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Superfluid transition in quasi-two-dimensional Fermi gases
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We show that atomic Fermi gases in quasi-two-dimensional~2D! geometries are promising for achieving
superfluidity. In the regime of BCS pairing for weak attraction, we calculate the critical temperatureTc and
analyze possibilities of increasing the ratio ofTc to the Fermi energy. In the opposite limit, where a strong
coupling leads to the formation of weakly bound quasi-2D dimers, we find that their Bose-Einstein condensate
will be stable on a long time scale.
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Recent progress in trapping and cooling of Fermi isoto
of K @1,2# and Li @3–6# have shown the ability to go fa
below the temperature of quantum degeneracy and to
nipulate independently the trapping geometry, density, te
perature, and interparticle interaction. The Duke experim
@7# presents intriguing results on the possibility of achievi
a superfluid phase transition in the two-component Fermi
of 6Li.

Two-dimensional Fermi gases have striking features
encountered in three dimensions~3D!. In the superfluid state
thermal fluctuations of the phase of the order param
strongly modify the phase coherence properties. The inte
tion strength depends logarithmically on the relative ene
of the colliding atoms. For degenerate Fermi gases this
ergy is of the order of the Fermi energy«F , which is pro-
portional to the 2D densityn. Accordingly, the exponentia
dependence of the BCS transition temperature on the in
action strength transforms into a power-law dependence
the density:Tc}n1/2 @8,9#. This suggests a unique possibili
to cross the critical point by adiabatically expanding a d
generate Fermi gas. Since the ratioT/«F remains unchanged
the temperature scales asn and decreases with density fast
thanTc .

Experimentally it is possible to achieve the quasi-2D
gime by confining the atoms in one direction so tightly th
the corresponding level spacing exceeds the Fermi ene
Under this condition the degenerate Fermi gas is kinem
cally two dimensional. Thus far, this regime has be
reached for Cs atoms@10–12# and for Bose-Einstein conden
sates of Na@13# and Rb@14#.

In the quasi-2D regime the mean-field interaction betwe
particles exhibits a similar logarithmic dependence on
particle energy as in the purely 2D case@15#. The amplitude
of the s-wave scattering turns out to be sensitive to t
strength of the tight confinement@15#. This opens new
handles on manipulations of the interparticle interaction a
superfluid pairing.

In this Rapid Communication we show that atomic Fer
gases in quasi-2D geometries can become strong compe
of 3D gases in achieving superfluidity. The ability to increa
the interparticle interaction by tuning the trap frequenc
gives an opportunity to realize a transition from the stand
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BCS pairing in the case of weak attraction to the limit
strong interactions and pairing in coordinate space. In
latter case, one eventually gets a dilute system of wea
bound quasi-2D dimers of fermionic atoms, which can u
dergo Bose-Einstein condensation~BEC!. For the BCS case
we calculate the critical temperatureTc to second order in
perturbation theory and discuss possibilities of increasing
ratio Tc /«F . In the other extreme, we find that the intera
tion between the quasi-2D dimers is repulsive, and their c
lisional relaxation and decay are strongly suppressed. T
allows us to conclude that BEC of these composite bos
will be stable on a long time scale.

We consider an ultracold two-component Fermi gas in
quasi-2D regime and confine ourselves to thes-wave inter-
action and superfluid pairing between atoms of differe
components. We assume that the characteristic radius o
interaction potential is much smaller than the harmon
oscillator length in the tightly confined direction,l 0
5(\/mv0)1/2, wherem is the atom mass andv0 is the con-
finement frequency. Then the interaction problem involv
two length scales:l 0 and the 3D scattering lengtha. For a
,0 anduau! l 0, there is a peculiar quasi-2D weakly bounds
state of two particles, with the binding energy@15#

«050.915~\v0 /p!exp~2A2p l 0 /uau!!\v0 . ~1!

In this case the coupling constant for the intercompon
interaction takes the formg5(4p\2/m)ln21(«0 /«), where
the relative collision energy« is assumed to be either muc
smaller or much larger than«0 ~see Ref.@15#, and references
therein!. As in degenerate Fermi gases one has«;«F , the
interaction is attractive (g,0) if the density is sufficiently
high and one satisfies the inequality

«0 /«F!1. ~2!

Thus, inequality~2! is the necessary condition for th
BCS pairing. For finding the critical temperatureTc below
which the formation of Cooper pairs becomes favorable,
go beyond the simple BCS approach and proceed along
lines of the theory developed by Gor’kov and Melik
Barkhudarov for the 3D case@16#.
©2003 The American Physical Society01-1
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The critical temperatureTc is determined as the highe
temperature for which the linearized equation for the or
parameter~gap! D5^gĈĈ& has a nontrivial solution@17#.
Assuming that the quasi-2D gas is uniform in two in-pla
directions, the gap equation in the momentum space ta
the 2D form

D~q!'2E H \2

m
f ~z,q,q8!FK~q8!1

1

z2j~q8!1 i0
G

1dV~q,q8!K~q8!J D~q8!
d2q8

~2p!2
, ~3!

whereK(q)5@1/2j(q)#tanh@j(q)/2T#, j(q)5\2q2/2m2m,
m'«F5p\2n/m is the chemical potential, andn is the total
density of the two equally populated components. The fi
term on the right-hand side~rhs! of Eq. ~3! results from the
direct interaction between particles, and we renormalized
interaction potential in terms of the scattering amplitudf
~vertex function!. The latter is a solution of the quasi-2
scattering problem. The parameterz has a meaning of the
total energy of colliding particles in their center-of-mass r
erence frame. It is of the order of«F and drops out of the
final answer. The termdV(q,q8) describes the modification
of the interparticle interaction due to the presence of ot
particles~many-body effects!. The leading contributions to
this term are second order in the scattering amplitude. T
are shown in Fig. 1 and correspond to an indirect interac
between two particles when one of them interacts with
particle-hole pair virtually created from the ground sta
~filled Fermi sea! by the other particle. These second-ord
contributions are important for the absolute value of the cr
cal temperature~preexponential factor in the 3D case!,
whereas higher-order terms involving more interact
events can be neglected.

The amplitudef is independent of the momentaq,q8 and
we will use the 2D relation~see Ref.@18#!

f 54p ln21$«0 /~2z!%. ~4!

The last term on the rhs of Eq.~3! is a small correction, since
dV; f 2. Accordingly, the quantityu f u represents a small pa
rameter of the theory. In the quasi-2D regime (z!\v0) the
motion of particles in the tightly confined direction provid

FIG. 1. The leading contributions todV(q,q8).
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a correction to Eq.~4!, which is;(z/\v0) f 2 @15#. It is much
smaller thandV and will be omitted.

Equations~3! and ~4! show that the momentum depen
dence of the order parameter appears only due to the sec
order term that contains many-body contributions to the
terparticle interactiondV. The latter is a function ofp
5uq1q8u and rapidly decays forp.2qF , where qF

5A2mm/\ is the Fermi momentum. Forp<2qF the quan-
tity dV is almost constant. Therefore, one hasD(q8)
'D(qF) in a wide momentum range near the Fermi surfa
Then, forq5qF a direct integration of Eq.~3! yields

D~qF!52
f ~z!

4p
D~qF!lnF ~22mz!

p2T2
exp~2g!G

2dV~qF ,qF!
m

2p\2
lnS C

m

T DD~qF!,

whereg'0.5772 is the Euler constant andC is a numerical
factor determined by the momentum dependence ofD and
dV. The calculation ofdV(qF ,qF) is straightforward and
gives dV(qF ,qF)5(\2/2pm) f 2(2m). Then, using Eq.~4!
we obtain the critical temperature

Tc'~2m/p!exp@g212u2pRef 21~2m!u#.

The exponent in this equation should be large and the qu
tity Re f 21(2m) should be negative. As the chemical pote
tial is m'«F , from Eq.~4! one sees that these requiremen
are reached under condition~2!. Using Eqs.~1! and ~4! the
critical temperature takes the form

Tc5
gA2«0«F

pe
50.16A«F\v0expS 2Ap

2

l 0

uau D !«F .

~5!

The relative correction to this result is of the order
1/u ln(«0 /«F)u!1.

Note that Eq.~5! predicts by a factor ofe smaller value
for the critical temperature than a simple BCS calculat
@19#. This means that the attractive interaction between p
ticles becomes weaker once we take into account the po
ization of the medium.

The ratio Tc /«F is not necessarily very small. For ex
ample, using Feshbach resonances the scattering leng
tunable over a wide interval of negative values@1,5,6#. Keep-
ing the exponential term equal to 0.05 in Eq.~5!, with v0
;100 kHz we obtain Tc /«F;0.1 for 2D densitiesn
;109 cm22 (Tc;40 nK).

As in the purely 2D case@8,9#, the transition temperature
Tc}n1/2 and the ratioTc /«F increases with decreasing de
sity asn21/2. This is a striking difference from the 3D cas
where this ratio decreases exponentially with density. In
presence of the in-plane confinement, one can approach
BCS transition in a degenerate Fermi gas by adiabatic
expanding the quasi-2D trap in the in-plane direction~s!. As
the degeneracy parameterT/«F is conserved in the course o
the adiabatic expansion, the ratioT/Tc will decrease asn1/2.
Equations~1! and~5! also show that one can increase«0 and
1-2



t

e
ns
,
s-
an
ti
a
a

is
co
-
-
th
ha

n

o
m
b
e

em

bl

y.
in

siz

n
-

-
n

u-

o

nor

ree
the

firm
ol-
rely

with

the

the

-

are
un-
ro-
. It
d is
e of
rac-

e-
pro-
onic
of
all
re

t-
is

be

s of

of
ms.
p-
cess

RAPID COMMUNICATIONS

SUPERFLUID TRANSITION IN QUASI-TWO- . . . PHYSICAL REVIEW A 67, 031601~R! ~2003!
Tc /«0 by tuning uau to larger values or by making the tigh
confinement stronger and thus decreasingl 0.

What happens if«0 and«F become comparable, i.e., on
reaches the quasi-2D resonance for two-body collisio
Then Eq.~5! leads toTc;«F and is no longer valid. In fact
for «0.«F the formation of bound quasi-2D dimers of di
tinguishable fermions becomes energetically favorable
one encounters the problem of Bose-Einstein condensa
of these bosonic molecules. Thus, an increase in the r
«0 /«F from small to large values is expected to provide
transformation of the BCS pairing to molecular BEC. Th
type of crossover has been discussed in literature in the
text of superconductivity@20–23,9# and in relation to super
fluidity in 2D films of 3He @8,24#. The idea of using a Fes
hbach resonance for achieving a superfluid transition in
BCS-BEC crossover regime in ultracold 3D Fermi gases
been proposed in Refs.@25,26#.

We will not consider the crossover regime and confi
ourselves to the limiting case of molecular BEC («0@«F). A
subtle question is related to the stability of the expected c
densate, which depends on the interaction between the
ecules. For the repulsive interaction, one will have a sta
molecular BEC, and the attractive interaction should caus
collapse.

The molecule-molecule scattering is a 4-body probl
described by the Schro¨dinger equation

F2
\2

m
~¹ r1

2 1¹ r2

2 !2
\2

2m
¹R

2 1U~r 1!1U~r 2!

1(
6

US r11r2

2
6RD2EGC~r1 ,r2 ,R!50. ~6!

Here r1 is the distance between two given distinguisha
fermions,r2 is the distance between the other two,R is the
distance between the centers of mass of these pairs, andU is
the interatomic potential. The total energy isE522«01«,
with « being the relative molecule-molecule kinetic energ

The interaction between molecules is present only at
termolecular distances of the order of or smaller than the
of a moleculed* 5\/Am«0. Therefore, at energies«!«0
the scattering between molecules is dominated by thes-wave
channel and can be analyzed on the basis of the solutio
Eq. ~6! for «50. For largeR, the corresponding wave func
tion is C(r1 ,r2 ,R)'K0(r 1 /d* )K0(r 2 /d* )ln(aR/d* ),
where the decaying Bessel functionK0(r 1,2/d* ) represents
the 2-body bound state. The parametera is a universal con-
stant which can be found by matching the quantity ln(aR/d* )
with the solution of Eq.~6! at short distances. Finally, match
ing ln(aR/d* ) with the wave function of free relative motio
of two molecules at distancesd* !R!L« , where L«

5\/Am« is their de Broglie wavelength, we obtain the co
pling constant~scattering amplitude! for the interaction be-
tween molecules:

gm5~2p\2/m!ln21~2a2e22g«0 /«!.0; «!«0 . ~7!

A precise value ofa is not important as it gives rise t
higher-order corrections in Eq.~7!. However, in order to
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make sure that this constant is neither anomalously large
anomalously small we have integrated Eq.~6! numerically.
For this purpose, it is convenient to transform Eq.~6! into an
integral equation for a function that depends only on th
independent coordinates. This has been done by using
method of Ref.@27#. Our calculations lead toa'1.6. They
show the absence of 4-body weakly bound states and con
an intuitive picture that the interaction between two m
ecules can be qualitatively represented by means of a pu
repulsive potential with the range;d* . For the interaction
between Bose-condensed dimers, in Eq.~7! one has«
52nmgm!«0, wherenm is the density of the dimers~see
Ref. @15#, and references therein!. We thus conclude that a
Bose condensate of these weakly bound dimers is stable
respect to collapse.

The 2D gas of bosons becomes Bose condensed below
Kosterlitz-Thouless transition temperatureTKT @28# that de-
pends on the interaction between particles. According to
recent quantum Monte Carlo simulations@29#, for the 2D gas
with the coupling constant~7!, the Kosterlitz-Thouless tem
perature is given by

TKT5~p\2nm /m!ln21@~h/4p!ln~1/nmd
*
2 !#, ~8!

where the numerical factorh'380. For«F!«0, the density
of dimers nm'n/2 and the parameter (1/nmd

*
2 )

'2p«0 /«F . Then, for «0 /«F510, Eq. ~8! gives TKT /«F
'0.1 and at densities 108 cm22 the transition temperature in
the case of6Li is TKT'30 nK.

The weakly bound dimers that we are considering
molecules in the highest rovibrational state and they can
dergo collisional relaxation and decay. The relaxation p
cess occurs in pair dimer-dimer or dimer-atom collisions
produces diatomic molecules in deep bound states an
accompanied by a release of the kinetic energy. The siz
these deeply bound molecules is of the order of the cha
teristic radius of the interatomic potentialRe! l 0, and their
internal properties are not influenced by the tight confin
ment. Therefore, the relaxation can be treated as a 3D
cess and it requires the presence of at least three fermi
atoms at distances;Re between them. Since at least two
them are identical, the relaxation probability acquires a sm
factor (kRe)

2 compared to the case of bosons, whe
k;1/d* 5A«0 /\v0/ l 0 is a characteristic momentum of a
oms. The 3D density of atoms in the quasi-2D geometry
;n/ l 0. Thus, qualitatively, the inverse relaxation time can
written ast rel

21;a reln(Re / l 0)2(«0 /\v0)/ l 0, wherea rel is the
relaxation rate constant for the highest rovibrational state
3D molecules of two bosonic atoms. We estimatet rel keep-
ing in mind the recent measurements for Rb2 molecules@30#
that givea rel'3310211 cm3/s. For l 0 in the interval from
1025 to 1024 cm, the suppression factor (Re / l 0)2(«0 /\v0)
ranges from 1023 to 1025 and at 2D densitiesn
;108 cm22 we find the relaxation timet rel of the order of 1
s or larger.

Dimer-dimer pair collisions can lead to the formation
bound trimers, accompanied by a release of one of the ato
The formation of deeply bound trimer states will be su
pressed at least in the same way as the relaxation pro
1-3
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discussed above. Therefore, it is important that there are
weakly bound trimers in~quasi!2D. Just as in 3D@31#, this
can be established by using the zero-range approachRe

→0). We have performed this analysis along the lines of
3D work @27#. Qualitatively, the symmetry of the 3-fermio
system containing two identical fermions provides a stro
centrifugal repulsion that does not allow the presence
3-body bound states. This is in contrast to 2D bosons wh
one has two fully symmetric trimer bound states@32#.

Thus, the life-time of quasi-2D dimers of fermionic atom
is rather long and one easily estimates that it greatly exce
the characteristic time of elastic collisions. One can ev
think of achieving BEC in the initially noncondensed gas
tt.
-
,

ev
,
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dimers produced out of a nonsuperfluid atomic Fermi g
under a decrease ofn or l 0.

In conclusion, we have found the temperature of sup
fluid phase transition in two-component quasi-2D Fer
gases. Our results are promising for achieving this transi
in both the regime of BCS pairing and the regime of BEC
weakly bound dimers.
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