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Asymptotic form of the electron-hydrogen scattered wave
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A relationship between the total wave function describing electron-impact ionization of hydrogen and the
one representing scattering of two electrons and a proton in the continuum is revealed. On the basis of this
relationship, forms of the scattered wave for the ionization process valid in all asymptotic domains are ob-
tained. When all interparticle distances become large, the new wave functions reduce to the well-known
Peterkop asymptotic wave function obtained in the hyperspherical approach. In particular, the Peterkop wave
function is obtained by direct application of the present approach. This allows one to resolve the long-standing
amplitude-phase ambiguity problem, which is an artifact of the hyperspherical approach to the ionization
process. The Peterkop wave function is invalid when the two electrons are close to each other. This causes
problems in practical calculations even in the domain where all particles are far apart. Our formulation
provides a solution to this problem.
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In recent years several powerful time-independent methwave function describing ionization at least in this region as
ods for the calculation of energy-differential electron-impactwell is necessary. A further difficulty with Peterkop’s wave
ionization cross sections of hydrogen have emerged includunction is that it does not define the ionization amplitude
ing exterior complex scalingECS [1,2], convergent close uniquely[9]. This so-called amplitude-phase ambiguity has
coupling (CCCO) [3,4], and R-matrix [5,6] methods. These caused problems in the formal theory of breakup at a very
methods provide an accurate three-body scattering waviindamental level.
function in an “internal” region in coordinate space, and the ~ Therefore a deeper understanding of the asymptotic be-
ionization amplitude is extracted by matching to ionizationhavior of the total scattering wave function is crucial in the
boundary conditions in the asymptotic region. In eachtheory of atomic ionization. The present paper deals with
method, the extraction process relies on approximate ionizghese outstanding problems of quantum dynamics. We show
tion boundary conditions. For example, in the CCC methodhow to resolve the amplitude-phase ambiguity and present
the ionization flux is initially obtained by discretizing the analytic forms of the scattered wave in all asymptotic do-
target Continuum_ The ionization amp”tude is then Con_mains relevant to ionization. This removes the above-
structed by means of a renormalization of the squarementioned problems in practical calculations and makes the
integrable positive-energy target states with the true targetorrect extraction of observables possible.
continuum. Implicit in this approach is the representation of ~Consider scattering of electren off hydrogen p+e,) at
the three_body continuum states as a product of p|ane arﬂ']ergies above the ionization threshold of the atom. We as-
Coulomb waves without electron-electron correlation. Asume that the electrons are diStingUiShable. The total three-
similar approach is being adopted in tRematrix method ~body wave functi.on describing this process satisfies the
[15]. In the ECS method an integral representation of theSchralinger equation
ionization amplitude is used but again the three-body con- .
tinuum states are approximated, this time by a product of two (E=H)®y_ ,(r1,r2)=0, ()
fixed-charge Coulomb waves for the two free electrff2ls
This yields an ionization amplitude with divergent phase as avhereH is the three-body Hamiltonian arigl= k3/2-+ k3/2 is
function of matching radius although the magnitude of thethe total energy of the systeatomic units are used through-
amplitude converges. out this work; we also assume that the proton is infinitely

An asymptotic form of the scattered wave for electron-heavy compared to the electrons and remains ax migsand
impact ionization of hydrogen for the case when all interpar+, are the coordinates of the electrons relative to the proton
ticle distances are large was obtained by Petefko§l four  andk,; andk, are their momenta.
decades ago but it has not been successfully implemented in The wave function®* consists of the incoming initial-
these approaches. One reason is that direct numerical solghannel waveb(" and the outgoing scattered waddsot -
tion of the Schrdinger equation for the full hydrogen- @*=@ M+ dE9* With this, a formal solution of Eq(1)
ionization problem requires partial-wave analysis of thecan be written as
asymptotic wave function and a suitable partial-wave decom-
position of the Peterkop wave function does not exist. The q)(ksc,)1<+(r1,r2):f dridrsG*t(ry, 1) rh E+i0)
problem is that Peterkop’s asymptotic wave function is in- 172
valid when the two electrons are close to each other. Thus, VDI 1) @
for full-scale numerical calculations, a representation of the kin A 10720

1050-2947/2003/62)/0247024)/$20.00 67 024702-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A7, 024702 (2003

wherek;, is the momentum of the incident electron,s the FUI’th(E(I;)Jirn this work we investigate the asymptotic behav-
interaction of the incident electron with the target particles,ior of ®*“" based on the relationshif). Such an approach
andG™ is the three-body Green’s function. then allows us to find a wave function valid in all asymptotic

Next we apply a spectral decomposition for the Green'siomains.
function. To this end we consider another scattering process Let us call{), the asymptotic domain, where all interpar-
with the same three particles but one where in the initiaticle distances are large, i.e;—, ro—, andrz—,
channel both electrons are in the continugso called 3 Where rz=r;—r,. In addition, we call Q; (Q;) the
—3 scattering, as opposed to—23 ionization scattering ~ asymptotic regime, where, (r») is limited, butr,—o (ry
We take the boundary condition for the wave functign ~ —) andrz—ce. Finally, Q)5 is a domain where two elec-
describing this process in the form of a Coulomb-distortedtrons tend to infinity, but wittr 3 being limited. Since}; and
three-body plane wave and incoming scattered wave. Thi€, are symmetric, it is sufficient to consider only one of
wave function of course is also an eigenstate of the saméiem. We introduce notatiors* (W)~ for the leading-
HamiltonianH, i.e., €—H)W,_ (r1,r)=0. Therefore, it order asymptotic terms Pt (¥~) in O;,i =0,13.
is well suited for our purposes. As it will become clear later, Fo_r E>0 can|_dered, the_leadmg term &f |.n o in
the reason for choosing this form of the total wave functionnonsmgular directions was given by Redmdad):
as the basis for decomposition rather thafi, which con-  W(?, (r;,ry) =€ mtiker
sists of the Coulomb three-body plane wave and the outgoing 1

scattered wave, is twofold. Firs# * would eventually lead x glfkaln £tka 1) gifkz I (ks ro) g =112k In Llks 3)

to incoming scattered waved 9~ instead of outgoing ®)
®9" we need. Second, using " we are not able to intro-

duce the ionization amplitude in a standard form. where £(k,r)=kr+k-r and ks=(k;—k,)/2. Later Alt and

Thus, making use of the spectral decomposition for thayukhamedzhanoyAM) [11] obtained the main leading term
Green's functionG* in Eq. (2) in terms of the three-body of vy~ in Q, and Qg

scattering wave functiol ~, we arrive at

sc)+ dki dké \If(ki)'iz(rl,rz):eikl'r1+ik2~f2¢(_1,~k1,r1)
! !
(D(kl,)kz(rler):f drler 3 3 . n
(2m)° (2m) x glka In L(ky.19) g =i/2Kg In{(k3,r3)’ (7)
- - ! 4 . . .
Wi (1112 Wy o (r1.r2) \I,(k:i)vgz(rlyrz):elkl~rl+|k2~r28|/klln{(kl,rl)

VM (r! 1)
E—k'2/2—k'%2+i0 kin 1772

" ()
where the wave function of two-body scattering in the Cou-
where the dots indicate the contributions from édloth  lomb field of the third particle is given by
three- and two-bodybound states of the Hamiltonidh The

x el nia ) (1/2ks,r5),  (8)
+ ..

function (E—k’'$/2—k’5/2+i0)"! is a propagator describ- d(v. k=T (1—ivik)exp — mvi2k)
ing motion of the electrons in continuum. Defining the ion- s o~
ization amplitude according to X gFqliv/k,1;=ig(kr)], ©)

- T (i and ,F; is the confluent hypergeometric function. Local mo-
f(kl’kZ)ZJdrldrzwk:kz’(rl’rZ)Vq)(kli:)(rl’rZ)’ @ menta are defined as P

we rewrite Eq.(3) in the form - 1 kgtrs
B ki=k;+ — ==, (10
dk dk. TKLKOW L, i (rg,r2) 2Kars 14Ky 13
DO B 1 2 1%
by (T1:72) = 3 3 E_ 1129 112/9 PO A a
(2m)° (2m)° E—K'{/2—K'5/2+10 5 1 kytry 1 ko+r,
k3:k3_ (11)

+.e (5 Kirg 14+ky-r;  Kef2 14Ky,
Equation (5) establishes a relationship between the totaWhen Q; or Q;—Q, the AM wave functions smoothly
wave functions of the ionization process and the process dfansform to the Redmond wave function as the local correc-
scattering of all three particles of the system in the contions to momenta become negligible. All significant leading
tinuum through the ionization amplitude. We emphasize thaterms of '~ in (0; and Q5 of the lowest order have been
this relationship is general for an arbitrary Coulomb threefound by Mukhamedzhanov and Lieb@iL) [12]. The AM
body system and couples the total wave functions of any 2vave functions(7) and (8) correspond to the main term of
— 3 process within the system with that of the-3 process the ML function in the relevant domain.

through the corresponding-23 breakup amplitude. Equa- Let us proceed now to the asymptotic behavioddfo)"

tion (5) is our first main result. The standard procedure proposed by Peterkbp9] is to
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write Eg. (1) in six-dimensional hyperspherical coordinates. . B
Then inQy, in the leading order, one has U:E In(2cosa) In(2sirfa) _ In(=ry-1p Sin2e)

+—
k| cosa sina "1—?1?2 sin 2a

Qo o
(I)(kj(f)kz(rl1r2)_>A(w)R75IZeIKR+|‘yln(KR)! (12) (17)

Thus, the asymptotic form ab9" in 4 comes as a result
of the intimate relationship between the total wave functions
describing two different scattering processes within the same

where R=(r3+r2)¥? is a hyperradiusw=(r;,r,,a) is a
five-dimensional hyperangle, witha=arctanf,/r;), «

— 1/2 e i
=(2E)™, and the Coulomb parameteris given by three-body system. Most importantly, our derivation leads to
an unambiguous amplitude-phase form, which allows us to
11 N 1 1 13 uniquely express the “hyperspherical” ionization amplitude
7 K| Cosa sina ‘/1—F . sin 2 ' A(&))_ in terms of the standard definition of the ionization
172 amplitudef (ky,k,):
andA([u) is the ionization amplitude. As it is seen, the Pe- \/ﬂ
terkop asymptotic wave function is not valid in the region Alw)= _WK3/2f(£rl,£r2)ei0_ (18)
wherer;=r,. Another drawback of the Peterkop wave func- (2m)3 R R

tion consists in an amplitude-phase ambiguity problem,

when some part oA() can be moved to the phase factor ~ Let us now proceed t6),. By definition, herer, is lim-
and the resulting wave function is still a solution to the origi- ited as compared to, andr;. Therefore, it cannot, strictly
nal equation[9]. Accordingly, the remaindeA’(a) can speaking, be used as an asymptotic parameter. However, we

equally well be called an ionization amplitude. Thus, gener@ve another pair of asymptotically large parameters,
ally speaking, the hyperspherical approach is not capable df2mely,p andrs, wherep=(r,+r)/2 is the coordinate of
uniquely identifying the ionization amplitude. We will fix the center of mass of the electrons. Let us introducefios
this problem later, unambiguously relating the “hyperspheri-c@nonical conjugate momentugs=k; +k,. Since the lead-
cal” definition of the ionization amplitude to its standard Ing continuum term of ~ in (), is given by the AM wave

quantum-mechanical one given by Ed). function WM~ one can write from Eq(5) [16]

We now investigate the behavior df*9* in Q, using
Eg. (5). Since contributions from all components ¥f~ in- dq'  dK! f(kq ,ké)\I'(k%)’;,(rl,rz)
volving bound states exponentially decrease in this domain, q>(k1);(rl,r2)~f 3 ! 22 .
the only surviving contribution tab* comes from the 1 (2m)® (2m)® E-q'%4-Kk'5+i0
continuum part of , the leading term of which is given by (19
the Redmond wave functiod ()~ . Therefore, we get from
Eq. (5) a fundamental asymptotic relationship, In the above equation, r,, ky, andk; are kept as short-

hand notations and given by

, oKL KD T O (1010
dk; dk; ky ko ri=p+ra/2, r,=p—rsl2, (20

OO (ry .1 =J .
kgl M172) (2m)® (2m)® E—K'3/2—K'3/2+i0

(14 Ki=q'/2+K}, kb=q'/2—K}. (21)

In order to evaluate the above integral we use an

asymptotic form of the plane wavsee, e.g., Ref9]) Now we calculate the integrals in EQ.9) in analogy with

the procedure we used i,. Taking into account that &
(g +r32=r2+r3=R? and q'%/2+2k'53=k'2+k'3=«? one
ekt ~ ——[8(k—r)ek - s(k+r)e k. (15  can show that the six-dimensional integral in Et9) has a
tkr stationary-phase point ag'=2xp/R and k= «rs/2R.
Evaluating the integrals and transforming the answer back to
the conventional; andr, variables we arrive at the final
result

After inserting Eq.(6) into Eq. (14) and using Eq(15) we
are left with a two-dimensional integral. Taking the residue
at k] =(x?—k’3)*2, the position of the pole singularity for
one of the integrals, and evaluating the other by means of the 5 3
stationary-phase methdd.3] at the stationary-phase point mooK K VKT T
y-p dd3] ry-phase point g (p ( )RT/ze' Rg(— 1K 1)

. ——fl=ry,r
ky=kir,/r;, we arrive at (2m)3 \RT'R?

; 2 : 2

2m [k ok \K¥? . iR [2xkr3) iR [kr3

(0)+ — " f| _ — AikR In(kR) +io X - - i
<I>kl’k2(r1,r2)—(27_r)3 er,er) Rs/zel +HiyIn(«R)+io ex Krzln R Kr3|n ~uit (22
(16) : :

where we used the fact that at the stationary-phase pgint

with = kp/R+ kr3/(2R)=kr1/R and, similarly,k;= «r3/R [17].
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For the asymptotic behavior 6b9" in Q5 a similar  this case an asymptotic wave function valid both(ig and

argument leads to Q3, and such a function is given by E@®3). This resolves
ther,;=r, problem.
- 2w [k ok &2 -, Summarizing, a simple relationship between the total
q)kl,kz(rlarz):(zT)?’f R'R"2) gen® $(1/12,k3,r3) wave function describing a breakup process in a Coulomb

three-body systenicalled the 2-3 procesy and the one
representing another process within the same system, of scat-
tering of the three particles in the continuum-+£3 process
through the corresponding—23 breakup amplitude, is re-
(23)  vealed. On the basis of this relationship, forms of the scat-
tered wave for electron-impact ionization of hydrogen valid

iR | 2kr2\ iR | 2kr3
X — — .
ex Krl n R + Kr2 n R

New local momenta in Eq$22) and(23) are given by in all asymptotic domains are given. When all interparticle
distances become large, the new wave functions reduce in

~ K R the leading order to the well-known Peterkop wave function

k1=§r1+—3r3, (24 obtained in the hyperspherical approach. In particular, the

kT3 Peterkop function is obtained by direct application of the

present approach in the domain when all interparticle sepa-

o, R r; 25) rations are large. This allows one to resolve the long-

37oR'3T & ff rg : standing amplitude-phase ambiguity problem, which is an

artifact of the hyperspherical approach to the ionization pro-
Since cess. The Peterkop asymptotic wave function is invalid when
two electrons are at the same position relative to the proton.
~ 1= iR 2Kr§ This causes problems in practical calculations even in the
d(—1ky,ry) ~ exp{—“n( R ) : (26)  domain where all particles are wide apart. Our formulation

K provides a solution to this problem.

where we took into account that egalso becomes large the 1 he presented wave functions can be directly used in cal-

second term in Eq(24) becomes negligible, Eq22) trans- culations of ioniza;ion o_f hydrogen or any hydrogenlike ion

forms to Eq.(16) whenQ,— Q. The same is true also for LY, El€ctron or positron impact. However, the problems con-

Eq. (23) whénQ 0 ! o sidered in this work, and approach to them, are not specific
. 3 O.

As we mentioned earlier the Peterkon asvmptotic wav to the electron-hydrogen ionization. The relationships
. . : P asymp e(14), and(19) are general for any atomic and nuclear three-
function becomes invalid when,—o~ andr,—oc, butr;

o S . ) body breakup scattering. Generalization of the particular re-
—T5. This limit point is not actually infl,, bu't IS In 93' sults to these processes and more details of calculations will
However, ther;=r, problem has been associated with the

Peterkop wave functioftand hence), since in practical be given elsewhere.
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