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How to project qubits faster using quantum feedback
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When one performs a continuous measurement, whether on a classical or quantum system, the measurement
provides a certain average rate at which one becomes certain about the state of the system. For a quantum
system this is an average rate at which the system is projected onto a pure state. We show that for a standard
kind of continuous measurement, for a qubit this rate may be increased by applying unitary operations during
the measuremerithat is, by using Hamiltonian feedbggkn contrast to the equivalent measurement on a
classical bit, where reversible operations cannot be used to enhance the rate of entropy reduction. We determine
the optimal feedback algorithm and discuss the Hamiltonian resources required.
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It was discovered recentljRefs.[1,2]) that the average Since this feedback algorithm is designed to enhance the
amount by which the quantum state of a system is purifiegproperties of the measurement itself, the resulting measure-
during a measurement depends, in general, on the basis iment process is an example of adaptive measurement
which the measurement is made. Since changing the basis B3,4]. An application of adaptive measurement to quantum
a measurement is equivalent to performing a unitary transsystems for significantly improving phase measurement has
formation on the system, we can restate this property by€en introduced previously by Wisemg3i4], and this was
saying that a unitary transformation may be applied to dealized recently by Armeat al.[5]. The key difference be-
system, so as to increase the average amount of informatidween Wiseman's scherfend adaptive state-estimation al-
that the measurement provides about the fipatmeasure- 9°rithms in generaland the present topic is that while the
men} state. This restatement makes it particularly clear whaformer involves information about the initial state, the effect

is being changed about the measurement in order to enhan gnsidered here involves information about the final state. A
the information: merely the addition of a separate Hamil-t Ird adaptive measurement process has been considered by

tonian evolution. Taking this point of view, the ability to Breslin, Milbum, and Wisemaf#], and is again quite dis-

erform. unitary transformations. or eauivalently  Hamil- tinct, as it is involved with minimizing the algorithmic infor-
perl ary ! q Y, He mation in the measurement record, rather than with a prop-
tonian evolution, can be considered as a resource which ¢

. . ty of the conditional quantum state.
be used to enhance the properties of a fixed measurement Before we begin the development of the feedback algo-

process. , rithm, let us say a few words about quantum and classical
Consider now a continuous measurement of, for exampleneasurements, and the relationship between them. Classical
a qubit. This may be represented by a sequence of identicgheasurements on classical systems are described by Baye-
“finite strength” measurements, each of which partially sjan inferencg6,7], and may be written in the same form as
projects the qubit onto the bagif0),|1)} [1] (we will refer  quantum measurements. If one writes the classical probabil-
to this as thecomputational basisby which is simply meant ity distribution of the quantity one is measuring as a diagonal
the basis in which information is encodeds more mea- density matrix, then classical measurements are in fact a sub-
surements are made, the purity of the state of the qubit inset of quantum measurements: While quantum measurements
creases, until eventually the qubit ends up in one of the basiare described by a set of operatéig, where the only re-
states. Examining this process, we find that the state thattriction is thatS,Q[Q,=1, classical measurements have
results from a measurement in the sequence is not ideal fahe further restriction that all th@,, commute with the den-
the purposes of purification for the next measurement in theity matrix describing the classical systdfor a fuller dis-
sequence. It is therefore possible to perform a unitary transzussion see Ref9]).
formation at the end of each measurem@nid depending on The behavior of a quantum measurement with commuting
the measurement resutb increase the average rate at whichoperators therefore reduces to that of a classical measure-
the state is purified. In the continuum limit this becomes ament when either unitary transformations are not available to
continuous feedback process. rotate the qubit out of the computational basis, or there is a
This fact, while interesting as it provides a technique forrapid decoherence process that immediately decoheres the
enhancing a continuous measurement, is, if anything, morgubit in the computational basis. In that case the unitary
interesting from a fundamental point of view, due to the facttransformation becomes merely a classical diffusion process
that the same measurement process performed on a classieating on the bit.
bit cannot be enhanced by a reversible transformation, since Here we will be interested in a widely applicable model of
the necessary sequence of transformations requires that stentinuous measurement, where the measurement record is a
perposition states of the computational basis be availabléViener process. We will measure in thbasis of a spin-half
Thus, this constitutes an example of something which thesystem(that is, measure the observahlg), denoting the
quantum nature of an object makes possible. basis states of-, as{|=)} (thus the final result of the mea-
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surement will either bé—) or |+), and any further refer- mized when#=n/2. That is, when the basis in which the
ence to “the computational basis” will refer to these states. density matrix is diagonal is maximally different from the

To describe the continuous measurement one applies lzasis, being the basis in which the measurement is made, the
POVM in each small time intervakt, where the POVM is measurement is most effective in purifying the state. This
chosen to scale with time in such a way that a sensible corsomewhat curious result means that, if the observer’s state-of
tinuum limit exists[10]. The resulting continuous measure- knowledge is not maximally complementary to the measure-
ment is not merely a mathematical curiosity, as it corre-ment basis, and the observer’s objective is purification, then
sponds to real measurements on physical sysfdhs1y  a unitary transformation should be applied to the state prior
(in particular, Korotkov[12—15 gives explicit examples for to the measurement. It is also worth noting that, when the
solid-state qubifs While the approach in Refl10] uses a average reduction in the entropy is greatest, this reduction is
POVM in each time step which has an infinite number ofthe same for both measurement outcomes. Thus, in this case,
outcomes, for measurements on a two-state system one c#re entropy reduction is deterministic, not random.
alternatively employ a POVM with two outcomes. A two-  Now let us consider the consequences of this for a con-
outcome measurement that provides information about thénuous measurement, performed on an initially completely

computational basis is mixed state. Approximating the continuous measurement by
a sequence of measurements we see that when we make
Q.= \/;| =W E[+H V1= F)F| the first measuremenh,; is maximal. However, the result of

the first measurement does not produce a state diagonal in a
_ %[(\/;+ V1= r)l+ (Vr— m)az]_ (1) basis complemen_tary to ttzbasis, and this !s gene.rally true
of the state resulting from a measurement inzlasis. As a
result, the average purification will not be optimal for the
We will refer to this measurement in what follows Ad. vast majority of the measuremerm’ and thus for essen-
When «=1/2, M provides no information about the quan- tjally all of the duration of the continuous measurement pro-
tum system, leaving the state of knowledge unchanged, angkss.
whenx=0 or 1 the operator€ .. are rank one projectors, SO This suggests, therefore, the following procedure: After
that M provides the maximal amount of information about each measurement we apply a unitary transformation to ro-
the final state; this case is an “infinite strength” measure-ate the state appropriately, so as to achieve maximafor
ment by the terminology of Ref$1,2]. each measurement in the sequefesch measurement siep
Settingx=1/2— y2yAt, and taking the limit of repeated Taking the continuum limit, this results in a continuous feed-
measurements ast—0, the evolution of the density matrix back algorithm which increases the rate of projection during
describing the observers state of knowledgejs given by  the continuous measurement. Calculating the behavior of the
the stochastic Schdinger equation linear entropyP as a function of time is straightforward,
because, as mentioned above, whep is maximal, the
dp=—lo,.[o,,p]1dt+\2y({o,,p}+ —2(0,))dW, change inP is the same for both outcomes of the measure-
2 ment. Hence, for a finite sequence of steps we have, for the

. . . . . nth step,
wheredW is the Gaussian stochastic Wiener increment sat- P

isfying dW?=dt.

We are interested here in how the observer’s uncertainty
of the quantum state reduces over time. In order to keep the 5 . .
calculations tractable, we will use as our measure of uncelwheer =(2x—1). In the continuum limit this becomes

tainty the so-called “linear entropy,”P(p)=1—Tr[p?].

P,=(1—b?n)"P,, (4)

— a8
(That this is a useful measure of uncertainty is due to its P(t)=e *"'P(0). ®
concavity[2].) For a completely mixed stat®(p)=1/2 and . _
for a pure stateP(p)=0. Without the feedback process, the evolutiorPgt) depends

In general, the reduction in the linear entropy will dependon the measurement outcomes, and as a result is stochastic.
upon the outcome of the measurement. As such, a sensibld1us, not only does the Hamiltonian feedback algorithm in-
measure of the purifying power of the measurement is therecrease the rate at w_hlch the state is pu_r|f|ed, put also changes
fore theaveragereduction in the linear entropy, over the two the entropy from being a random function of time to a deter-
outcomes. From Ref2] we know that the amount by which, ministic Qne.(ln fact, it is clear that this is true for any
on average, the two-outcome measurement purifies the sta@tropy, linear, von Neumann, or otherwjse.

[that is, reduce®(p)] is In the absence of feedback, due to its stochastic nature,
the behavior ofP(t) is much harder to obtain, even for the
1—(1-2P)co2h simple canonical continuougclassical) measurement we
Ap=(2xk—1)P 5 , 3 have here. Using the technique in Rf6], one obtains, for
1-(1-2P)(2x—1)%cos'0 an initially completely mixed state,
where we have written the initial density matrix as=(l A i g2D)
+a-g)/2, with 0 being the angle betweemand thez axis, —
> e L : Pe(t) dx, (6)
and |a|?=(1-2P). The reduction in uncertainty is maxi- V8wt —= cost{\/8yx)
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2
El pif(gi(P))=f(f(P)). ®)

] In addition, if we first apply a nonoptimal step, the relation-

ship between the result of applying a second nonoptimal
step, and applying an optimal step is, for each of the out-
comesi =1,2 of the first step,

Speed-Up Factor

2
2, Pig@(P)=F(G(P)). )

Thus, by the end of the second step, two sequential nonop-
timal measurements would give

2
Final Linear Entropy z of
=1

2 2
2 pﬁg}(gi(P»}aZl pif@(P)=1((P),

FIG. 1. The speed-up factor provided by the optimal Hamil- (10
tonian feedback algorithm, as a function of the final linear entropy,
for a continuous measurement in a given basis of a qubit. The casghere the first line uses E¢Q), and the second uses H§).
displayed is for an initially completely mixed state. Thus, after two steps the result of nonoptimal measurements
in both steps gives an average entropy which is higher than

where we use the subscript “c” to denote the fact that this isthe result of two optimal steps. Clearly this procedure can be
also the result for a classical continuous measurement on fgpeated times to obtain the result formeasurement steps.
classical bit. An analytic solution for the integral in E@)  Thus, we can write the final result afnonoptimal steps as
does not appear to exist, and we therefore evaluate it numeri-

cally. In Fig. 1 we plot the speedup factor provided by the 2"

feedback algorithm in obtaining a given final level of purity, 2 piP;=f°M(P) (11
when the initial state is completely mixed. It is easily shown =1

that this factor is independent of, and tends to two as the _
final entropy tends to zero. for somep; andP; . In order for the procedure which uses all

The Hamiltonian feedback algorithm above has been ob@Ptimal steps to render a greater entropy than a procedure
tained simply by optimizing the increase in purity of the final that uses some nonoptimal steps, then it would have to be
state at each measurement step. We now show that this is, RPSSible to apply an optimal step to the left-hand side of
fact, the optimal feedback algorithm for obtaining the maxi-Eq. (11), so that=?_,p;f(P;))<f°("1(P). However, since
mum purity of the state at any particular future time. First, letf (P) is linear, this is impossible. We can therefore conclude
us denote the map that takes us from an initial linear entropghat the Hamiltonian feedback algorithm presented above
P, to the final linear entropf’, for a single time step, when gives the maximum possible increase in purity for any num-
we use the optimal unitary transformation,f§®). Thus we  ber of steps, or, in the continuum limit, the maximum pos-

haveP’=f(P)=(1—Db?P, sof is linear inP. sible increase in purity for a measurement of any given du-
Now, let us consider a single measurement step  ration.
where the initial entropy i¥. If we use a suboptimal mea- So far we have discussed the effects of the feedback al-

surement, then one of two states results, and we can label tigorithm, but not given explicitly the algorithm itself. The
linear entropy of these aB,=g,(P) and P,=g,(P), re- unitary transformation required after each measurement step
spectively. On the other hand, the entropy that results fronfnust be such so as to rotate the qubit so that the Bloch vector
the optimal measurement i{P), and the three entropies lies in thex-y plane. The first thing to note is that the mini-
satisfy mum angle of rotation required to do this is achieved by
rotating such that th& andy elements of the Bloch vector
) ) remain in the same proportiorise., by keeping the angle
that the Bloch vector makes with tlxeandy axes the same
21 PiPi :21 pigi(P)=f(P), (7) " The second is that an application of the measureméralso
keeps these angles the same. Assuming that the initial state is
either completely mixed, or has been rotated prior to the
wherep; andp, are the respective probabilities that the two measurement so that the Bloch vector lies in xRg plane
suboptimal entropies were obtained. If we now apply a sectwhich is the optimal thing to dothen the initiala,= 0, and
ond optimal measurement step to both res(itth sides of the state after a measuremewt is
the inequality then sincef (P) is linear and nondecreasing,
we have pi=3[1+1-b2(a,o4+ay0,) =ba,]. (12
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The unitary transformation required to rotate such a state slarge Hamiltonian, sincelW/dt is infinite. In addition, the
that once agaim,=0, using the minimum angle of rotation, feedback Hamiltonian diverges for an initially completely

is U=exd —i(a/2)n- o], with mixed state, since(0)= /2. Thus, a real continuous feed-
back procedure will provide a lower rate of projection, de-
a=tan xb/(J1-2PJ1-b?)], (13 pending on the available Hamiltonian resources. We note that
the divergence of the feedback Hamiltonian B 1/2 has
n=(—cog ¢), sin(¢),0), (14 an analog in Wiseman'’s adaptive phase measurement; in that

scheme, for this state, it is the rate of change of the phase
and where we have used the fact tHat?=a+aj=1 estimate which diverges. It is interesting that for both
— 2P, and definedp by a,=|alcos(p). Since¢ remains the  schemes this divergence is associated with the fact that the
same throughout the sequence of measuremantsmains  measurement must break the symmetry of the state.
unchanged throughout the feedback process, and it is merely While the feedback algorithm projects a qubit onto a final
a that changes at each feedback step. Aftemtihemeasure-  pure state with maximal speed, it is fairly clear from the

ment, P, is given by Eq.(4), and hence construction of the process that the operations corresponding
, — 5 to the many possible final outcomes will be mutually nonor-
ap=tan [ £b/(J1-2Py(1-b?/n)"y1-b?]. thogonal. As a result, this adaptive measurement will almost

certainly not provide full information regarding the initial
preparation of the qubit. This is why we refer to the algo-
rithm as projecting, rather than measuring the qubit, for the
sense of the term “measurement” contains a certain ambigu-
ity: it could mean either obtaining information about the ini-
tial preparation, useful in classical and quantum communica-

Note that, when the initial state is completely mixed, the
rotation anglex, after the first measurement is alway£2,
regardless of the strength @ft (i.e., regardless of the value
of b).

In the continuum limit, the feedback angi€t) becomes

tion, or the final state, useful in quantum feedback control
a(t)=tan ! V8ydw ) = VBydw , and quantum state preparation. While in this case the quan-
J1-2P(0)e " J1-2P(0)e " tum state is projected maximally fast, this is at the expense
of losing information about the initial preparation. This
P(t)<1/2. (19 raises the question of whether there is a trade-off between

speed of projection, and loss of initial information, in the
portional toa(t)/dt, the Hamiltonian required for the feed- kind of measurements considered here. In addition, optimal
algorithms for projecting higher-dimensional systems, and

back is proportional to the measurement nalst dt. Thus optimal rates obtainable with fixed Hamiltonian resources
the feedback required to obtain an optimal projection rate is P '

Wiseman-Milburn type Markovian feedback, with the addi- are also open questions for further work.
tion of a time-dependent factor. However, this kind of feed- The author would like to thank Howard Wiseman for
back is strictly speaking an idealization valid in the limit of a helpful comments on the manuscript.

Since the Hamiltonian required to rotate throughs pro-

[1] A.C. Doherty, K. Jacobs, and G. Jungman, Phys. Re63A [8] J.K. Breslin, G.J. Milburn, and H.M. Wiseman, Phys. Rev.

062306(2002). Lett. 74, 4827(1995.
[2] C.A. Fuchs and K. Jacobs, Phys. Rev63, 062305(2002)). [9] K. Jacobs, Quant. Information Processihgr3 (2002.
[3] H.M. Wiseman, Phys. Rev. Letf5, 4587(1995. [10] C.M. Caves and G.J. Milburn, Phys. Rev.38, 5543(1987).
[4] H.M. Wiseman and R.B. Killip, Phys. Rev. 87, 2169(1998.  [11] H.M. Wiseman and G.J. Milburn, Phys. Rev4&, 642(1993;
[5] M.A. Armen, J.K. Au, J.K. Stockton, A.C. Doherty, and H. A.C. Doherty and K. Jacobsid. 60, 2700(1999.
Mabuchi, Phys. Rev. LetB9, 133602(2002. [12] A.N. Korotkov, Phys. Rev. B50, 5737(1999.

[6] E.T. Jaynes, itE. T. Jaynes: Papers on Probability, Statistics, [13] A.N. Korotkov, Physica B280, 412 (2000.
and Statistical Physicsedited by R.D. RosenkrantReidel, [14] A.N. Korotkov, Phys. Rev. B3, 115403(2002).

Dordrecht, 1983 [15] R. Ruskov and A.N. Korotkov, Phys. Rev. B6, 041401
[7] T. Bayes, Philos. Trans. R. Soc. Londe 370(1763; or see, (2002

e.g., S.J. PresBayesian Statistics: Principles, Models, and .
Applications(Wiley, New York, 1989. [16] K. Jacobs and P.L. Knight, Phys. Rev5&, 2301(1998.

030301-4



