choi@10#. These canonica
representations have linearly independent Kraus opera
We find that a general sufficient and, for ‘‘finite-strength
measurements@11#, which, in the fine-grained case, hav
nonsingular Kraus operators, necessary condition for un
biguous retrodiction of the outcome of a fine-grained gen
alized measurement for some, possibly entangled, in
state is that the Kraus operators are linearly independ
Every CPLTP map has a Choi canonical representation,
so every trace-preserving quantum operation has an as
ated fine-grained, generalized measurement amenable to
ambiguous outcome retrodiction. A further consequence
our analysis, relating to unitary operator discrimination,
that a necessary and sufficient condition for unambigu
discrimination among a set of unitary operators is that th
are linearly independent.

We finally examine the issue of unambiguous outco
retrodiction without entanglement. We focus on finit
strength, fine-grained measurements. For such meas
ments, we find that a necessary and sufficient condition
unambiguous outcome retrodiction for some nonentang
initial pure state is that the Kraus operators are notlocally
linearly dependent. We use this, together with some res
recently obtained by Sˇemrl and co-workers@12,13# relating
to locally linearly dependent operators, to explore the re
tionship between unambiguous outcome retrodiction with
entanglement and local linear dependence. We then exp
2-2
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RETRODICTION OF GENERALIZED MEASUREMENT OUTCOMES PHYSICAL REVIEW A67, 032112 ~2003!
the possibility of unambiguous outcome retrodiction for e
ery initial, pure, separable state. For fine-grained, fin
strength measurements, we find that this is possible o
when the Kraus operators are locally linearly independen

II. PERFECT OUTCOME RETRODICTION
FOR ARBITRARY INITIAL STATES

Consider a quantum systemQ. Its initial state lies in a
Hilbert space which we will denote byHQ . Except where
explicitly stated otherwise, this will have finite-dimensio
DQ . A generalized measurementMQ is carried out on this
system. We assume that the number of possible outcome
this measurement is also finite and shall denote this byN.

The possible outcomes of the measurementMQ will be
labeled by the indexkP$1, . . . ,N%. Associated with thekth
outcome is a linear, positive, quantum detection operator
POVM elementPk :HQ→HQ . These satisfy

(
k51

N

Pk51Q , ~2.1!

where 1Q is the identity operator onHQ . The probability of
outcomek when the initial state is described by the dens
operatorr is

P~kur!5Tr~Pkr!. ~2.2!

Suppose that the measurementMQ is carried out onQ and
that the outcome is withheld from us. We do, neverthele
have access to the final state of the system. On the bas
this, can we retrodict the measurement outcome?

To proceed, we must account for the manner in which
state of the system is transformed by the measurement
cess. LetH̃Q be the Hilbert space of post-measureme
states. These definitions enable us to allow for the possib
that the initially prepared system and the system correspo
ing to the space of post-measurement states, which will s
sequently be subjected to a retrodiction attempt, may be
ferent. For example, the initial state may be that of an ato
yet the final state that of an electromagnetic field mo
However, for the sake of notational convenience, we s
denote both the initially prepared system and the final, in
rogated system by the symbolQ, as it will be clear from the
context which system is being referred to.

We distinguish between two kinds of generalized m
surement. We will refer to these as fine-grained meas
ments and coarse-grained measurements. In a fine-gra
measurement, corresponding to each detection operatorPk ,
there is a single Kraus operatorAk :HQ→H̃Q such that

Pk5Ak
†Ak ~2.3!

and the final, normalized state of the system when the
come isk is given by the transformation

r→rk5
AkrAk

†

P~kur!
. ~2.4!
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In a coarse-grained measurement, corresponding to
operatorPk , there is a set ofR Kraus operatorsAkr , where
r P$1, . . . ,R%, some of which may be zero, such that

Pk5(
r 51

R

Akr
† Akr . ~2.5!

The final, normalized state of the system when the outco
is k is given by the transformation

r→rk5

(
r 51

R

AkrrAkr
†

P~kur!
, ~2.6!

where, in both cases,P(kur) is given by Eq.~2.2!. We can
easily see from these definitions that fine-grained meas
ments are a special case of coarse-grained measuremen

Given the post-measurement system, to retrodict the m
surement outcome we must be able to distinguish betw
the k possible post-measurement statesrk . We will say that
the retrodiction is perfect if the probability of error is ze
and the retrodiction is deterministic, i.e., the probability
the attempt at retrodiction giving an inconclusive result
also zero. Perfect retrodiction will be possible only if therk
are orthogonal, that is

Tr~rk8rk!5Tr~rk
2!dkk8 , ~2.7!

or equivalently, that

rk8rk5rk
2dkk8 . ~2.8!

Even if, for every initial stater, the final statesrk are or-
thogonal, it could be the case that a different measureme
required to distinguish between the final states for each
tial state. So, it would appear that there are two distinct ca
to consider when examining the issue of whether the o
come of a generalized measurement can be perfectly ret
icted for an arbitrary initial state, corresponding to wheth
the initial state is known or unknown. The former case
clearly at least as favorable as the latter, since in the for
there is the possibility of tailoring the retrodicting measu
ment to suit the possible final states, and by implication
initial state, which we cannot do in the latter case. It follow
that if perfect retrodiction of the outcome of a generaliz
measurementMQ is possible for an arbitrary, known, initia
state, then it is also possible if the initial state is unknow
The following theorem gives a necessary and sufficient c
dition for perfect outcome retrodiction for all initial state
and moreover shows that there is, in fact, no advantage t
gained when the initial state, though arbitrary, is known.

Theorem 1.A quantum systemQ is initially prepared in
the stateuc&PHQ . A generalized measurementMQ with N
POVM elementsPk and Kraus operatorsAkr satisfying Eq.
~2.5! is carried out onQ. The Hilbert space of the post
measurement statesH̃Q has dimensionD̃Q . A necessary and
sufficient condition for the outcome ofMQ to be perfectly
retrodictable for every initial stateuc&PHQ is
2-3
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A. CHEFLES AND M. SASAKI PHYSICAL REVIEW A67, 032112 ~2003!
Ak8r 8
† Akr5dkk8Akr8

† Akr ~2.9!

for all r ,r 8P$1, . . . ,R% and irrespective of whether or no
uc& is known.

Proof. We will prove this theorem by establishing the n
cessity of condition~2.9! when the initial state is arbitrary
and known. Subsequently, we will show that this condition
sufficient when the initial state is arbitrary and unknow
Thus, knowing the state confers no benefits in the contex
this problem. To prove necessity, we will make use of
unnormalized final density operators

r̃k5(
r 51

R

Akruc&^cuAkr
† . ~2.10!

We do this to avoid unnecessary complications which a
when the probability of one of the outcomes is zero. Wh
this is so, the corresponding unnormalized final density
erator will also be zero, but shall see that this causes
problems.

From Eq. ~2.7!, we see that the necessary condition
perfect outcome retrodiction given the initial stateuc& is

Tr~ r̃k8r̃k!50, ~2.11!

whenkÞk8 and for all uc&PHQ . This is the sole condition
for perfect retrodictability we will impose in order to esta
lish the necessity of Eq.~2.9!. It says that the final states ar
orthogonal, which must be true if we can distinguish b
tween them perfectly~using a projective measurement!. We
do not require that the same distinguishing measureme
suitable for all initial states, so we take the initial state to
known, and assume that the appropriate distinguishing m
surement can always be carried out.

Substituting~2.10! into ~2.11!, we find that

TrS (
r ,r 851

R

Ak8r 8uc&^cuAk8r 8
† Akruc&^cuAkr

† D
5 (

r ,r 851

R

u^cuAk8r 8
† Akruc&u250 ~2.12!

for kÞk8. From this, we see that

^cuAk8r 8
† Akruc&5dkk8^cuAkr8

† Akruc&

⇒^cu~Ak8r 8
† Akr2dkk8Akr8

† Akr!uc&50 ~2.13!

for all r ,r 8P$1, . . . ,R% and alluc&PHQ , which implies Eq.
~2.9!. This proves necessity.

We now prove that Eq.~2.9! is a sufficient condition for
perfect outcome retrodiction when the initial state is bo
arbitrary and unknown. We show that there exists a pro
tive measurement which is independent of the initial st
and can be used to distinguish perfectly between the p
measurement statesrk . Consider the following subspaces
H̃Q :
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H̃Qk5suppH (
r 51

R

AkrAkr
† J , ~2.14!

that is, H̃Qk is the support of the operator( rAkrAkr
† :H̃Q

→H̃Q . Let Pk :H̃Q→H̃Q be the projector ontoH̃Qk . We
will prove that when Eq.~2.9! is satisfied, these projector
are orthogonal and form a projective measurement which
always be used to distinguish perfectly between the post-MQ
states.

To show that they form a projective measurement, defi

Gk5(
r 51

R

AkrAkr
† . ~2.15!

Equation~2.9! implies that

GkGk85dkk8Gk
2 . ~2.16!

It follows from this, and the positivity of theGk , that, when
kÞk8, every eigenvector ofGk corresponding to a nonzer
eigenvalue is orthogonal to every eigenvector ofGk8 corre-
sponding to a nonzero eigenvalue. LetH̃G be the support of
the operator(krAkrAkr

† , having dimensionDG . It follows

from Eq. ~2.16! that H̃G has an orthonormal basis$ugj&% in
terms of which we can write

Gk5(
j 51

DG

gjkugj&^gj u, ~2.17!

where

gjkgj 8k85dkk8gjkgj 8k ; j , j 8P$1, . . . ,DG% .
~2.18!

It follows from Eq. ~2.17! that

Pk5 (
j :gjkÞ0

ugj&^gj u. ~2.19!

Making use of Eq.~2.18!, we see that these projectors a
orthogonal, i.e.,

PkPk85dkk8Pk . ~2.20!

They are also complete on the spaceH̃G . To prove that a
projective measurement based on these projectors can d
guish perfectly between therk , we make use of the fact tha
the support ofr̃k is a subspace ofH̃Qk . To prove this, we
make use of the fact that the positivity of 1Q2r implies that

r̃k<Gk . ~2.21!

In other words,

^fur̃kuf&<^fuGkuf& ; uf&PH̃Q . ~2.22!

Hence, every stateuf& which is in the support ofr̃k is also in
H̃Qk , the support ofGk . Furthermore, for any final staterk
with nonzero outcome probability, the support ofrk is the
2-4
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RETRODICTION OF GENERALIZED MEASUREMENT OUTCOMES PHYSICAL REVIEW A67, 032112 ~2003!
same as that ofr̃k . The fact that the subspacesH̃Qk are
orthogonal and can thus be perfectly distinguished usin
projective measurement on the spaceH̃Q based on the pro
jectors Pk enables us to distinguish between the statesrk
with the same projective measurement, irrespective of
initial stateuc&. This completes the proofh.

The fact that Eq.~2.19! is a sufficient condition for perfec
outcome retrodiction whenuc& is an arbitrary, unknown pure
stateuc& can easily be seen to imply that it is also sufficie
when the initial state is an arbitrary mixed stater.

Theorem 1 implies the following for fine-grained me
surements.

Theorem 2.A quantum systemQ is initially prepared in the
state uc&PHQ . A fine-grained generalized measureme
MQ is carried out onQ. If D̃Q5DQ , the outcome ofMQ is
perfectly retrodictable for alluc&PHQ , irrespective of
whether or notuc& is known, if and only ifMQ is a projec-
tive measurement followed by a unitary transformation fro
HQ to H̃Q , that is

Pk8Pk5dkk8Pk , ~2.23!

where each POVM element is related to its correspond
Kraus operator in the following way:

Ak5UPk ~2.24!

and U is a unitary transformation fromHQ to H̃Q .

Proof. For a fine-grained measurement, we see that it
lows from Eq.~2.9! that a necessary and sufficient conditi
for perfect outcome retrodiction with an arbitrary, known
unknown, initial stateuc&PHQ is

Ak8
† Ak5dkk8Ak

†Ak . ~2.25!

Sufficiency is easily proven. When Eqs.~2.23! and~2.24! are
satisfied, we see thatAk8

† Ak5Pk8Pk5dkk8Pk5dkk8Ak
†Ak .

This proves sufficiency. To prove necessity, we notice th
for fine-grained measurements, Eqs.~2.3! and ~2.9! imply

Ak8
† Ak5Pkdkk8 . ~2.26!

If we sum both sides of this with respect tok and k8, and
make use of the resolution of the identity~2.1!, we find that

S (
k851

N

Ak8
† D S (

k51

N

AkD 51Q , ~2.27!

which implies that(k51
N Ak is an isometry, which, ifD̃Q

5DQ , is necessarily unitary. We will write

(
k51

N

Ak5U. ~2.28!

Summing both sides of Eq.~2.26! over k8, and making use
of the adjoint of Eq.~2.28!, we obtain
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Ak5UPk . ~2.29!

Substituting this into Eq.~2.26! gives

Pk8Pk5Pkdkk8 . ~2.30!

So, the POVM elements of the measurementMQ form a set
of orthogonal projectors. Thus, if perfect retrodiction of t
outcome of a fine-grained measurement is possible for ev
initial state, even if the actual state is known, then when
input and output Hilbert spaces have the same dimension
measurement is a projective measurement followed by a
tary transformation. This completes the proof. j

It is natural to examine in more detail the issue of o
come retrodictability for more general, coarse-grained m
surements. As we shall see, there do exist coarse-gra
measurements which are highly dissimilar to projective m
surements for which perfect outcome retrodiction is possib
Prior to showing this, we make the following observatio
which will put our findings in context. The statistical prop
erties of a generalized measurement are determined sole
the POVM elementsPk . These operators can always be d
composed in the manner of Eq.~2.5!. This decomposition is
nonunique, so a POVM with elementsPk defines anequiva-
lence classE($Pk%) of measurements, each element of whi
corresponds to a particular coarse-grained operator-sum
composition of the form Eq.~2.6! with fine-grained decom-
positions being special cases. Having these ideas in mind
can ask the following question: under what circumstan
does the equivalence class associated with a partic
POVM contain a generalized measurement whose outc
is perfectly retrodictable for an arbitrary pure initial stat
For generalized measurements with a finite number of o
comes, this is answered by the following theorem:

Theorem 3.Let E($Pk%) be the equivalence class of ge
eralized measurements associated with a particular PO
with N,` elementsPk , where these operators act on th
Hilbert spaceHQ of a quantum systemQ. This space has
dimensionDQ . The Hilbert space of the post-measureme
states,H̃Q , has dimensionD̃Q . A necessary and sufficien
condition for the existence of a measurementMQ
PE($Pk%) whose outcome is perfectly retrodictable for a
arbitrary pure initial state is

N<D̃Q . ~2.31!

Proof. To prove the necessity, we make use of the fact t
for every generalized measurement withN,` outcomes,
there exists a state vectoruc&PHQ such that P(kuc)
.0;kP$1, . . . ,N%. To see why this is so, letKk be the
kernel ofPk . None of thePk are equal to the zero operato
so the spaceKk is at mostDQ21 dimensional. It follows
that if there is no vectoruc&PHQ such that ^cuPkuc&
.0;kP$1, . . . ,N%, then everyuc&PHQ is an element of at
least one of theKk . We conclude thatHQ5øk51

N Kk . This
statement, that theDQ-dimensional Hilbert spaceHQ is the
union of a finite set of Hilbert spaces of strictly lower dime
sion, is clearly false. For example, a two-dimensional pla
is not the union of a finite set of one-dimensional ray
Hence, for each generalized measurement with a finite n
2-5
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ber of potential outcomes, there exists a pure initial state
which all of these outcomes have nonzero probability of
currence@14#.

Suppose thatQ is initially prepared such a state. The fin
state corresponding to thekth outcome isrk . If Eq. ~2.31! is
not satisfied, then the number of final states will exceed
dimensionD̃Q of H̃Q . To retrodict the outcome of the mea
surement perfectly, we must be able to distinguish betw
the statesrk perfectly. The supports of these states must
orthogonal, which is clearly impossible if their number e
ceeds the dimension ofH̃Q . This proves necessity.

We will prove sufficiency constructively, which is to sa
that we will explicitly derive a measurement in the equiv
lence class corresponding to any POVM which satisfies
~2.31! for which the outcome is perfectly retrodictable for a
arbitrary pure initial state. To begin, we write thePk in spec-
tral decomposition form

Pk5(
r 51

DQ
pkrupkr&^pkru, ~2.32!

where thepkr are real and non-negative and, for eachk, the
set$upkr&% is an orthonormal basis forHQ . We require a set
of Kraus operatorsAkr :HQ→H̃Q satisfying

Pk5(
r 51

DQ
Akr

† Akr ~2.33!

for thePk defined by Eq.~2.32! and which satisfy the perfec
retrodiction condition in Eq.~2.9!. To this end, consider

Akr5Apkruxk&^pkru, ~2.34!

where the set$uxk&% is any set ofN orthonormal states in
H̃Q . Notice that this construction is possible only if E
~2.31! is satisfied. The orthonormality of theuxk& implies that
the Akr satisfy the perfect outcome retrodictability conditio
Eq. ~2.9!. One can also easily verify that they are related
the Pk in Eq. ~2.33! through Eq.~2.34!. This completes the
proof. j

The forgoing discussion has been somewhat abstrac
would be helpful to have a concrete physical understand
of how these measurements can be implemented. Gen
ized measurements are commonly understood as resu
from a unitary interaction with an ancillary system, followe
by a projective measurement on the latter. ForD̃Q5DQ , we
shall see here how to form a unitary-projection implemen
tion of any POVM which satisfies Eq.~2.31! whose outcome
is perfectly retrodictable given what we shall shortly refer
as a standard implementation.

We begin with the following well-known fact about gen
eralized measurements, as described, for example, by K
@15#. Suppose that we have a POVMPk , with k
P$1, . . . ,DQ% which we wish to measure. This POVM ma
be factorized as

Pk5Bk
†Bk ~2.35!
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for some operatorsBk :HQ→H̃Q . Let us introduce a
DQ-dimensional ancillaA1 with Hilbert spaceHA1

, initially

prepared in the stateux&. For any operatorsBk satisfying Eq.
~2.35! and the resolution of the identity~2.1!, there exists a
unitary transformation UQA :HQ^ HA1

→H̃Q^ HA1
such

that

UQA1
uc&Q^ ux&A1

5 (
k51

DQ
~Bkuc&)Q^ uxk&A1

, ~2.36!

where$uxk&% is an orthonormal basis set forHA1
. A measure-

ment onA1 in this basis, yielding the resultk, transforms the
state ofQ from uc& into Bkuc&/AP(kuc), with probability
P(kuc)5^cuPkuc&. We will refer to this construction as a
standard implementation of a POVM.

To obtain from this measurement a perfectly retrodicta
one which is also in the equivalence class of the sa
POVM, we introduce a further ancillaA2 with
D̃Q-dimensional Hilbert spaceHA2

, also initially prepared in

the stateux&. Following the action ofUQA , we apply a uni-
tary copying transformation onA1A2 which perfectly copies
the orthogonal statesuxk&, that is,

COPYA1A2
uxk&A1

^ ux&A2
5uxk&A1

^ uxk&A2
. ~2.37!

Since D̃Q5DQ , we can carry out theSWAP operation on
QA1, which exchanges the states of these two systems.
entire unitary interaction betweenQ and the ancillaA1A2 is
then

SWAPQA1
COPYA1A2

UQA1
uc&Q^ ux&A1

^ ux&A2

5 (
k51

DQ
uxk&Q^ ~Bkuc&)A1

^ uxk&A2
. ~2.38!

Following this unitary interaction, we carry out a projectiv
measurement onA1A2, with the projection operators

Pk51A1
^ ~ uxk&^xku!A2

. ~2.39!

The probabilityP(kuc) of the kth outcome is easily shown
to be ^cuPkuc&. The final state ofQ is obtained by tracing
the entire final state over the ancilla. If we write

V5SWAPQA1
COPYA1A2

UQA1
, ~2.40!

whereV is clearly unitary, then when outcomek is obtained
for the measurement based on the projectorsPk in Eq.
~2.39!, the state ofQ is transformed by the following com
pletely positive, linear, trace non-increasing map:

Fk~rQ!5TrA1A2
~PkV~rQ^ ux&^xuA1

^ ux&^xuA2
!V†!,

5uxk&^xku. ~2.41!

So, there is a one-to-one correspondence between the
surement outcomes and the orthonormal statesuxk&. This im-
2-6
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RETRODICTION OF GENERALIZED MEASUREMENT OUTCOMES PHYSICAL REVIEW A67, 032112 ~2003!
plies that the result of the measurement is perfectly retr
ictable for an arbitrary initial quantum state.

It is often helpful to make use of the fact that every su
map has an operator-sum decomposition. In this case,
have

Fk~rQ!5(
r 51

DQ
AkrrQAkr

† ~2.42!

for some operatorsAkr . After some algebra, we find that w
may write

Akr5uxk&^xr uBk . ~2.43!

These are given by Eq.~2.34! if we take

Bk5(
r 51

DQ
Apkruxr&^pkru. ~2.44!

One can show, using Eqs.~2.32! and ~2.33!, that these op-
erators satisfy Eq.~2.35!. We have thus shown how to form
from a standard implementation of a POVM one whose o
come is perfectly retrodictable for an arbitrary initial sta

whenD̃Q5DQ.

III. UNAMBIGUOUS OUTCOME RETRODICTION

A. With entanglement

In the preceding section, we addressed the issue of
fectly retrodicting the outcome of a generalized measurem
MQ on a quantum systemQ by examining the final state
when the initial state is arbitrary. Here we impose the l
stringent condition that for some known, initial state, t
outcome can always be retrodicted, unambiguously, whic
to say with zero probability of error, with some nonze
probability instead. We allow for the possibility that the re
rodiction attempt gives an inconclusive result.

The issues that we discuss in this subsection are inse
tive to the dimensionD̃Q of H̃Q , provided thatD̃Q>DQ .
For maximum generality, we should assume, and take ad
tage of the fact thatQ can be initially entangled with som
ancillary systemA, with corresponding Hilbert spaceHA ,
having finite-dimensionDA . These systems are initially pre
pared in a joint state with corresponding density opera
rQA . The measurementMQ is carried out onQ. For the
sake of simplicity, we will consider only fine-grained me
surements. Here, the final, normalized state correspondin
outcomek is obtained by the transformation

rQA→rQAk5
~Ak^ 1A!rQA~Ak

†
^ 1A!

P~kurQA!
. ~3.1!

Our aim is to retrodict the outcome of the measurem
MQ by distinguishing between the statesrQAk . To do this,
we must perform a second measurementMQA on QA. This
will be tailored so that its outcome matches that ofMQ as
closely as possible. As we are interested in situations wh
the outcome is retrodicted unambiguously, the measurem
MQA will have (N11) outcomes:N of these correspond to
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the possible outcomes ofMQ and a further signals the fail
ure of the retrodiction attempt, making this result inconc
sive. So, we may represent this measurement by
(N11)-element POVM (J0 ,J1 , . . . ,JN) for which

(
k50

N

Jk51QA . ~3.2!

The condition for error-free unambiguous outcome retrod
tion may be written as

Tr~Jk8rQAk!5Tr~JkrQAk!dkk8 ~3.3!

for Tr(JkrQAk).0 ; k,k8P$1, . . . ,N%. The probability
that the retrodiction attempt gives an inconclusive result

P~?urQA!5TrS J0(
k50

N

~Ak^ 1A!rQA~Ak
†

^ 1A!D .

~3.4!

Under what conditions does there exist an initial staterQA
for which the outcome of the fine-grained measurementMQ
is unambiguously retrodictable? To address this question
may, without loss of generality take the initial state to be
pure staterQA5ucQA&^cQAu, since any mixed state can b
purified by considering a sufficiently large ancillaA. The
Schmidt decomposition theorem implies that we can alw
take the dimensionality ofHA to be at mostDQ . We will
now prove:

Theorem 4.A sufficient condition for the existence of a
initial state ucQA&PHQA for which the outcome of a fine
grained measurementMQ is unambiguously retrodictable i
that the corresponding Kraus operators are linearly indep
dent. When this is the case, the outcome ofMQ is unam-
biguously retrodictable for any knownucQA&PHQA with
maximum Schmidt rank. When the Kraus operators are n
singular, linear independence is also a necessary cond
for the existence of an initial stateucQA&PHQA for which
the outcome ofMQ can be unambiguously retrodicted.

Proof. We will first prove necessity for nonsingular Krau
operators. Consider the final states

ucQAk&5P~kucQA!21/2~Ak^ 1A!ucQA&. ~3.5!

If the Ak are nonsingular, then the corresponding probab
tiesP(kucQA) will be nonzero for allucQA&PHQA . If the Ak
are linearly dependent, then there exist coefficientsak , not
all of which are zero, such that(kakAk50. It is then a
simple matter to show that(kbkucQAk&50, where bk
5akP(kucQA)1/2 and that these are not all zero. Hence t
final states are linearly dependent and cannot be unamb
ously distinguished@7#, so for no initial state can the out
come of the measurementMQ be unambiguously retrod
icted.

We now prove, again by contradiction, that linear ind
pendence of theAk is a sufficient condition for being able t
unambiguously retrodict the outcome ofMQ when the initial
stateucQA&PHQA has maximum Schmidt rank. To do thi
we make use of the fact that linear independence of
2-7
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A. CHEFLES AND M. SASAKI PHYSICAL REVIEW A67, 032112 ~2003!
final states is a sufficient condition for them being amena
to unambiguous discrimination@7#. We write ucQA& in
Schmidt decomposition form

ucQA&5(
j 51

DQ
cj uxj&Q^ uyj&A , ~3.6!

where$uxj&% is an orthonormal basis forHQ and$uyj&% is an
orthonormal subset ofHA . When outcomek is obtained, the
post-measurement state is

ucQAk&5P~kucQA!21/2(
j 51

DQ
cj~Akuxj&Q) ^ uyj&A , ~3.7!

where the probability of outcomek is

P~kucQA!5(
j 51

DQ
ucj u2^xj uPkuxj&. ~3.8!

We will assume thatucQA& has maximum Schmidt rank, tha
is, that all of thecj are nonzero. For any initial state with th
property, all of the outcome probabilitiesP(kucQA) are non-
zero, even if some of theAk are singular. To prove this, le
c.0 be the smallest of theucj u. Then P(kucQA)
>c2( j 51

DQ ^xj uPkuxj&5c2Tr(Pk). ThePk are positive opera-
tors, which, while not necessarily being positive definite,
nevertheless nonzero. Hence, Tr(Pk).0 ;kP$1, . . . ,N%.
From this, it follows thatP(kucQA).0 ;kP$1, . . . ,N%.

Suppose now that unambiguous outcome retrodiction
impossible, that is, that the final statesucQAk& are linearly
dependent. There would then exist coefficientsak , not all of
which are zero, such that

(
k51

N

akucQAk&50. ~3.9!

If we again letbk5akP(kucQA)1/2, then we see that thes
are not all zero and that, with the help of Eq.~3.7!, this linear
dependence condition can be written as

(
k51

N

bk (
j 851

DQ
cj 8~Akuxj 8&Q) ^ uyj 8&A50. ~3.10!

Taking the partial inner product of this with^yj u and dividing
the result bycj , we find

(
k51

N

bkAkuxj&50 ; j P$1, . . . ,DQ% . ~3.11!

Finally, we make use of the completeness of theuxj& and see
that this, when combined with Eq.~3.11!, gives

(
k51

N

bkAk5 (
k51

N

bkAk(
j 51

DQ
uxj&^xj u50, ~3.12!

that is, theAk must be linearly dependent. So, for an initi
state which is pure with maximum Schmidt rank, if the fin
03211
le

e
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states are unamenable to unambiguous discrimination, w
is to say that they are linearly dependent, then the Kr
operators are also linearly dependent. This completes
proof. j

This theorem has some interesting consequences tha
shall now describe. The first is in relation to general quant
operations. These are described by completely positive,
ear, trace nonincreasing mapsr→F(r)5(k51

N AkrAk
† ,

where(k51
N Ak

†Ak<1Q . In a well-known theorem, Choi@10#
showed that every such map has an operator-sum decom
sition in terms of linearly independent Kraus operatorsAk .
Combining this fact with Theorem 4, we see that for ea
trace-preserving quantum operationF, there exists a fine-
grained generalized measurement whose Kraus opera
form an operator-sum decomposition ofF and whose out-
come is unambiguously retrodictable for all pure initial sta
with maximum Schmidt rank.

A second consequence of this theorem relates to the p
lem of distinguishing between unitary operators. Childset al.
@16# and Acı́n @17# have addressed the problem of disti
guishing between a pair of unitary operators. Theorem 4
ables us to say something about the more general proble
distinguishing betweenN unitary operators.

The problem is this: a quantum systemQ and an ancilla
A are initially prepared in the possibly entangled staterQA .
With probability pk , Q is subjected to one of theN unitary
operatorsUk . The entire state undergoes the transformat

rQA→rQAk5~Uk^ 1A!rQA~Uk
†

^ 1A! ~3.13!

with probability pk . The aim is to determine which unitar
operator has been applied. This is done by distinguish
between the final statesrQAk .

Comparison of Eq.~3.13! with Eq. ~3.1! shows that this
procedure can be regarded as a particular example of re
iction of the outcome of a fine-grained generalized measu
ment, specifically one which has the Kraus operators

Ak5ApkUk . ~3.14!

Clearly, when all of thepk are nonzero, then linear indepen
dence of theAk is equivalent to that of theUk . It follows
from this and the nonsingularity of unitary operators tha
necessary and sufficient condition for being able to una
biguously discriminate betweenN unitary operatorsUk for
some, possibly entangled, initial state is that they are line
independent.

Theorem 4 gives a special status to generalized meas
ments with nonsingular Kraus operators. Measurements
this kind might appear to be somewhat artificial constru
tions. After all, neither projective measurements nor many
the optimal generalized measurements for the various k
of state discrimination have this property@4–7#. However, it
has recently been suggested by Fuchs and Jacobs@11# that
such measurements may, in practice, be the rule rather
the exception. They argue that a measurement for whic
particular outcome is impossible to achieve for some ini
state is an idealization that would require infinite resource
implement~infinite precision in tuning interactions, timing
2-8
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etc.! Accordingly, realistic,finite-strengthmeasurements do
not possess this property and have nonsingular POVM
ments or equivalently, for fine-grained measurements, Kr
operators.

Of course, this reasoning also applies to the measurem
which retrodicts the outcome ofMQ . Unambiguous out-
come retrodiction will, in general, require that the Kraus o
erators of the retrodicting measurement are highly singu
While, for the reasons given above, this is difficult, ev
impossible to achieve in practice, there are, as far as we
aware, no fundamental limitations on how well these ide
ized measurements can be approximately implemen
Finite-strength measurements will have a special status
regard to unambiguous outcome retrodiction if the meas
ment whose outcome we are trying to retrodict is not
strong as the retrodicting measurement.

It should also be noted that when some of the Kraus
erators are singular, linear independence is not, in gener
necessary condition for unambiguous outcome retrodic
for some initial state. As a counter example, consider
case ofHQ being three dimensional and spanned by the
thonormal vectorsux&,uy& and uz&. Consider now a fine-
grained measurement with the singular, linearly depend
Kraus operators

A15
ux&^xu

A2
, ~3.15!

A25
uy&^yu

A2
, ~3.16!

A35uz&^zu, ~3.17!

A45
ux&^xu1uy&^yu

A2
. ~3.18!

If the initial state isuz&, then we knowa priori that the only
possible outcome is 3, so knowing that this state was p
pared enables us to perfectly retrodict the outcome with
having access to the measurement record.

B. Without entanglement

The final issue we shall investigate is unambiguous o
come retrodiction without entanglement. For the sake of s
plicity, we again confine our attention to fine-grained me
surements. WhenQ is initially prepared in the pure stat
uc&, then the final state corresponding to thekth outcome is,
up to a phase

uck&5
Akuc&

AP~kuc!
, ~3.19!

when the probabilityP(kuc) of the kth outcome is nonzero
Unambiguous retrodiction of the outcome ofMQ with the
initial stateuc& is possible only if the final states which hav
nonzero probability are linearly independent. Actually,
what follows it will, for reasons that will become apparen
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be more convenient to enquire as to when unambiguous
rodiction isimpossiblefor every pure initial state inHQ . Let
s(c) be the subset of$1, . . . ,N% for which Akuc&Þ0 when
kPs(c). Then unambiguous retrodiction of the outcome
MQ is impossible for every pure initial stateuc&PHQ iff
there exist coefficientsak(c), not all of which are zero for
kPs(c), such that

S (
kPs(c)

ak~c!AkD uc&50 ~3.20!

for all uc&PHQ , which is to say iff the possible final state
are linearly dependent for all initial states. In particular, fo
finite-strength measurement, theAk are nonsingular and so
s(c)5$1, . . . ,N%. In this case, the impossibility conditio
is that for eachuc&PHQ , there exist coefficientsak(c), not
all of which are zero, such that

S (
k51

N

ak~c!AkD uc&50. ~3.21!

OperatorsAk with this property are said to belocally linearly
dependent.

Locally linearly dependent sets of operators have b
investigated in detail by Sˇemrl and co-workers@12,13#. No-
tice that local linear dependence is weaker than linear dep
dence, which is the special case of theak being independen
of uc&.

Equivalently, it is necessary, though not sufficient for a
of operators to be linearly independent to not be locally l
early dependent. Consequently, it is sufficient for the o
come of a finite-strength, fine-grained measurement to
unambiguously retrodictable for a single unentangled p
state for it to be unambiguously retrodictable for all ma
mum Schmidt rank entangled states, but not vice versa. C
sider, for example, the four, nonsingular, Pauli operat
(1,sx ,sy ,sz). Though linearly independent, these operat
are locally linearly dependent. So, as far as pure states
concerned, an entangled initial state is required to unamb
ously determine which operator has been implemented, a
dense coding@18#. More generally, the nonsingularity of un
tary operators implies that a necessary and sufficient co
tion for a set of unitary operators to be unambiguously d
tinguishable with a pure, nonentangled initial state is t
they are not locally linearly dependent.

Having made the distinction between linear depende
and local linear dependence, which is responsible for the
that there exist finite-strength measurements whose
comes are unambiguously retrodictable for some entan
but no unentangled, pure, initial states, one particular qu
tion forces itself upon us: given that the outcome of a m
surement is unambiguously retrodictable with an entang
pure initial state, what subsidiary conditions must the m
surement satisfy for its outcome to be unambiguously re
dictable for some nonentangled, pure initial state? For fin
strength measurements, this question is equivalent to: u
what conditions is a linearly independent set of Kraus ope
tors, subject, of course, to the resolution of the identity, no
locally linearly dependent set?
2-9
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The problem of determining when a linearly independ
set of operators is not a locally linearly dependent set
been solved for the special casesN52,3 @12#. The solutions
for N>4 are not known at this time. Progress has, howe
been made with regard to this problem. It has been shown
Brešar and Šemrl @12# that the solution for arbitraryN can be
deduced from that of the problem of classifying the maxim
vector spaces ofN3N matrices with zero determinant. How
ever, this is also currently unknown.

We will examine here the solution forN52 and unravel
its implications. Here, we are considering a fine-grain
measurement with two outcomes having correspond
Kraus operatorsA1 and A2. Brešar and Šemrl @12# have
shown that the following two statements are equivalent:

~i! A1 andA2 are locally linearly dependent.
~ii ! ~a! A1 andA2 are linearly dependent or~b! there exists a
vector uf&PH̃Q such that span$A1uc&:uc&PHQ%
5span$A2uc&:uc&PHQ%5H̃f , where H̃f is the one-
dimensional subspace ofH̃Q spanned byuf&.

It follows that if A1 andA2 are linearly independent an
also locally linearly dependent, then condition~iib! must be
satisfied. This condition, when combined with the resolut
of the identity, implies thatDQ52 and thatHQ has an or-
thonormal basis$ux&,uy&% such that

A15uf&^xu, ~3.22!

A25uf&^yu. ~3.23!

These operators are clearly singular. It follows that
every two-outcome, fine-grained, finite-strength measu
ment, if the Kraus operators are not linearly dependent, t
they are not locally linearly dependent either. So, for su
measurements, if the outcome can be unambiguously ret
icted for some entangled initial state, then it can also
unambiguously retrodicted for some nonentangled ini
pure state.

Let us conclude with an examination of the possibility
unambiguous outcome retrodiction for all initial statesuc&
PHQ . For a finite-strength, fine-grained measurements,
necessary and sufficient condition for this to be possible
that for every pure, initial state, the set ofN pure, post-
measurement states is a linearly independent set. Form
this requirement can be expressed as

S (
k51

N

akAkD uc&Þ0, ~3.24!

for all nonzero uc&PHQ and all complex coefficientsak
unlessak50 ;kP$1, . . . ,N%. A set of operatorsAk with
this property can be said to belocally linearly independent.
Local linear dependence and local linear independence
not, like linear dependence and independence, complem
tary concepts. For example, no set of two Pauli operator
either locally linearly dependent or locally linearly indepe
dent.

Local linear independence is a considerably stronger c
dition than linear independence. So strong, in fact, that ifHQ
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andH̃Q are finite dimensional andD̃Q<DQ , then it cannot
be satisfied~except in the trivial case of the equality and
single, nonsingular operator!. It is easy to see that locally
linearly independent operators must be nonsingular, so
this condition cannot be satisfied ifD̃Q,DQ . To prove that
it cannot be satisfied whenD̃Q5DQ either, we make use o
the fact that any subset of a locally linearly independent
must also be locally linearly independent. Let us then c
sider just two operators,A1 andA2. These operators must b
nonsingular. This implies, in the finite-dimensional case, t
if D̃Q5DQ , each of them has a unique left and right inver
These are, of course, also nonsingular.

Given that A1 and A2 are nonsingular, it follows tha
A1

21A2 must also be nonsingular. It then hasDQ linearly
independent eigenvectors with nonzero eigenvalues. Lel
Þ0 be an eigenvalue ofA1

21A2 with corresponding eigen
vector uc&. Now consider

A1
21~2lA11A2!uc&5~2l1l!uc&50. ~3.25!

Operating throughout this equation withA1, we find that

~2lA11A2!uc&50, ~3.26!

and so the operatorsA1 and A2 cannot be locally linearly
independent. From this, it follows that, for finite-dimension
quantum systems, if the dimension of the output Hilb
space does not exceed that of the input Hilbert space,
fine-grained measurements with locally linearly independ
Kraus operators are impossible. However, one can de
examples of such measurements for finite-dimensional qu
tum systems if the output Hilbert space has higher dimens
than the input Hilbert space. LetDQ52 andD̃Q54. Also,
let $ux1&,ux2&% and $ux̃1&,ux̃2&,ux̃3&,ux̃4&% be orthonormal ba-
sis sets forHQ andH̃Q , respectively. Consider now a two
outcome, fine-grained measurement whose Kraus opera
have the following matrix representations in these bases

A15
1

A2 S 1 0

0 1

0 0

0 0

D , A25
1

A2 S 0 0

0 0

1 0

0 1

D , ~3.27!

that is, the row-j 8, column-j element ofAk is ^x̃ j 8uAkuxj&.
One can easily verify thatA1

†A11A2
†A251Q , and so these

operators constitute a fine-grained measurement. To p
that they are locally linearly independent, let us write
arbitrary pure initial state inHQ as uc&5c1ux1&1c2ux2&.
Then,

~a1A11a2A2!uc&

5
c1~a1ux̃1&1a2ux̃2&)1c2~a1ux̃3&1a2ux̃4&)

A2
.

~3.28!
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As a consequence of the orthonormality of theux̃ j 8&, when
either or bothc1 andc2 are nonzero, this expression is nev
equal to the zero vector unlessa1 and a2 are equal to 0.
Hence, the operatorsA1 andA2 are locally linearly indepen-
dent. In fact, these operators satisfy the condition in Eq.~2.9!
for perfectretrodiction for an arbitrary initial state conditio
in HQ .

There also exist interesting examples of measurem
with locally linearly independent Kraus operators on infini
dimensional quantum systems. Consider a bosonic m
with Hilbert space spanned by the orthonormal occupa
number statesun&, n50,1,2, . . . . Now consider a two-
outcome generalized measurement with the Kraus opera
A15m(n50

` un11&^nu and A25A12umu2(n50
` un&^nu,

where 0,umu,1. It is a simple matter to show thatA1
†A1

1A2
†A25(n50

` un&^nu51, so that these operators do inde
form a fine-grained generalized measurement. To show
these operators are locally linearly independent, let the in
state of the system be the pure stateuc&5(n50

` cnun&, where
at least one of thecn is nonzero. The operatorsA1 and A2
will be locally linearly independent iff, for every such stat
and for every pair of complex coefficientsa1 anda2, at least
one of which is nonzero,

~a1A11a2A2!uc&Þ0. ~3.29!

To show that this is so, letn0 be the smallest value ofn for
which cnÞ0. It follows then that ^n0uA1uc&50 and
^n0uA2uc&5A12umu2cn0

. Hence

^n0u~a1A11a2A2!uc&5a2A12umu2cn0
, ~3.30!

which is nonzero for nonzeroa2, implying that whena2
Þ0, Eq. ~3.29! is satisfied. To show that it is also satisfie
whena250, we simply make use of the fact that if this we
not the case, then we would haveA1uc&50, which is not
true. We can see this, for example, by making use of the
that ^n011uA1uc&5mcn0

Þ0.

The key property which makes the operatorsA1 and
A2 defined above a locally linearly independent set is
fact that A1 has no eigenvalues/eigenvectors. In fact,
is straightforward to prove that, for any pair of nonsingu
operatorsA1 and A2, if A2 is proportional to the identity,
then local linear independence ofA1 and A2 is equivalent
to the condition thatA1 has no eigenvalues/eigenvecto
@19#.

IV. DISCUSSION

In this paper, we have addressed the following proble
suppose that a generalized measurement has been carrie
on a quantum system. We do not know the outcome of
measurement. We do, however, know which measurem
has been carried out and have access to the system follo
the measurement. We are free to interrogate the final sta
any way which is physically possible. Our aim is to devise
suitable ‘‘retrodicting’’ measurement which will reveal th
outcome of the first measurement.
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This task is simple if the initial measurement is a proje
tive measurement; if there is no irreversible evolution f
lowing this measurement, then we can simply reverse
evolution that occurs and perform the same measurem
again. Generalized measurements do not, however, pos
the repeatability property which is responsible for t
straightforward nature of outcome retrodiction for projecti
measurements. In Sec. II, we derived a necessary and s
cient condition on the Kraus transformation operators for
outcome of a generalized measurement to be perfectly
rodictable for an arbitrary initial state. We also showed th
there is no advantage to be gained if the initial state, tho
arbitrary, is known.

When the input and output Hilbert spaces have the sa
dimension, the only fine-grained measurements which sat
this condition are projective measurements, possibly
lowed by an outcome-independent unitary transformati
We also showed that every POVM can be realized by a m
surement whose outcome is perfectly retrodictable for all
tial states iff the number of outcomes does not exceed
output Hilbert space dimension. We also described an a
rithm by which such an implementation can be construc
using a standard implementation. This applies when the in
and output Hilbert spaces have equal dimensionality and
sentially involves swapping the information contained in t
measuring apparatus and the system following the meas
ment.

We then addressed the problem of unambiguously retr
icting the outcome of a generalized measurement, with z
probability of error but with a possible nonzero probabili
of the retrodiction attempt giving an inconclusive result. W
addressed this issue in Sec. III, focusing on fine-grain
measurements. The fact that only linearly independent p
final states can be unambiguously discriminated places c
straints on the Kraus operators of such measurements.
showed that if entanglement with an ancillary system is p
sible, then a sufficient and, for finite-strength measureme
necessary condition is that the Kraus operators are line
independent. This result has interesting connections wit
theorem due to Choi and also with the problem of unambi
ously discriminating between unitary operators.

When the initial state is pure and entanglement is
permitted, we have shown that the issue of unambigu
outcome retrodiction is closely related to the concepts
operator local linear dependence and local linear indep
dence. While being interesting in their own right, our de
onstration that these concepts are relevant to quantum m
surement theory gives a further incentive to explore them
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