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Diamagnetism in relativistic theory

Werner Kutzelnigg*
Lehrstuhl für Theoretische Chemie, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

~Received 29 October 2002; published 21 March 2003!

A unitary transformation of the Dirac operator in a magnetic field is presented, which leads to a reformu-
lation of the interaction of a Dirac particle with a magnetic field, in which, as in nonrelativistic theory,
diamagnetic and paramagnetic contributions appear naturally, but at a four-component-spinor level. The dia-
magnetic contribution to the magnetic susceptibility consists of two terms, each of which is evaluated as a
simple expectation value with the unperturbed relativistic wave function. One of the two terms closely re-
sembles its nonrelativistic counterpart. The proposed formalism is analyzed in the context of the direct pertur-
bation theory of relativistic effects. It is compared with the more traditional sum-over-states approach including
negative-energy states, as well as with a Fock-space formulation. In the latter, the vacuum energy depends on
the external magnetic field. The creation of a particle~electron or positron! is accompanied by a change of the
vacuum energy via a kind of exclusion effect. This change can be identified with the diamagnetism of the
particle. The access to diamagnetism and paramagnetism based on the Gordon decomposition of the induced
current density is to some extent, but not entirely, equivalent to that which results from the unitary transfor-
mation. For a physically meaningful decomposition of the current density a combination of the Gordon
approach with the unitary transformation is recommended. Neither the interpretation nor the computation of
diamagnetic contributions in terms of negative-energy states is encouraged.

DOI: 10.1103/PhysRevA.67.032109 PACS number~s!: 03.65.Pm, 33.15.Kr
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I. INTRODUCTION

In nonrelativisticquantum mechanics, second-order ma
netic properties such as susceptibilities are obtained as s
of a diamagneticand a~van-Vleck! paramagneticterm. Al-
though the decomposition into these terms isgauge depen-
dent, one can often take care that the paramagnetic t
vanishes or is very small in magnitude@1,2#. The dominating
diamagnetic contribution can then easily be evaluated
terms of the unperturbed wave function only.

A similar decomposition is, at least, not obvious in re
tivistic theory. Some authors have attempted to recover
diamagnetic contributions by a separate summation o
negative-energy states@3–6#, or via theGordon decomposi-
tion of the current density@7–9#. Neither approach is fully
satisfactory, the first one for various rather fundamental r
sons~see Sec. IV!, the second one because it is rather co
plicated and indirect. The two approaches lead to differ
definitions of the diamagnetic part, which only agree in t
nonrelativistic limit. We shall show here that a very simp
and transparent way towards a decomposition of relativi
second-order properties into diamagnetic and paramagn
contributions is possible, which is so simple that one wo
ders why it has not been found earlier.

It is based on aunitary transformationof the Dirac op-
erator in the presence of a magnetic field. It is worth not
that in this way diamagnetism and~van-Vleck! paramagnet-
ism appearindependently of a separation between electro
and positronic states. Alternatively this very separation an
the care for thecorrect nonrelativistic limitlead to the ap-
pearance of diamagnetic and paramagnetic terms as well
then independently of the just-mentioned unitary transform
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tion. These observations suggest to present a general ana
of the meaning of diamagnetism.

Actually, a magnetic field has a strong influence on t
solutions of the Dirac equation. This can be rationalized
ther in terms of a change of the key relationx5Xw between
the large (w) and the small (x) components of the Dirac
spinorc5(w,x) for an electronic~positive-energy! state, or
in terms of a change of thevacuum stateby the magnetic
field that even survives in the nonrelativistic limit. To d
scribe a relativistic electron in a magnetic field in terms
the states in the absence of this field is not a good choic
is preferable to remove the coupling ofw andx by the mag-
netic field at an early stage, e.g., by the unitary transform
tion proposed here, or by direct perturbation theory~DPT! of
relativistic effects.

The Gordon decomposition of the induced current den
is not strictly equivalent to the unitary transformation intr
duced here. The two approaches are even to some e
complementary, although they lead essentially to the sa
definition of the diamagnetic contribution to the magnet
ability.

II. NONRELATIVISTIC THEORY

The nonrelativistic Pauli Hamiltonian for an electron in
magnetic field with vector potentialAW , and field strengthBW

5curlAW , which satisfies the Coulomb gauge divAW 50, is in
atomic units

H5 1
2 ~pW 1bAW !21bsW •BW 1V5H01b H11b2H2 ,

~2.1!

H05 1
2 p21V; H15AW •pW 1sW •BW ; H25 1

2 A2 . ~2.2!
©2003 The American Physical Society09-1
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The constantb depends on the chosen variant of the syst
of atomic units@10#. One hasb5c21 in the originalHartree
system@11# that was based on theGaussiancgs system~with
\, m, and ueu the basic units!, and b51 in the so-called
SI-basedsystem of atomic units@10,12# ~with \, m, ueu, and
4pe0) the basic units! In either system1

2 b can be identified
with the Bohr magneton. It is convenient to keepb and to
treat it as a formal perturbation parameter that measures
strength of the magnetic field.

We want to solve the Schro¨dinger equation~omitting the
state label!

Hf~b!5E~b!f~b! ~2.3!

in a power-series expansion with respect to the perturba
parameterb

E~b!5E01b E11b2E21•••;

f~b!5f01b f11b2f21•••. ~2.4!

This leads for first- and second-order magnetic propertie

E15^f0uH1uf0&5^f0uAW •pW uf0&1^f0usW •BW uf0&,
~2.5!

E25E2
d1E2

p ; E2
d5^f0uH2uf0&; E2

p5Rê f0uH12E1uf1&
~2.6!

with f0 andf1 solutions of

~H02E0!f050, ~2.7!

~H02E0!f152~H12E1!f0 , ^f0uf1&50. ~2.8!

The diamagneticterm E2
d is expressible in terms off0,

while for theparamagneticterm E2
p one needsf1.

For a homogeneous magnetic field the second-order
ergyE2 differs ~in atomic units! from the magnetizability~or
susceptibility! x52d2E/db2 by a factor22. Positive~dia-
magnetic! contributions toE2 correlate withnegativecontri-
butions tox. We shall here always haveE2 in mind.

When we refer toparamagnetismwe mean in this pape
exclusively a positive contribution toE2, which is often
called van-Vleck~or temperature-independent! paramagnet-
ism. This is present even for nondegenerate states, for w
E150. We shall not be concerned withordinary ~or
temperature-dependent! paramagnetism that arises fordegen-
eratestates, with the degeneracy split by the magnetic fie
and which is determined byE1 rather thanE2.

Our formalism holds for degenerate states, if the unp
turbed wave function is chosen perturbation adapted, bu
have mainly nondegenerate states in mind.

We consider explicitly only the case when the magne
field can be characterized by a single scalar parameter~here
calledb). The generalization to a characterization of the fie
by its Cartesian components (Bx , By , Bz) and to the pres-
ence of more than one field as in NMR experiments
straightforward, but would complicate the formalism unne
essarily, without giving more insight.
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Both E2
d andE2

p depend on thegaugeof AW , only their sum
is gauge invariant. Often there is anatural gaugeand hence
also a natural decomposition intoE2

d and E2
p , e.g., for an

atom in a homogeneous magnetic field withA5 1
2 BW 3rW and

the origin of the coordinate system at the position of t
nucleus.

A change of gauge

A→A85A1gradL; div gradL50 ~2.9!

is equivalent to agauge transformation

H→H85exp~2 ibL!H exp~ ibL!, ~2.10!

C→C85exp~2 ibL!C. ~2.11!

III. RELATIVISTIC THEORY

The corresponding relativistic Hamiltonian is

D5bc21caW •~pW 1bAW !1V5D01b D1 , ~3.1!

D05bc21caW •pW 1V; D15caW •AW . ~3.2!

We now want to solve~again omitting the state label!

Dc~b!5W~b!c~b! ~3.3!

in powers ofb:

W~b!5W01b W11b2W21•••;

c~b!5c01b c11b2c21•••. ~3.4!

The zeroth- and first-order wave functions arec0
5(w0 ,x0) andc15(w1 ,x1), respectively. For the counter
parts ofE1 andE2 we get

W15^c0uD1uc0&52cRê w0usW •AW ux0&, ~3.5!

W25Rê c0uD1uc1&5cRe$^w0usW •AW ux1&1^w1usW •AW ux0&%
~3.6!

with c0 andc1 solutions of

~D02W0!c050, ~3.7!

~D02W0!c152~D12W1!c0 ; ^c0uc1&50. ~3.8!

Note thatW0 contains the rest mass contributionc2. The
normalization condition contained in Eq.~3.8! is convenient,
because it removesW1 from the expression forW2.

W2 consists of asingle term that formally resembles th
paramagnetic contributionE2

p to E2 in nonrelativistic theory,
while there is no counterpart ofE2

d .
A change of gauge~2.9! is now equivalent to agauge

transformation

D→D85exp~2 ibL!D exp~ ibL!. ~3.9!
9-2
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IV. SUM-OVER-STATES FORMULATION FOR W2

For a nonrelativistic Hamiltonian of the form

H5H01bH1 ~4.1!

a second-order propertyE2 of O(b2) corresponding to the
ground stateis always negative~energy lowering!, which is
easily seen from thesum-over-states expressionfor E2. A
positivecontribution toE2 arises in thenonrelativistic theory
of magnetic properties, since the Hamiltonian contains
extra termb2H2>0. In the relativistic theory there isa pri-
ori no such term, but the Dirac operatorD is not bounded
from below, such that one can make the existence
negative-energy statesresponsible for positive contribution
to E2.

One can estimate the sum of the contributions
negative-energy states toW2 for the ground state (k50) in
the following way~with ck0 eigenfunction ofD0 with eigen-
valueWk0, andc05c00, W05W00):

W2
neg5 (

k,Wk0,0

u^c0uD1uck0&u2

W02Wk0

< (
k,Wk0,0

u^c0uD1uck0&u2

W01c2
<

^c0uD1
2uc0&

W01c2

5
^c0uc2A2uc0&

W01c2

5^c0uA2uc0&F11
W0

c2 G21

5
1

2
^c0uA2uc0&@12O~c22!#. ~4.2!

By this manipulation one does not get an information
whether themean denominatorin the sense of the Unso¨ld
~closure! approximation is larger or smaller than 2c2, al-
though plausibility arguments suggest that it is larger a
approaches 2c2 only in the nonrelativistic limit.

A manipulation such as Eq.~4.2! is also possible for elec
tric ~diagonal! perturbations. However, for these the mat
element̂ c0uD1uck& is of O(c21) rather thanO(c) and the
final result is of O(c24) rather thanO(c0). HenceW2

neg

contributes even to thenonrelativistic limit for magnetic
properties, but onlybeyondthe leading relativistic correc
tions for electric properties.

The interpretation of diamagnetism as due to negat
energy states is—although formally plausible
unsatisfactory for various rather serious reasons.

~1! This would mean to recur to adifferent mechanismin
the relativistic and the nonrelativistic context, with a disco
tinuity in the nonrelativistic limit. In this limit there areno
negative-energy states.

~2! The sum-over-states formalism involving negativ
energy states is tedious and inelegant if it is performed
brute-forceway. It is unreliable and hard to correct if on
tries toapproximate this sum by a closure approximation.
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~3! The sum-over-states formalism is old fashioned a
way, and is hardly used in practice, where one rather st
from a Hylleraas-type stationarity principle, i.e., one wan
to make the functional

F~c1!5^c1uD02W0uc1&12Rê c0uD12W1uc1&
~4.3!

stationary with respect to the variation ofc1. While it is
appropriate to usekinetic balance@13–15# for the expansion
of c0, it is not obvious which basis should be used forc1. It
ought to be able to account both for positive-energy and
negative-energy states. One may be tempted to use
complementary sets. See also the following comment~4! and
Sec. VIII. One can mention that Grant and Quiney@6# avoid
kinetic balance and impose a certain operator identity
stead, such that the above remarks do not apply to t
work.

~4! Electronic states should be entirely describable
terms of a Hamiltonian for electrons only. For the theory
properties one must, of course, consider the relativi
Hamiltonian for electronsin the presence of the perturbin
field, but one should then completely dismiss negativ
energy states. We show in Sec. VIII that this is, in fa
possible.

~5! The original Dirac operator is physically meaningf
only for one-electron systems. In many-electron theory o
must replace it with an operator in Fock space. However
latter should also work for one-electron states. So it is in
esting to look at this formulation, as it is done in Sec. I
Now ‘‘excitation’’ to a negative-energy state is forbidde
and one must rather consider excitations accompanied by
creation of anelectron-positron pair. This leads to a strong
dependence of thevacuumon magnetic fields.

Fortunately it is possible, in a surprisingly simple way,
arrive at a formulation of diamagnetism in relativistic theo
to which none of the just given critical remarks apply. W
come to this in the following section.

V. UNITARY TRANSFORMATION OF THE DIRAC
OPERATOR

Unlike E2 in nonrelativistic theory, the relativistic coun
terpartW2 is not obtained as anobvioussum of two contri-
butions. In order to arrive at such a decomposition,
search for a unitary transformation ofD that removes the

off-diagonal operator caW •AW to the leading order inb. This is
somewhat in the spirit of the Foldy-Wouthuysen transform
tion @16#. However, we donot want to removecaW •pW at the
same time. This transformation is

D̃5exp$2bt%D exp$bt%5D01bD̃11b2D̃21O~b3!,
~5.1!

t52
1

2c
baW •AW 52t†, ~5.2!
9-3
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D̃15D11@D0 ,t#5 1
2 b@aW •pW ,aW •AW #15b$AW •pW 1sW •BW %

5bH1 , ~5.3!

D̃25@D1 ,t#1 1
2 †@D0 ,t#,t‡5

1

2
bA22

1

4c
@H1 ,aW •AW #1 ,

~5.4!

where we have used

baW 52aW b; ~aW •aW !~aW •bW !5aW •bW 1 isW •~aW 3bW !; ¹W AW 50;

BW 5curlAW . ~5.5!

D̃1 differs from the nonrelativisticH1 ~2.2! mainly in the fact
that it acts on four-component spinors. The spin-depend
contribution, to be addedad hoc in the Pauli Hamiltonian
~2.1!, is automatically there. ForW1 andW2 we get now

W15^c0uD̃1uc0&5^w0uH1uw0&2^x0uH1ux0&, ~5.6!

W25W2
p1W2

d11W2
d2 , ~5.7!

W2
p5Rê c0uD̃12W1uc̃1&

5Re$^w0uH12W1uw̃1&2^x0uH11W1ux̃1&%, ~5.8!

W2
d15 1

2 ^c0ubA2uc0&5 1
2 ^w0uA2uw0&2 1

2 ^x0uA2ux0&,
~5.9!

W2
d252

1

2c
Rê w0u@H1 ,sW •AW #1ux0&, ~5.10!

the first-order wave functionc̃1 is obtained from

~D02W0!c̃152~D̃12W1!c0 ; ^c0uc̃1&50. ~5.11!

While the energy~i.e., theWk) as well asc0 are unaffected
by the transformation fromD to D̃, the relation betweenc̃1
andc1 is

c̃15c11
1

2c
baW •AW c0 . ~5.12!

The normalization condition in Eq.~5.11! is consistent with
that in Eq.~3.8!, because

Re$^c0ubaW •AW uc0&%50 ~5.13!

sincebaW •AW is an anti-Hermitian operator.
Threecaveatsare in order.
~1! Derivatives involved in the transformation must b

understood in the distribution sense@17#. E.g., if AW describes
the magnetic field of a nucleus, the Fermi contact interac
must be taken care of.

~2! Expressions that are equivalent in an exact theory m
be different if one uses approximations, e.g., if one expa
03210
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wave functions in a finite basis. Consider e.g., the expr
sions ~5.6! and ~3.5! for W1 ~note thatV commutes with
baW •AW ):

^c0uD̃1uc0&52
1

2c
^c0u@caW •pW ,baW •AW #uc0&

52
1

2c
^c0u@D0 ,baW •AW #uc0&

1
1

2c
^c0u@bc2,baW •AW #uc0&

52
1

2c
^c0uD0baW •AW 2baW •AW D0uc0&

1^c0ucaW •AW uc0&. ~5.14!

The two expressions~5.6! and~3.5! hence agree, ifc0 is an
eigenfunction ofD0.

~3! The transformed operator is given as a nonterminat
series in powers ofb. It is hence appropriate only in th
context of perturbation theory withb the perturbation param
eter, and not for a treatment of an electron in avery strong
magnetic field, where the expansion in powers ofb becomes
invalid. In the present context this does not matter at
since we only care for the magnetizability, which—b
definition—is the second-orderresponse to the magneti
field. If one is interested inhypersusceptibilities, the term of
O(b3) in the transformed Dirac operator must be conside
explicitly.

A change of gauge~2.9! corresponds now to a more com
plicatedgauge transformation

D̃→D̃85expH 2 ibL2
b

2c
baW •gradLJ

3D expH ibL1
b

2c
baW •gradLJ . ~5.15!

The expressions~5.8!–~5.10! were derived by Szmytkowsk
@9# in a much more tedious and indirect way, making use
the Gordon decomposition of the induced current dens
Szmytkowski regardedW2

d2 as a paramagneticterm. Al-
though this is to some extent a matter of taste~see Sec. X!,
the classification ofW2

d2 asdiamagneticlooks more natural,
mainly since its evaluation only involvesc0, although it is
not necessarily non-negative. Anyway, this is an extra te
with no nonrelativistic counterpart.

It is worth noting thatD̃ is, like D, an operator that has
both electronic and positronic solutions. The definition
diamagnetic and paramagnetic contributions in analogy
the nonrelativistic limit doesnot require a decoupling of
electronic from positronic states. The nonrelativistic limit
the Dirac equation itself does, however, require that o
specifies whether one considers electronic or positro
states~see Sec. VI!.
9-4
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The factorb in front of A2 in Eq. ~5.9! is plausible, since
diamagnetism shouldraise uWu both for electrons and posi
trons.

The fact that we are still in the framework of a full
relativistic theory means that the problems related to the n
boundedness of the Dirac operator are still there. If o
wants to use an expansion in a basis, one has to take ca
deal with purely electronic states and avoid thevariational
collapse@18–24#, even for the calculation of properties. W
come back to this in Sec. VIII.

VI. THE LÉ VY-LEBLOND LIMIT AND DIRECT
PERTURBATION THEORY

Let us write the Dirac equation in the presence of a m
netic field in block form in terms ofc5(w,x), with E5W
2c2. Again we omit the state label:

S V csW •~pW 1bAW !

csW •~pW 1bAW ! 22c21V
D S w

x
D 5ES 1 0

0 1D S w

x
D .

~6.1!

We make a change of the metric@25–27# from c5(w,x) to
c̄5(w,x̄)5(w,cx):

S V sW •~pW 1bAW !

sW •~pW 1bAW ! 221V/c2 D S w

x̄
D 5ES 1 0

0 1/c2D S w

x̄
D .

~6.2!

If we define

D005S V sW •pW

sW •pW 22
D ; D205S 0 0

0 VD ;

D015S 0 sW •AW

sW •AW 0
D ; S05S 1 0

0 0D ; S25S 0 0

0 1D ,

~6.3!

we can rewrite Eq.~6.2! as

~D001c22D201bD012ES02Ec22S2!c̄50 ~6.4!

and expandc̄ as well as Eq.~6.4! in powers ofc21 andb.

c̄5(
k,l

c2kblckl . ~6.5!

The first subscript counts orders inc21, the second subscrip
counts orders inb. In the nonrelativistic limit (c21→0) we
get

~D002E00S0!c0050, ~6.6!

~D002E00S0!c011~D012E01S0!c0050. ~6.7!

The solutionc005(w00,x00) of the Lévy-Leblond equation
~6.6! @28,29# is obtained from
03210
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~H02E00!w0050; x005
1
2 sW •pW w00 ~6.8!

and the first- and second-order magnetic properties are

E015^c00uD01uc00&52Rê w00usW •AW ux00&, ~6.9!

E025Rê c00uD012E01S0uc01&5Re$^w00usW •AW ux01&

1^w01usW •AW ux00&%2E01Rê w00uw01&, ~6.10!

which formally resemble theirrelativistic counterparts~3.5!
and~3.6!. However, if one inserts Eq.~6.8! and realizes that
the solution of Eq.~6.7! is

~H02E0!w0152~H12E01!w0 ,

x015
1
2 sW •pW w011

1
2 sW •AW w0 , ^w0uw01&50, ~6.11!

remembering that

~sW •AW !~sW •pW !5AW •pW 1 isW •~AW 3pW !,

~sW •pW !~sW •AW !5pW •AW 1sW •curlAW 2 isW •~AW 3pW !,

1

2
@sW •AW ,sW •pW #5AW •pW 1sW •BW , ~6.12!

one duplicates thenonrelativisticresults~2.5! and~2.6!, i.e.,
the decomposition ofE2 into a diamagnetic and a parama
netic contribution. This decomposition is a direct cons
quence of the decomposition~6.11! of x01.

If we expand Eq.~6.4! both in powers ofc21 andb in the
sense of double perturbation theory, we get therelativistic
correctionsto magnetic properties. These have been repo
elsewhere@30# and we need not repeat them. As to numeri
applications, see Ref.@31#.

VII. THE NONRELATIVISTIC LIMIT AND DIRECT
PERTURBATION THEORY OF THE TRANSFORMED

DIRAC EQUATION

If we make a change of the metric analogous to Eq.~6.2!
for the transformed Dirac equation, we can write this as

~D001c22D201bD̃011b2D̃021c22bD̃211c22b2D̃222ES0

2Ec22S2!c̃50 ~7.1!

with D00, D20, S0 , andS2 as in Eq.~6.3!, and
9-5



d
.
a

tio

i

a
in

on

ose
l

be

WERNER KUTZELNIGG PHYSICAL REVIEW A67, 032109 ~2003!
D̃015S H1 0

0 0D ; D̃025S 1

2
A2 0

0 0
D ;

D̃215S 0 0

0 2H1
D ,

D̃225S 0 2
1

4
@H1 ,sW •AW #1

2
1

4
@H1 ,sW •AW #1 2

1

2
A2

D . ~7.2!

The meaning of the subscripts is the same as in the prece
section. Let us first consider the nonrelativistic limit, i.e
keep the first subscript equal to 0, and consider the exp
sion in powers ofb:

05~D002E0S0!c00, ~7.3!

05~D̃012E01S0!c001~D002E0S0!c̃01, ~7.4!

05~D̃022E02S0!c001~D̃012E01S0!c̃011~D002E0S0!c̃02.

~7.5!

By scalar multiplication withc00, noting that^c00uS0uc00&
51 and that Eq.~7.3! holds, we get

E015^c00uD̃01uc00&5^w00uH1uw00&, ~7.6!

E025^c00uD̃02uc00&1^c00uD̃012E01S0uc̃01&

5^w00u
1
2 A2uw00&1Rê w00uH1uw̃01& ~7.7!

with c00 the same as in the preceding section. The solu
c̃01 of Eq. ~7.4! is

~H02E0!w̃0152~H12E01!w00;

x̃015
1
2 sW •pW w̃01; ^w0uw̃01&50. ~7.8!

Now there is—unlike in Eq.~6.11!—only a single contribu-
tion to x̃01, but there is a term;b2A2 in the Hamiltonian,
i.e., we arrivedirectly at the nonrelativistic result. Actually
x̃01 is not needed for the evaluation ofE02.

To get the relativistic corrections to magnetic properties
the sense ofdouble direct perturbation theory, we proceed as
follows. Expanding in powers ofc21 andb, we get in addi-
tion to Eqs.~7.3!–~7.5!

05~D202E20S02E00S2!c001~D002E0S0!c20,
~7.9!

05~D̃212E21S02E01S2!c001~D̃012E01S0!c20

1~D202E20S02E00S2!c̃011~D002E0S0!c̃21,

~7.10!
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05~D̃222E22S02E02S2!c001~D̃212E21S02E01S2!c̃01

1~D202E20S02E00S2!c̃021~D̃022E02S0!c20

1~D̃012E01S0!c̃211~D002E0S0!c̃22. ~7.11!

By scalar multiplication withc00 we obtain

E205^c00uD202E00S2uc00&, ~7.12!

E215^c00uD̃212E01S2uc00&1^c00uD̃012E01S0uc20&

1^c00uD202E20S02E00S2uc̃01&, ~7.13!

E225^c00uD̃222E02S2uc00&1^c00uD̃212E21S02E01S2uc̃01&

1^c00uD202E20S02E00S2uc̃02&1^c00uD̃02

2E02S0uc20&1^c00uD̃012E01S0uc̃21&. ~7.14!

Further reformulation is possible to

E215^c00uD̃212E01S2uc00&12Rê c00uD̃012E01S0uc20&

5^c00uD̃212E01S2uc00&12Rê c00uD202E20S0

2E00S2uc̃01&, ~7.15!

E225^c00uD̃222E02S2uc00&12Rê c00uD̃212E21S0

2E01S2uc̃01&12Rê c00uD̃022E02S0uc20&

12Rê c̃01uD̃012E01S0uc20&1^c̃01uD202E20S0

2E00S2uc̃01&. ~7.16!

For E21, which is a first-order relativistic correction of
first-order property, one has two alternative expressions
the sense of the Dalgarno exchange theorem@32#. One gets
in component form, especially for the unitary normalizati
@30#,

E2152^x0uH1ux0&12Rê w0uH1uw20&

52^x0uH1ux0&12Rê x0uV2E00ux̃01&, ~7.17!

E2252 1
2 ^x0uA2ux0&2 1

2 Rê w0u@H1 ,sW •AW #1ux0&

22Rê x0uH11E01ux̃01&1Rê w0uA2uw20&

12Rê w20uH12E01uw̃01&1^x̃01uV2E00ux̃01&

2E20̂ w̃01uw̃01&. ~7.18!

These expressions do, at first glance, not agree with th
derived previously@30# from the expansion of the origina
Dirac equation. However, noting thatV andsW •AW commute,
and using the following identities that hold for exactw00 and
w01, the equivalence of the two sets of equations can
shown as
9-6
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~V2E00!w0052Tw00, ~7.19!

~V2E00!w0152Tw012~H12E01!w00. ~7.20!

The big advantage with respect to the previous formulat
@30# is that nowno sW •AW basis~as defined in the following
section! is needed for the expansion of the lower~small!
component, at least as long as we are only interested in
leading relativistic corrections to magnetic properties.

VIII. THE DIRAC EQUATION FOR ELECTRONS ONLY

A theory in terms of four-component spinors—as it
realized in the Dirac equation—is necessary, if one want
describe electrons and positrons at the same time. For e
tronsonly, a description in terms of two-component spino
is sufficient, in principle. Unfortunately, a simple and we
behaved theory in terms of two-component spinors for e
trons is not available in explicit form. There is, however,
implicit formalism. A solution of the Dirac equation de
scribes anelectronic stateif and only if the upper and lowe
components of the Dirac spinor satisfy the relation@33,34#

x5Xw ~8.1!

with the X solution of

X5
1

2c2 ~csW •pW 2@X,V#2cXsW •pW X!5
1

2c
sW •pW 1O~c23!.

~8.2!

For a positronic state the relation~8.1! has to be replaced
with

w52X†x ~8.3!

with the sameX. In the presence of a magnetic field on
must, for electrons, replace Eq.~8.1! with

x5Yw ~8.4!

with the Y solution of @30#

Y5
1

2c2 $csW •~pW 1bAW !2@Y,V#2cYsW •~pW 1bAW !Y%.

~8.5!

If we expandY in powers ofb, we get

Y5X1bY11O~b2!, ~8.6!

Y15
1

2c2 ~csW •AW 2@Y1 ,V#2cY1sW •pW X2cXsW •pW Y1

2cXsW •AW X!5
1

2c
sW •AW 1O~c23!, ~8.7!

x05Xw0 , ~8.8!

x15Xw11Y1w0 . ~8.9!
03210
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If one changesV, e.g., by anelectric ~diagonal! perturbation,
one also changesX. However, this change is only ofO(c22).
This means that this change ofX has neither an effect on th
nonrelativistic limit, nor on the leading relativistic correc
tion, which is expressible by means of the nonrelativis
wave function. OnlyE4, i.e., the second-order relativisti
correction is affected, as is known for ano-pair projection
with projectors for free particles.

A magnetic perturbationhas a much stronger effect. Th
change fromX to Y has even an influence on thenonrelativ-
istic energy. If in the presence of a magnetic perturbati
one keeps the relation~8.1! between the upper and lowe
components, instead of the correct one~8.4!, i.e., essentially
if one imposes thekinetic balance, one misses an importan
contribution to the perturbation, namely, the entirediamag-
netic term, even at thenonrelativistic limit.

In conventional relativistic four-component-spinor calc
lations, one useskinetic balance@13–15# to avoid thevaria-
tional collapse@18–24#, i.e., one expandsw in a basis$wk%
andx in the basis$sW •pW wk% ~for shortsW •pW basis!. The errors
that one then makes for the energy are of at mostO(c24). In
the presence of a magnetic field the natural generalizatio
the kinetic balance is tooffer the basis$sW •AW wk% (sW •AW ba-
sis!, in addition to thesW •pW basis, for the expansion ofx,
e.g., if one wants to determinec1 by making the Hylleraas
functional ~4.3! stationary.

Again one gets errors ofO(c24), while without the
sW •AW basis one makes errors ofO(c0). The sW •AW basis is
automatically included in DPT. This basis is not necessary
least not in the nonrelativistic limit, and with respect to t
leading relativistic corrections ofO(c22), if one uses the
transformedoperator discussed in Sec. V.

IX. FOCK-SPACE THEORY AND THE INFLUENCE OF A
PERTURBATION ON THE VACUUM

Let the Dirac operatorD have the positive eigenvalue
Wk

1 and the negative eigenvaluesWk
2 , and let the corre-

sponding eigenfunctions beck
1 andck

2 . We associate elec
tron creation and annihilation operatorsak

† and ak with the
ck

1 , as well as positron creation and annihilation operat
bk

† andbk with theck
2 . TheFock-space operator~in normal

order with respect to the vacuum ofDF)

DF5(
k

Wk
1ak

†ak2(
k

Wk
2bk

†bk ~9.1!

describes then a system of an arbitrary number of nonin
acting electrons and positrons. We write formally a sum,
if there are continuum eigenstates, the sum must be repla
with an appropriate integral. All eigenvalues ofDF are posi-
tive and roughly equal tonc2, where n is the number of
particles~electronsor positrons!. Thevacuumu0& is defined
as the state that contains no electron and no positron, i.e.
which

aku0&50; bku0&50. ~9.2!
9-7
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Obviouslyu0& is theground stateof DF with the eigenvalue
0:

DFu0&50. ~9.3!

Let us now consider the Fock-space Dirac Hamilton
DF(l) in the presence of a perturbation, measured by
strength parameterl. We write it in normal orderwith re-
spect to the unperturbed HamiltonianDF(0)5DF0. We need
not yet specify whether the perturbation is electric or m
netic. To stress this generality, we call, in this section,
perturbation parameterl, rather thanb.

DF~l!5DF01lDF1 , ~9.4!

DF05(
p

Wp0
1 ap

†ap2(
k

Wp0
2 bp

†bp , ~9.5!

DF15(
pq

Dpq
11ap

†aq1(
pq

Dpq
12ap

†bq
†1(

pq
Dpq

21bpaq

2(
pq

Dqp
22bp

†bq . ~9.6!

Obviously Wk0
1 and Wk0

2 are the eigenvalues ofDF0, while
Dpq

12 etc. are the matrix elements of the perturbationDF1 in
the basis of the eigenstates ofDF0. Now not only the
k-particle eigenstates ofDF(l), but even the vacuum stat
depends onl.

The vacuum stateu0& of DF satisfies

DFu0&5Evu0&. ~9.7!

We expand the vacuum state and its energy in powers of
perturbation parameterl

Ev5E0
v1lE1

v1•••; u0&5u00&1lu01&1•••. ~9.8!

SinceDF0 is in normal order with respect to theunperturbed
vacuumu00&, we haveE0

v50, and we get

DF0u00&5E0
vu00&50, ~9.9!

DF0u01&1~DF12E1
v!u00&50, ~9.10!

DF0u02&1~DF12E1
v!u01&2E2

vu00&50, ~9.11!

E1
v5^00uDF1u00&50, ~9.12!

E2
v5^00uDF1u01&. ~9.13!

Solutions of Eqs.~9.10! and ~9.13! are

u01&5(
p,q

~Wq0
2 2Wp0

1 !21Dpq
12ap

†bq
†u00&, ~9.14!

E2
v5(

p,q
Dqp

21~Wq0
2 2Wp0

1 !21Dpq
12 . ~9.15!
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The ~unobservable! vacuum energy—which shifts the entir
spectrum by a (l-dependent! constant—starts with a contri
bution of O(l2) and involves energy denominators that co
respond to electron-positron pair creations. ThatE2

v usually
diverges~unless we use a finite basis!, is in the tradition of
quantum field theory and is hardly worth mentioning. Ho
ever, it is worth noting that—for magnetic perturbations
the matrix elementsDpq

12 are of O(c) and henceE2
v is of

O(c0) and survives in the nonrelativistic limit. For electr
perturbations, the corresponding matrix elements are
O(c21) and hence the vacuum energy is ofO(c24), i.e.,
beyond the leading relativistic order.

We next consider one-electron states

~DF2Ev!uc r~l!&5Wr~l!uc r~l!&, ~9.16!

uc r~l!&5xr~l!u0&. ~9.17!

Since DF is not in normal order with respect to its ow
(l-dependent! vacuumu0&, but rather with respect tou00&,
the eigenvalue ofDF corresponding toc r5c r

1 is equal to
the observableeigenvalueWr5Wr

1 plus the vacuum energy
Ev. One gets rid of the latter, if one uses a Liouville form
lation

@DF ,xr #u0&5Wr uxr0&. ~9.18!

We can treat the Liouville equation by perturbation theo
and get

@DF0 ,x0
r #5Wr0x0

r , ~9.19!

@DF0 ,x1
r #1@DF1 ,x0

r #5Wr0x1
r 1Wr1x0

r , ~9.20!

@DF0 ,x2
r #1@DF1 ,x1

r #5Wr0x2
r 1Wr1x1

r 1Wr2x0
r

~9.21!

with solution

x0
r 5ar

† ; Wr15Drr
11 , ~9.22!

x1
r 5 (

p(Þr )
Dpr

11~Wr0
1 2Wp0

1 !21ap
†

1(
p

Dpr
21~Wr0

1 2Wp0
2 !21bp , ~9.23!

c1
r 5x1

r u00&1x0
r u01&5 (

p(Þr )
Dpr

11~Wr0
1 2Wp0

1 !21ap
†u00&

1(
p,q

Dpq
12~Wq0

2 2Wp0
1 !21ar

†ap
†bq

†u00&. ~9.24!

Obviously c1
r consists of two parts, one involving simpl

one-electron excitations, the other excitations accompan
9-8
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DIAMAGNETISM IN RELATIVISTIC THEORY PHYSICAL REVIEW A 67, 032109 ~2003!
by electron-positron paircreations. For the second-order e
ergy Wr2 we get again two contributions

Wr25^00uar~DF12E1!uc1
r &5^00uar~DF12E1!x1

r u00&

1^00uar~DF12E1!ar
†u01&. ~9.25!

The first term in the second line is just theparamagnetic
contribution

(
p

Drp
11~Wr0

1 2Wp0
1 !21Dpr

11 ~9.26!

while the second-term resembles expression~9.13! for the
second-order vacuum energyE2

v , just with (DF12E1) sand-
wiched byar . . . ar

† . We can rewrite this term as

^00uar@DF1 ,ar
†#u01&1^00uarar

†~DF12E1!u01&

5^00uar@DF1 ,ar
†#u01&1E2

v

5E2
v2(

p
Drp

21~Wp0
2 2Wr0

1 !21Dpr
12. ~9.27!

So the diamagnetic termarises because the creation of
particle in a statec r , in the presence of a magnetic field,
accompanied by a change of the vacuum that is assoc
with the magnetic field. In the expression~9.13! for the
vacuum, the contribution withq5r is missing, ifc r is oc-
cupied, and hence no longeravailable for electron-positron-
pair creations. This is a typicalexclusion effect.

If we apply ano-pair projectionto DF , i.e., if we remove
the part involving thebk and bk

† operators, as it has bee
suggested@35,36# for n-electron Hamiltonians, we ignor
both the induced vacuum energy and the diamagnetic te
completely, also those arising in the context of the Gaun
Breit interactions. This aspect appears to have been ign
so far.

The interpretation of diamagnetism as a change of
vacuum energy isphysicallyrather suggestive, but it shoul
be taken with great care. If we replace the original Dir
operator by the transformed one, the Fock space picture
the vacuum change completely. Then the modification of
vacuum energy due to the magnetic field is ofO(c24), as for
an electric perturbation.

In QED for bound states one defineselectrons in an ex-
ternal static electric field, which leads to a different vacuum
than that for free electrons. Probably one should treat a
external magnetic field similarly.

Remember that in this paper we only considersolutions of
the Dirac equationeven if this is formulated in a Fock-spac
language, as just done. If one wants to include radiative
rections, positronic states will always~independently of how
they are defined! be needed, e.g., in connection with th
vacuum polarization, but this is beyond the scope of t
paper.
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X. THE GORDON DECOMPOSITION OF THE CURRENT
DENSITY

Starting from the identity~for c eigenfunction ofD)

05~Dc!†baW c2c†baW Dc5~bc2c!†baW c2c†baW bc2c

1~caW •pW c!†baW c2c†baW caW •pW c1~bcaW •AW c!†baW c

2c†baW bcaW •AW c52c2c†aW c2~caW •pW c!†aW bc

2cc†baW aW •pW c22bcc†bAW c, ~10.1!

one arrives at the following decomposition of the curre
density jW @37#:

jW5cc†aW c5 1
2 ~pW c!†bc1 1

2 c†bpW c1 1
2 ~¹W c†!3sW bc

1 1
2 c†bsW 3~¹W c!1bc†bAW c5 1

2 Im$c†¹W bc%

1 1
2 curl$c†sW bc%1bc†bAW c ~10.2!

that formally differs from the nonrelativistic counterpart on
in the factorb. One can expand the current densityjW, both in
the original and in the Gordon form, in powers of the fie
strengthb:

jW5cc†aW c5 jW01b jW11O~b2!. ~10.3!

In the original form we get

jW05cc0
†aW c0 , ~10.4!

jW15cc0
†aW c11cc1

†aW c0 . ~10.5!

The corresponding expressions in the Gordon form are

jW05 1
2 Im$c0

†¹W bc0%1 1
2 curl$c0

†sW bc0%, ~10.6!

jW15 jW1p1 jW1d , ~10.7!

jW1p5Im$c0
†¹W bc1%1curl$Re@c0

†sW bc1#%, ~10.8!

jW1d5c0
†bAW c0 . ~10.9!

From Eqs.~10.7!–~10.9! one can evaluateW2 as @9#

W25
1

2E jW1•AW d3r 5W2p1W2d , ~10.10!

W2p5
1

2E jW1p•AW d3r

5
1

2
Rê c0u~AW •pW 1pW •AW !buc1&1Rê c0usW •curlAW buc1&

5Rê c0uD̃1uc1&, ~10.11!

W2d5
1

2E jW1d•AW d3r 5
1

2
^c0ubA2uc0& ~10.12!
9-9
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WERNER KUTZELNIGG PHYSICAL REVIEW A67, 032109 ~2003!
with D̃1 defined by Eq.~5.3!
We have writtenW2p and W2d to make clear that thes

expressions differ from similar onesW2
p , W2

d1, andW2
d2 de-

rived previously Eqs.~5.8!–~5.10!. The expression forW2p

is asymmetric. It involves the perturbation operatorD̃1, but
c1 is the response to the perturbationD1. This causes prob
lems with the interpretation ofW2p andW2d .

The most elegant way to arrive atsymmetricand hence
physically interpretable results is tocombinethe Gordon de-
composition with the unitary transformation. Let us, in Eq
~10.8! and ~10.11! eliminatec1, by means of Eq.~5.12! in
favor of c̃1:

jW1p5 jW1
p1 jW1

d2 , ~10.13!

jW1
p5Im$c0

†¹W bc̃1%1curl$Re@c0
†sW bc̃1#%, ~10.14!

jW1
d252

1

2c
Im$c0

†¹W a•AW c0%2
1

2c
curl$Re@c0

†sW a•AW c0#%,

~10.15!

W2p5W2
p1W2

d2 , ~10.16!

W2
p5

1

2E jW1
p
•AW d3r 5Rê c0uD̃1uc̃1&, ~10.17!

W2
d25

1

2E jW1
d2
•AW d3r 52

1

2c
Rê c0uD̃1baW •AW uc0&.

~10.18!

Now the quantitiesW2
p , W2

d2, andW2
d15W2p are the same a

those derived previously~5.8!–~5.10!. The decomposition of
the susceptibilityW2 into the contributionsW2

p , W2
d1, and

W2
d2 is completely parallel to the respective contributionsjW1

p ,

jW1
d1 and jW1

d25 jW1d to the current densityjW1.
One understands to some extent, why, coming from

Gordon decomposition of the current density@9#, one is
tempted to regardW2

d2 as belonging to the paramagnetic co

tribution, because in the Gordon decompositionjW1
d2 is con-

tained in jW1p .
Let us finally have a look at what one obtains, if o

decomposes the current density by means of the uni
transformation, without using the Gordon decomposition.
serting Eq.~5.12! into Eq. ~10.5! one gets

jW185 jW1p8 1 jW1d8 , ~10.19!

jW1p8 5cc0
†aW c̃11cc̃1

†aW c0 , ~10.20!

jW1d8 52
1

2
c0

†aW baW •AW c02
1

2
c0

†aW •AW baW c05c0
†bAW c0 ,

~10.21!

W25
1

2E jW1•AW d3r 5W2p8 1W2d8 , ~10.22!
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W2p8 5
1

2E jW1p•AW d3r 5Rê c0ucaW •AW uc̃1&5Rê c0uD1uc̃1&,

W2d8 5
1

2E jW1d•AW d3r 5
1

2
^c0ubA2uc0&. ~10.23!

Sincej 1d8 is the same asj 1d in Eq. ~10.9!, j 1p8 as given by Eq.
~10.20!, must be identical withj 1p8 defined by Eq.~10.8!.
Obviously we also get

W2p8 5W2p ; W2d8 5W2d . ~10.24!

W2p8 looks asymmetric in a way complementary toW2p . The
tilde is now onc1 rather than onD1. Using just the unitary
transformation we get essentially the same decompositio
jW1 as from the Gordon decomposition, but for a slightly d
ferent reason.~The two procedures disagree to higher ord
in b). Only the combination of the Gordon decompositio
and the unitary transformation leads to a physically satisf
tory breakdown of the current density, namely, into thr
parts jW1

p , jW1
d1, and jW1

d2.

XI. CONCLUSIONS

~1! An external magnetic field strongly affects the co
pling between upper~large! and lower~small! components,
w and x, respectively, of the Dirac spinor of an electro
This effect can be rationalized as~a! a change of the funda
mental relationx5Xw betweenw andx, ~b! a strong mixing
in of negative-energy states of the unperturbed Dirac op
tor, ~c! a change of the vacuum energy due to the magn
field by the presence of an electron.

~2! In the traditional formulation of the relativistic pertur
bation theory of magnetic effects, one first decouples e
tronic states from positronic states in the absence of the m
netic field, and makes afterwards an additional decoupling
the presence of the magnetic field. The approach sugge
here consists in removing the coupling due to the magn
field, to the leading order, already in the Dirac Hamiltoni
~by means of a unitary transformation! before one decouple
electronic states from positronic states. So there is no m
need for an additional decouplingat the end. This need arises
only in higher orders inc22, such as for electric perturba
tions.

~3! In the transformed operator diamagnetic and param
netic contributions arise explicitly,without a need to sepa
rate electronic states from positronic states at the same ti.
Actually there aretwo distinct diamagnetic contributions
one of which has no nonrelativistic counterpart. The tra
formed operator appears to simplify the evaluation of m
netic properties, since the diamagnetic contributions are
tained as expectation values of the wave function in
absence of the magnetic field.

~4! If one treats the relativistic corrections to magne
properties by means of direct perturbation theory~DPT!,
which means that one considerselectronic statesonly, the
nonrelativistic limit ~including the separation into diamag
netic and paramagnetic contributions! is automatically ob-
9-10
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DIAMAGNETISM IN RELATIVISTIC THEORY PHYSICAL REVIEW A 67, 032109 ~2003!
tained, and no serious problems arise with the relativi
corrections. In this context the use of thetransformedDirac
operator does not lead to dramatic changes, but it is likel
allow some simplifications.

~5! The explanation as well as the evaluation of the d
magnetic contributions to magnetic properties asdue to
negative-energy statesin a sum-over-statesformulation must
be regarded as obsolete, because the diamagnetic con
tions can be more easily evaluated without the need to
over contributions of negative-energy states. An expecta
value is usually preferable to a sum-over-states formulat

~6! The diamagnetic contributions obtained on the t
main ways discussed here do not agree exactly, except in
nonrelativistic limit. There is, of course, formal agreeme
between the expressions based on the sum-over-states fo
lation of the Dirac operator and the Fock-space approa
The full W2 is, anyway, independent of how one decompo
it into a diamagnetic and a paramagnetic part.

~7! Use of the Gordon decomposition of the current de
sity leads to the same results for the magnetic susceptib
as the unitary transformation of the Dirac operator, but i
much more indirect way. The two approaches are not enti
equivalent, and are even to some extent complementary
arrive at a physically meaningful decomposition of the
duced current density, one must combine the two approac
The Gordon decomposition by itself leads to a somew
counterintuitive definition of diamagnetic and paramagne
contributions to the susceptibility.

~8! If one does not want to choose the transformed Di
operator, one should, for the evaluation of magnetic prop
ties, use at least theaugmented kinetic balance, i.e., expand
em

m
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the small componentx in a combinedsW •pW andsW •AW basis.
~9! One may finally wonder whether one should care

the appropriate definition of the diamagnetic part of the m
netizability in relativistic theory, since a change of gau
affects its decomposition into a diamagnetic and a param
netic part. The answer is twofold:~a! The problem of the
appropriate definition arises for any chosen gauge, it is,
to-saygauge independent. ~b! As mentioned already in the
Introduction, there is often anatural gauge, e.g., for an atom
thenatural gauge originis at the position of the nucleus. Fo
this choice the paramagnetic contribution vanishes in
nonrelativistic limit. For molecules the best gauge is th
with distributed gauge origins, such as in the ansatz wit
London orbitals ~LO! @38#, also called gauge including
atomic orbitalsGIAOs, or theindividual gauge for localized
orbitals IGLO method@39#. The latter can be rationalized i
terms of anonlocal gauge transformation@40#. With these
distributed gauge originsone achieves, as for atoms in the
natural gauge, that the~positive! diamagnetic part ofE2 is
minimized, and that there is as little compensation as p
sible of spurious terms due to an inappropriate choice of
gauge. The approach presented here allows us to gener
this paradigm to the relativistic regime. Our conclusions
not affected by the fact that distributed gauge origins c
also be used in combination with the evaluation of diama
contributions in terms of negative-energy states@6#.
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@28# J.M. Lévy-Leblond, Commun. Math. Phys.6, 286 ~1967!.
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