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Decay and revival of phase coherence of a Bose-Einstein condensate in a one-dimensional latt
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The dynamics of a Bose-Einstein condensate nonadiabatically loaded into a one-dimensional optical lattice
is studied by analyzing the phase coherence between sites along the lattice as well as the radial profile of the
condensate after a time-of flight. A simple model is proposed that predicts the short-time dephasing as a
function of the condensate parameters. In the radial direction, heavily damped oscillations are observed, as well
as an increase in the condensate temperature. These findings are interpreted as a rethermalization due to
dissipation of the initial condensate excitations into high-lying modes.
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Studying collective modes in a Bose-Einstein condens
~BEC! is an efficient method for obtaining information abo
the dynamics of this quantum system@1,2#. So far, both ex-
perimental and theoretical results have been obtained
low-lying modes of a condensate in a magnetic trap, incl
ing breathing modes@3#, surface modes@4#, and the scissors
mode @5#. Typically, in these experiments the collectiv
modes were excited by a sudden change in the trap frequ
or geometry, and the frequency and damping rate@6# of the
subsequent oscillations were measuered eitherin situ or after
a time-of flight.

In experiments to date, BECs have been loaded into o
cal lattices mainly in the adiabatic regime in order to stu
e.g., number squeezing@7# and the Mott-insulator transition
@8#. In this context, ‘‘adiabatic’’ refers to the modes of th
entire condensate rather than the single-well oscillation
quency. Therefore, the condition for adiabaticity ist ramp
.(m/\)21, wheret ramp is the time over which the periodi
potential is ramped up, andm is the chemical potential of the
condensate@9#. By violating this condition~but still satisfy-
ing t ramp.2p/v lat , with v lat the single-well harmonic os
cillator frequency!, collective modes are excited in the co
densate. In this paper we present experimental results
some preliminary theoretical considerations on the nona
batic loading of a BEC into a one-dimensional optical lattic
In general, we do not specifically look at the mode structu
but we examine how intraband excitations cause a los
contrast of the diffraction pattern expected when a BEC
released from a lattice after being accelerated to band e

Our experimental setup is described in detail elsewh
@10,11#. After creating BECs ofN051.5(5)3104 87Rb at-
oms @12# in a triaxial time-orbiting potential trap, we adia
batically lower the trap frequencyn̄ trap to the desired value
and then superimpose onto the magnetic trap an optical
tice along the vertical trap axis~for which the trap frequency
n long'n̄ trap) created by two linearly polarized Gaussian
ser beams intersecting at a half angleu518° and detuned by
'30 GHz above the rubidium resonance line. The perio
potentialV(z)5V0 sin2(pz/d) thus created has a lattice spa
ing d51.2 mm, and the depthV0 of the potential~measured
in lattice recoil energiesErec5\2p2/2md2) can be varied
between 0 and'20 Erec by adjusting the laser intensit
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using acousto-optic modulators. The number of lattice s
occupied by the condensate lay between 10 and 15, dep
ing on the initial magnetic trap frequency. The chemical p
tential is typically of order 200 Hz, and the single-well fre
quency isv lat/2p'3.1 kHz for a 15Erec lattice.

In a typical experiment, the optical lattice was ramped
in t ramp'1 –5 ms, after which the potential was kept at
maximum valueV0 for a holding timethold . In this way, the
loading of the lattice was always nonadiabatic with respec
the chemical potential. We checked that by increasing
ramp time to'100 ms, the dephasing investigated in th
work did not occur. At the end of the holding time, the latti
was accelerated in 1 ms to one~lattice! recoil velocity by
chirping the frequency difference between the lattice bea
Immediately after that, both the lattice and the magnetic t
were switched off. After a time-of flight of 20–22 ms, th
expanded condensate was imaged using a resonant p
flash. Figure 1 shows typical integrated absorption ima
obtained in this manner for different holding times. For sh
times, a clean double-peak structure is visible, as expe
from the interference between the condensates expan
from the individual lattice wells~with a p-phase difference
between them due to the final acceleration!. During the first
few milliseconds, this pattern evolves into a more comp
cated structure featuring several additional peaks, and fin
washes out completely, resulting in a single Gaussian-sha
lump. In an intermediate regime (thold'20–100 ms), the in-
terference pattern again becomes complex, with multi
peaks. For longer waiting times, the two-peaked struct
reappears.

We analyzed our experimental data in two different wa
In the lattice direction, we characterized the interference p
tern~integrated perpendicular to the lattice direction! through
a visibility j calculated as

j5
hpeak2hmiddle

hpeak1hmiddle
, ~1!

wherehpeak is the mean value of the absorption image at
position of the two peaks, andhmiddle is the value of the
absorption image midway between the two peaks~averaged
over a range of 1/5 of the peak separation!. In the direction
perpendicular to the optical lattice, we fitted a bimod
©2003 The American Physical Society03-1
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Gaussian function to the~longitudinally! integrated absorp
tion profile and extracted from this fit the condensate fract
and the widthrperp of the condensate part.

Figure 2 shows examples of the short-term and long-te
behavior ofj. Initially, j rapidly decreases from a value o
'0.6–0.9 to roughly 0 within'5 –20 ms, depending on th
trap frequencyn̄ trap . Subsequently,j typically rises again
and begins to fluctuate in an apparently random manner f
few tens of milliseconds. Finally, these fluctuations die o
andj stabilizes at a value close to the initial visibility.

The corresponding behavior of the condensate wi
rperp and temperature~calculated from the condensate fra
tion! is shown in Fig. 3. One clearly sees radial oscil
tions of rperp at a frequencynosc52nperp , where nperp

5A2n̄ trap is the trap frequency perpendicular to the latti
direction. These oscillations are heavily damped with a qu
ity factor Q52pnosc/gdamp'10230. Simultaneously, the
condensate temperature expressed asT/Tc ~whereTc is the
critical temperature for the BEC transition! increases and ap
proaches a new steady-state value on a time scale co
rable to 1/gdamp.

The short-term decrease inj can be explained using
simple model. We take the Bose-Einstein condensate w

FIG. 1. Evolution of the interference pattern~integrated perpen-
dicular to the lattice direction! of a condensate released from a
optical lattice after nonadiabatic loading. The distinct two-peak
structure that is visible immediately after loading~a! is washed out
within the first few milliseconds~b!, after which the interference
pattern takes on a complex structure@~c! and~d!#. For long holding
times, the initial two-peaked structure reappears~e!. In this experi-

ment,n̄ trap526.7 Hz,t ramp55 ms, andV0'15 Erec . From~a! to
~e!, thold51, 22, 50, 100, and 300 ms, respectively.
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function to evolve according to the Gross-Pitaevskii equat

i\
]

]t
c5F2

\2

2m
¹21

1

2
m(

j
v j

2xj
21V0~ t !sin2S pz

d D
1Uucu2Gc, ~2!

where xj5$x,y,z% are the spatial coordinates along whic
the respective trap frequencies arev j (52pn j ), U
54pa\2/m is the collisional interaction strength witha
'5.4 nm being thes-wave scattering length.

The rate at which the lattice is raised is slow enough t
band excitations can be ignored and the condensate de
will be reshaped to lie at the potential minima of each latt
site@13#. Because we are interested in the phase propertie
the entire condensate, it is convenient to consider a cont
ous Wannier@14# or envelope representation@15# of the wave
function, where we define the envelopef (x,t) to represent
the slowly varying amplitude of the Gross-Pitaevskii wa
function c(x,t), in which the rapid density variation alon
the lattice is smoothed out~also see Ref.@16#!. The evolution
equation forf is of a similar form to Eq.~2! except that the
lattice potential no longer appears explicitly; the diffusio
alongz is generated by the Bloch dispersion relation refle
ing the modified tunneling properties in this direction; a

d

FIG. 2. Examples of the short-term~a! and long-term~b! behav-
ior of the visibility for a condensate in an optical lattice after non
diabatic loading. In~a! the initial loss of visibility is evident~solid
line: exponential fit with time constant 13 ms!. The trap frequency

n̄ trap519.8 Hz andV0 /Erec'15 with t ramp51 ms. In ~b! after
strong initial fluctuations the visibility approaches a stable va

close to the initial visibility. In this experiment,n̄ trap526.7 Hz,
V0 /Erec'15, andt ramp55 ms. The dashed lines are an envelo
to the data points with a constant upper part and an expone
lower part with a time constant of'80 ms.
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the mean-field term is renormalized asUucu2→(1
1 c̃)Uu f u2 resulting from the compressed condensate den
in the lattice @13#. In the tight-binding limit the Wannier
states are localized and can be approximated by the harm
oscillator orbital w(z)5exp(2z2/2aho

2 )/A4 paho
2 , where aho

5A\/mv lat is the oscillator length and v lat

5pA2V0 /md2 is the oscillation frequency about the lattic
minima. In this limit the renormalized mean-field term
given by c̃5(d* uw(z)u4dz21)5(A4 mV0d2/2\221) @18#,
with the validity conditiona!aho!d.

To develop an approximate expression for the short-t
dephasing behavior of the condensate we assume that d
the lattice loading and subsequent time over which
dephasing occurs density transport in the condensate is
ligible, i.e., the evolution occurs in the phase of the wa
function. In the lattice direction the tunneling frequency d
termines the time scale over which this assumption will
valid, which is typically of order 100 ms in experimen
where dephasing is observed. We also find that for a gi
trap frequency, there always exists a minimum lattice de
below which no dephasing occurs.

Expressing the envelope function in terms of amplitu
and phase asf 5u f uexp(iS), and neglecting the effects of spa
tial diffusion, the envelope equation of motion reduces to

2\
]

]t
S~x,t !5

1

2
m(

j
v j

2xj
21U~11 c̃!u f u2. ~3!

Ignoring density transportu f u2 can be approximated by th
Thomas-Fermi density profile for the condensate in the

FIG. 3. Time evolution of the width~a! and the temperature~b!
of the condensate in the optical lattice@same trap and lattice param
eters as in Fig. 2~b!#. The solid lines are fits to the data using a
exponentially damped sinusoidal oscillation in~a! and a simple ex-
ponential function in~b!. In both cases, the time constants of t
exponential part are'70 ms. Note the different time scales in th
two graphs.
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tial harmonic trap, which is of the formucTF(x)u25n0@1
2( j (xj /Rj )

2#, where n0 is the peak density andRj
5$Rx ,Ry ,Rz% are the Thomas-Fermi radii@17#. With this
substitution the phase evolves as

S~x,t !52S c̃n0Ut

\
D S z

Rz
D 2

1S0~ t !, ~4!

whereS0(t) is a spatially constant phase. This result sho
that the condensate develops a quadratic phase profile a
the lattice arising from the imbalance of mean field and h
monic trap potential energy in the lattice, and is equivalen
a spread in the quasimomentum distribution of the syste

For a large lattice the quasimomentum distribution of t
condensate and the momentum distribution of the envel
function are identical if the momentum distribution lies e
tirely within the first Brillouin zone. We have calculated th
rms width of thez component of momentumspz for a wave
function of the formc(x,b)5cTF(x)exp@2ib(z/Rz)

2#, where
b is the total phase difference between the center and
outside of edge of the condensate. The results~shown in Fig.
4! indicate that forb*2, the momentum width linearly in-
creases withb and is well approximated byspz(b)
'0.73\b/Rz . Identifying b with the coefficient of the qua-
dratic spatial phase term in Eq.~4!, we see that the width o
the momentum distribution increases linearly with time.

The condensate will initially appear dephased when
quasimomentum width significantly fills the first Brilloui
zone, which has a half-width ofh/2d. The exact portion of
the Brillouin zone which must be filled depends on the o
servable used to determine the dephasing and may be t
as a fitting parameter. Here we takespz5h/4d as the re-
quirement for dephasing, which can be inverted using
pression~4! to yield the dephasing time

tdeph5
Rzh

2.9c̃dn0U
. ~5!

Figure 5 showstdeph as a function ofn long ~which deter-
mines Rz and n0) together with experimentally measure
dephasing times, defined as the 1/e time of the exponential fit

FIG. 4. Momentum width of a condensate with a Thomas-Fe
density distribution and a quadratic phase profile. Numerical ca
lation ~solid!, linear fit ~dotted!.
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as shown in Fig. 2~a!. Equally good agreement with exper
ment is found when calculatingtdeph for the parameters o
Ref. @7#.

For the intermediate and long-term behavior of the visib
ity, the phase-winding model predicts partial and compl
revivals of the relative phases, leading to a complicated t
evolution ofj. Experimentally, we see a rather erratic beha
ior of j for intermediate times, with the visibility fluctuatio
between 0–0.2 and 0.5–0.6, followed by a stabilization a
high value around 0.6. The fact that this stabilization ta
place on the same time scale as the damping of the ra
oscillations and the increase in temperature of the conden
leads us to speculate that all these phenomena are re
through a dissipation mechanism whereby the initial exc
tions in the longitudinal direction~i.e., reflected in the phas
differences between adjacent lattice sites! and in the radial
directions lead to a rethermalization of the system at a hig
temperature, and hence lower condensate fraction, with
remaining condensate now in the ground state of the c

FIG. 5. Experimental dephasing times as a function of the t
frequencyn long in the lattice direction. The solid line is the theo
retical prediction fortdeph ~see text!.
n,
et

.A

al

z,

-

gi

A

03160
-
e
e
-

a
s
ial
ate
ted
-

er
he

-

bined harmonic and periodic trapping potentials. More d
tailed theoretical investigations in this direction are plann
for the future.

We also note here that the tunneling time between a
cent wells is also comparable to the damping time of
visibility fluctuations for the parameters of our experime
In order to understand better the importance of the vari
mechanisms, i.e., damping with a possible coupling betw
the different modes, and rephasing due to tunneling, it w
be important in future to conduct experiments for a range
different parameter combinations for the trap and the latt
Also, repeating our experiment in a configuration in whi
more lattice sites are occupied by the condensate will m
likely eliminate the intermediate revivals~which require a
large fraction of the sites to be in phase, which is less lik
for a large number of sites! and leave only the lower enve
lope ~see Fig. 2! of the visibility evolution. Finally, the role
of the finite temperature (T'0.7Tc) at which we start our
experiment will have to be investigated more closely.

In summary, we have studied the behavior of a Bo
Einstein condensate nonadiabatically loaded into a o
dimensional optical lattice. The time evolution of the colle
tive modes thus excited has been characterized through
visibility of the interference pattern as well as its rad
width. Both quantities exhibit large initial variations that a
strongly damped on a time scale comparable to the relaxa
time of the condensate temperature.
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