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Geometric phases for nondegenerate and degenerate mixed states
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This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze
both nondegenerate as well as degenerate states. Starting with the nondegenerate case, we show that the usual
procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states,
does not hold for mixed states. To this end, we furnish an expression for the geometric phase that is gauge
invariant. The parallelity conditions are shown to be easily derivable from this expression. We also extend our
formalism to states that exhibit degeneracies. Here with the holonomy taking on a non-Abelian character, we
provide an expression for the geometric phase that is manifestly gauge invariant. As in the case of the
nondegenerate case, the form also displays the parallelity conditions clearly. Finally, we furnish explicit
examples of the geometric phases for both the nondegenerate as well as degenerate mixed states.
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I. INTRODUCTION was subsequently furnished by Anandén
It is interesting to note that the notion of geometric phases

The notion of geometric phases was first addressed blas taken on an important role in the area of quantum com-
Pancharatnanpl], in his pioneering effort to compare the putation[7]. Indeed, it has been demonstrated that one can
phases of two beams of polarized light. Although, his treatimplement quantum logic gates based solely on the concept
ment was essentially classical, the notion of geometriof geometric phase. The geometrical nature of the phase
phases was later shown to have important consequences figrakes such a realization fault tolerant and thus more robust
quantum systems. Indeed, Berf], demonstrated that towards noise. The application has also been proposed within
quantum-mechanical systems could also acquire phases the context of non-Abelian holonomies. Termed holonomic
are geometric in nature. He showed that, besides the usugliantum computation, the program provides an all-
dynamical phase, an additional phase that was related to thgometrical approach to quantum information processhg
geometry of the state space was generated during an adia- While many of the propositions in this area has been cen-
batic evolution. Soon after, this phase was shown to be preered around pure states, the need to address the issue of
cisely the holonomy in a line bundle, establishing an everyeometric phase for mixed states is rapidly gaining promi-
stronger link to the geometry of the state space. Essentiallyyence. Systems that are interacting with other systems, the
Simon[3] furnished an elegant geometrical interpretation ofenvironment for instance, are generally described by mixed
Berry's phase in which he considered a line bunidlever  states. Again, the strong focus in this area is fueled by the
the space of parametek$ of the system. More precisely, it promise of realizing quantum logic gates under more realis-
was shown that, if endowed with a particular connection, tic physical conditions.
can reproduce the Berry’s phase when closed loop4 are Now, among the first to introduce the notion of geometric
lifted with respect to this connection. phase for mixed states was Uhlmaf#. By considering a

It was subsequently shown that the adiabatic conditiorpurification and the notion of parallelity, he furnished a defi-
could be relaxed by considering the holonomy of a U(1)nition for the geometric phase for mixed quantal states. Re-
bundle over the projective Hilbert space of the underlyingcently Sjajvistet al.[10] have introduced a different formal-
system. By appealing to the notion of gauge invariance, Ahaism that defines the geometric phase in the context of
ranov and Anandaf¥] showed that one could define a phasequantum interferometry. Using the standard setup of the
that was the same for all gauge-equivalent paths. The gaug®&tach-Zender interferometer, they provided a procedure for
equivalent paths, here refer to the infinite number of possiblealculating the geometric phase of mixed state undergoing
evolutions(curves in the Hilbert space of the systethat  unitary evolutions. They have also furnished the necessary
project to a given closed curve in the projective Hilbert spaceand sufficient conditions for parallel transporting mixed
of the system. states under such evolutions.

The Abelian nature of the holonomy was also shown to be Recently, it was pointed out in Refl1] that the two
extendible to the non-Abelian ones. Wilczek and 46¢ approaches, in general, are not equivalent. More recently,
showed that for Hamiltonians that exhibited degeneraciestriccsonet al.[12] have shown that the conditions of paral-
the adiabatic evolution admitted holonomies that were genlelity used in the two approaches lead to generically distinct
erally non-Abelian. The nonadiabatic generalization of thisphase holonomy effects for entangled systems undergoing

certain local unitary transformations.
In this paper, we consider the geometric phase of general

*Corresponding author. Email address: sciks@nus.edu.sg mixed states under unitary evolution. Here we consider both
"Present address: Department of Physics, Shandong Normalondegenerate as well as degenerate states. Starting with the
University, Jinan 250014, People’s Republic of China. nondegenerate case, we show that the removal of the dy-
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namical phase from the total phase is not a trivial subtractioin general, this depends on the pathtaken in the bundle

as is the case for pure states. In particular, we show that sudpaceP, which in turn, is defined by{(t). This is reminis-

a procedure is generally not gauge invariant. We then proeent of the Pancharatnam analysis that compares the relative
ceed to furnish an expression that is manifestly gauge invariphase between two states. Aharonov and Ananf#n

ant. The parallelity conditions are shown to be easily derivshowed that if a quantitycalled the dynamical phagse

able from this expression. We also extend our formalism to
states that exhibit degeneracies. Parallelity conditions for
such states are also obtained. Finally, we furnish explicit ex-
amples of the geometric phases for both the nondegenerate
as well as degenerate mixed states.

¢D[C]=—f07<w(t>|H|¢<t>>dt

=i fOTW(O)IU(t)TU(t)I¢(0)>dt (6)

Il. THE NONADIABATIC GEOMETRIC PHASE

) ) ) ) o _ is subtracted from the total phase, E§), then the resulting
In this section we begin by briefly reviewing some basictgrm

facts about the nonadiabatic geometric phase. Here, we will

concentrate on the Abelian case, starting with pure states de=ard(p(0)|U(t)|4(0))}

(Refs,[4,13,14). We begin by considering a quantum system

Swith states belonging to the Hilbert spake The space of +i IT o)t At 0))dt 7
physical states corresponds to the nonzero vectots that I 0<¢’( O Uw #(0)) )

are rendered equivalent under the relation
turns out to be a functional &, only. This is the notion of

[y~ ) iff ) =€), (1) gauge invariance as emphasized in R&8]. Since the path
Cin P from a given intial staté(0)) is solely determined
by U(t) we can label the path by the latter. Here the state-
ment of gauge invariance for the geometric phase for all
paths differing by a U(1) phase reads as

P(H)= {{g}} —cprt. @ $elU(He V= peU(t)] ®

where 0 is any real number. Technically, for anstate sys-
tem with dim(H+) =n this space is simply a complex projec-
tive space of dimensiom(=1):

for any arbitrary real functiorii(t). Thus Eq.(7) furnishes a
In the language of fiber bundles, the construct of interesgauge-invariant expression for the geometric phase of a pure
is a principal bundle oveP(7) with a fiber that is isomor-  state. It is worth noting that arbitrariness fdft) allows one
phic to U(1). Here the bundle spade corresponds to the to impose a condition known as the parallel transport condi-
space of normalized state vectdts- {0} with a natural pro- tion:
jection _
(PO)|u(t)U(t)[4(0))=0, 9

which renders the dynamical phase zero. Under this condi-
tion the geometric phase is just the total phase.
For mixed states, Sgvist et al.[10] showed that the total
|(0))— | (1)) =U(t)| $(0)) (4) phase acquired by the system under unitary evolution is a
natural generalization of the pure-state case. Indeed, by con-

produces a patlC:[0,7]— P in the bundle space. This is Sidering a Mach-Zender interferometer, in which the interfer-

dictated by the Hamiltonian via the Sckiinger equation. ing particles carry an additional degree of freeddfor

The corresponding pai, in the space of physical states is Which the state is mixgdthey showed that under a unitary

obtained by projecting the pat@ through the mapr, i.e.,  €volution

7(C)=C,. Moreover, we say that the evolution is cyclic if

the path in M is closed; ie., if |y(7))(7)|= p(0)—p(7) =U(T)p(O)U(7)' (10

|4(0)){(0)|. It is important to note that there are an infi-

nite number of paths iR that project to the same path.mt.

Indg(etgj, if C and C' are given by|(t)) and |¢'(t))

=e'"W|y(t)), respectively for any arbitrary real function <1+ _ _

f(t), then it is easy to see that they define the same @ath =3+ [TUP(O)jcodx —arg Tr e 7)p(0)}]

in M under the projection. For a cyclic evolution, the

total phase acquired corresponds to an element of the fibétere y is a variable relative U(1) phase in one of the inter-

i.e., e?TeU(1). Thetotal phasept, here, being the argu- ferometer beams. From the shift in the interferometric pat-

ment of ((0)| ¥ (7)): tern, they surmised that the total phase acquired by a mixed

state under unitary evolution is
¢ Cl=arg (¥ (0)|y( 7))} = arg{(#(0)[U(t)[4(0))}.
(5) yr=arg T{U(7)p(0)]}. (12)

mP—P(H)=M realized through m:|)— | ) (|.

Now the unitary evolution of the state vector

the interference pattern of the intensity profile takes the form
of
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In a basis in which the density matrp(0) is expressed as approach of Boyeet al. [15] Here one considers the little
group of a particular mixed state density matrix, which can
) be taken as the gauge group for the system that is undergoing
P(O):gl ok}, dim(H)=N, (13 unitary evolution. It should be noted that the space of states
accessible through unitary evolutions from a reference state
the total phase is just the weighted sum of the pure-statdoes not cover the entire state space. For instance, if we are
phases: considering a spin- system, the state space consists of all
points on and inside the Bloch sphere. However, if we start
N . . . o .
with a particular mixed state and assume that it is undergoing
yr=arg Tr{i T)P(O)]}:aA gl o KU(T)[K) (- unitary evolution then the accessible states lie on a spherical
(14) shell with radius equal to the magnitude of the initial Bloch
vector. In determining the relevant bundle structure, we ap-
In Ref. [10], the parallel transport condition for peal to an important theorem for spaces with transitive group
nondegenerate state was imposed by requiring thaiction. Essentially, it is well known that if a group acts
T p(t)U(t+dt)i(t)'] be real and positive which in turn transitively on a spaceVt then for eachxe M there is a
leads to bijection betweerG/G, and M, whereG, denotes the little
] _ group or the stability group at the poir{16]. For the prob-
T p(OUDU) T=T p(0)Ut)Ut)]=0 (15  lem at hand, we are interested in the little group associated
_ with the density matrix at timé=0. The theorem basically
or equivalently assures us that the orbit space under unitary evolution is
N isomorphic to the coset spad®/G,. More importantly, if
> wk<k|U(t)TU(t)|k>=0. (16) the little group is closed then@, G, m, G/G,), where
k=1 7:G— G/G, is the canonical map that sends each element of
_ - _ the group to the cosets, serve to define a bundle structure.
Under this condition the dynamical phase Here G is taken as the bundle spad®/G, the base space,
. . G, the fiber andm the projection.
Yo= _J dtT p(H)H(1)]= _iJ dtTr] p(0)2(t) ()] To carry the analysis further, it is instructive to consider a
0 0 density matrix in its diagonal bas{43). Let us start with the
(17)  case in which thé\-state density matrix has eigenvalues that
are distinct, i.e., nondegenerate. Then the little group in this
case is simply

N

vanishes identically. It is important to note that if condition
(16) is not met then the dynamical phase term in ELy)
cannot be removed from the total phase term, @4) by a N

simple subtraction; since the latter is defined by a weighted G, =U(1)XU(1)x..-XU(1)= E e n){n|,
sum of phase factors while the former is a weighted sum of h - n=l

phases. The authors of R¢L0] have also asserted that con- N (19
ditions (15) or (16) while necessary, is not sufficient. Instead
they proposed stronger conditions where{6,},_1, .. n are arbitrary parameters or phases. The

) group G in this context is UN). It is easy to see that under
(Klut)Tut)|ky=0 Vk=1,2,...N (18 .
in which all the constituent pure states in the mixture are Ut) e UN)—U' () =U(t) X, €%Olny(n|  (20)
required to be parallel transported independently. =1

In the following section we elucidate the nature of theseyne orhit of the density matrix remains unchanged:
conditions. In particular, we furnish these by first construct-
ing an expression for the geometric phase that is manifestly p(0)—p'(t)=U'(t)p(0)U' (t)T=U(t) p(0)U(t)T=p(t).
gauge invariant. This is first done for the nondegenerate case (21
in which we show that the removal of the dynamical phase o ,
requires the use of the stronger conditions noted above. other words, there are infinite number of orbitsGnthat
also extend our analysis to states that are degenerate. HefROrrespond to same path fp(t). Now, unlike the pure-state

we also provide a generalized version of the geometric phast@Selsee Eq.(7)], the removal of the dynamical phase from
that is applicable when the state is multiply degenerateﬁhe total phase does not render the resulting functional gauge

The corresponding parallel transport conditions are alsg?variant. Indeed under gauge transformatid@) total phase
furnished. (14) transforms as

—yr=arg{ T p(O)U' (7
. GAUGE-INVARIANCE AND HOLONOMY v yr=agTip(OU (1)}

IN MIXED STATES )
_ o _ =ar o (K| U(T)|K)e O}
To address the issue of gauge invariance in the context of g{; dKlunlk)
holonomy for mixed states, it is instructive to consider the (22
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while dynamical phasél?) transforms as (a(t))

- eiBn+1(t)

yo—w.g:—ifodtTr[p(O)u'(t)Tu'(t)] Y= - (@27
el An(t)
:—iJ' dtTr[p(O)U(t)TL{(t)] Here the only nonzero terms are the elementsaofan
0 nXn unitary submatrix and exponential of tjgs along the
diagonal mXxXm) submatrix. It is easy to see that under a
+§k‘, 0 O (7). (23)  gauge transformation

U)—U' (t)=U(t) V(L) (28

It is evident from Eqs(22) and(23) that thed dependence in

total phase cannot be removed by simply subtracting the dythe path taken by the density matrix remains unchanged. It is
namical phase term. It is also easy to see that only in thgorth noting that, since bott(t) and/(t) are the time
pure-state case, with only one nonzerpdo we have gauge evolution unitary operators for the system, we must require

invariance. . _ that/(0)=U/'(0)=1. As a consequence, the element of the
To alleviate this problem we propose a functional, of thelittle group V(t) must also satisf))(0)=1. Now, consider
following form: the total phase terril4) under such a transformation

yr—yr=argTr [ p(O)U' (7)1}

mm:arg{; o KU(7)|K)
=arg{ ; w (KU)W T)|k>] .

|7 t;
Xexp{ fodt(k|u(t) Z/l(t)|k>H}, (24 29

which is manifestly gauge invariafias in Eq.(7)]. Indeed,  Following the nondenegerate case, we note that in construct-

the 6 term generated in Eq22) under gauge transformation ing a gauge-invariant functional an expression of the form

(20) is exactly canceled by a term arising from the exponen-

tial term in Eq.(24). It is easy to check that the above ex- VU] =arg Try(p(O)U(7) F[U; 7))} (30)

pression corresponds to the geometric phase in the case when )

the state is pure. Gauge invariance also assures us that tA#h @ functional 7{¢£ 7] that transforms as

expression depends only on the path in the state space. This i )

expression, thus furnishes us with a gauge-invariant defini- FLUy 1= () FLU; 7] (3D

tion for the ggometric phgse of mixed states that are n.qndgﬂnder a gauge transformation would be required. To

generatg. It is worth notmg that when_ str_onger .Cond't'onsidentify this functional, we first observe that in the

(18) are imposed the resulting expression is nothing but th%ondegenerate case, the corresponding functional

original total phase term, which means, they are justifiably . + ’ , -

parallel transport conditions; since only under parallel trans-eXp[_f_Odt<k|u(t) Z/I(t)|k)} can be obtained by fixing the

port is the geometric phase the same as the total phase. terms in /gene_ral _evqut|on matrig20) through conditions
The above analysis holds only for mixed states that arél8 for ¢'. This yields

nondegenerate. For degenerate mixed states, it is well known .

that the holonomy group can take on a non-Abelian character 0k(t):ij dt’(kju(t) Tt |k), k=1,2,...N,

[15]. To this end, let us consider a density matrix that has the 0

following diagonal form: (32
N which upon substitution into Eq20) leads to the required

p(0)= 2 k) (K| (25) form. In the degenerate case, we hafet m arbitrary pa-

k=1 rameters that need to be fixen? for the o matrix andm

parameters corresponding to tB&. We can do this by im-
in which n of the eigenvalues are degenerate, i®.= w, posing

=...=w, with the rest distinct. Here the Hilbert spaté

can be regarded as the direct sum of two subspakgs, (wlTU'|vy=0, wu,v=12,...n,
®H,, of dimensionsn and m=N-—n. The little group of
p(0) is non-Abelian and has the following form: (k|u’TU’|k>=0 k=n+1n+2 . N (33)
G,=Uln)xXU(1)xT(1)x--- xXU(1) (26)  where we have defined basis vectdts)}, -1, 5 and
m {IK)}k=n+1n+2, .. . n to designate subspaces, andH,,, re-

or in the{|k)}x=10 ... n basis it takes the form spectively. With
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(a(t))
giBn+1()
U =Ut) . (39
alBn()
Conditions(33) lead to the following equations:
2, (1) = = (U TUL)) ay, (1), (35)
Bie(t) =i (U ) i (36)

wherea,,, are the elements of the matrix. Equationg35)
and (36) can be formally integrated to yield

a,uv[u;t]=<,u P exp- f;dt’u(t’)TZ'/{(t’) v>,
w,v=12...n, (37)
t .
ﬂk[u;t]=ifodt'<k|ua')*u<t’)|k>,
k=n+1n+2,... N, (38

where P denotes path ordering. We can now choose

(all;T])
e Bnalth 7
HU;r]=
RENUE
(39

It is worth noting thatF[ U/, ] is block diagonal in the chosen

basis and that it can be written as direct sum form

FU 1= Fyy [Us 710 Fy U 7] (40
with an[Z/{; 7= a[U; 7] and me[Z/{; 7]
= diag(ei3n+1[z’{; T],ei:BnJrZ[Z/{; T]’ L ,eiIBN[U; ]) .

We next demonstrate that expressi80) is gauge invari-
ant. Indeed, under

(Vi(1))
gl fn+1(t)
U—U"=U(t) . ,

ei On(t)
(41)

whereV,(t) is an arbitraryn X n unitary matrix, we note that

Fo U 1= Vi) Ty [ U 7], (42)
Fy 7]l 009, @iy

PHYSICAL REVIEW&Y, 032106 (2003

which implies thaty[U]— y[U' 1= y[(U)] (see the Appen-
dix for detaily. Thus expressiofB0) furnishes a natural gen-
eralization of the geometric phase for a degenerate mixed
state. It is easy to see that conditiai®8) here serve as the
parallelity conditions.

It is interesting to note that the above analysis can be
extended to density matrices that are multiply degenerate.
For instance ifp(0) has eigenspacés,, H,, . .. ,H,, with
degeneracienq, n,, ..., N, respectively, then the Hilbert
space of the system can be written as a direct sum of degen-
erate subspaces:

m

HN:Hl@Hz@ s @Hm with N:kzl N . (44)

The correspondingF functional forHy can also be written
as the direct sum af functionals define on the subspaces:

fHN[U, T]:le[Z/{, T]@f').{z[u, T],@, PP ,@me[U, ’T],

(45)
where the components cﬂ’Hk[u, 7| are given by
fHk[u! T],u,kvk: < Mk P exp- JO dtu(t)Tu(t) Vk> ’
,lLk,Vk:].,Z, PP ,dlank) (46)

if dim (H,)#1 and

FrlU, T]:eXP( - fOTdKMkW(t)TZ-/{(t)WO} (47)

otherwise. The geometric phase is then calculated directly
from

VUl=arg Try, (p(O)U(7) Fy, [U; T])} (48

IV. EXPLICIT EXAMPLES

In this section we furnish explicit examples of the geo-
metric phase for both the nondegenerate as well as the de-
generate mixed states. We begin with the nondegenerate
case. To this end, we consider the simplest case of ajspin-
system with a density matrix given by

p=%(1+l‘-0’), (49)

wherer is a three-dimensional Bloch vector andthe Pauli
matrices. For the purpose of computation, we set the Bloch
vector of the initial state to ber gin 4,01 cosé), i.e.,

1/1+r cosé rsing

p(0)= > (50

rsing 1—rcosé/’

If we subject the system to a unitary evolution
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. it 10 0 -i O
p(0)—=p()=U)p(O)U)T with Ut)=exp — =03
2 A=|1 0 0], r,=|i 0f,
(5) 00 0 0
the Bloch vector precesses about thexis (at a constant
polar angle ofg). For cycl_ic evolution, the_ param_etbtakes 1 0 O 0 0 1
values[0,27]. Now, matrix(46) can be diagonalized as Ng= ~1 0|, a,=|0 O ,
01— 1/1+r O 5o 0O 0 O 10
pO=5 o L, (52 _
" o 0 0 ~—i 0 0O
with respect to its eigenvectors ne|0 0 0] ae=|O ,
cos¢d sing i 0 O (0 1 0
|1>_(sin0>’ |2>_(—cosa)' 53
0 -
In Eqg. (52) we assume €r<1. The geometric phase can i 1
obtained by evaluating E¢24) A= T A== 1 0
0 Bl o -2
Y [L{]=ar _ 1+r eiwcosﬁ_ 1-r efirrcosé' )
G 2 2 N L
(54)  For definiteness we choose the initial state to be
Q o 0 0
= —arctanr tan=|, (55) 1
2 p(0)=|0 o O with 0<w<s. (57)
whereQ =27(1—cosé) is the solid angle subtended by the 0 0 1-20

Bloch vector. It is interesting to note that the same expres- _ . . . _
sion has been furnished in RELO], where parallel transport Here the degeneracy is manifest with the little group given
conditions were employed. Here we have obtained the ged?y U(2)xXU(1). It is interesting to note that in the above

metric phase without the need for such conditions. basis for the SU(3) generators, the subgroup S&(@)1)
We now turn to the degenerate case. Here we chooseia spanned by\;, A5, N3, Ag}.
three-state density matrix given by For an explicit evaluation of the geometric phase we con-
. sider a unitary matrix of SU(3) given by
1
P=3 1+241 ri)\i>' (56) Ut)=e X where X=akg+bl,, (58
where{r;} are the components of an eight dimensional vecwherea andb are arbitrary real parameters. In a matrix form,
tor and{\;} are the generators of $B): we have
|
B ct \/§ _ct 0 —2bi ct 7]
¢ cos; —iy3asin; 2 SNy
U(t) =€l 0 e 0 , (59)
—2bi _ct ct ct
sin; 0 ccos§+i\/§asin§

wherec=+/3a?+4b?. The cyclicity conditions can be obtained by restricting lie within the interval[0,7], wherer is
evaluated by requiring that(7)=r;(0) with

3
ri() = 5Tp(ON] (60)
=§Tr[u<t>p(0)u<t)*m. (62)

For thel/ matrix considered above, we have
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2n
T:T, neZ. (62)

In the following we restrict ourselves to=1. With this established, th& matrix can be evaluated and it takes the form

ct . . CT
CCos5 +iy3a sin—- 0 0
FlU; r]=el"12723) 0 aliai3 712) 0 (63)
0 0 e(—iav@r/Z)

with which the geometric phase follows by a direct evalua-ln passing, we emphasize that a gauge transformation corre-
tion of Eq. (30): sponding to any element of the little group/
e U(2)XU(1) leaves the geometric phase invariant. For in-

sin arcta+ Etan b stance, if we had choosen
k
ye[U]=arcta 50 ,
—— +cogqarctafik tan¢])
2w—1 .
(64) U (t=utye '™, (66)
where
K= 3 and = 77_20_ (65) which corresponds to a gauge transformed unitary matrix,
c\3 then theF matrix takes the form
|
Gis cT cT _cT . cT\ . 0
e(_iaﬁm) ay/3i S|n?+ccos? cogdr) |a 3SIn?—IC cos? sin(dr)
A 1]= —— —icelian32)gin d7) celiarB32eoqdr) 0 (67)
0 0 cel—iar3/2)

Evaluation of the geometric phase yields expresdi®f),  have provided an explicit justification to the sufficient con-
thereby demonstrating the gauge invariance of (8@). ditions furnished in Ref{10]. The analysis is also extended
to cover states that may exhibit degeneracies. Here with the
holonomy taking on a non-Abelian character, we have pro-
V. CONCLUDING REMARKS vided an expression for the geometric phase that is mani-

To summarize briefly, we have considered the issue ofeStly gauge invariant. As in the case of the nondegenerate
phase holonomy of both nondegenerate and degenera¢@se, the form also displays the parallelity conditions that are
mixed states undergoing unitary evolution. Starting with theshown to be generalizations of those provided in R&®].
nondegenerate case, we have shown that the usual procediMe have also furnished explicit examples of the geometric
of subtracting the dynamical phase from the total phase tphases for both the nondegenerate as well as degenerate
yield the geometric phase, does not hold for mixed states. Toixed states.
this end, we have furnished an expression for the geometric
phase that is gauge invariant. In other words, unlike the pro-
cedure given in Ref[10], we do not have to invoke the ACKNOWLEDGMENTS
parallelity conditions to obtain the geometric phase from the
total phase. In fact an obvious statement of gauge invariance We would like to thank Professor C. H. Oh whose guid-
is that any unitary matrix that realizes a path for the densityance and valuable comments enabled the completion of this
matrix will yield a value that depends only on the path tra-work. This work was supported by NUS Research Grant No.
versed in the state space. Moreover the form presented heRe144-000-054-112 andSTAR Grant No. R-144-000-071-
also exhibits the parallelity conditions clearly. In essence, we305.
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APPENDIX

In this appendix we show that, for a gauge transformation

of the form(41), the expression for geometric phase E3f)

PHYSICAL REVIEW A 67, 032106 (2003

from which we surmise that

Bk=Bx— O+ &,

remains unchanged. We proceed to prove this by establishinj1€"€&i is an arbitraryt-independent term. This term, how-

a few lemmas.

Lemma lalet X [U; 7] and X,5[U; 7] be submatrices of
polU(7) associated with the subspackg and H,,, respec-
tively:

Xo[Us 7] =L poh(7)] 0=l pold(7)| V),
w,v=12,...n,
XolUs 7]ij = Lpold(7) 1ij =i pold( 7)),
i,j=n+1n+2,... N,
then
Trod pold(7) FLU; 7] 1= Tryy (Xa[Us 71 [U; 7])
Ty (Xl Uy 7] Fy [UT]).

Proof. The result follows immediately by taking

Trol pold(7) FLU T”:,; (| pold(7) FLU; 7] | )

N
+ 2 (il n AU

and noting thatF[ U/, 7] is block diagona[see Eq(39)].
Lemma 1bUnder a gauge transformatiqdl), the sub-
matricesXq[U; 7] and X,[U; 7] transform as follows:

XqlU; T]—=Xq[U'; T]=Xq[U; 7]V (1),
XolU; m]—= X U 7]

=X,[U: 7]diag e n+1(7) elth+a(D) el

Proof. This again follows from the block diagonal form of
V(t).

Lemma 2aUnder gauge transformatio@l), 73, [U; 7]
transforms as

Fr [ U 7] —= Fy [U' 7]
:diaQemnﬁL(T)’ei 0n+2(7), . ,eigN(T))T].‘H [u, T].

Proof. In proving this result, we will begin with Eq36).
Now underi/(t) —U' (t) =U(t)V(t) we have

B =i[U' () U () ]a=i[VT (U U W)
FU) V) = TTU) U Tig— O
k=n+1n+2,... N.

This in turn implies that

d o d
GiLBlt =i U = [ B

ever, vanishes when we impose initial conditioBg(0)
= B¢ (0)=0 together withd,(0)=0. Thus, we have for the
JF matrix
Ty [U';7]=diag ePni1(D) @Bnial?) . elAn(D)

m
:diaQei 9n+1(7)'ei Onva(n) ei BN(T))TfH [u' T],

which completes the proof.
Lemma 2b Under gauge transformatio@dl), an[u; 7]

transforms as
Fy [Us 71— Fyy [U 5 71= V(1) Fyy [Uh; 7).
Proof. We first note that undet/(t) —u' (t) =U(t)V(t),
A=U(t)TuU(t) transforms as
A=A =U' (0)U (1) =VTAV+ VTV,
Restricting A to the subspacé{,, the nxn submatrix A
with componentsd,,, = (x| Alv) transforms as
Then from Eq.(35), with /— U/,
a'=—Aa'=-VIAV,+VIV)a' == VI(AV,+ V) a’
and thus

d ~
&[Vla,]: —AVla’.

As a consequence of E¢35), we note that
Via'=aVy=a' (H)=Vi(t)a(t)V,,

where)), is at independent but otherwise, arbitrary nonsin-
gularnxn matrix. As in the preceding lemma, this arbitrari-
ness is removed when we invoke the initial conditions
a’(0)=«a(0)=1, together withV;(0)=1. As a resultV,
=1 and we have

Fu[Ui7]=a' (1) =Vo(n) a(7) = Vi(7) Fyy [Us 7],
which furnishes the desired result.
The gauge invariance of the geometric phase then follows
immediately from the above lemmas:
AU 1=arg{Try(pold' (1) FLU'; 7]}
=arg{Try, (Xo[U'; 7] Fy [U';7])
+Try, (XU 7] Fr (U3 7))}
= arg{ Ty, (Xa[Us 71 Fy, [ 7])
+ Ty, (XolU; 7] Fyy [Us 7))}

=arg Try(pold( 7) FLU; 7))} = v[U].
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