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How to project qubits faster using quantum feedback

Kurt Jacobs
65 Abraham Heights, Nelson 7001, Auckland, New Zealand

~Received 9 December 2002; published 28 March 2003!

When one performs a continuous measurement, whether on a classical or quantum system, the measurement
provides a certain average rate at which one becomes certain about the state of the system. For a quantum
system this is an average rate at which the system is projected onto a pure state. We show that for a standard
kind of continuous measurement, for a qubit this rate may be increased by applying unitary operations during
the measurement~that is, by using Hamiltonian feedback!, in contrast to the equivalent measurement on a
classical bit, where reversible operations cannot be used to enhance the rate of entropy reduction. We determine
the optimal feedback algorithm and discuss the Hamiltonian resources required.
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It was discovered recently~Refs. @1,2#! that the average
amount by which the quantum state of a system is puri
during a measurement depends, in general, on the bas
which the measurement is made. Since changing the bas
a measurement is equivalent to performing a unitary tra
formation on the system, we can restate this property
saying that a unitary transformation may be applied to
system, so as to increase the average amount of informa
that the measurement provides about the final~postmeasure-
ment! state. This restatement makes it particularly clear w
is being changed about the measurement in order to enh
the information: merely the addition of a separate Ham
tonian evolution. Taking this point of view, the ability t
perform unitary transformations, or equivalently, Ham
tonian evolution, can be considered as a resource which
be used to enhance the properties of a fixed measure
process.

Consider now a continuous measurement of, for exam
a qubit. This may be represented by a sequence of iden
‘‘finite strength’’ measurements, each of which partia
projects the qubit onto the basis$u0&,u1&% @1# ~we will refer
to this as thecomputational basis, by which is simply meant
the basis in which information is encoded!. As more mea-
surements are made, the purity of the state of the qubit
creases, until eventually the qubit ends up in one of the b
states. Examining this process, we find that the state
results from a measurement in the sequence is not idea
the purposes of purification for the next measurement in
sequence. It is therefore possible to perform a unitary tra
formation at the end of each measurement~and depending on
the measurement result! to increase the average rate at whi
the state is purified. In the continuum limit this becomes
continuous feedback process.

This fact, while interesting as it provides a technique
enhancing a continuous measurement, is, if anything, m
interesting from a fundamental point of view, due to the fa
that the same measurement process performed on a cla
bit cannot be enhanced by a reversible transformation, s
the necessary sequence of transformations requires tha
perposition states of the computational basis be availa
Thus, this constitutes an example of something which
quantum nature of an object makes possible.
1050-2947/2003/67~3!/030301~4!/$20.00 67 0303
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Since this feedback algorithm is designed to enhance
properties of the measurement itself, the resulting meas
ment process is an example of anadaptive measurement
@3,4#. An application of adaptive measurement to quant
systems for significantly improving phase measurement
been introduced previously by Wiseman@3,4#, and this was
realized recently by Armenet al. @5#. The key difference be-
tween Wiseman’s scheme~and adaptive state-estimation a
gorithms in general! and the present topic is that while th
former involves information about the initial state, the effe
considered here involves information about the final state
third adaptive measurement process has been considere
Breslin, Milburn, and Wiseman@8#, and is again quite dis-
tinct, as it is involved with minimizing the algorithmic infor
mation in the measurement record, rather than with a pr
erty of the conditional quantum state.

Before we begin the development of the feedback al
rithm, let us say a few words about quantum and class
measurements, and the relationship between them. Clas
measurements on classical systems are described by B
sian inference@6,7#, and may be written in the same form a
quantum measurements. If one writes the classical proba
ity distribution of the quantity one is measuring as a diago
density matrix, then classical measurements are in fact a
set of quantum measurements: While quantum measurem
are described by a set of operatorsVn , where the only re-
striction is that(nVn

†Vn51, classical measurements ha
the further restriction that all theVn commute with the den-
sity matrix describing the classical system~for a fuller dis-
cussion see Ref.@9#!.

The behavior of a quantum measurement with commut
operators therefore reduces to that of a classical meas
ment when either unitary transformations are not available
rotate the qubit out of the computational basis, or there
rapid decoherence process that immediately decoheres
qubit in the computational basis. In that case the unit
transformation becomes merely a classical diffusion proc
acting on the bit.

Here we will be interested in a widely applicable model
continuous measurement, where the measurement record
Wiener process. We will measure in thez basis of a spin-half
system~that is, measure the observablesz), denoting the
basis states ofsz as$u6&% ~thus the final result of the mea
©2003 The American Physical Society01-1
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surement will either beu2& or u1&, and any further refer-
ence to ‘‘the computational basis’’ will refer to these state!
To describe the continuous measurement one applie
POVM in each small time intervalDt, where the POVM is
chosen to scale with time in such a way that a sensible c
tinuum limit exists@10#. The resulting continuous measur
ment is not merely a mathematical curiosity, as it cor
sponds to real measurements on physical systems@11–15#
~in particular, Korotkov@12–15# gives explicit examples for
solid-state qubits!. While the approach in Ref.@10# uses a
POVM in each time step which has an infinite number
outcomes, for measurements on a two-state system one
alternatively employ a POVM with two outcomes. A two
outcome measurement that provides information about
computational basis is

V65Aku6&^6u1A12ku7&^7u

5
1

2
@~Ak1A12k!I 6~Ak2A12k!sz#. ~1!

We will refer to this measurement in what follows asM.
When k51/2, M provides no information about the qua
tum system, leaving the state of knowledge unchanged,
whenk50 or 1 the operatorsV6 are rank one projectors, s
that M provides the maximal amount of information abo
the final state; this case is an ‘‘infinite strength’’ measu
ment by the terminology of Refs.@1,2#.

Settingk51/22A2gDt, and taking the limit of repeated
measurements asDt→0, the evolution of the density matri
describing the observers state of knowledge,r, is given by
the stochastic Schro¨dinger equation

dr52g†sz ,@sz ,r#‡dt1A2g~$sz ,r%122^sz&!dW,
~2!

wheredW is the Gaussian stochastic Wiener increment s
isfying dW25dt.

We are interested here in how the observer’s uncerta
of the quantum state reduces over time. In order to keep
calculations tractable, we will use as our measure of un
tainty the so-called ‘‘linear entropy,’’P(r)512Tr@r2#.
~That this is a useful measure of uncertainty is due to
concavity@2#.! For a completely mixed state,P(r)51/2 and
for a pure state,P(r)50.

In general, the reduction in the linear entropy will depe
upon the outcome of the measurement. As such, a sen
measure of the purifying power of the measurement is th
fore theaveragereduction in the linear entropy, over the tw
outcomes. From Ref.@2# we know that the amount by which
on average, the two-outcome measurement purifies the
@that is, reducesP(r)] is

DP5~2k21!P
12~122P!cos2u

12~122P!~2k21!2cos2u
, ~3!

where we have written the initial density matrix asr5(I
1a•s)/2, with u being the angle betweena and thez axis,
and uau25(122P). The reduction in uncertainty is max
03030
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mized whenu5p/2. That is, when the basis in which th
density matrix is diagonal is maximally different from thez
basis, being the basis in which the measurement is made
measurement is most effective in purifying the state. T
somewhat curious result means that, if the observer’s stat
knowledge is not maximally complementary to the measu
ment basis, and the observer’s objective is purification, t
a unitary transformation should be applied to the state p
to the measurement. It is also worth noting that, when
average reduction in the entropy is greatest, this reductio
the same for both measurement outcomes. Thus, in this c
the entropy reduction is deterministic, not random.

Now let us consider the consequences of this for a c
tinuous measurement, performed on an initially complet
mixed state. Approximating the continuous measuremen
a sequence of measurementsM, we see that when we mak
the first measurement,DP is maximal. However, the result o
the first measurement does not produce a state diagonal
basis complementary to thez basis, and this is generally tru
of the state resulting from a measurement in thez basis. As a
result, the average purification will not be optimal for th
vast majority of the measurementsM, and thus for essen
tially all of the duration of the continuous measurement p
cess.

This suggests, therefore, the following procedure: Af
each measurement we apply a unitary transformation to
tate the state appropriately, so as to achieve maximalDP for
each measurement in the sequence~each measurement step!.
Taking the continuum limit, this results in a continuous fee
back algorithm which increases the rate of projection dur
the continuous measurement. Calculating the behavior of
linear entropyP as a function of time is straightforward
because, as mentioned above, whenDP is maximal, the
change inP is the same for both outcomes of the measu
ment. Hence, for a finite sequence of steps we have, for
nth step,

Pn5~12b2/n!nP0 , ~4!

whereb25(2k21). In the continuum limit this becomes

P~ t !5e28gtP~0!. ~5!

Without the feedback process, the evolution ofP(t) depends
on the measurement outcomes, and as a result is stoch
Thus, not only does the Hamiltonian feedback algorithm
crease the rate at which the state is purified, but also cha
the entropy from being a random function of time to a det
ministic one. ~In fact, it is clear that this is true for any
entropy, linear, von Neumann, or otherwise.!

In the absence of feedback, due to its stochastic nat
the behavior ofP(t) is much harder to obtain, even for th
simple canonical continuous~classical!! measurement we
have here. Using the technique in Ref.@16#, one obtains, for
an initially completely mixed state,

Pc~ t !5
e24gt

A8pt
E

2`

1` e2x2/(2t)

cosh~A8gx!
dx, ~6!
1-2
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where we use the subscript ‘‘c’’ to denote the fact that this
also the result for a classical continuous measurement
classical bit. An analytic solution for the integral in Eq.~6!
does not appear to exist, and we therefore evaluate it num
cally. In Fig. 1 we plot the speedup factor provided by t
feedback algorithm in obtaining a given final level of puri
when the initial state is completely mixed. It is easily show
that this factor is independent ofg, and tends to two as th
final entropy tends to zero.

The Hamiltonian feedback algorithm above has been
tained simply by optimizing the increase in purity of the fin
state at each measurement step. We now show that this
fact, the optimal feedback algorithm for obtaining the ma
mum purity of the state at any particular future time. First,
us denote the map that takes us from an initial linear entr
P, to the final linear entropyP8, for a single time step, when
we use the optimal unitary transformation, asf (P). Thus we
haveP85 f (P)5(12b2)P, so f is linear inP.

Now, let us consider a single measurement stepM,
where the initial entropy isP. If we use a suboptimal mea
surement, then one of two states results, and we can labe
linear entropy of these asP15g1(P) and P25g2(P), re-
spectively. On the other hand, the entropy that results fr
the optimal measurement isf (P), and the three entropie
satisfy

(
i 51

2

pi Pi5(
i 51

2

pigi~P!> f ~P!, ~7!

wherep1 andp2 are the respective probabilities that the tw
suboptimal entropies were obtained. If we now apply a s
ond optimal measurement step to both results~both sides of
the inequality! then sincef (P) is linear and nondecreasing
we have

FIG. 1. The speed-up factor provided by the optimal Ham
tonian feedback algorithm, as a function of the final linear entro
for a continuous measurement in a given basis of a qubit. The
displayed is for an initially completely mixed state.
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(
i 51

2

pi f „gi~P!…> f „f ~P!…. ~8!

In addition, if we first apply a nonoptimal step, the relatio
ship between the result of applying a second nonoptim
step, and applying an optimal step is, for each of the o
comesi 51,2 of the first step,

(
j 51

2

pj
i gj

i
„gi~P!…> f „gi~P!…. ~9!

Thus, by the end of the second step, two sequential non
timal measurements would give

(
i 51

2

piF (
j 51

2

pj
i gj

i
„gi(P)…G>(

i 51

2

pi f „gi~P!…> f „f ~P!…,

~10!

where the first line uses Eq.~9!, and the second uses Eq.~8!.
Thus, after two steps the result of nonoptimal measurem
in both steps gives an average entropy which is higher t
the result of two optimal steps. Clearly this procedure can
repeatedn times to obtain the result forn measurement steps
Thus, we can write the final result ofn nonoptimal steps as

(
i 51

2n

pi Pi> f °(n)~P! ~11!

for somepi andPi . In order for the procedure which uses a
optimal steps to render a greater entropy than a proce
that uses some nonoptimal steps, then it would have to
possible to apply an optimal step to the left-hand side

Eq. ~11!, so that( i 51
2n

pi f (Pi), f °(n11)(P). However, since
f (P) is linear, this is impossible. We can therefore conclu
that the Hamiltonian feedback algorithm presented ab
gives the maximum possible increase in purity for any nu
ber of steps, or, in the continuum limit, the maximum po
sible increase in purity for a measurement of any given
ration.

So far we have discussed the effects of the feedback
gorithm, but not given explicitly the algorithm itself. Th
unitary transformation required after each measurement
must be such so as to rotate the qubit so that the Bloch ve
lies in thex-y plane. The first thing to note is that the min
mum angle of rotation required to do this is achieved
rotating such that thex and y elements of the Bloch vecto
remain in the same proportions~i.e., by keeping the angle
that the Bloch vector makes with thex andy axes the same!.
The second is that an application of the measurementM also
keeps these angles the same. Assuming that the initial sta
either completely mixed, or has been rotated prior to
measurement so that the Bloch vector lies in thex-y plane
~which is the optimal thing to do!, then the initialaz50, and
the state after a measurementM is

r f5
1
2 @ I 1A12b2~axsx1aysy!6bsz#. ~12!
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The unitary transformation required to rotate such a state
that once againaz50, using the minimum angle of rotation
is U5exp@2i(a/2)n•s#, with

a5tan21@6b/~A122PA12b2!#, ~13!

n5„2cos~f!, sin~f!,0…, ~14!

and where we have used the fact thatuau25ax
21ay

251
22P, and definedf by ax5uaucos(f). Sincef remains the
same throughout the sequence of measurements,n remains
unchanged throughout the feedback process, and it is me
a that changes at each feedback step. After thenth measure-
ment,Pn is given by Eq.~4!, and hence

an5tan21@6b/~A122P0~12b2/n!nA12b2!#.

Note that, when the initial state is completely mixed, t
rotation anglea, after the first measurement is alwaysp/2,
regardless of the strength ofM ~i.e., regardless of the valu
of b).

In the continuum limit, the feedback anglea(t) becomes

a~ t !5tan21S A8gdW

A122P~0!e28gtD 5
A8gdW

A122P~0!e28gt
,

P~ t !,1/2. ~15!

Since the Hamiltonian required to rotate througha is pro-
portional toa(t)/dt, the Hamiltonian required for the feed
back is proportional to the measurement noisedW/dt. Thus
the feedback required to obtain an optimal projection rat
Wiseman-Milburn type Markovian feedback, with the add
tion of a time-dependent factor. However, this kind of fee
back is strictly speaking an idealization valid in the limit of
.

s,

d
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large Hamiltonian, sincedW/dt is infinite. In addition, the
feedback Hamiltonian diverges for an initially complete
mixed state, sincea(0)5p/2. Thus, a real continuous feed
back procedure will provide a lower rate of projection, d
pending on the available Hamiltonian resources. We note
the divergence of the feedback Hamiltonian forP51/2 has
an analog in Wiseman’s adaptive phase measurement; in
scheme, for this state, it is the rate of change of the ph
estimate which diverges. It is interesting that for bo
schemes this divergence is associated with the fact that
measurement must break the symmetry of the state.

While the feedback algorithm projects a qubit onto a fin
pure state with maximal speed, it is fairly clear from th
construction of the process that the operations correspon
to the many possible final outcomes will be mutually non
thogonal. As a result, this adaptive measurement will alm
certainly not provide full information regarding the initia
preparation of the qubit. This is why we refer to the alg
rithm as projecting, rather than measuring the qubit, for
sense of the term ‘‘measurement’’ contains a certain amb
ity: it could mean either obtaining information about the in
tial preparation, useful in classical and quantum commun
tion, or the final state, useful in quantum feedback con
and quantum state preparation. While in this case the qu
tum state is projected maximally fast, this is at the expe
of losing information about the initial preparation. Th
raises the question of whether there is a trade-off betw
speed of projection, and loss of initial information, in th
kind of measurements considered here. In addition, opti
algorithms for projecting higher-dimensional systems, a
optimal rates obtainable with fixed Hamiltonian resourc
are also open questions for further work.
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