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Superfluidity and interference pattern of ultracold bosons in optical lattices
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~Received 3 September 2002; published 25 March 2003!

We present a study of the superfluid properties of atomic Bose gases in optical lattice potentials using the
Bose-Hubbard model. To do this, we use a microscopic definition of the superfluid fraction based on the
response of the system to a phase variation imposed by means of twisted boundary conditions. We compare the
superfluid fraction to other physical quantities, i.e., the interference pattern after ballistic expansion, the qua-
simomentum distribution, and number fluctuations. We have performed exact numerical calculations of all
these quantities for small one-dimensional systems. We show that the superfluid fraction alone exhibits a clear
signature of the Mott-insulator transition. Observables like the fringe visibility, which probe only ground-state
properties, do not provide direct information on superfluidity and the Mott-insulator transition.
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I. INTRODUCTION

Ultracold atomic gases in optical lattices provide a uniq
framework for the experimental study of fundamental qu
tum phenomena in interacting many-body systems. Thi
especially true for the exploration of quantum phase tra
tions such as the superfluid to Mott-insulator transition o
served in a recent pioneering experiment@1#. The remarkable
degree of experimental control over all the releva
parameters—density, interaction strength, lattice geome
and dimensionality—allows much more detailed studies
the complicated mechanisms behind quantum phase tra
tion than conventional solid-state systems.

It is clearly the case that the most important quantity
characterizing the superfluid-to-insulator transition is the
perfluid density or superfluid fractionf s. The aim of this
paper is to set up the general theoretical framework for
calculation of the superfluid fraction within the Bos
Hubbard model and to compare it, on the formal level, w
quantities being measured at the moment. These include
interference pattern after ballistic expansion, the quasim
mentum distribution as well as the number fluctuatio
which are important in applications. We perform exact n
merical calculations for the Mott-insulator transition in a
one-dimensional system to demonstrate the relationship,
more importantly the differences, between the superfl
fraction and various ground-state observables, most not
the visibility of the interference pattern.

II. SUPERFLUIDITY

The concept of superfluidity is closely related to the ex
tence of a condensate in the interacting many-boson sys
@2#. Formally, the one-body density matrixr (1)(xW ,xW8) has to
have exactly one macroscopic eigenvalue which defines
number of particlesN0 in the condensate; the correspondi
eigenvector describes the condensate wave functionf0(xW )
5ei u(xW )uf0(xW )u. A spatially varying condensate phaseu(xW )
is associated with a velocity field for the condensate,vW 0(xW )
5(\/m)¹W u(xW ). This irrotational velocity field is identified
with velocity of the superfluid flowvW s(xW )[vW 0(xW ) @2# and
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enables us to derive an expression for the superfluid frac
f s5Ns/N. Consider a system with a finite linear dimensio
L in eW1 direction and a ground-state energyE0 calculated
with periodic boundary conditions. Now we impose a line
phase variationu(xW )5Qx1 /L with a total twist angleQ
over the length of the system in theeW1 direction. Technically,
this can be achieved by introducing twisted bounda
conditions of the form C(xW1 , . . . ,xW i1LeW1 , . . . )
5ei QC(xW1 , . . . ,xW i , . . . ) with respect to all coordinates o
the many-body wave function. The resulting ground-state
ergyEQ will depend on the phase twist. For very small twi
anglesQ!p the energy differenceEQ2E0 can be attributed
to the kinetic-energyTs of the superflow generated by th
phase gradient. Thus

EQ2E05
!

Ts5
1
2 mN fsvW s

2, ~1!

wheremN fs is the total mass of the superfluid compone
This ansatz corresponds to the macroscopic definition of
perfluidity based on the response of the fluid to movi
boundaries@3#. Replacing the superfluid velocityvW s with the
phase gradient leads to a fundamental relation for the su
fluid fraction @4,5#

f s5~2m/\2! ~L2/N! @~EQ2E0!/Q2# . ~2!

Hence the superfluid fraction can be interpreted as a mea
for the stiffness of the system under an imposed phase va
tion. This demonstrates that superfluidity is not a sta
ground-state property but rather the response of the syste
an external perturbation. We should note that this definit
of superfluidity does not tell anything about the stability
the superfluid flow at finite velocities@6#. However, it is
equivalent to the helicity modulus@5# and the concept of
winding numbers used in Monte Carlo approaches@3#.

We now transfer these findings to a lattice system
scribed in the framework of the Bose-Hubbard model@4,7,8#.
For simplicity we restrict ourselves to a regular on
dimensional lattice composed ofI sites described by the
Bose-Hubbard Hamiltonian
©2003 The American Physical Society02-1
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H052J(
i 51

I

~ai 11
† ai1H.a.!1

V

2 (
i 51

I

ni~ni21!, ~3!

wherea†
i creates a boson in the lowest Wannier state loc

ized at sitei andni5a†
iai . The first term describes the hop

ping or tunneling between adjacent sites with a tunnel
strengthJ, the second term characterizes the on-site tw
body interaction with a strengthV @7,9#. The hopping be-
tween the first and the last site of the lattice is includ
(I 115̂1), which corresponds to periodic boundary con
tions. The generalization to three-dimensional lattices
straight forward.

In order to compute the energy of the system with
imposed phase twistQ we map the twisted boundary cond
tions by means of a local unitary transformation onto
Hamiltonian@10,11#. This leads to a twisted Hamiltonian o
the form

HQ52J(
i 51

I

~e2 i Q/Ia†
i 11ai1H.a.!1

V

2 (
i 51

I

ni~ni21! ~4!

with a modified hopping term that contains the so-cal
Peierls phase factorse6 i Q/I @11#. The energyEQ in the pres-
ence of the phase twist is given by the lowest eigenvalue
the twisted Hamiltonian using periodic boundary conditio
From the difference of the ground-state energiesEQ2E0 we
obtain the superfluid fraction@12#

f s5~ I 2/N! @~EQ2E0!/J Q2# , ~5!

now expressed in terms of the parameters of the Bo
Hubbard model.

One can get a more detailed insight into the depende
of the superfluid fraction on the structure of the eigensta
of the system by considering a perturbative calculation of
energy differenceEQ2E0. We expand the twisted Hamil
tonian up to second order in the twist angleQ thus,

HQ'H01 ~Q/I ! J2 ~Q2/2I 2! T5H01Hpert. ~6!

Here we defined a current operatorJ5 iJ( i(a
†

i 11ai2H.a.)
and the usual kinetic energy or hopping operatorT
52J( i(a

†
i 11ai1H.a.). We can calculate the energy sh

EQ2E0 caused by the perturbationHpert in second-order per
turbation theory. Retaining the terms up to the quadratic
der in the twist angleQ we obtain for the superfluid fraction
using Eq.~5!

f s5 f s
(1)2 f s

(2)

5
1

NJ S 2
1

2
^C0uTuC0&2 (

nÞ0

u^CnuJuC0&u2

En2E0
D , ~7!

where theuCn& (n50,1, . . . ) are theeigenstates of the non
twisted Bose-Hubbard HamiltonianH0. The ground-state ex
pectation value of the hopping operator describes the fi
order contribution f s

(1). The sum over the excited-state
involving the current operator constitutes the second-or
term f s

(2). It is this second-order term which introduces
03160
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significant dependence of the superfluid fraction on the e
tation spectrum and thus goes beyond the static ground-
properties of the system.

Equation ~7! corresponds to the Drude weight used
characterize the dc conductivity of charged fermionic s
tems@13#. This demonstrates that the phase factors appea
in the twisted Hamiltonian~4! can actually be realized ex
perimentally, i.e., by an external electric field for charg
particles or by some linear external potential or even by
celerating the lattice.

To illustrate the generic behavior of the superfluid fracti
as function of the interaction parameterV/J, and hence the
appearance of the Mott insulator phase, we solve the eig
value problems of the nontwisted Hamiltonian~3! and the
twisted Hamiltonian~4! numerically. We construct the corre
sponding Hamilton matrices using a complete basis of F
statesun1 , . . . ,nI& with all compositions of the occupatio
numbersni . The ground-state energiesE0 and EQ50.1 are
obtained with an efficient iterative Lanczos algorithm@8#.
The perturbative expression~7! is then used to separate th
contributions of ground and excited states.

Figure 1 shows the superfluid fractionf s for one-
dimensional lattices with up toI 512 sites and fixed filling
factor N/I 51. The superfluid fraction is 1 for the noninte
acting system and decreases slowly for smallV/J. In the
region of the Mott transitionf s drops rapidly and goes to
zero in the Mott-insulator phase. The sequence of curves
increasing system size shows a moderate size depend
around the onset of the insulator phase. One can extrapo
the curves toI→` and finds a vanishing superfluid fractio
above a critical interaction strength which is in good agr
ment with the value (V/J)crit'4.65 obtained by strong cou
pling expansion@14# and Monte Carlo methods@15#. The
thin lines in Fig. 1 depict the isolated first-order contributio
f s

(1)52(1/2NJ)^C0uTuC0& to the superfluid fraction~7!,
which is just the reduced expectation value of the hopp
operator. This quantity decreases much slower than the
superfluid fraction. Thus even deep in the Mott regime
hopping operator has a considerable expectation value~up to
30% of its value in the noninteracting system! although the
system is already an insulator, i.e., the superfluid fraction
zero. The rapid decrease of the total superfluid fraction
largely due to the second-order contributionf s

(2), which van-

FIG. 1. Superfluid fractionf s as a function of the interaction
strengthV/J for filling N/I 51 and different lattice sizes:I 512
~full line!, 10 ~dashed!, 8 ~dotted!. The thin lines show the first-
order term f s

(1). The vertical line marks the critical interactio
strength (V/J)crit'4.65 for the infinite system.
2-2
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ishes for smallV/J and shows a thresholdlike behavi
around the Mott transition. The vanishing of the superflu
fraction in the insulating phase is generated by a strong c
cellation between the first- and second-order terms. This
phasizes that the superfluid fraction depends crucially on
properties of the excited states.

III. INTERFERENCE PATTERN

The standard experimental approach to investigate
state of the Bose gas in an optical lattice relies on the ma
wave interference pattern after the gas was released from
lattice. How much can the presence or absence of inte
ence fringes tell about superfluidity?

In the simplest model of the expansion for the syst
after release from the lattice the effects of interactions
neglected. We can write the intensity observed after so
time-of-flight t at a pointyW as

I~yW !5^C0uA†~yW !A~yW !uC0&. ~8!

We assume that the Wannier functionsw(x2j i) can be de-
scribed by Gaussians. The amplitude operator is given
A(yW )5 1/AI ( i 51

I x i(yW )ai , wherex i(yW ) denotes the Gauss
ian wave-packet associated with sitei after a free evolution
for a time t. Since we are interested only in the gene
features of the interference pattern we discard all terms
lated to the spatial structure of the envelope ofx i(yW ) and
only retain the phase terms. This leads to

A~yW !5
1

AI
(
i 51

I

ei f i (yW )ai , ~9!

wheref i(yW ) is the total phase acquired on the path from s
i to the observation pointyW . In the far-field approximation
we can assume a constant phase differencedf(yW )
5f i 11(yW )2f i(yW ) for adjacent sites~gravity neglected!.
Calculating the intensity Eq.~8! as function of the phase
differencedf, using the far-field form of the amplitude op
erator~9!, leads to the following expression:

I~df!5
1

I (
i , j 51

I

ei( j 2 i )df^C0ua†
iaj uC0&

5
1

I FN1 (
d51

I 21

Bdcos~d df!G . ~10!

In the last step we rearranged the double summation in
sum over the hopping distanced5 j 2 i . The coefficientsBd
are given by the expectation values of thedth neighbor hop-
ping operators,Bd5( i 51

I 2d^C0ua†
i 1dai1a†

iai 1duC0&. The
leading coefficientB1 is related to the first-order term of th
superfluid fraction~7! through B152(I 2d) f s

(1). Clearly,
there is no contribution corresponding to the importa
second-order termf s

(2) of the superfluid fraction, because th
intensity Eq.~8! involves only the ground state. Thus th
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interference pattern cannot provide full information on t
superfluid properties, as it only measures the first-order t
of the superfluid fraction.

Figure 2 shows the intensitiesI(df) resulting from the
exact numerical calculation for different interactio
strengths. The interference peaks arounddf50,62p, etc.,
correspond to the prominent peaks observed experiment
Recall that terms describing the overall envelope were
glected in Eq.~9!. With increasingV/J the intensityImax of
these principal peaks reduces. At the same time an inco
ent background emerges such that the minimum inten
Imin between the principal peaks grows. Thus the interf
ence fringes are increasingly washed out and eventually o
a flat intensity distribution remains.

As a quantitative measure for the vanishing of the int
ference pattern the full line in Fig. 3 shows the fringe v
ibility V5(Imax2Imin)/(Imax1Imin) as function ofV/J. In
addition, the dashed curve shows the on-site number fluc
tionss i5(^ni

2&2^ni&
2)1/2 of the ground state. Obviously, th

visibility of the fringes has no immediate relation to th
number fluctuations. For small interaction strengthsV/J&5
the visibility remains almost constant atV'1, whereas the
number fluctuations drop to 0.5 in the same interval.

A second observation concerns the relation with the
perfluid fraction shown in Fig. 1. The superfluid fractionf s
vanishes much faster than the visibilityV and the number
fluctuationss i . For values ofV/J where the superfluid frac
tion has practically vanished the visibility is still larger tha
0.7. Thus neither fringe visibility nor number fluctuations a
suitable indicators for the superfluid properties and the M
insulator transition in lattice systems. Because neitherV nor
s i show noticable finite-size effects~see Fig. 3!, this also
holds for large one-dimensional systems. A similar conc
sion can be drawn from Monte Carlo simulations includi
the influence of an additional parabolic trapping poten
@16#.

IV. QUASIMOMENTUM DISTRIBUTION

The interference pattern after ballistic expansion
closely related to the quasimomentum distribution of t
Bose gas in the lattice. Formally, the connection is revea
by constructing an expression for the occupation numbers
the Bloch states of the lowest band. We can use the rela

FIG. 2. IntensityI(df) as a function of the phase differencedf
for a system withI 5N510 andV/J50 ~full line!, 5 ~dashed line!,
10 ~dotted line!.
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between localized Wannier functionsw(x2j i) and Bloch
functionscq(x) to define a creation operatorc†

q for a boson
in Bloch state with quasimomentumq @9#

c†
q5

1

AI
(
i 51

I

e2 i qj ia†
i , ~11!

wherej i is the coordinate of the center of thei th lattice site.
This relation is identical to the definition of the amplitud
operatorA(yW ) in Eq. ~9! if we identify the phasef i(yW ) with
qj i or the phase differencedf with qa, where a5j i 11

2j i is the lattice spacing. The occupation numbersñq for the
Bloch states with quasi-momentaq are, therefore, directly
related to the intensity~10! through

ñq5^C0uc†
qcquC0&5I~df5qa!. ~12!

Notice that in a finite system of lengthL the quasimomentum
q has discrete values which are integer multiples of 2p/L.
The values ofdf5qa for these allowed quasimomenta a
marked by gray arrows in Fig. 2.

Because of this intimate relation the interference patt
provides complete information on the quasimomentum d
tribution of the trapped system. The intensity of the princip

FIG. 3. Fringe visibilityV and number fluctuationss i as func-
tion of the interaction strengthV/J for N/I 51 andI 512 ~full !, 10
~dashed!, and 8 ~dotted!. Both quantities show practically no siz
dependence.
03160
n
-
l

interference peak is proportional to the occupation numbe
theq50 Bloch state, i.e., it describes the number of partic
in the condensate. The washing out of the interference pe
with increasing interaction strength is linked to the succ
sive redistribution of the population from the condens
state withq50 to states of higher quasimomenta. In the lim
of large V/J the intensity distribution is flat, i.e., all quas
momentum states of the lowest band are occupied uniform
On the basis of this one-to-one correspondence betwee
terference pattern and quasimomentum distribution we
reinterpret the visibilityV of the interference fringes as mea
sure for the uniformity of the quasimomentum distributio
Vanishing visibility corresponds to a completely unifor
quasimomentum distribution, whereas visibilityV51 means
that at least one quasimomentum state is unoccupied.

V. CONCLUSIONS

We have shown that the matter-wave interference pat
observed experimentally contains all the information on
quasimomentum distribution of the lattice system but no
rect information on the superfluid fraction. The behavior
the superfluid fraction shown in Fig. 1 depends strongly
the properties of the excitation spectrum, which ent
through the second-order contributionf s

(2). The importance
of this second-order term shows that one cannot probe su
fluidity through quantities which are only sensitive to th
ground state of the system~like number fluctuation, conden
sate fraction, coherence properties, etc.!. One has to devise
an experimental scheme that measures superfluidity dire
The formal definition of superfluidity gives a hint how t
accomplish this. As mentioned earlier there are several m
ods to create the phase factor appearing inHQ experimen-
tally, e.g., by accelerating the lattice. By observing the res
ing flow behavior after release from the lattice one should
able to distinguish superfluid and nonsuperfluid compone
and determine the superfluid fraction.

ACKNOWLEDGMENTS

This work was supported by the DFG, the UK EPSR
and the EU under the Cold Quantum Gases Network.
@1# M. Greineret al., Nature~London! 415, 39 ~2002!.
@2# A.J. Leggett, Rev. Mod. Phys.71, S318~1999!.
@3# E.L. Pollock and D.M. Ceperley, Phys. Rev. B36, 8343

~1987!.
@4# W. Krauth, Phys. Rev. B44, 9772~1991!.
@5# M.E. Fisheret al., Phys. Rev. A8, 1111~1973!.
@6# E.H. Lieb et al., e-print cond-mat/0205570.
@7# D. Jakschet al., Phys. Rev. Lett.81, 3108~1998!.
@8# R. Roth and K. Burnett, J. Opt. B~to be published!, e-print

cond-mat/0205412.
@9# D. van Oostenet al., Phys. Rev. A63, 053601~2001!.
@10# D. Poilblanc, Phys. Rev. B44, 9562~1991!.
@11# B.S. Shastry and B. Sutherland, Phys. Rev. Lett.65, 243

~1990!.
@12# S. Rapschet al., Europhys. Lett.46, 559 ~1999!.
@13# R.M. Fyeet al., Phys. Rev. B44, 6909~1991!.
@14# J.K. Freericks and H. Monien, Phys. Rev. B53, 2691~1996!.
@15# G.G. Batrouni and R.T. Scalettar, Phys. Rev. B46, 9051

~1992!.
@16# V.A. Kashurnikovet al., Phys. Rev. A66, 031601~R! ~2002!.
2-4


