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Asymptotic form of the electron-hydrogen scattered wave
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A relationship between the total wave function describing electron-impact ionization of hydrogen and the
one representing scattering of two electrons and a proton in the continuum is revealed. On the basis of this
relationship, forms of the scattered wave for the ionization process valid in all asymptotic domains are ob-
tained. When all interparticle distances become large, the new wave functions reduce to the well-known
Peterkop asymptotic wave function obtained in the hyperspherical approach. In particular, the Peterkop wave
function is obtained by direct application of the present approach. This allows one to resolve the long-standing
amplitude-phase ambiguity problem, which is an artifact of the hyperspherical approach to the ionization
process. The Peterkop wave function is invalid when the two electrons are close to each other. This causes
problems in practical calculations even in the domain where all particles are far apart. Our formulation
provides a solution to this problem.
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In recent years several powerful time-independent me
ods for the calculation of energy-differential electron-impa
ionization cross sections of hydrogen have emerged inc
ing exterior complex scaling~ECS! @1,2#, convergent close
coupling ~CCC! @3,4#, and R-matrix @5,6# methods. These
methods provide an accurate three-body scattering w
function in an ‘‘internal’’ region in coordinate space, and t
ionization amplitude is extracted by matching to ionizati
boundary conditions in the asymptotic region. In ea
method, the extraction process relies on approximate ion
tion boundary conditions. For example, in the CCC meth
the ionization flux is initially obtained by discretizing th
target continuum. The ionization amplitude is then co
structed by means of a renormalization of the squa
integrable positive-energy target states with the true ta
continuum. Implicit in this approach is the representation
the three-body continuum states as a product of plane
Coulomb waves without electron-electron correlation.
similar approach is being adopted in theR-matrix method
@15#. In the ECS method an integral representation of
ionization amplitude is used but again the three-body c
tinuum states are approximated, this time by a product of
fixed-charge Coulomb waves for the two free electrons@2#.
This yields an ionization amplitude with divergent phase a
function of matching radius although the magnitude of
amplitude converges.

An asymptotic form of the scattered wave for electro
impact ionization of hydrogen for the case when all interp
ticle distances are large was obtained by Peterkop@7,8# four
decades ago but it has not been successfully implemente
these approaches. One reason is that direct numerical
tion of the Schro¨dinger equation for the full hydrogen
ionization problem requires partial-wave analysis of t
asymptotic wave function and a suitable partial-wave deco
position of the Peterkop wave function does not exist. T
problem is that Peterkop’s asymptotic wave function is
valid when the two electrons are close to each other. Th
for full-scale numerical calculations, a representation of
1050-2947/2003/67~2!/024702~4!/$20.00 67 0247
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wave function describing ionization at least in this region
well is necessary. A further difficulty with Peterkop’s wav
function is that it does not define the ionization amplitu
uniquely @9#. This so-called amplitude-phase ambiguity h
caused problems in the formal theory of breakup at a v
fundamental level.

Therefore a deeper understanding of the asymptotic
havior of the total scattering wave function is crucial in t
theory of atomic ionization. The present paper deals w
these outstanding problems of quantum dynamics. We s
how to resolve the amplitude-phase ambiguity and pres
analytic forms of the scattered wave in all asymptotic d
mains relevant to ionization. This removes the abo
mentioned problems in practical calculations and makes
correct extraction of observables possible.

Consider scattering of electrone2 off hydrogen (p1e1) at
energies above the ionization threshold of the atom. We
sume that the electrons are distinguishable. The total th
body wave function describing this process satisfies
Schrödinger equation

~E2H !Fk1 ,k2

1 ~r1 ,r2!50, ~1!

whereH is the three-body Hamiltonian andE5k1
2/21k2

2/2 is
the total energy of the system~atomic units are used through
out this work; we also assume that the proton is infinite
heavy compared to the electrons and remains at rest!. r1 and
r2 are the coordinates of the electrons relative to the pro
andk1 andk2 are their momenta.

The wave functionF1 consists of the incoming initial-
channel waveF (in) and the outgoing scattered waveF (sc)1:
F15F (in)1F (sc)1. With this, a formal solution of Eq.~1!
can be written as

Fk1 ,k2

(sc)1~r1 ,r2!5E dr18dr28G
1~r1 ,r2 ;r18 ,r28 ;E1 i0!

3V̄Fkin

(in)~r18 ,r28!, ~2!
©2003 The American Physical Society02-1
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wherekin is the momentum of the incident electron,V̄ is the
interaction of the incident electron with the target particl
andG1 is the three-body Green’s function.

Next we apply a spectral decomposition for the Gree
function. To this end we consider another scattering proc
with the same three particles but one where in the ini
channel both electrons are in the continuum~so called 3
→3 scattering, as opposed to 2→3 ionization scattering!.
We take the boundary condition for the wave functionC2

describing this process in the form of a Coulomb-distor
three-body plane wave and incoming scattered wave. T
wave function of course is also an eigenstate of the sa
HamiltonianH, i.e., (E2H)Ck1 ,k2

2 (r1 ,r2)50. Therefore, it

is well suited for our purposes. As it will become clear lat
the reason for choosing this form of the total wave funct
as the basis for decomposition rather thanC1, which con-
sists of the Coulomb three-body plane wave and the outgo
scattered wave, is twofold. First,C1 would eventually lead
to incoming scattered waveF (sc)2 instead of outgoing
F (sc)1 we need. Second, usingC1 we are not able to intro-
duce the ionization amplitude in a standard form.

Thus, making use of the spectral decomposition for
Green’s functionG1 in Eq. ~2! in terms of the three-body
scattering wave functionC2, we arrive at

Fk1 ,k2

(sc)1~r1 ,r2!5E dr18dr28
dk18

~2p!3

dk28

~2p!3

3

Ck
18 ,k

28
2

~r1 ,r2!Ck
18 ,k

28
2*

~r18 ,r28!

E2k81
2/22k82

2/21 i0
V̄Fkin

(in)~r18 ,r28!

1•••, ~3!

where the dots indicate the contributions from all~both
three- and two-body! bound states of the HamiltonianH. The
function (E2k81

2/22k82
2/21 i0)21 is a propagator describ

ing motion of the electrons in continuum. Defining the io
ization amplitude according to

f ~k1 ,k2!5E dr1dr2Ck1 ,k2

2* ~r1 ,r2!V̄Fkin

(in)~r1 ,r2!, ~4!

we rewrite Eq.~3! in the form

Fk1 ,k2

(sc)1~r1 ,r2!5E dk18

~2p!3

dk28

~2p!3

f ~k18 ,k28!Ck
18 ,k

28
2

~r1 ,r2!

E2k81
2/22k82

2/21 i0

1•••. ~5!

Equation ~5! establishes a relationship between the to
wave functions of the ionization process and the proces
scattering of all three particles of the system in the c
tinuum through the ionization amplitude. We emphasize t
this relationship is general for an arbitrary Coulomb thre
body system and couples the total wave functions of an
→3 process within the system with that of the 3→3 process
through the corresponding 2→3 breakup amplitude. Equa
tion ~5! is our first main result.
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Further in this work we investigate the asymptotic beha
ior of F (sc)1 based on the relationship~5!. Such an approach
then allows us to find a wave function valid in all asympto
domains.

Let us callV0 the asymptotic domain, where all interpa
ticle distances are large, i.e,r 1→`, r 2→`, and r 3→`,
where r35r12r2. In addition, we call V1 (V2) the
asymptotic regime, wherer 1 (r 2) is limited, butr 2→` (r 1
→`) and r 3→`. Finally, V3 is a domain where two elec
trons tend to infinity, but withr 3 being limited. SinceV1 and
V2 are symmetric, it is sufficient to consider only one
them. We introduce notationsF ( i )1 (C ( i )2) for the leading-
order asymptotic terms ofF (sc)1 (C2) in V i ,i 50,1,3.

For E.0 considered, the leading term ofC2 in V0 in
nonsingular directions was given by Redmond@10#:

Ck1 ,k2

(0)2 ~r1 ,r2!5eik1•r11 ik2•r2

3ei /k1ln z(k1 ,r1)ei /k2 ln z(k2 ,r2)e2 i /2k3 ln z(k3 ,r3),

~6!

where z(k,r)5kr1k•r and k35(k12k2)/2. Later Alt and
Mukhamedzhanov~AM ! @11# obtained the main leading term
of C2 in V1 andV3:

Ck1 ,k2

(1)2 ~r1 ,r2!5eik1•r11 ik2•r2f~21, k̃1 ,r1!

3ei /k2 ln z(k2 ,r2)e2 i /2k3 ln z(k3 ,r3), ~7!

Ck1 ,k2

(3)2 ~r1 ,r2!5eik1•r11 ik2•r2ei /k1ln z(k1 ,r1)

3ei /k2 ln z(k2 ,r2)f~1/2,k̃3 ,r3!, ~8!

where the wave function of two-body scattering in the Co
lomb field of the third particle is given by

f~n,k̃,r!5G~12 in/ k̃!exp~2pn/2k̃!

3 1F1@ in/ k̃,1;2 i z~ k̃,r!#, ~9!

and 1F1 is the confluent hypergeometric function. Local m
menta are defined as

k̃15k11
1

2k3r 3

k̂31 r̂3

11 k̂3• r̂3

, ~10!

k̃35k32
1

k1r 1

k̂11 r̂1

11 k̂1• r̂1

2
1

k2r 2

k̂21 r̂2

11 k̂2• r̂2

. ~11!

When V1 or V3→V0 the AM wave functions smoothly
transform to the Redmond wave function as the local corr
tions to momenta become negligible. All significant leadi
terms ofC2 in V1 and V3 of the lowest order have bee
found by Mukhamedzhanov and Lieber~ML ! @12#. The AM
wave functions~7! and ~8! correspond to the main term o
the ML function in the relevant domain.

Let us proceed now to the asymptotic behavior ofF (sc)1.
The standard procedure proposed by Peterkop@7–9# is to
2-2
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write Eq. ~1! in six-dimensional hyperspherical coordinate
Then inV0, in the leading order, one has

Fk1 ,k2

(sc)1~r1 ,r2!→
V0

A~v̂ !R25/2eikR1 ig ln(kR), ~12!

where R5(r 1
21r 2

2)1/2 is a hyperradius,v̂5( r̂1 , r̂2 ,a) is a
five-dimensional hyperangle, witha5arctan(r2 /r1), k
5(2E)1/2, and the Coulomb parameterg is given by

g5
1

k F 1

cosa
1

1

sina
2

1

A12 r̂1• r̂2 sin 2a
G , ~13!

andA(v̂) is the ionization amplitude. As it is seen, the P
terkop asymptotic wave function is not valid in the regi
wherer1.r2. Another drawback of the Peterkop wave fun
tion consists in an amplitude-phase ambiguity proble
when some part ofA(v̂) can be moved to the phase fact
and the resulting wave function is still a solution to the ori
nal equation@9#. Accordingly, the remainderA8(v̂) can
equally well be called an ionization amplitude. Thus, gen
ally speaking, the hyperspherical approach is not capabl
uniquely identifying the ionization amplitude. We will fix
this problem later, unambiguously relating the ‘‘hypersphe
cal’’ definition of the ionization amplitude to its standa
quantum-mechanical one given by Eq.~4!.

We now investigate the behavior ofF (sc)1 in V0 using
Eq. ~5!. Since contributions from all components ofC2 in-
volving bound states exponentially decrease in this dom
the only surviving contribution toF (sc)1 comes from the
continuum part ofC2, the leading term of which is given b
the Redmond wave functionC (0)2. Therefore, we get from
Eq. ~5! a fundamental asymptotic relationship,

Fk1 ,k2

(0)1 ~r1 ,r2!5E dk18

~2p!3

dk28

~2p!3

f ~k18 ,k28!Ck
18 ,k

28
(0)2

~r1 ,r2!

E2k81
2/22k82

2/21 i0
.

~14!

In order to evaluate the above integral we use
asymptotic form of the plane wave~see, e.g., Ref.@9#!

eikr ;
r→`2p

ikr
@d~ k̂2 r̂!eikr2d~ k̂1 r̂!e2 ik•r#. ~15!

After inserting Eq.~6! into Eq. ~14! and using Eq.~15! we
are left with a two-dimensional integral. Taking the resid
at k185(k22k82

2)1/2, the position of the pole singularity fo
one of the integrals, and evaluating the other by means o
stationary-phase method@13# at the stationary-phase poin
k285k18r 2 /r 1, we arrive at

Fk1 ,k2

(0)1 ~r1 ,r2!5
A2p i

~2p!3
f S k

R
r1 ,

k

R
r2D k3/2

R5/2
eikR1 ig ln(kR)1 is,

~16!

with
02470
.

-

,

r-
of

-

n,

n

he

s5
1

k F ln~2 cos2a!

cosa
1

ln~2 sin2a!

sina
2

ln~12 r̂1• r̂2 sin 2a!

A12 r̂1• r̂2 sin 2a
G .

~17!

Thus, the asymptotic form ofF (sc)1 in V0 comes as a resul
of the intimate relationship between the total wave functio
describing two different scattering processes within the sa
three-body system. Most importantly, our derivation leads
an unambiguous amplitude-phase form, which allows us
uniquely express the ‘‘hyperspherical’’ ionization amplitud
A(v̂) in terms of the standard definition of the ionizatio
amplitudef (k1 ,k2):

A~v̂ !5
A2p i

~2p!3
k3/2f S k

R
r1 ,

k

R
r2Deis. ~18!

Let us now proceed toV1. By definition, herer 1 is lim-
ited as compared tor 2 and r 3. Therefore, it cannot, strictly
speaking, be used as an asymptotic parameter. Howeve
have another pair of asymptotically large paramete
namely,r and r 3, wherer5(r11r2)/2 is the coordinate of
the center of mass of the electrons. Let us introduce forr its
canonical conjugate momentumq5k11k2. Since the lead-
ing continuum term ofC2 in V1 is given by the AM wave
function C (1)2, one can write from Eq.~5! @16#

Fk1 ,k2

(1)1 ~r1 ,r2!;E dq8

~2p!3

dk38

~2p!3

f ~k18 ,k28!Ck
18 ,k

28
(1)2

~r1 ,r2!

E2q82/42k83
21 i0

.

~19!

In the above equationr1 , r2 , k18 , andk28 are kept as short-
hand notations and given by

r15r1r3/2, r25r2r3/2, ~20!

k185q8/21k38 , k285q8/22k38 . ~21!

Now we calculate the integrals in Eq.~19! in analogy with
the procedure we used inV0. Taking into account that 2r2

1r 3
2/25r 1

21r 2
2[R2 and q82/212k83

25k81
21k82

2[k2 one
can show that the six-dimensional integral in Eq.~19! has a
stationary-phase point atq852kr/R and k385kr3/2R.
Evaluating the integrals and transforming the answer bac
the conventionalr1 and r2 variables we arrive at the fina
result

Fk1 ,k2

(1)1 ~r1 ,r2!;
A2p i

~2p!3
f S k

R
r1 ,

k

R
r2D k3/2

R5/2
eikRf~21, k̃18 ,r1!

3expF iR

kr 2
lnS 2kr 2

2

R D 2
iR

kr 3
lnS kr 3

2

R D G , ~22!

where we used the fact that at the stationary-phase poink18
5kr/R1kr3 /(2R)5kr1 /R and, similarly,k285kr3 /R @17#.
2-3
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For the asymptotic behavior ofF (sc)1 in V3 a similar
argument leads to

Fk1 ,k2

(3)1 ~r1 ,r2!5
A2p i

~2p!3
f S k

R
r1 ,

k

R
r2D k3/2

R5/2
eikRf~1/2,k̃38 ,r3!

3expF iR

kr 1
lnS 2kr 1

2

R D 1
iR

kr 2
lnS 2kr 2

2

R D G .
~23!

New local momenta in Eqs.~22! and ~23! are given by

k̃185
k

R
r11

R

kr 3
3

r3 , ~24!

k̃385
k

2R
r32

R

k S r1

r 1
3

1
r2

r 2
3D . ~25!

Since

f~21,k̃18 ,r1! ;

r 1→`

expF iR

kr 1
lnS 2kr 1

2

R D G , ~26!

where we took into account that asr 1 also becomes large th
second term in Eq.~24! becomes negligible, Eq.~22! trans-
forms to Eq.~16! whenV1→V0. The same is true also fo
Eq. ~23! whenV3→V0.

As we mentioned earlier the Peterkop asymptotic wa
function becomes invalid whenr 1→` and r 2→`, but r1
→r2. This limit point is not actually inV0, but is in V3.
However, ther1.r2 problem has been associated with t
Peterkop wave function~and henceV0), since in practical
calculations of ionization cross sections one has to turnr1
andr2 around each other~e.g., in partial-wave analysis!, and
therefore unavoidably crossing theV3 domain whenr 1
.r 2. Thus, it is not possible to separate, in practice,
domainsV0 andV3. The conclusion is that one has to use
.
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this case an asymptotic wave function valid both inV0 and
V3, and such a function is given by Eq.~23!. This resolves
the r1.r2 problem.

Summarizing, a simple relationship between the to
wave function describing a breakup process in a Coulo
three-body system~called the 2→3 process! and the one
representing another process within the same system, of
tering of the three particles in the continuum (3→3 process!
through the corresponding 2→3 breakup amplitude, is re
vealed. On the basis of this relationship, forms of the sc
tered wave for electron-impact ionization of hydrogen va
in all asymptotic domains are given. When all interpartic
distances become large, the new wave functions reduc
the leading order to the well-known Peterkop wave funct
obtained in the hyperspherical approach. In particular,
Peterkop function is obtained by direct application of t
present approach in the domain when all interparticle se
rations are large. This allows one to resolve the lon
standing amplitude-phase ambiguity problem, which is
artifact of the hyperspherical approach to the ionization p
cess. The Peterkop asymptotic wave function is invalid wh
two electrons are at the same position relative to the pro
This causes problems in practical calculations even in
domain where all particles are wide apart. Our formulati
provides a solution to this problem.

The presented wave functions can be directly used in
culations of ionization of hydrogen or any hydrogenlike io
by electron or positron impact. However, the problems c
sidered in this work, and approach to them, are not spec
to the electron-hydrogen ionization. The relationships~5!,
~14!, and~19! are general for any atomic and nuclear thre
body breakup scattering. Generalization of the particular
sults to these processes and more details of calculations
be given elsewhere.
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