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Geometric phases for nondegenerate and degenerate mixed states
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This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze
both nondegenerate as well as degenerate states. Starting with the nondegenerate case, we show that the usual
procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states,
does not hold for mixed states. To this end, we furnish an expression for the geometric phase that is gauge
invariant. The parallelity conditions are shown to be easily derivable from this expression. We also extend our
formalism to states that exhibit degeneracies. Here with the holonomy taking on a non-Abelian character, we
provide an expression for the geometric phase that is manifestly gauge invariant. As in the case of the
nondegenerate case, the form also displays the parallelity conditions clearly. Finally, we furnish explicit
examples of the geometric phases for both the nondegenerate as well as degenerate mixed states.
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I. INTRODUCTION

The notion of geometric phases was first addressed
Pancharatnam@1#, in his pioneering effort to compare th
phases of two beams of polarized light. Although, his tre
ment was essentially classical, the notion of geome
phases was later shown to have important consequence
quantum systems. Indeed, Berry@2#, demonstrated tha
quantum-mechanical systems could also acquire phases
are geometric in nature. He showed that, besides the u
dynamical phase, an additional phase that was related to
geometry of the state space was generated during an
batic evolution. Soon after, this phase was shown to be
cisely the holonomy in a line bundle, establishing an ev
stronger link to the geometry of the state space. Essenti
Simon @3# furnished an elegant geometrical interpretation
Berry’s phase in which he considered a line bundleL over
the space of parametersM of the system. More precisely,
was shown thatL, if endowed with a particular connection
can reproduce the Berry’s phase when closed loops inM are
lifted with respect to this connection.

It was subsequently shown that the adiabatic condit
could be relaxed by considering the holonomy of a U(
bundle over the projective Hilbert space of the underly
system. By appealing to the notion of gauge invariance, A
ranov and Anandan@4# showed that one could define a pha
that was the same for all gauge-equivalent paths. The ga
equivalent paths, here refer to the infinite number of poss
evolutions~curves in the Hilbert space of the system! that
project to a given closed curve in the projective Hilbert spa
of the system.

The Abelian nature of the holonomy was also shown to
extendible to the non-Abelian ones. Wilczek and Zee@5#
showed that for Hamiltonians that exhibited degenerac
the adiabatic evolution admitted holonomies that were g
erally non-Abelian. The nonadiabatic generalization of t
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was subsequently furnished by Anandan@6#.
It is interesting to note that the notion of geometric pha

has taken on an important role in the area of quantum c
putation @7#. Indeed, it has been demonstrated that one
implement quantum logic gates based solely on the con
of geometric phase. The geometrical nature of the ph
makes such a realization fault tolerant and thus more rob
towards noise. The application has also been proposed w
the context of non-Abelian holonomies. Termed holonom
quantum computation, the program provides an a
geometrical approach to quantum information processing@8#.

While many of the propositions in this area has been c
tered around pure states, the need to address the issu
geometric phase for mixed states is rapidly gaining pro
nence. Systems that are interacting with other systems,
environment for instance, are generally described by mi
states. Again, the strong focus in this area is fueled by
promise of realizing quantum logic gates under more rea
tic physical conditions.

Now, among the first to introduce the notion of geomet
phase for mixed states was Uhlmann@9#. By considering a
purification and the notion of parallelity, he furnished a de
nition for the geometric phase for mixed quantal states.
cently Sjöqvist et al. @10# have introduced a different formal
ism that defines the geometric phase in the context
quantum interferometry. Using the standard setup of
Mach-Zender interferometer, they provided a procedure
calculating the geometric phase of mixed state undergo
unitary evolutions. They have also furnished the necess
and sufficient conditions for parallel transporting mixe
states under such evolutions.

Recently, it was pointed out in Ref.@11# that the two
approaches, in general, are not equivalent. More rece
Ericcsonet al. @12# have shown that the conditions of para
lelity used in the two approaches lead to generically disti
phase holonomy effects for entangled systems underg
certain local unitary transformations.

In this paper, we consider the geometric phase of gen
mixed states under unitary evolution. Here we consider b
nondegenerate as well as degenerate states. Starting wit
nondegenerate case, we show that the removal of the
al
©2003 The American Physical Society06-1
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namical phase from the total phase is not a trivial subtrac
as is the case for pure states. In particular, we show that
a procedure is generally not gauge invariant. We then p
ceed to furnish an expression that is manifestly gauge inv
ant. The parallelity conditions are shown to be easily de
able from this expression. We also extend our formalism
states that exhibit degeneracies. Parallelity conditions
such states are also obtained. Finally, we furnish explicit
amples of the geometric phases for both the nondegene
as well as degenerate mixed states.

II. THE NONADIABATIC GEOMETRIC PHASE

In this section we begin by briefly reviewing some ba
facts about the nonadiabatic geometric phase. Here, we
concentrate on the Abelian case, starting with pure st
~Refs,@4,13,14#!. We begin by considering a quantum syste
Swith states belonging to the Hilbert spaceH. The space of
physical states corresponds to the nonzero vectors inH that
are rendered equivalent under the relation

uc1&;uc2& iff uc2&5eiuuc1&, ~1!

whereu is any real number. Technically, for ann-state sys-
tem with dim(H)5n this space is simply a complex proje
tive space of dimension (n21):

P~H!5
H2$0%

C2$0%
[CPn21. ~2!

In the language of fiber bundles, the construct of inter
is a principal bundle overP(H) with a fiber that is isomor-
phic to U(1). Here the bundle spaceP corresponds to the
space of normalized state vectorsH2$0% with a natural pro-
jection

p:P→P~H![M realized through p:uc&→uc&^cu.
~3!

Now the unitary evolution of the state vector

uc~0!&→uc~ t !&5U~ t !uc~0!& ~4!

produces a pathC:@0,t#→P in the bundle space. This i
dictated by the Hamiltonian via the Schro¨dinger equation.
The corresponding pathC0 in the space of physical states
obtained by projecting the pathC through the mapp, i.e.,
p(C)5C0. Moreover, we say that the evolution is cyclic
the path in M is closed; i.e., if uc(t)&^c(t)u5
uc(0)&^c(0)u. It is important to note that there are an in
nite number of paths inP that project to the same path inM.
Indeed, if C and C8 are given by uc(t)& and uc8(t)&
5ei f (t)uc(t)&, respectively for any arbitrary real functio
f (t), then it is easy to see that they define the same pathC0
in M under the projectionp. For a cyclic evolution, the
total phase acquired corresponds to an element of the
i.e., eifTPU(1). Thetotal phasefT , here, being the argu
ment of ^c(0)uc(t)&:

fT@C#5arg$^c~0!uc~t!&%5arg$^c~0!uU~ t !uc~0!&%.
~5!
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In general, this depends on the pathC taken in the bundle
spaceP, which in turn, is defined byU(t). This is reminis-
cent of the Pancharatnam analysis that compares the rel
phase between two states. Aharonov and Anandan@4#
showed that if a quantity~called the dynamical phase!

fD@C#52E
0

t

^c~ t !uHuc~ t !&dt

52 i E
0

t

^c~0!uU~ t !†U̇~ t !uc~0!&dt ~6!

is subtracted from the total phase, Eq.~5!, then the resulting
term

fG5arg$^c~0!uU~ t !uc~0!&%

1 i E
0

t

^c~0!uU~ t !†U̇~ t !uc~0!&dt ~7!

turns out to be a functional ofC0 only. This is the notion of
gauge invariance as emphasized in Ref.@13#. Since the path
C in P from a given intial stateuc(0)& is solely determined
by U(t) we can label the path by the latter. Here the sta
ment of gauge invariance for the geometric phase for
paths differing by a U(1) phase reads as

fG@U~ t !ei f (t)#5fG@U~ t !# ~8!

for any arbitrary real functionf (t). Thus Eq.~7! furnishes a
gauge-invariant expression for the geometric phase of a p
state. It is worth noting that arbitrariness off (t) allows one
to impose a condition known as the parallel transport con
tion:

^c~0!uU~ t !†U̇~ t !uc~0!&50, ~9!

which renders the dynamical phase zero. Under this co
tion the geometric phase is just the total phase.

For mixed states, Sjo¨qvist et al. @10# showed that the tota
phase acquired by the system under unitary evolution
natural generalization of the pure-state case. Indeed, by
sidering a Mach-Zender interferometer, in which the interf
ing particles carry an additional degree of freedom~for
which the state is mixed!, they showed that under a unitar
evolution

r~0!→r~t!5U~t!r~0!U~t!† ~10!

the interference pattern of the intensity profile takes the fo
of

I}11uTr@U~t!r~0!#ucos@x2arg$Tr„U~t!r~0!…%#.
~11!

Herex is a variable relative U(1) phase in one of the inte
ferometer beams. From the shift in the interferometric p
tern, they surmised that the total phase acquired by a m
state under unitary evolution is

gT5arg$Tr@U~t!r~0!#%. ~12!
6-2



ta

r
th

n

te
o

n-
d

ar

s
ct
st
a
s
W

He
a
t
ls

t
he

an
oing
tes
tate
are

all
tart
ing

rical
ch
ap-
up

ted

n is

t of
ture.
,

r a

at
this

he
r

m
uge
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In a basis in which the density matrixr(0) is expressed as

r~0!5 (
k51

N

vkuk&^ku, dim~H!5N, ~13!

the total phase is just the weighted sum of the pure-s
phases:

gT5arg$Tr@U~t!r~0!#%5argH (
k51

N

vk^kuU~t!uk&J .

~14!

In Ref. @10#, the parallel transport condition fo
nondegenerate state was imposed by requiring
Tr@r(t)U(t1dt)U(t)†# be real and positive which in turn
leads to

Tr@r~ t !U̇~ t !U~ t !†#[Tr@r~0!U~ t !†U̇~ t !#50 ~15!

or equivalently

(
k51

N

vk^kuU~ t !†U̇~ t !uk&50. ~16!

Under this condition the dynamical phase

gD52E
0

t

dtTr@r~ t !H~ t !#52 i E
0

t

dtTr@r~0!U~ t !†U̇~ t !#

~17!

vanishes identically. It is important to note that if conditio
~16! is not met then the dynamical phase term in Eq.~17!
cannot be removed from the total phase term, Eq.~14! by a
simple subtraction; since the latter is defined by a weigh
sum of phase factors while the former is a weighted sum
phases. The authors of Ref.@10# have also asserted that co
ditions ~15! or ~16! while necessary, is not sufficient. Instea
they proposed stronger conditions

^kuU~ t !†U̇~ t !uk&50 ;k51,2, . . . ,N ~18!

in which all the constituent pure states in the mixture
required to be parallel transported independently.

In the following section we elucidate the nature of the
conditions. In particular, we furnish these by first constru
ing an expression for the geometric phase that is manife
gauge invariant. This is first done for the nondegenerate c
in which we show that the removal of the dynamical pha
requires the use of the stronger conditions noted above.
also extend our analysis to states that are degenerate.
we also provide a generalized version of the geometric ph
that is applicable when the state is multiply degenera
The corresponding parallel transport conditions are a
furnished.

III. GAUGE-INVARIANCE AND HOLONOMY
IN MIXED STATES

To address the issue of gauge invariance in the contex
holonomy for mixed states, it is instructive to consider t
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approach of Boyaet al. @15# Here one considers the little
group of a particular mixed state density matrix, which c
be taken as the gauge group for the system that is underg
unitary evolution. It should be noted that the space of sta
accessible through unitary evolutions from a reference s
does not cover the entire state space. For instance, if we
considering a spin-1

2 system, the state space consists of
points on and inside the Bloch sphere. However, if we s
with a particular mixed state and assume that it is undergo
unitary evolution then the accessible states lie on a sphe
shell with radius equal to the magnitude of the initial Blo
vector. In determining the relevant bundle structure, we
peal to an important theorem for spaces with transitive gro
action. Essentially, it is well known that if a groupG acts
transitively on a spaceM then for eachxPM there is a
bijection betweenG/Gx andM, whereGx denotes the little
group or the stability group at the pointx @16#. For the prob-
lem at hand, we are interested in the little group associa
with the density matrix at timet50. The theorem basically
assures us that the orbit space under unitary evolutio
isomorphic to the coset space,G/Gx . More importantly, if
the little group is closed then (G, Gx , p, G/Gx), where
p:G→G/Gx is the canonical map that sends each elemen
the group to the cosets, serve to define a bundle struc
Here G is taken as the bundle space,G/Gx the base space
Gx the fiber andp the projection.

To carry the analysis further, it is instructive to conside
density matrix in its diagonal basis~13!. Let us start with the
case in which theN-state density matrix has eigenvalues th
are distinct, i.e., nondegenerate. Then the little group in
case is simply

~19!

where$un%n51,2, . . . ,N are arbitrary parameters or phases. T
groupG in this context is U(N). It is easy to see that unde

U~ t !PU~N!→U8~ t !5U~ t ! (
n51

N

eiun(t)un&^nu ~20!

the orbit of the density matrix remains unchanged:

r~0!→r8~ t !5U8~ t !r~0!U8~ t !†5U~ t !r~0!U~ t !†5r~ t !.
~21!

In other words, there are infinite number of orbits inG that
correspond to same path forr(t). Now, unlike the pure-state
case@see Eq.~7!#, the removal of the dynamical phase fro
the total phase does not render the resulting functional ga
invariant. Indeed under gauge transformation~20! total phase
~14! transforms as

gT→gT85arg$Tr@r~0!U8~t!#%

5argH(
k

vk^kuU~t!uk&eiuk(t)J ,

~22!
6-3
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while dynamical phase~17! transforms as

gD→gD8 52 i E
0

t

dtTr@r~0!U8~ t !†U̇ 8~ t !#

52 i E
0

t

dtTr@r~0!U~ t !†U̇~ t !#

1(
k

vkuk~t!. ~23!

It is evident from Eqs.~22! and~23! that theu dependence in
total phase cannot be removed by simply subtracting the
namical phase term. It is also easy to see that only in
pure-state case, with only one nonzerov, do we have gauge
invariance.

To alleviate this problem we propose a functional, of t
following form:

gG@U#5argH(
k

Fvk^kuU~t!uk&

3expH 2E
0

t

dt^kuU~ t !†U̇~ t !uk&J G J , ~24!

which is manifestly gauge invariant@as in Eq.~7!#. Indeed,
theu term generated in Eq.~22! under gauge transformatio
~20! is exactly canceled by a term arising from the expon
tial term in Eq.~24!. It is easy to check that the above e
pression corresponds to the geometric phase in the case
the state is pure. Gauge invariance also assures us tha
expression depends only on the path in the state space.
expression, thus furnishes us with a gauge-invariant de
tion for the geometric phase of mixed states that are non
generate. It is worth noting that when stronger conditio
~18! are imposed the resulting expression is nothing but
original total phase term, which means, they are justifia
parallel transport conditions; since only under parallel tra
port is the geometric phase the same as the total phase

The above analysis holds only for mixed states that
nondegenerate. For degenerate mixed states, it is well kn
that the holonomy group can take on a non-Abelian chara
@15#. To this end, let us consider a density matrix that has
following diagonal form:

r~0!5 (
k51

N

vkuk&^ku ~25!

in which n of the eigenvalues are degenerate, i.e.,v15v2
5•••5vn with the rest distinct. Here the Hilbert spaceH
can be regarded as the direct sum of two subspacesHn
% Hm of dimensionsn and m5N2n. The little group of
r(0) is non-Abelian and has the following form:

~26!

or in the$uk&%k51,2, . . . ,N basis it takes the form
03210
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V~ t !5S ~a~ t !!

S eibn11(t)

�

eibN(t)
D D . ~27!

Here the only nonzero terms are the elements ofa, an
n3n unitary submatrix and exponential of theb ’s along the
diagonal (m3m) submatrix. It is easy to see that under
gauge transformation

U~ t !→U8~ t !5U~ t !V~ t ! ~28!

the path taken by the density matrix remains unchanged.
worth noting that, since bothU(t) and U8(t) are the time
evolution unitary operators for the system, we must requ
that U(0)5U8(0)51. As a consequence, the element of t
little group V(t) must also satisfyV(0)51. Now, consider
the total phase term~14! under such a transformation

gT→gT85arg$TrH@r~0!U8~t!#%

5argH(
k

vk^kuU~t!V~t!uk&J .

~29!

Following the nondenegerate case, we note that in constr
ing a gauge-invariant functional an expression of the form

g@U#5arg$TrH„r~0!U~t!F@U;t#…% ~30!

with a functionalF@U;t# that transforms as

F@U;t#→V~t!†F@U;t# ~31!

under a gauge transformation would be required.
identify this functional, we first observe that in th
nondegenerate case, the corresponding functio
exp$2*0

tdt̂ kuU(t)†U̇(t)uk&% can be obtained by fixing theu
terms in general evolution matrix~20! through conditions
~18! for U8. This yields

uk~ t !5 i E
0

t

dt8^kuU~ t8!†U̇~ t8!uk&, k51,2, . . . ,N,

~32!

which upon substitution into Eq.~20! leads to the required
form. In the degenerate case, we haven21m arbitrary pa-
rameters that need to be fixed;n2 for the a matrix andm
parameters corresponding to theb ’s. We can do this by im-
posing

^muU8†U̇ 8un&50, m,n51,2, . . . ,n,

^kuU8†U̇ 8uk&50, k5n11,n12, . . . ,N, ~33!

where we have defined basis vectors$um&%m51,2, . . . ,n and
$uk&%k5n11,n12, . . . ,N to designate subspacesHn andHm , re-
spectively. With
6-4
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U85U~ t !S ~a~ t !!

S eibn11(t)

�

eibN(t)
D D . ~34!

Conditions~33! lead to the following equations:

ȧmn~ t !52~U~ t !†U̇~ t !!mlaln~ t !, ~35!

ḃk~ t !5 i ~U~ t !†U̇~ t !!kk , ~36!

whereamn are the elements of thea matrix. Equations~35!
and ~36! can be formally integrated to yield

amn@U;t#5K mUP exp2E
0

t

dt8U~ t8!†U̇~ t8!UnL ,

m,n51,2, . . . ,n, ~37!

bk@U;t#5 i E
0

t

dt8^kuU~ t8!†U̇~ t8!uk&,

k5n11,n12, . . . ,N, ~38!

where P denotes path ordering. We can now choose

F@U;t#5S ~a@U;t#!

S eibn11[U;t]

�

eibN[U;t]
D D .

~39!

It is worth noting thatF@U;t# is block diagonal in the chose
basis and that it can be written as direct sum form

F@U;t#5FHn
@U;t# % FHm

@U;t# ~40!

with FHn
@U;t#5a@U;t# and FHm

@U;t#

5diag(eibn11[U;t] ,eibn12[U;t] , . . . ,eibN[U;t] ).
We next demonstrate that expression~30! is gauge invari-

ant. Indeed, under

U→U85U~ t !S ~V1~ t !!

S eiun11(t)

�

eiuN(t)
D D ,

~41!

whereV1(t) is an arbitraryn3n unitary matrix, we note tha

FHn
@U;t#→V1~t!†FHn

@U;t#, ~42!

FHm
@U;t#→diag~eiun11(t),eiun12(t), . . . ,eiuN(t)!†

3FHm
@U;t#, ~43!
03210
which implies thatg@U#→g@U8#5g@(U)# ~see the Appen-
dix for details!. Thus expression~30! furnishes a natural gen
eralization of the geometric phase for a degenerate mi
state. It is easy to see that conditions~33! here serve as the
parallelity conditions.

It is interesting to note that the above analysis can
extended to density matrices that are multiply degener
For instance ifr(0) has eigenspacesH1 , H2 , . . . ,Hm with
degeneraciesn1 , n2 , . . . , nm respectively, then the Hilber
space of the system can be written as a direct sum of de
erate subspaces:

HN5H1% H2% •••% Hm with N5 (
k51

m

nk . ~44!

The correspondingF functional forHN can also be written
as the direct sum ofF functionals define on the subspace

FHN
@U,t#5FH1

@U,t# % FH2
@U,t#,% , . . . ,% FHm

@U,t#,
~45!

where the components ofFHk
@U,t# are given by

FHk
@U,t#mknk

5K mkUP exp2E
0

t

dtU~ t !†U̇~ t !UnkL ,

mk ,nk51,2, . . . ,dim~Hk! ~46!

if dim (Hk)Þ1 and

FHk
@U,t#5expH 2E

0

t

dt^mkuU~ t !†U̇~ t !umk&J ~47!

otherwise. The geometric phase is then calculated dire
from

g@U#5arg$TrHN
„r~0!U~t!FHN

@U;t#…%. ~48!

IV. EXPLICIT EXAMPLES

In this section we furnish explicit examples of the ge
metric phase for both the nondegenerate as well as the
generate mixed states. We begin with the nondegene
case. To this end, we consider the simplest case of a sp1

2

system with a density matrix given by

r5
1

2
~11r•s!, ~49!

wherer is a three-dimensional Bloch vector ands the Pauli
matrices. For the purpose of computation, we set the Bl
vector of the initial state to be (r sinu,0,r cosu), i.e.,

r~0!5
1

2 S 11r cosu r sinu

r sinu 12r cosu D . ~50!

If we subject the system to a unitary evolution
6-5
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r~0!→r~ t !5U~ t !r~0!U~ t !† with U~ t !5expS 2
i t

2
s3D
~51!

the Bloch vector precesses about thez axis ~at a constant
polar angle ofu). For cyclic evolution, the parametert takes
values@0,2p#. Now, matrix ~46! can be diagonalized as

r~0!5
1

2 S 11r 0

0 12r D ~52!

with respect to its eigenvectors

u1&5S cosu

sinu D , u2&5S sinu

2cosu D . ~53!

In Eq. ~52! we assume 0,r ,1. The geometric phase ca
obtained by evaluating Eq.~24!

gG@U#5argF2S 11r

2 Deip cosu2S 12r

2 De2 ip cosuG
~54!

52arctanS r tan
V

2 D , ~55!

whereV52p(12cosu) is the solid angle subtended by th
Bloch vector. It is interesting to note that the same expr
sion has been furnished in Ref.@10#, where parallel transpor
conditions were employed. Here we have obtained the g
metric phase without the need for such conditions.

We now turn to the degenerate case. Here we choo
three-state density matrix given by

r5
1

3 S 11(
i 51

8

r il i D , ~56!

where$r i% are the components of an eight dimensional v
tor and$l i% are the generators of SU(3):
03210
s-

o-

a

-

l15F 0 1 0

1 0 0

0 0 0
G , l25F 0 2 i 0

i 0 0

0 0 0
G ,

l35F 1 0 0

0 21 0

0 0 0
G , l45F 0 0 1

0 0 0

1 0 0
G ,

l55F 0 0 2 i

0 0 0

i 0 0
G , l65F 0 0 0

0 0 1

0 1 0
G ,

l75F 0 0 0

0 0 2 i

0 i 0
G , l85

1

A3 F 1 0 0

0 1 0

0 0 22
G .

For definiteness we choose the initial state to be

r~0!5F v 0 0

0 v 0

0 0 122v
G with 0,v,

1

2
. ~57!

Here the degeneracy is manifest with the little group giv
by U(2)3U(1). It is interesting to note that in the abov
basis for the SU(3) generators, the subgroup SU(2)3U(1)
is spanned by$l1 , l2 , l3 , l8%.

For an explicit evaluation of the geometric phase we c
sider a unitary matrix of SU(3) given by

U~ t !5e2 i tX, where X5al81bl4 , ~58!

wherea andb are arbitrary real parameters. In a matrix form
we have
U~ t !5e( iat/2A3)F c cos
ct

2
2 iA3a sin

ct

2
0

22bi

a
sin

ct

2

0 e
2 iA3a t

2 0

22bi

a
sin

ct

2
0 c cos

ct

2
1 iA3a sin

ct

2

G , ~59!

wherec5A3a214b2. The cyclicity conditions can be obtained by restrictingt to lie within the interval@0,t#, wheret is
evaluated by requiring thatr i(t)5r i(0) with

r i~ t !5
3

2
Tr@r~ t !l i # ~60!

5
3

2
Tr@U~ t !r~0!U~ t !†l i #. ~61!

For theU matrix considered above, we have
6-6
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t5
2pn

c
, nPZ. ~62!

In the following we restrict ourselves ton51. With this established, theF matrix can be evaluated and it takes the form

F@U;t#5e(2 iat/2A3)F c cos
c t

2
1 iA3a sin

c t

2
0 0

0 e( iaA3 t/2) 0

0 0 e(2 iaA3t/2)

G ~63!
a rre-

in-

rix,
with which the geometric phase follows by a direct evalu
tion of Eq. ~30!:

gG@U#5arctanS sinS arctanF1

k
tanfG D

2v

2v21
1cos~arctan@k tanf#!

D ,

~64!

where

k5
A3a

c
and f5

p22c

cA3
. ~65!
o
r

th
ed

. T
t
ro

th
n

sit
ra
h
w

03210
-In passing, we emphasize that a gauge transformation co
sponding to any element of the little groupV
PU(2)3U(1) leaves the geometric phase invariant. For
stance, if we had choosen

U8~ t !5U~ t !e2 idl1t, ~66!

which corresponds to a gauge transformed unitary mat
then theF matrix takes the form
F@U8,t#5
e(2 iat/2A3)

c F S aA3i sin
ct

2
1c cos

ct

2 D cos~dt! S aA3 sin
ct

2
2 ic cos

ct

2 D sin~dt! 0

2 ice( iatA3/2)sin~dt! ce( iatA3/2)cos~dt! 0

0 0 ce(2 iatA3/2)

G . ~67!
n-
d
the
ro-
ani-
rate
are

tric
erate

id-
this
o.

-

Evaluation of the geometric phase yields expression~64!,
thereby demonstrating the gauge invariance of Eq.~30!.

V. CONCLUDING REMARKS

To summarize briefly, we have considered the issue
phase holonomy of both nondegenerate and degene
mixed states undergoing unitary evolution. Starting with
nondegenerate case, we have shown that the usual proc
of subtracting the dynamical phase from the total phase
yield the geometric phase, does not hold for mixed states
this end, we have furnished an expression for the geome
phase that is gauge invariant. In other words, unlike the p
cedure given in Ref.@10#, we do not have to invoke the
parallelity conditions to obtain the geometric phase from
total phase. In fact an obvious statement of gauge invaria
is that any unitary matrix that realizes a path for the den
matrix will yield a value that depends only on the path t
versed in the state space. Moreover the form presented
also exhibits the parallelity conditions clearly. In essence,
f
ate
e
ure
to
o

ric
-

e
ce
y
-
ere
e

have provided an explicit justification to the sufficient co
ditions furnished in Ref.@10#. The analysis is also extende
to cover states that may exhibit degeneracies. Here with
holonomy taking on a non-Abelian character, we have p
vided an expression for the geometric phase that is m
festly gauge invariant. As in the case of the nondegene
case, the form also displays the parallelity conditions that
shown to be generalizations of those provided in Ref.@10#.
We have also furnished explicit examples of the geome
phases for both the nondegenerate as well as degen
mixed states.
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APPENDIX

In this appendix we show that, for a gauge transformat
of the form~41!, the expression for geometric phase Eq.~30!
remains unchanged. We proceed to prove this by establis
a few lemmas.

Lemma 1a.Let X1@U;t# and X2@U;t# be submatrices o
r0U(t) associated with the subspacesHn and Hm , respec-
tively:

X1@U;t#mn5@r0U~t!#mn5^mur0U~t!un&,

m,n51,2, . . . ,n,

X2@U;t# i j 5@r0U~t!# i j 5^ i ur0U~t!u j &,

i , j 5n11,n12, . . . ,N,

then

TrH@r0U~t!F@U;t##5TrHn
~X1@U;t#FHn

@U;t#!

1TrHm
~X2@U;t#FHm

@U;t#!.

Proof. The result follows immediately by taking

TrH@r0U~t!F@U;t##5 (
m51

n

^mur0U~t!F@U;t#um&

1 (
j 5n11

N

^ j ur0U~t!F@U;t#u j &

and noting thatF@U;t# is block diagonal@see Eq.~39!#.
Lemma 1b. Under a gauge transformation~41!, the sub-

matricesX1@U;t# andX2@U;t# transform as follows:

X1@U;t#→X1@U8;t#5X1@U;t#V1~t!,

X2@U;t#→X2@U8;t#

5X2@U;t#diag~eiun11(t),eiun12(t), . . . ,eiuN(t)!.

Proof. This again follows from the block diagonal form o
V(t).

Lemma 2a.Under gauge transformation~41!, FHm
@U;t#

transforms as

FHm
@U;t#→FHm

@U8;t#

5diag~eiun11(t),eiun12(t), . . . ,eiuN(t)!†FHm
@U;t#.

Proof. In proving this result, we will begin with Eq.~36!.
Now underU(t)→U8(t)5U(t)V(t) we have

ḃk8~ t !5 i @U8~ t !†U̇8~ t !#kk5 i @V †~ t !U~ t !†@U̇~ t !V~ t !

1U~ t !V̇~ t !##kk5 i @U~ t !†U̇~ t !#kk2 u̇k ,

k5n11,n12, . . . ,N.

This in turn implies that

d

dt
@bk81uk#5 i @U~ t !†U̇~ t !#kk5

d

dt
@bk#
03210
n

ng

from which we surmise that

bk85bk2uk1jk ,

wherejk is an arbitraryt-independent term. This term, how
ever, vanishes when we impose initial conditionsbk(0)
5bk8(0)50 together withuk(0)50. Thus, we have for the
F matrix

FHm
@U8;t#5diag~eibn118 (t),eibn128 (t), . . . ,eibN8 (t)!

5diag~eiun11(t),eiun12(t), . . . ,eiuN(t)!†FHm
@U;t#,

which completes the proof.
Lemma 2b. Under gauge transformation~41!, FHn

@U;t#

transforms as

FHn
@U;t#→FHn

@U8;t#5V1~t!†FHn
@U;t#.

Proof. We first note that underU(t)→U8(t)5U(t)V(t),
A[U(t)†U̇(t) transforms as

A→A85U8~ t !†U̇8~ t !5V †AV1V †V̇.

RestrictingA to the subspaceHn , the n3n submatrixÃ
with componentsÃmn5^muAun& transforms as

Ã→Ã85V 1
†ÃV11V 1

†V̇1 .

Then from Eq.~35!, with U→U8,

ȧ852Ã8a852~V 1
†ÃV11V 1

†V̇1!a852V 1
†~ÃV11V̇1!a8

and thus

d

dt
@V1a8#52ÃV1a8.

As a consequence of Eq.~35!, we note that

V1a85aV0⇒a8~ t !5V 1
†~ t !a~ t !V0 ,

whereV0 is a t independent but otherwise, arbitrary nonsi
gularn3n matrix. As in the preceding lemma, this arbitrar
ness is removed when we invoke the initial conditio
a8(0)5a(0)51, together withV1(0)51. As a resultV0
51 and we have

FHn
@U8;t#5a8~t!5V1~t!†a~t!5V1~t!†FHn

@U;t#,

which furnishes the desired result.
The gauge invariance of the geometric phase then follo

immediately from the above lemmas:

g@U8#5arg$TrH„r0U8~t!F@U8;t#…%

5arg$TrHn
~X1@U8;t#FHn

@U8;t#!

1TrHm
~X2@U8;t#FHm

@U8;t#!%

5arg$TrHn
~X1@U;t#FHn

@U;t#!

1TrHm
~X2@U;t#FHm

@U;t#!%

5arg$TrH„r0U~t!F@U;t#…%5g@U#.
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