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We present a study of the superfluid properties of atomic Bose gases in optical lattice potentials using the
Bose-Hubbard model. To do this, we use a microscopic definition of the superfluid fraction based on the
response of the system to a phase variation imposed by means of twisted boundary conditions. We compare the
superfluid fraction to other physical quantities, i.e., the interference pattern after ballistic expansion, the qua-
simomentum distribution, and number fluctuations. We have performed exact numerical calculations of all
these quantities for small one-dimensional systems. We show that the superfluid fraction alone exhibits a clear
signature of the Mott-insulator transition. Observables like the fringe visibility, which probe only ground-state
properties, do not provide direct information on superfluidity and the Mott-insulator transition.
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[. INTRODUCTION enables us to derive an expression for the superfluid fraction
fs=Ng/N. Consider a system with a finite linear dimension
Ultracold atomic gases in optical lattices provide a uniqueL in €, direction and a ground-state enerfy calculated
framework for the experimental study of fundamental quanwith periodic boundary conditions. Now we impose a linear
tum p_henomena in interacting_many-body systems. This i_%hase variationd(x) = ©x, /L with a total twist angle®
especially true for the exploration of quantum phase transiz, o o length of the system in tleg direction. Technically,
tions Sth as the sgperflmd to Mo'Ft-lnsuIator transition Ob'this can be achieved by introducing twisted boundary
served in a recent pioneering experimgkit The remarkable . - - -
degree of experimental control over all the reIevantcon.%'t'or[S of - the f‘?fm WX, Xt Le%’ )
parameters—density, interaction strength, lattice geometry=€ ¥ (X1, ... X, .. .) with respect to all coordinates of
and dimensionality—allows much more detailed studies othe many-body wave function. The resulting ground-state en-
the complicated mechanisms behind quantum phase tran§f9y Ee will depend on the phase twist. For very small twist
tion than conventional solid-state systems. angles®_<7r_ the energy differencEg — E, can be attributed
It is clearly the case that the most important quantity forto the kinetic-energyTs of the superflow generated by the
characterizing the superfluid-to-insulator transition is the suPhase gradient. Thus
perfluid density or superfluid fractiof;. The aim of this
paper is to set up the general theoretical framework for the
calculation of the superfluid fraction within the Bose-
Hubbard model and to compare it, on the formal level, with
guantities being measured at the moment. These include the . : .
interference pattern after ballistic expansion, the quasimo- IS ansatz corresponds to the macroscopic dgfmmon Of. su-
mentum distribution as well as the number fluctuations,perﬂUIdIty based on the response of the ﬂl{'d to-moving
which are important in applications. We perform exact nu-Poundarie$3]. Replacing the superfluid velocity, with the
merical calculations for the Mott-insulator transition in an Phase gradient leads to a fundamental relation for the super-
one-dimensional system to demonstrate the relationship, arftf!id fraction[4,5]
more importantly the differences, between the superfluid
fraction and various ground-state observables, most notably fs=(2m/%?) (L%IN) [(Eg—E()/®?]. 2
the visibility of the interference pattern.

! -
Eo—Eo=Te=3mNfw?, (6]

heremNf; is the total mass of the superfluid component.

Hence the superfluid fraction can be interpreted as a measure
Il. SUPERELUIDITY f_or the spiffness of the system under an _in_”npo_sed phase var_ia-
tion. This demonstrates that superfluidity is not a static
The concept of superfluidity is closely related to the exis-ground-state property but rather the response of the system to
tence of a condensate in the interacting many-boson systean external perturbation. We should note that this definition
[2]. Formally, the one-body density matrp(l)(i,i’) has to of superfluidity does not tell anything about the stability of
have exactly one macroscopic eigenvalue which defines thé@e superfluid flow at finite velocitieg6]. However, it is
number of particled\, in the condensate; the correspondingequivalent to the helicity modulufb] and the concept of
eigenvector describes the condensate wave funafig(x) wirv\j/ing nUfT][bEFSfUSig in Mf?“é? Cart|0 aplpft?_acf‘ﬁs o d
— i 0(X) v ; ; > e now transfer these findings to a lattice system de-
.—e |g'{)0(X)|. Aspaually.var'ymg condensate pha»eef) scribed in the framework of the Bc?se-Hubbard mqe)I/eT,Sl.
IS aSSOCI:’:ltEEi with a velocity field for the condensaig(x) For simplicity we restrict ourselves to a regular one-
=(A/m)V 6(x). This irrotational velocity field is identified dimensional lattice composed df sites described by the

with velocity of the superfluid flow (X)=vo(X) [2] and  Bose-Hubbard Hamiltonian
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| v 1 - ' ' .
Ho= —Jg,l (al,,a+H.a)+ 5 21 n(n—1), (3) 08

. . 0.6F
wherea'; creates a boson in the lowest Wannier state local-

ized at sitei andn,=a';a,. The first term describes the hop- 04}
ping or tunneling between adjacent sites with a tunneling
strengthJ, the second term characterizes the on-site two-
body interaction with a strengthl [7,9]. The hopping be- 0
tween the first and the last site of the lattice is included
(I+1=1), which corresponds to periodic boundary condi-
tlons The generallzatlon to three_dlmenS|onal |attlces |S FIG. 1. Superﬂl.“d fractiorfs as a function of the interaction
straight forward. strengthV/J for filling N/I=1 and differ_ent_ lattice sized:= }2
In order to compute the energy of the system with an(full line), lo(gzlasheai 8 (_dotte_d. The thin lines _s_how_ the f|r§t-
imposed phase twigd we map the twisted boundary condi- order termfg /. The vertical .Ilnle.marks the critical interaction
tions by means of a local unitary transformation onto theST€"9t ¥/d)ci~4.65 for the infinite system.
Hamiltonian[10,11]. This leads to a twisted Hamiltonian of

b

0.2f

significant dependence of the superfluid fraction on the exci-

the form tation spectrum and thus goes beyond the static ground-state
I v properties of the system.
He=-J2, (e '®af  ia+H.a)+= > n(n—1) (4) Equation (7) corresponds to the Drude weight used to
i=1 2= characterize the dc conductivity of charged fermionic sys-

] -~ ] ) tems[13]. This demonstrates that the phase factors appearing
with a modified hOpﬂ'g% term that contains the so-calledi the twisted Hamiltoniar(4) can actually be realized ex-
Peierls phase factoes™' ™" [11]. The energyEg in the pres-  perimentally, i.e., by an external electric field for charged

ence of the phase twist is given by the lowest eigenvalue oharticles or by some linear external potential or even by ac-
the twisted Hamiltonian using periodic boundary conditions.ce|erating the lattice.

From the difference of the ground-state energigs- Eq we To illustrate the generic behavior of the superfluid fraction
obtain the superfluid fractiof2] as function of the interaction paramedé¢tJ, and hence the
fo= (12/N) [(Eo—Eo)/d ©7], ®) appearance of the Mott insulator phase, we solve the eigen-

value problems of the nontwisted Hamiltoniés) and the
now expressed in terms of the parameters of the Bosety\"Stec.j Hamlltqn|ar(4) ”‘%me”cﬁ"y- We construct th? corre-
Hubbard model sponding Hamilton matrices using a complete basis of Fock

One can get a more detailed insight into the dependenc tates|ny, ... ;) with all composmo_ns of the occupation
umbersn;. The ground-state energi€s, and Eg_q 4 are

of the superfluid fraction on the structure of the eigenstate btained with Hicient iterative L lorit
of the system by considering a perturbative calculation of th amned with an efficient iterative Lanczos aigori 8.
energy differenceE, — E,. We expand the twisted Hamil- he pertgrbatwe expressidii) is .then used to separate the
tonian up to second order in the twist an@ethus, cont_r|but|ons of ground and exuted states.

Figure 1 shows the superfluid fractiofy for one-

Ho~Ho+ (0/1) = (0%/21%) T=Ho+Hper.  (6) dimensional lattices with up tb=12 sites and fixed filling
factor N/I =1. The superfluid fraction is 1 for the noninter-

Here we defined a current operatbriJs;(a’,,,a—H.a.)  acting system and decreases slowly for sméll. In the
and the usual kinetic energy or hopping operafbr region of the Mott transitiorfs drops rapidly and goes to
=-J3,(a",,a+H.a.). We can calculate the energy shift zero in the Mott-insulator phase. The sequence of curves for
Ee — Eo caused by the perturbatidty.in second-order per- increasing system size shows a moderate size dependence
turbation theory. Retaining the terms up to the quadratic oraround the onset of the insulator phase. One can extrapolate
der in the twist angl® we obtain for the superfluid fraction the curves td —< and finds a vanishing superfluid fraction

usina Ea.(5 above a critical interaction strength which is in good agree-
g Eq.(5)
ment with the value VY/J)i~4.65 obtained by strong cou-
f=f1—f2 pling expansion14] and Monte Carlo methodgl5]. The
) thin lines in Fig. 1 depict the isolated first-order contribution
_1 —E<\If Ty -3 [(W,]3]W o)l @ f D= — (L/2NJI)(W,|T|W¥,) to the superfluid fraction(7),
NJ| 2V7° & E,—E, ' which is just the reduced expectation value of the hopping

operator. This quantity decreases much slower than the total
where thd¥,) (v=0,1, ...) are theigenstates of the non- superfluid fraction. Thus even deep in the Mott regime the
twisted Bose-Hubbard Hamiltonidt,. The ground-state ex- hopping operator has a considerable expectation \alpi¢o
pectation value of the hopping operator describes the first30% of its value in the noninteracting systeaithough the
order contributionf{®). The sum over the excited-states system is already an insulator, i.e., the superfluid fraction is
involving the current operator constitutes the second-ordezero. The rapid decrease of the total superfluid fraction is
term f{?). It is this second-order term which introduces alargely due to the second-order contributiaff’, which van-
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ishes for smallV/J and shows a thresholdlike behavior
around the Mott transition. The vanishing of the superfluid
fraction in the insulating phase is generated by a strong can-
cellation between the first- and second-order terms. This em-
phasizes that the superfluid fraction depends crucially on the
properties of the excited states.

1(69)

Ill. INTERFERENCE PATTERN

The standard experimental approach to investigate the
state of the Bose gas in an optical lattice relies on the matter- 06/(2r)
wave interference pattern after the gas was released from the 5 IntensityZ( ) as a function of the phase differenée
lattice. How much can the presence or absence of interfei, a system with =N=10 andV/J=0 (full line), 5 (dashed ling
ence fringes tell about superfluidity? 10 (dotted line.

In the simplest model of the expansion for the system

after release from the lattice the effects of interactions argierference pattern cannot provide full information on the
neglected. We can write the intensity observed after Someg nerfluid properties, as it only measures the first-order term

time-of-flight 7 at a pointy as of the superfluid fraction.
Figure 2 shows the intensitieq 6¢) resulting from the
I()7)=(\F0|AT()7)A()7)|\PO>. (8) exact numerical calculation for different interaction

strengths. The interference peaks arouigt=0,*= 27, etc.,
We assume that the Wannier functiongx— &) can be de- correspond to the prominent peaks observed experimentally.
scribed by Gaussians. The amplitude operator is given bjRecall that terms describing the overall envelope were ne-
A(y)=1\TS!_ xi(Y)a, wherey;(y) denotes the Gauss- glected i_n Eq.(g). With increasingV/J the inten'sitﬂmax_of
ian wave-packet associated with sitafter a free evolution these principal peaks reduces. At the same time an incoher-
for a time . Since we are interested only in the generic€Nt Packground emerges such that the minimum intensity

features of the interference pattern we discard all terms relmin P&tween the principal peaks grows. Thus the interfer-
lated to the spatial structure of the envelope fﬁ) and ence fringes are increasingly washed out and eventually only

v retain the ph i This leads t a flat intensity distribution remains.
only retain the phase terms. This leads 1o As a quantitative measure for the vanishing of the inter-

ference pattern the full line in Fig. 3 shows the fringe vis-
R ibility V=(Zrnax—Zmin) Tmax+Zmir) @s function ofV/J. In
Aly)= N 2, e Wa, (9 addition, the dashed curve shows the on-site number fluctua-
'_l tions o, = ((n?)— (n;)?) 2 of the ground state. Obviously, the
where¢i()7) is the total phase acquired on the path from sitexljrlsg'g f?Jc:E:tigLnsgelfoPzrsna:};)ir:?;:gi(tji?rtestﬁr?;;ﬂg ;05 the
i to the observation poiny. In the far-field approximation e visibility remains almost constant &t<1, whereas the
we can assume a constant phase differené(y)  number fluctuations drop to 0.5 in the same interval.
= ¢i+1(y) — ¢i(y) for adjacent sites(gravity neglecteq A second observation concerns the relation with the su-
Calculating the intensity Eq(8) as function of the phase perfluid fraction shown in Fig. 1. The superfluid fractibgn
differenced¢, using the far-field form of the amplitude op- vanishes much faster than the visibility and the number
erator(9), leads to the following expression: fluctuationse; . For values oiv/J where the superfluid frac-
tion has practically vanished the visibility is still larger than
! 0.7. Thus neither fringe visibility nor number fluctuations are

L(S¢p)= IE > €7Dy latalw,) suitable indicators for the superfluid properties and the Mott-
hi=1 insulator transition in lattice systems. Because neitheor
-1 o; show noticable finite-size effecisee Fig. 3, this also

= =N+, Bycogd o) |. (100  holds for large one-dimensional systems. A similar conclu-

' d=1 sion can be drawn from Monte Carlo simulations including

~_ the influence of an additional parabolic trapping potential
In the last step we rearranged the double summation into gy g,

sum over the hopping distande=j —i. The coefficient84
are given by the expectation values of tiith neighbor hop-
ping operators,By=3!_%(W|a';, 4a+a’a.q¥o). The
leading coefficienB, is related to the first-order term of the ~ The interference pattern after ballistic expansion is
superfluid fraction(7) through B;=2(1—d)f{Y. Clearly, closely related to the quasimomentum distribution of the
there is no contribution corresponding to the importantBose gas in the lattice. Formally, the connection is revealed
second-order terfi®) of the superfluid fraction, because the by constructing an expression for the occupation numbers for
intensity Eq.(8) involves only the ground state. Thus the the Bloch states of the lowest band. We can use the relation

IV. QUASIMOMENTUM DISTRIBUTION
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interference peak is proportional to the occupation number of
theq=0 Bloch state, i.e., it describes the number of particles
in the condensate. The washing out of the interference peaks
with increasing interaction strength is linked to the succes-
sive redistribution of the population from the condensate
state withg= 0 to states of higher quasimomenta. In the limit
of large V/J the intensity distribution is flat, i.e., all quasi-

02f 1 momentum states of the lowest band are occupied uniformly.
05 : i G 5 On the basis of this one-to-one correspondence between in-

Vil terference pattern and quasimomentum distribution we can
reinterpret the visibility) of the interference fringes as mea-
FIG. 3. Fringe visibilityV and number fluctuations; as func-  sure for the uniformity of the quasimomentum distribution.
tion of the interaction strengtff/J for N/I=1 andl =12 (full), 10  Vanishing visibility corresponds to a completely uniform
(dashegl and 8 (dotted. Both quantities show practically no size quasimomentum distribution, whereas visibility=1 means

dependence. that at least one quasimomentum state is unoccupied.
between localized Wannier functiong(x—¢;) and Bloch V. CONCLUSIONS

functionsi,(x) to define a creation operatqu for a boson

in Bloch state with quasimomentum[9] We have shown that the matter-wave interference pattern

observed experimentally contains all the information on the

| quasimomentum distribution of the lattice system but no di-

:i 2 ~iag gt (11) rect information on the superfluid fraction. The behavior of

| =1 H the superfluid fraction shown in Fig. 1 depends strongly on

the properties of the excitation spectrum, which enters
where¢; is the coordinate of the center of thi lattice site.  through the second-order contributiég?). The importance

This relation is identical to the definition of the amplitude of this second-order term shows that one cannot probe super-

operatorA(y) in Eq. (9) if we identify the phasep;(y) with  fluidity through quantities which are only sensitive to the
gé& or the phase differencé¢ with ga, wherea=¢,,, ground state of the systeftike number fluctuation, conden-
— & is the lattice spacing. The occupation numigysor the sate fraction, coherence properties, et®ne has to devise

Bloch states with quasi-momentpare, therefore, directly an experimental scheme that measures superfluidity directly.
related to the intensity10) through The formal definition of superfluidity gives a hint how to

accomplish this. As mentioned earlier there are several meth-
~ ods to create the phase factor appearingdin experimen-
Ng=(Wolc'qc| Vo) =T(5p=qa). (12 tally, e.g., by accelerating the lattice. By observing the result-
ing flow behavior after release from the lattice one should be
able to distinguish superfluid and nonsuperfluid components
and determine the superfluid fraction.

Notice that in a finite system of lengththe quasimomentum
g has discrete values which are integer multiples af 2.
The values of6¢=qa for these allowed quasimomenta are
marked by gray arrows in Fig. 2.

Because of this intimate relation the interference pattern
provides complete information on the quasimomentum dis- This work was supported by the DFG, the UK EPSRC,
tribution of the trapped system. The intensity of the principaland the EU under the Cold Quantum Gases Network.
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