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Diamagnetism in relativistic theory
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A unitary transformation of the Dirac operator in a magnetic field is presented, which leads to a reformu-
lation of the interaction of a Dirac particle with a magnetic field, in which, as in nonrelativistic theory,
diamagnetic and paramagnetic contributions appear naturally, but at a four-component-spinor level. The dia-
magnetic contribution to the magnetic susceptibility consists of two terms, each of which is evaluated as a
simple expectation value with the unperturbed relativistic wave function. One of the two terms closely re-
sembles its nonrelativistic counterpart. The proposed formalism is analyzed in the context of the direct pertur-
bation theory of relativistic effects. It is compared with the more traditional sum-over-states approach including
negative-energy states, as well as with a Fock-space formulation. In the latter, the vacuum energy depends on
the external magnetic field. The creation of a partielectron or positronis accompanied by a change of the
vacuum energy via a kind of exclusion effect. This change can be identified with the diamagnetism of the
particle. The access to diamagnetism and paramagnetism based on the Gordon decomposition of the induced
current density is to some extent, but not entirely, equivalent to that which results from the unitary transfor-
mation. For a physically meaningful decomposition of the current density a combination of the Gordon
approach with the unitary transformation is recommended. Neither the interpretation nor the computation of
diamagnetic contributions in terms of negative-energy states is encouraged.
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[. INTRODUCTION tion. These observations suggest to present a general analysis
of the meaning of diamagnetism.

In nonrelativisticquantum mechanics, second-order mag- Actually, a magnetic field has a strong influence on the
netic properties such as susceptibilities are obtained as suriglutions of the Dirac equation. This can be rationalized ei-
of a diamagneticand a(van-Vleck paramagnetiderm. Al-  ther in terms of a change of the key relatipr X¢ between
though the decomposition into these termgjimige depen- the large ) and the small ) components of the Dirac
dent one can often take care that the paramagnetic terrpinor=(¢,x) for an electronidpositive-energystate, or
vanishes or is very small in magnitufg2]. The dominating in terms of a change of theacuum stateby the magnetic
diamagnetic contribution can then easily be evaluated idield that even survives in the nonrelativistic limit. To de-
terms of the unperturbed wave function only. scribe a relativistic electron in a magnetic field in terms of

A similar decomposition is, at least, not obvious in rela-the states in the absence of this field is not a good choice. It
tivistic theory. Some authors have attempted to recover this preferable to remove the coupling gfand x by the mag-
diamagnetic contributions by a separate summation ovepetic field at an early stage, e.g., by the unitary transforma-
negative-energy stat¢8—6], or via theGordon decomposi- tion proposed here, or by direct perturbation the@¥®T) of
tion of the current density7—9]. Neither approach is fully relativistic effects.
satisfactory, the first one for various rather fundamental rea- The Gordon decomposition of the induced current density
sons(see Sec. 1Y, the second one because it is rather comds not strictly equivalent to the unitary transformation intro-
plicated and indirect. The two approaches lead to differengluced here. The two approaches are even to some extent
definitions of the diamagnetic part, which only agree in thecomplementary, although they lead essentially to the same
nonrelativistic limit. We shall show here that a very simple definition of the diamagnetic contribution to the magnetiz-
and transparent way towards a decomposition of relativisti@bility.
second-order properties into diamagnetic and paramagnetic
contributions is possible, which is so simple that one won-
ders why it has not been found earlier.

It is based on aunitary transformationof the Dirac op-- The nonrelativistic Pauli Hamiltonian for an electron in a
erator in the presence of a magnetic field. It is worth notmgmagnetic field with vector potentiaﬁ, and field strengtré

that in this way diamagnetism arfdan-Vleck paramagnet- - . - = o
ism appeaindependently of a separation between electronic_gﬁqril's'u‘r’]‘?ths'(:h satisfies the Coulomb gauge A0, is in

and positronic statesAlternatively this very separation and at
the care for thecorrect nonrelativistic limitlead to the ap-
pearance of diamagnetic and paramagnetic terms as well, and - 15+ pA)2+bo-B+V=Hy+b Hy+b2H,,
then independently of the just-mentioned unitary transforma- 2.0

II. NONRELATIVISTIC THEORY

*Electronic address: werner.kutzelnigg@ruhr-uni-bochum.de Ho=3p2+V; H1=5\~ f)+ o-B; H,=%1A%. (2.2
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The constanb depends on the chosen variant of the system Both ES andES depend on thgaugeof A, only their sum
of atomic units10]. One hasr=c~* in the originalHartree  is gauge invariantOften there is aatural gaugeand hence
systenj11] that was based on th@aussiarcgs systentwith 550 a natural decomposition in®g and EB, e.g., for an

fi, m and|e| the basic units andb=1 in the so-called . 4 homogeneous magnetic field wik B xr and
) . . . 2
Sl-basedsystem of atomic unitl0, 12 (with /i, m, |e, and the origin of the coordinate system at the position of the

41e€p) the basic unitsin either systengb can be identified

: . X nucleus.

with the Bohr magneton. It is convenient to kele@nd to A change of gauge
treat it as a formal perturbation parameter that measures the 9 gaug

strength of the magnetic field. A—A'=A+grad\: div gradh =0 29
We want to solve the Schdinger equatior(omitting the - g ' g 29
state label is equivalent to ajauge transformation
H#(b)=E(b)¢(b) (2.3 H—H'=exp —ibA)H exp(ibA), (2.10
in a power-series expansion with respect to the perturbation VW = exp(—ibA)W 2.1
parameteb ' '
E(b)=Ey+b E;+ b2E2+ sy Ill. RELATIVISTIC THEORY
d(b)=hotb G +b2hyt---. (2.4) The corresponding relativistic Hamiltonian is
This leads for first- and second-order magnetic properties to D=pc?+ca- (p+bA)+V=Dy+b Dy, (3.1
E1= (ol H1| bo) = (ol A- | o) + (ol o B| o), @ Do=Bc?+ca-p+V; Dy=ca-A. (3.2

; ] We now want to solvéagain omitting the state label
E,=E3+ED; EZ=(¢olHoldo); ES=Re&(dpo|H1—E;|1)

(2.9 D(b)=W(b)(b) (3.3
with ¢, and ¢, solutions of in powers ofh:
(Ho—Eq) $o=0, 2.7 W(b)=Wy+b W, +b2W,+ - - -
(Ho—Eg)¢1=—(H1—E1) o, (bol#1)=0. (2.8 Y(b)= o+ b ¢y +b% Pt - - - (3.4
The diamagneticterm E‘Z’ is expressible in terms o, The zeroth- and first-order wave functions arng,
while for the paramagnetiderm E5 one needsp,. =(¢g,x0) and ¥1=(¢1,x1), respectively. For the counter-

For a homogeneous magnetic field the second-order erparts ofE; andE, we get
ergy E, differs (in atomic unitg from the magnetizabilityor

susceptibility y= —d?E/db? by a factor— 2. Positive(dia- W= (40| D 1| tho) = 2CRe(@g| o Al x0), (3.5

magnetig contributions toE, correlate withnegativecontri-

butions toy. We shall here always hau, in mind. W, =Re( | D1| 1) =CcRe{(@o| o Al x1) + (01| o+ Al xo)}
When we refer tgparamagnetisnwe mean in this paper (3.6)

exclusively a positive contribution t&,, which is often
called van-Vleck(or temperature-independgrgaramagnet-  with ¢ and ¢, solutions of
ism. This is present even for nondegenerate states, for which

E;=0. We shall not be concerned witbrdinary (or (Do—Wo) #p=0, (3.7
temperature-dependemtaramagnetism that arises figgen-
erate states, with the degeneracy split by the magnetic field, (Dg—Wp)¢h1=—(D1—Wy)ho; {o|tr1)=0. (3.8

and which is determined blg, rather thark,.

Our formalism holds for degenerate states, if the unperNote thatW, contains the rest mass contributicA. The
turbed wave function is chosen perturbation adapted, but waormalization condition contained in E(.8) is convenient,
have mainly nondegenerate states in mind. because it removed/; from the expression fow,.

We consider explicitly only the case when the magnetic W, consists of asingle term that formally resembles the
field can be characterized by a single scalar paranfeege  paramagnetic contributioB) to E, in nonrelativistic theory,
calledb). The generalization to a characterization of the fieldwhile there is no counterpart &3 .
by its Cartesian component8, B, B,) and to the pres- A change of gaug€2.9) is now equivalent to ajauge
ence of more than one field as in NMR experiments istransformation
straightforward, but would complicate the formalism unnec-
essarily, without giving more insight. D—D’'=exp —ibA)D expibA). (3.9
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IV. SUM-OVER-STATES FORMULATION FOR W, (3) The sum-over-states formalism is old fashioned any-

way, and is hardly used in practice, where one rather starts
from a Hylleraas-type stationarity principle, i.e., one wants

to make the functional

For a nonrelativistic Hamiltonian of the form
H=Hy+bH; (4.1

a second-order propert, of O(b?) corresponding to the F(1) = (1| Do—Wol| ¢h1) + 2Re(1ho| D1 — Wy | 1)
ground states always negativéenergy lowering which is (
easily seen from thesum-over-states expressidéor E,. A
positivecontribution toE, arises in thenonrelativistic theory stationary with respect to the variation g. While it is
of magnetic properties, since the Hamiltonian contains aRppropriate to uskinetic balancg 13—15 for the expansion
ex_tra termb?H,=0. In the re_Iativistic theo_ry there & pri- of i, it is not obvious which basis should be used dqr It
ori no such term, but the Dirac operatdris not bounded  o,ght to be able to account both for positive-energy and for
from below such that one can make the existence ofyeqative-energy states. One may be tempted to use two
negative-energy statessponsible for positive contributions complementary sets. See also the following comniénand
to E». ] o Sec. VIII. One can mention that Grant and Quiriéyavoid

One can estimate the sum of the contributions Ofyinetic balance and impose a certain operator identity in-

negative-energy states W, for the ground statek=0) in gtead, such that the above remarks do not apply to their
the following way(with ¢, eigenfunction oD, with eigen-  \york.

valueWio, and ¢io= 0, Wo=Woo): (4) Electronic states should be entirely describable in
5 terms of a Hamiltonian for electrons only. For the theory of
Whed— [{%0lD1l ko) properties one must, of course, consider the relativistic

2 kVig<o Wo— Wi Hamiltonian for electronsn the presence of the perturbing
field, but one should then completely dismiss negative-

|<‘//O|D1|'/fk0>|2< (ol DEl o) energy states. We show in Sec. VIII that this is, in fact,

= 2 2 possible.

o0 Wo+e Wote (5) The original Dirac operator is physically meaningful
(ol C2A?| o) only for one-electron systems. In many-electron theory one
= W must replace it with an operator in Fock space. However the

latter should also work for one-electron states. So it is inter-
esting to look at this formulation, as it is done in Sec. IX.
Now “excitation” to a negative-energy state is forbidden,
and one must rather consider excitations accompanied by the
1 2 s creation of anelectron-positron pair This leads to a strong
_§<'//O|A |o)[1-O(c™9)]. (4.2) dependence of theacuumon magnetic fields.
Fortunately it is possible, in a surprisingly simple way, to
By this manipulation one does not get an information onalrive at a formulation of diamagnetism in relativistic theory,
whether themean denominatoin the sense of the Urilb 0 which none of the just given critical remarks apply. We
(closuré approximation is larger or smaller tharc2 al-  come to this in the following section.
though plausibility arguments suggest that it is larger and
approaches & only in the nonrelativistic limit.

A manipulation such as E@4.2) is also possible for elec-
tric (diagonal perturbations. However, for these the matrix
element(o|D4|4) is of O(c™1) rather thanO(c) and the Unlike E, in nonrelativistic theory, the relativistic coun-
final result is ofO(c™ %) rather thanO(c®). HenceW5%%  terpartW, is not obtained as ambvioussum of two contri-
contributes even to theonrelativistic limit for magnetic  butions. In order to arrive at such a decomposition, we
properties, but onlybeyondthe leading relativistic correc- search for a unitary transformation &f that removes the
tions for electric properties. off-diagonal operator @- A to the leading order ib. This is

The interpretation of diamagnetism as due to negativesomewhat in the spirit of the Foldy-Wouthuysen transforma-

ener?_yf tstat(?s 'S._alth?#gh formally ~  plausible— 4, [16]. However, we danot want to removeca-p at the
unsatisfactory for various rather serious reasons. same time. This transformation is

(1) This would mean to recur to different mechanisrm
the relativistic and the nonrelativistic context, with a discon-
tinuity in the nonrelativistic limit. In this limit there arao ﬁzexp{_bT}D explbr}=Dy+ bD;+b?D,+0(bd),
negative-energy states. (5.0
(2) The sum-over-states formalism involving negative-
energy states is tedious and inelegant if it is performed in a
brute-forceway. It is unreliable and hard to correct if one 1 -

= — Ba A=—,t
tries toapproximate this sum by a closure approximation T 2c Ba-A ™ 5.2

-1

= (4ol A?| tho)

Wo
+_
1 2

V. UNITARY TRANSFORMATION OF THE DIRAC
OPERATOR
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D;=D,+[Do,7]=3pla-p,a-Al,=p{A-p+o-B}
~ . 1,01 .
D2:[D117']+E[[DO,T],T]:E,BA —E[Hl,a-A]Jr,
(5.4
where we have used
Ba=—aB; (a-a)(a-b)=a-b+ic-(axb); VA=0;
B=curlA. (5.5)

D, differs from the nonrelativistiti; (2.2) mainly in the fact

PHYSICAL REVIEW A67, 032109 (2003

wave functions in a finite basis. Consider e.g., the expres-
sions (5.6) and (3.5 for W, (note thatV commutes with

,Bc;',&):
- 1 e s o
<¢0|D1|¢0>=_Z<¢o|[ca'pa,3a'A]|¢o>
1 I
:_%<¢o|[Do,ﬁa'A]|¢o>
1 5 -
+z<lﬂo|[ﬂc Ba-Al| o)

1 .o -
=— z<'/fo|Do,8a-A—,8a'ADo|'//0>

that it acts on four-component spinors. The spin-dependent

contribution, to be addedd hocin the Pauli Hamiltonian
(2.1), is automatically there. FOV; andW, we get now

W, = (| D1 o) = (@0l H1l 00) = (xolHil x0), (5.6

W= W5+ W5+ W52, (5.7

W§= Re( ¢0|51_W1|A‘Z1>
=Re{(@o|Hi— Wi 1) = (xo|H1 + Wi|x1)}, (5.8

W5 = 3 (ol BA?| o) = 3P0l A% o) — %<X0|A2|Xo>v(5 9

1 . -
W(zjz:_z_CRe@DOHHLU'A]JXo)' (5.10

the first-order wave functiow, is obtained from

(Do—Wo)g1=—(D1—Wi) tho; (o|h1)=0. (5.11

While the energy(i.e., theW,) as well asy, are unaffected

by the transformation fror to D, the relation betweew,
and ¢, is

- 1 . .
U=yt Z_C/-"’a'Alﬁo- (5.12

The normalization condition in Ed5.11) is consistent with
that in Eq.(3.8), because

Re{(4o| Ba- Alio)} =0 (5.13

sinceBa-A is an anti-Hermitian operator.
Threecaveatsare in order.

+(olca- Al o). (5.14

The two expressiongs.6) and (3.5 hence agree, ify, is an
eigenfunction oD,

(3) The transformed operator is given as a nonterminating
series in powers ob. It is hence appropriate only in the
context of perturbation theory withthe perturbation param-
eter, and not for a treatment of an electron imeaty strong
magnetic field, where the expansion in powerddiecomes
invalid. In the present context this does not matter at all,
since we only care for the magnetizability, which—Dby
definition—is the second-orderresponse to the magnetic
field. If one is interested ihypersusceptibilitiesthe term of
O(b®) in the transformed Dirac operator must be considered
explicitly.

A change of gaugé€2.9) corresponds now to a more com-
plicatedgauge transformation

-~ = b .
D—>D’=exp{ —ibA - 2—C,8a~grad/x]

b .
XD ex%ibAJr zﬂwgrad/\]. (5.1

The expression&.8—(5.10 were derived by Szmytkowski
[9] in a much more tedious and indirect way, making use of
the Gordon decomposition of the induced current density.
Szmytkowski regardedV3? as aparamagneticterm. Al-
though this is to some extent a matter of tastee Sec. X

the classification ofV3? asdiamagnetidooks more natural,
mainly since its evaluation only involveg,, although it is
not necessarily non-negative. Anyway, this is an extra term
with no nonrelativistic counterpart.

It is worth noting thatD is, like D, an operator that has
both electronic and positronic solutions. The definition of

(1) Derivatives involved in the transformation must be diamagnetic and paramagnetic contributions in analogy to

understood in the distribution senskr]. E.g., if A describes

the nonrelativistic limit doesot require a decoupling of

the magnetic field of a nucleus, the Fermi contact interactiorelectronic from positronic states. The nonrelativistic limit of

must be taken care of.

the Dirac equation itself does, however, require that one

(2) Expressions that are equivalent in an exact theory magpecifies whether one considers electronic or positronic
be different if one uses approximations, e.g., if one expandstates(see Sec.
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The factorg in front of A% in Eq. (5.9) is plausible, since H.—E -0 _1>7 6.8
diamagnetism shoulthise |W| both for electrons and posi- (Ho~Eoo) ¢00=0: x00= 27 Poo ©8
trons.

The fact that we are still in the framework of a fully and the first- and second-order magnetic properties are
relativistic theory means that the problems related to the non-
boundedness of the Dirac operator are still there. If one - -
wants to use an expansion in a basis, one has to take care to Eo1=(%0d Dod ¥00) = 2R& @od - Al x00), (6.9
deal with purely electronic states and avoid tfsiational

collapse[18—24, even for the calculation of properties. We .
come back to this in Sec. VIII. Eo2= R&( %00 D o1~ E01S0| Y01 = Re{{@odl o - Al x0)

. +{ @010 Al x00)} — E01iRE @00 ¥01) (6.10
VI. THE LE VY-LEBLOND LIMIT AND DIRECT

PERTURBATION THEORY
which formally resemble theirelativistic counterpartg3.5)

Let us write the Dirac equation in the presence of a magand (3.6). However, if one inserts Eq6.8) and realizes that
netic field in block form in terms ofy=(¢,x), with E=W  the solution of Eq(6.7) is
—c?. Again we omit the state label:

10 £ 10
X Sl 1
(6.1) Xo1= 30 Poort 30-Agy, {¢ol@o)=0, (6.1

We make a change of the metfi25—27 from = (¢, x) to
=(¢,x)=(e,Cx):

(Ho—Eg)po1= — (H1—Eq1) ¢o,

( % co-(p+hbA) @

co-(p+bA)  —2c¢?+V

remembering that

Vo o prb e :E(l ° ). (0-A)(G-P)=A-p+ic-(Axp),
o-(p+bA) —2+Vic? ||y 0 1?/\y
(6.2 R, ...
(o-p)(o-A)=p-A+o-curlA—ioc-(AXp),
If we define
- s 1.
Doy +VQ o-p . Dy (0 0); E[O"A,O"p]:A‘p"‘U‘B. (6.12
ap 2 0V
0 o&-A 1 0 0 0 one duplicates thaonrelativisticresults(2.5 and(2.6), i.e.,
Doi=| - . ; SO=( ); 52:( ) the decomposition oOE, into a diamagnetic and a paramag-
oA 0 0 0 0 1 netic contribution. This decomposition is a direct conse-

(6.3 quence of the decompositidB.11) of yo;.
. If we expand Eq(6.4) both in powers ot~ andb in the
we can rewrite Eq(6.2) as sense of double perturbation theory, we get tblativistic
, e correctionsto magnetic properties. These have been reported
(Dot € “Daot bDoy~ES—EC °S) =0 (6.4 elsewherd30] and we need not repeat them. As to numerical

_ ) applications, see Ref31].
and expandy as well as Eq(6.4) in powers ofc™ ! andb.

JZE Cikbllﬁ (6.5 VII. THE NONRELATIVISTIC LIMIT AND DIRECT
K| k- ' PERTURBATION THEORY OF THE TRANSFORMED
DIRAC EQUATION

The first subscript counts ordersén !, the second subscript

counts orders i. In the nonrelativistic limit ¢~ 1—0) we If we make a change of the metric analogous to &)

for the transformed Dirac equation, we can write this as

get
(Doo™ EooSo) #100=0, 6.6 (Dgot ¢ 2D+ bDgs+ b2 gyt ¢ 20D+ 202D, ES,
(D oo~ EqoSo) o1+ (Do1—E01S0) #00=0.  (6.7) —Ec2S,)y=0 (7.2
The solutione= (@0, x00) Of the Levy-Leblond equation
(6.6) [28,29 is obtained from with Dqg, Dyg, Sy, andS, as in Eq.(6.3), and
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-~ H; O - 0
1| g o ; Dox= 0 o ;
0 0
DZl_ O _Hl’
1 - o
0 _Z[Hl!U'A]Jr
D,= . (7.2
=, - (7.2
_Z[Hl,O"A]+ _EA

The meaning of the subscripts is the same as in the precedlq;_g
section. Let us first consider the nonrelativistic limit, i.e.,
keep the first subscript equal to 0, and consider the expan-

sion in powers ob:
0=(Dgo—E0Sp) ¥00: (7.3
0= (D1~ E0sS0) oo+ (Doo— EoSo) o1, (7.4

E01S0) %01+ (D oo— EoSo) o2
(7.9

By scalar multiplication withiog, noting that{ yroql So| o)
=1 and that Eq(7.3) holds, we get

0= (Do~ E2S0) Yoo+ (Dos—

E01={%od Dot #00) = (@00l H1| €00). (7.6

E02= { od Dozl o0 + (00l D oa— Eo1So| o)

=(@od 3A%| o0) + RE(@og H1| Po1) (7.7

PHYSICAL REVIEW A67, 032109 (2003

0= (D2~ E280— E2S,) Yoo+ (D 21— Ex1So— E01Sy) Yion
+ (D 20— E2680— E00S2) Yoo+ (D oo— E03S0) ¥20

+ (D1~ E1So) Y21+ (Doo— EoSo) ¥z (7.1
By scalar multiplication withyy, we obtain
E20= (%00l D 20— E00S2| /00 (7.12

E21= (%00 D21~ E01S2| 00) +{ 0d D o1~ E01So| #120)
+ (00l D 20— E20S0— E00S2| Y0). (7.13
5= {00l D 20— E02Ss| tho0) + (#od D 21~ E21S0— EaSo| thon)
+ (100l D 20— E20S0— E00S2| 02) +{ hod Doz
— E3Sol #20) +{ ¥od Do1— E01So| ¥21)-

Further reformulation is possible to

(7.149

E21= (%00l D21~ E01Ss| ¥o0) + 2 RE 900l D 01— E01S0| #120)
= (o0l D 21— Eq1Sy| ¥io0) + 2 RE{ 40 D 20— E 26y

— E 0S| or), (7.19

E20= (00 D22~ E0zS:| tho0) + 2RE thod D21~ E21So
— Es1Ssl Yro1) + 2 RE( o0l D oo~ EoSol tr20)
+ 2 Re(4i01/ D o1~ Eo1Sol #r20) + (¥i0a D 20— E20%
~EooS| o) (7.16

with ¢ the same as in the preceding section. The solutiorFor E,;, which is a first-order relativistic correction of a

Yo1 of Eq. (7.4) is
(Ho—Eg)@01= — (H1—Eq1) ¢go;

Xo1= 30 Peo1; (@0l o) =0. (7.9

Now there is—unlike in Eq(6.11)—only a single contribu-

tion to oy, but there is a term-b?A? in the Hamiltonian,
i.e., we arrivedirectly at the nonrelativistic result. Actually

Xo1 is not needed for the evaluation &, .

To get the relativistic corrections to magnetic properties in
the sense oflouble direct perturbation theoyyve proceed as
andb, we get in addi-

follows. Expanding in powers af !
tion to Eqs.(7.3—(7.5

0= (D 20— E2050— E00S2) Y00t (D oo— EoSo) #20, 79

0= (D21~ Ex1S0— E01Sy) Yoo+ (D o1~ E0sSo) #20

+ (D 20— E2680— E00S2) o1+ (Doo— EoSo) ¥21.»
(7.10

first-order property, one has two alternative expressions in
the sense of the Dalgarno exchange theof8#). One gets

in component form, especially for the unitary normalization
[30],

E21=—(xolH1lx0) + 2Re @o|H1| 020)

= —(xolH1lxo) + 2Re xo|V—Egdx0r), (7.17

Ezo= — 5(X0lA% xo)— 3Re&(@ol[H1, 0+ Al | xo)

— 2R€ xo/H1+ Eqil xo1) + R&( 00| A2 0,0)
+2Re @20 H1— Eql 001) + (x01| V— Eod X01)
(7.18

These expressions do, at first glance, not agree with those
derived previously{30] from the expansion of the original
Dirac equation. However, noting th&tand o-A commute,

and using the following identities that hold for exagj, and

¢o1, the equivalence of the two sets of equations can be
shown as

- E20<~();Ol|;01> '
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(V—Ego) ¢00=— Tego, (7.19 If one change¥, e.g., by arelectric (diagonal perturbation,
one also change$ However, this change is only 6i(c ™ ?).
(V=Epo) ¢01=—Teoi— (Hi—Eg)@go.  (7.20  This means that this change Xthas neither an effect on the
nonrelativistic limit, nor on the leading relativistic correc-
The big advantage with respect to the previous formulatiortion, which is expressible by means of the nonrelativistic
[30] is that nowno oA basis(as defined in the following Wwave function. OnlyE,, i.e., the second-order relativistic
section is needed for the expansion of the low@mal) correction is affected, as is known forre-pair projection
component, at least as long as we are only interested in th&ith projectors for free particles.

leading relativistic corrections to magnetic properties. A magnetic perturbatiomas a much stronger effect. The
change fromX to Y has even an influence on thenrelativ-

istic energy. If in the presence of a magnetic perturbation,
one keeps the relatiofB.1) between the upper and lower
A theory in terms of four-component spinors—as it is components, instead of the correct d8ed), i.e., essentially
realized in the Dirac equation—is necessary, if one wants t@f one imposes th&inetic balance one misses an important
describe electrons and positrons at the same time. For elecentribution to the perturbation, namely, the entiliamag-
tronsonly, a description in terms of two-component spinorsnetic termy even at thenonrelativistic limit
is sufficient, in principle. Unfortunately, a simple and well-  In conventional relativistic four-component-spinor calcu-
behaved theory in terms of two-component spinors for eleclations, one usekinetic balancg13-15 to avoid thevaria-
trons is not available in explicit form. There is, however, antional collapse[18-24, i.e., one expandg in a basis{ ¢}
implicit formalism. A solution of the Dirac equation de- andy in the basi§o - pey} (for shorto- p basis. The errors
scribes arelectronic statef and only if the upper and lower  that one then makes for the energy are of at n@{st™ ). In
components of the Dirac spinor satisfy the relai88,34  the presence of a magnetic field the natural generalization of

(8.1 the kinetic balance is toffer the basis{a-A¢} (oA ba-

si9), in addition to theo-p basis, for the expansion of,
with the X solution of e.g., if one wants to determing, by making the Hylleraas
functional (4.3 stationary.

Again one gets errors 0D(c™ %), while without the

o-A basis one makes errors @(c®. The o-A basis is
(8.2 automatically included in DPT. This basis is not necessary, at
least not in the nonrelativistic limit, and with respect to the
leading relativistic corrections ob(c™?), if one uses the
transformedoperator discussed in Sec. V.

VIIl. THE DIRAC EQUATION FOR ELECTRONS ONLY

X=Xe¢

1 .. - - 1. .
= —s . — — . = — . 73
X 202(00 p—[X,V]—cXao-pX) T p+0O(c™°).

For a positronic state the relatid®.1) has to be replaced
with

o=—X"x (8.3
IX. FOCK-SPACE THEORY AND THE INFLUENCE OF A
with the sameX. In the presence of a magnetic field one PERTURBATION ON THE VACUUM

must, for electrons, replace E@.1) with . o .
P @1 Let the Dirac operatoD have the positive eigenvalues

x=Yo (8.4) W, and the negative eigenvaluds, , and let the corre-
sponding eigenfunctions bg and, . We associate elec-
with the Y solution of[30] tron creation and annihilation operatca% and a, with the
L ¥, , as well as positron creation and annihilation operators
_ > (R hA > 2 hA b, andby with the ¢, . The Fock-space operatafin normal
Y=-={co-(p+bA)—[Y,V]-cYo - (p+bA)Y}. k k k
202{ (P ) =LY,V (P )Y order with respect to the vacuum Df;)
(8.9
If we expandY in powers ofb, we get De=>. lealak_z W, blby 9.1
k k
Y=X+bY;+0(b?), (8.6)
describes then a system of an arbitrary number of noninter-
I SR . > - > acting electrons and positrons. We write formally a sum, but
Y1=552(Co-A=[Y1,V]=CY10-pX—CXo-pYy if there are continuum eigenstates, the sum must be replaced
with an appropriate integral. All eigenvalues@f are posi-
. e 1. . tive and roughl | tmc?, wh is th ber of
_ ' _t - 3 ghly equal tonc®, wheren is the number o
CXa- AX) 2¢” A+0(c™), (8.7) particles(electronsor positrons. The vacuum|0) is defined
as the state that contains no electron and no positron, i.e., for
Xo=Xeg, (8.9 which
X1= X1+ Y1¢p. (8.9 a,/0)=0; b,|0)=0. (9.2
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ObV|oust|0> is theground stateof D¢ with the eigenvalue The (unobservablevacuum energy—which shifts the entire
spectrum by a X-dependentconstant—starts with a contri-
bution of O(A?) and involves energy denominators that cor-

De[0)=0. (93 respond to electron-positron pair creations. TE&tusually

Let ider the Fock Di Hamiltoni diverges(unless we use a finite bagiss in the tradition of
€l us now consider {heé Frock-space birac Hami Onlanquantum field theory and is hardly worth mentioning. How-
De(N) in the presence of a perturbation, measured by th

e ) @ver, it is worth noting that—for magnetic perturbations—
strength parametex. We write it in normal orderwith re-

o the matri eIementsD+ are of O(c) and henceE) is of
spect to the unperturbed HamiltoniBxg(0)=Dgq. We need X Pa (©) !

not yet specify whether the perturbation is electric or ma 0O(c® and survives in the nonrelativistic limit. For electric
yet sp P 9 erturbations, the corresponding matrix elements are of
netic. To stress this generality, we call, in this section, th

. (¢™1) and hence the vacuum energy is ©fc™ %), i.e.,
perturbation parametay, rather tharb. beyond the leading relativistic order.

c(\)=Dgg+ Dy, (9.4) We next consider one-electron states
_Ev)|¢r()\)>:Wr(}\)|’pr()\)>y (9.19
[ (N))=x%:(\)]0). (9.17
DFl_E Dy aa +2 Dpg TbT+2 D g bpag Since D¢ is not in normal order with respect to its own

(\-dependentvacuum|0), but rather with respect t®,),
- the eigenvalue oD corresponding taj, = ¢, is equal to
2 Dgp bpb (9.6 the observablesigenvalueW, =W, plus the vacuum energy
EY. One gets rid of the latter, if one uses a Liouville formu-

Obviously Wy, and W,, are the eigenvalues @g,, while lation
D;q’ etc. are the matrix elements of the perturbafing in

the basis of the eigenstates Bf-,. Now not only the [Dr . 1[0)=W;|x;0). (9.18
k-particle eigenstates dd:(\), but even the vacuum state
depends on. We can treat the Liouville equation by perturbation theory
The vacuum staté0) of D satisfies and get
Dg|0)=E"|0). 9.7 [Dro,Xp) =W, 0Xg, (9.19

We expand the vacuum state and its energy in powers of the

r rq_— r r
perturbation parameter [Dro.X1]+[Dr1,X0]=Wrox3 +WiiXp,  (9.20

E'=Eg+NE{+ -+ [0)=[0p)+N[0g)+---. (9.8 [DFOasz]+[DFlyxrl]IWroxrz+Wr1Xr1+Wr2X(r)( 3
9.2
SinceDgg is in normal order with respect to thmperturbed
vacuum|0p), we haveE§=0, and we get with solution
DF0|00>:E0|00>:O, (99) XB:aIT; er:DrtJr, (922
Dgol01)+(Dg—EY)[0g) =0, (9.10
Xg_: 2 D++(W+O W ) T
Drol02) + (Der—EY)[01) ~E3[0)=0,  (9.1D p(71) r "
EY=(0o|Dg1]0g)=0, (9.12 +2p Do (Wio—Woo) by, 9.23
E5=(00|Dg1|04). 9.13
_ _ —1,1
Solutions of Eqs(9.10 and(9.13 are ‘z”rl—xr1|00>+X5|01>—p(§#:r) Dy (Wyo— W) ~*ap|0o)
|01>=;4 (Weo—Wpo) 'Dpq afbil00),  (9.14 +§4 Do (Wao—W:o) "tafalbl[0). (9.24
2 D..F (W, W ) IDi (9.19 Obviously ¢ consists of two parts, one involving simple
ap ( pq - :

one-electron excitations, the other excitations accompanied
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by electron-positron paircreations. For the second-order en- X. THE GORDON DECOMPOSITION OF THE CURRENT
ergy W,, we get again two contributions DENSITY
Starting from the identityfor ¢ eigenfunction oD)
W,2=(00la;(Dg;—E1)| 1) =(0o|a,(Dgy— E1)X}|0p) 0=(Dy)’ R a2 (aczo! R f o> a2
=(Dy) Bay— 4 BaDy=(BcY) Bay— ¢ BaBc ™y
+(0ola, (D1~ Ey)a/|0y). (9.25 R s R
+(ca-py) Bay—y'Baca-py+(bea-Ay) Bay
The first term in the second line is just ti@aramagnetic — ' Babca-Av=2c2u av—(ca-bd) o
contribution Y Babca- Ay ray=(ca-py) aBy

—cyBaa-py—2bcy’BAy, (10.2)
> DF(Wfo—W;o)_lD;ﬁ (9.269  one arrives at the following decomposition of the current
P density| [37]:
while the second-term resembles expresgi@ri3d for the j=cylay=3%(py) By+ 34 Bpy+ 3 (VY X o By
second-order vacuum energy, just with (Dg;—E;) sand- Lo S fox -
wiched bya, . . .aj. We can rewrite this term as +247 BoX (Vi) +by! BAY=31m{y'V By}
+LeurfytoByl + by BAY (10.2
Oola,[Df1,a/1]01)+(0gla,a] (Dey—E4)|0
(Oola[Des.ar]0n) +(Colacar (Des~Ey)I0:) that formally differs from the nonrelativistic counterpart only
=(0ola,/[Dr1,8]1/0;) +E} in the factorB. One can expand the current dengityboth in
the original and in the Gordon form, in powers of the field
= E;—}p‘, Dy (Woo— W) 1D, (9.27)  strengthb:
j=cyay=jo+bj,+0O(b?). (10.3

So thediamagnetic termarises because the creation of a
particle in a state), , in the presence of a magnetic field, is
accompanied by a change of the vacuum that is associated St 10
with the magnetic field. In the expressidf.13 for the Jo=C¥oado, (104
vacuum, the contribution witlg=r is missing, if, is oc- R t -
cupied, and hence no longavailable for electron-positron- J1= Cihpathr+ Cathy. (10.5
pair creations. This is a typicaixclusion effect

If we apply ano-pair projectionto D¢, i.e., if we remove
the part involving theb, and bE operators, as it has been T Limluiv +lcurulto 10
suggested 35,36 for n-electron Hamiltonians, we ignore Jo=2Im{yoV By} + s cur{yroo B}, (10.6
both the induced vacuum energy and the diamagnetic terms - o

In the original form we get

The corresponding expressions in the Gordon form are

completely, also those arising in the context of the Gaunt or J1=Jp T 10 (107

Breit interactions. This aspect appears to have been ignored - e i -

so far. J1p=Im{4oV Bif1} + cur{Re oo By 1},  (10.8
The interpretation of diamagnetism as a change of the . .

vacuum energy iphysicallyrather suggestive, but it should J1a= W3 BAY,. (10.9

be taken with great care. If we replace the original Dirac
operator by the transformed one, the Fock space picture arfdom Eqs.(10.7—(10.9 one can evaluaté/, as[9]
the vacuum change completely. Then the modification of the 1
vacuum energy due to the magnetic field igfic %), as for Wz:—J fl"&dsf:sz+Wzd, (10.10
an electric perturbation. 2
In QED for bound states one definekectrons in an ex-
ternal static electric fieldwhich leads to a different vacuum W. :Ef TR d3r
than that forfree electrons Probably one should treat an 2p=7) i
external magnetic field similarly.
Remember that in this paper we only considelutions of _ ERe(:,b I(A-p+p-A)Blyn) + Re(yol o~ curlAB| o)
the Dirac equatioreven if this is formulated in a Fock-space 2 aYollA-pTP . 0 .
language, as just done. If one wants to include radiative cor-

rections, positronic states will alwaysmdependently of how =Re( 10| D1| 1), (10.11
they are definedbe needed, e.g., in connection with the L n

vacuum polarization, but this is beyond the scope of this -

Saper. Y P Wag=>5 J Fia- Adr =5 (ol BA% o) (10.12
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with D, defined by Eq(5.3) Y R ~
We have writtenW,, and W4 to make clear that these W2p_§ J1p- Ad’r = Re(4g|Car Al 1) = Re&(o| D1 41,
expressions differ from similar on&&%, W3, andWd? de-

rived previously Egqs(5.8)—(5.10. The expression fow,, 17. . 1

is asymmetric It involves the perturbation operatdr;, but Wéfzf JaarA d*r=2(yol BA%| ).  (10.23
1 is the response to the perturbatibp. This causes prob-

lems with the interpretation 6, andWaq. Sincej 14 is the same af;q in Eq.(10.9, j;, as given by Eq.

The most elegant way to arrive aymmetricand hence (10.20, must be identical withj;_ defined by Eq.(10.8.
physically interpretable results is tmmbinethe Gordon de- Obviously we also get P

composition with the unitary transformation. Let us, in Eqs.
(10.8 and(10.1) eliminate ¢, by means of Eq(5.12 in Wiy =Wap; Wig=Waq. (10.24
favor of ¢:
R \/_Vép Ipoks asymmetric in a way comple_mer_ltary\/tqp. T_he
jip=it+it, (10.13 tilde is now ony; rather than orD;. Using just the unitary
transformation we get essentially the same decomposition of
iP=Im{y{V B} +cur{Re i By}, (10.14  j, as from the Gordon decomposition, but for a slightly dif-
ferent reason(The two procedures disagree to higher orders
fe = 1 . in b). Only the combination of the Gordon decomposition
== 5cMvoVa- Aol — 5 curkRel Yoo a - Adol}, and the unitary transformation leads to a physically satisfac-
(10.19 tory breakdown of the current density, namely, into three

partsj?, j9, andj92.

=42
J1

Wop=WE+W5?, (10.16

XI. CONCLUSIONS

1. . ~ ~
wg:-f i0-Ad3 =Re(o|D1|#), (10.1% (1) An external magnetic field strongly affects the cou-

2 pling between uppeflarge and lower(smal) components,
1 1 ¢ and y, respectively, of the Dirac spinor of an electron.
2" Pd2 Re3,— _ Y This effect can be rationalized &) a change of the funda-
Wg _ZJ JiAd 2CR6<¢°|D1’6Q Altro)- mental relationy= X¢ betweeny andy, (b) a strong mixing
(10.18 in of negative-energy states of the unperturbed Dirac opera-
tor, (c) a change of the vacuum energy due to the magnetic
Now the quantitie&V5, W5*, andWy'=W,, are the same as  field by the presence of an electron.
those derived previousls.8)—(5.10. The decomposition of (2) In the traditional formulation of the relativistic pertur-
the susceptibilityW, into the contributionsVg, W3', and  bation theory of magnetic effects, one first decouples elec-
Wgz is completely parallel to the respective contributi(fil‘ls tror_1ic _states from positronic states in the _a_bsence of the_ mag-
j*clu and fclizzfld to the current densitil. netic field, and makes afterward_s an additional decoupling in
One understands to some extent, why, coming from th he presence Qf the mggnetlc field. The approach suggest_ed
Gordon decomposition of the current densf8§], one is ere consists in removing the coupling due to the magnetic

2 . : _field, to the leading order, already in the Dirac Hamiltonian
tempted to regarwg as belonging to the paramagnetic con (by means of a unitary transformatiobefore one decouples

tribution, because in the Gordon decompositidh is con-  glectronic states from positronic states. So there is no more

tained inj . need for an additional decoupliag the endThis need arises
Let us finally have a look at what one obtains, if oneonly in higher orders irc™2, such as for electric perturba-

decomposes the current density by means of the unitargions.

transformation, without using the Gordon decomposition. In-  (3) In the transformed operator diamagnetic and paramag-

serting Eq.(5.12 into Eqg.(10.95 one gets netic contributions arise explicitlyvithout a need to sepa-
S rate electronic states from positronic states at the same.time

J1=J1pti1as (10.19  Actually there aretwo distinct diamagnetic contributions,
one of which has no nonrelativistic counterpart. The trans-
jip=0¢3a~l//1+ct~ﬂa¢o, (10.20 formed operator appears to simplify the evaluation of mag-

netic properties, since the diamagnetic contributions are ob-
1 1 tained as expectation values of the wave function in the
14=— = WhaBa-Age— = yha- ABagiy= Y BAY, absence of the magnetic field. _ _
2 2 (4) If one treats the relativistic corrections to magnetic
(10.29 properties by means of direct perturbation thedBPT),
1 which means that one considegfectronic statesonly, the
Wo== | 71 Ad3r=W, +W,,. 102 nonrelativistic limit (including the separation into diamag-
272 f I1 2p 2d ( 2 netic and paramagnetic contributions automatically ob-
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tained, and no serious prOblemS arise with the relatiViStiqhe small componeny in a Combined;.ﬁ ando_)-.A—) basis.

corrections. In this context the use of ttransformedDirac (9) One may f|na||y wonder whether one should care for
operator does not lead to dramatic changes, but it is likely tghe appropriate definition of the diamagnetic part of the mag-
allow some simplifications. netizability in relativistic theory, since a change of gauge

(5) The explanation as well as the evaluation of the dia-affects its decomposition into a diamagnetic and a paramag-
magnetic contributions to magnetic properties @g t0  netic part. The answer is twofolda) The problem of the
negative-energy states a sum-over-stateformulation must  appropriate definition arises for any chosen gauge, it is, so-
be regarded as obsolete, because the diamagnetic contri%—_saygauge independentb) As mentioned already in the
tions can be more easily evaluated without the need to sunhtroduction, there is often matural gaugee.g., for an atom
over contributions of negative-energy states. An expectatiofhe natural gauge origiris at the position of the nucleus. For
value is usually preferable to a sum-over-states formulationsis choice the paramagnetic contribution vanishes in the

(6) The diamagnetic contributions obtained on the twongnrelativistic limit. For molecules the best gauge is that
main ways discussed here do not agree exactly, except in thgith distributed gauge originssuch as in the ansatz with
nonrelativistic limit. There is, of course, formal agreementLondon orbitals (LO) [38], also called gauge inc|uding
between the expressions based on the sum-over-states formggomic orbitalsGIAOs, or theindividual gauge for localized
lation of the Dirac operator and the Fock-space approachyrpitals IGLO method[39]. The latter can be rationalized in
The full W; is, anyway, independent of how one decomposeserms of anonlocal gauge transformatiofd0]. With these
it into a diamagnetic and a paramagnetic part. distributed gauge originene achieves, as for atoms in their

(7) Use of the Gordon decomposition of the current dennatural gauge, that thepositive diamagnetic part of, is
sity leads to the same results for the magnetic susceptibilityhinimized, and that there is as little compensation as pos-
as the unitary transformation of the Dirac operator, but in asijple of spurious terms due to an inappropriate choice of the
much more indirect way. The two approaches are not entirelgauge. The approach presented here allows us to generalize
equivalent, and are even to some extent complementary. T@js paradigm to the relativistic regime. Our conclusions are
arrive at a physically meaningful decomposition of the in-not affected by the fact that distributed gauge origins can
duced current density, one must combine the two approachegiso be used in combination with the evaluation of diamatic

The Gordon decomposition by itself leads to a somewhagontributions in terms of negative-energy stdiék
counterintuitive definition of diamagnetic and paramagnetic
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