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Hyperspherical angular adiabatic separation for three-electron atomic systems
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The hypothesis of treating three-electron systems as a two-electron core plus a bound electron in the
hyperspherical adiabatic approach introduces a second adiabatic separation into hyperangular equations. Dif-
ferently from the main radial-angular hyperspherical adiabatic separation, the resulting couplings are necessary
to guarantee permutational and rotational invariance of the Hamiltonian. Thus, any kind of approximation,
disregarding such couplings, represents a loss of symmetry. This paper explores the consequences of such
approximations in the potential curve calculations for the lithium atom, showing that this symmetry breaking
is quite smooth and can be recovered within a good precision adding few couplings to the system of angular
differential equations.
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The hyperspherical adiabatic approach~HAA !, developed
in atomic physics by Macek@1#, Fano@2#, and Lin @3#, de-
scribes the system in terms of ‘‘molecularlike’’ potenti
curves, derived from the adiabatic separation of the ra
and angular parts of Schro¨dinger equation in hyperspherica
coordinates. Resonance positions of helium, associated t
doubly excited states, potential curve calculations, and an
sis of the two-electron correlations were performed
Macek @1# and Lin @4#, and numerically stable results hav
made possible the nonadiabatic calculations, establis
highly accurate results for the two-electron atoms@5–10#.
The three-electron system has been analyzed in the H
since the 1980s@11,12#. New theoretical techniques hav
been applied for solving the three-electron adiabatic eig
value problem in direct numerical schemes@13–17#. Poten-
tial curves and channel functions were obtained focusing
the correlation properties of the doubly and triply excit
states of the three-electron atoms@18#, showing that the
HAA provides an elegant and conceptually clear descript
of such systems. However, the extension of the HAA cal
lation to three-electron systems has not reached the suc
achieved for the two-electron system, preventing a quan
tive investigation. Consequently, the power and merit of
hyperspherical approach are partially lost for such system

The potential curves and channel functions for tw
electron atoms are solutions of a coupled system of ordin
differential equations in the hyperanglea, which is related to
the relative distances from the electrons to the nucleus. In
HAA, the inclusion of one more electron fundamenta
changes the hyperangular equations by the inclusion of
more hyperangleb and the potential curve calculations w
involve solutions of a coupled system of partial different
equations in both hyperanglesa and b. Numerically this
problem is much more complicated than the analogous
for the two-electron atoms. Due to the energy dominant
pect of the two-electron core in three-electron atoms~the
ground-state energy of the Li1 ion represents 97% of th
ground-state energy of the Li atom!, the two-electron chan
nel functions have been used here as a basis for the hy
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angular solutions. This choice produces a second~angular!
adiabatic separation between the innermost hyperanglea and
the outermost hyperangleb, transforming the problem of a
system of partial differential equations into the problem
two coupled systems of ordinary differential equations.
first study of the angular adiabatic separation was done
Ref. @17#. The present work provides a complete descript
of the principal features and consequences of this appro

Since the hyperradiusR is invariant under any electron
permutation and under O~9! rotational transformations, al
symmetry properties are located in the angular equatio
The second angular adiabatic separation introduces~angular
and radial dependent! nonadiabatic couplings as well as co
plings due to the electron correlation between the outerm
and the two innermost electrons. These couplings are
invariant under the above-mentioned symmetry operatio
Thus, the adiabatic approximation, disregarding the o
diagonal couplings in the angular equations, induces a los
invariance of the Hamiltonian in both permutational and
tational aspects. This paper investigates the consequenc
this kind of approximation in a model problem consideri
just the electron-nucleus interactions. This model gives
opportunity to analyze the convergence of the poten
curves when the nonadiabatic couplings are systematic
introduced, without worrying about the convergence rela
to the electron-electron couplings and allowing the learn
of an important aspect of the angular adiabatic separat
which must be considered for further precise description
the three-electron problem.

The hyperspherical coordinates for a three-electron s
tem are obtained replacing the electronic radial distancesr 1 ,
r 2, andr 3, by a hyperradiusR and two hyperanglesa andb
defined by r 15R sinb sina, r 25R sinb cosa, and r 3
5R cosb, with 0<R,`, 0<a<p/2, and 0<b<p/2. The
spherical angles are kept unchanged.

In the HAA, the total wave function results from the adi
batic separation of the angular and radial variable, expan
in terms of the channel function basisFl(R,V),

C~R,V!5(
l

Jl~R!Fl~R,V!, ~1!
©2003 The American Physical Society01-1
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whereV is the set of all angles andl is the channel index
The channel functionsFl(R,V) are the eigenfunctions o
the angular equation

Û~R,V!Fl~R,V!5Ul~R!Fl~R,V!, ~2!

with eigenvalues given by the potential curvesUl(R) ob-
tained for fixed values ofR. The radial dependence of th
channel functions leads to an invariant set of coupled ra
equations

S d2

dR2
1

Ul~R!11/4

R2
12ED Jl~R!

1(
l8

S 2Pll8~R!
d

dR
1Qll8~R! D Jl8~R!50,

~3!

wherePll8(R) andQll8(R) are the nonadiabatic coupling
@19,20#. The hyperangular potential operator

Û~R,V!5
]2

]b2
1

û~r,V̄!11/4

sin2b
2

L̂3
2

cos2b
1

2RZ

cosb

12RĈ[ee]~V! ~4!

contains the potential operator of the two-electron core gi
by

û~r,V̄!5
]2

]a2
2

L̂1
2

sin2a
2

L̂2
2

cos2a
1

2rZ

sina
1

2rZ

cosa

12r Ĉ[ee]~V̄ !, ~5!

where r5R sinb5(r1
21r2

2)1/2 and V̄ are, respectively, the
two-electron hyperradius and the set of angles related to
core variables;Ĉ[ee] represents the electron correlation of t
two innermost electrons andĈ[ee] represents the correlatio
between the outermost and the two innermost electrons. E
L̂ i is the individual angular-momentum operator of the el
tronic motion. Thus, it is possible to establish an angu
adiabatic separation expanding the total channel functio
terms of the two-electron channel functionsfg , i.e.,

Fl~R,V!5(
g

Fg
l~R,b!fg~r,V̄!, ~6!

where g represents a set of quantum numbers. The tw
electron channel functions form a complete set of orthon
mal functions determined by the solution of the two-electr
potential equation for fixed values ofr,

û~r,V̄!fg~r,V̄!5ug~r!fg~r,V̄!, ~7!

whereug(r) is the two-electron core potential curve. Ther
fore, this second adiabatic separation makes possible to
lyze the whole problem in a different systematic, consider
the motion of the two innermost electrons and the outerm
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electron separately. First of all, it is necessary to establish
solutions of the two-electron problem to analyze the so
tions of the three-electron potential equation in terms of
core potential curves.

Traditionally, the two-electron channel functions, i.e., s
lutions of Eq.~7!, are expanded in terms of the generaliz
spherical harmonics for two individual angular momenta.
the present study, the two-electron channel functions hav
be eigenfunctions with total angular momentumL, including
the angular momentum of the third electron to form su
state. Therefore, the channel functions are expanded in te
of the generalized spherical harmonicsY l 1l 2( l 12) l 3

LM for three

individual angular momenta

fg~r,V̄!5(
l 1l 2

Gl 1l 2
(g) ~r,a!Y l 1l 2( l 12) l 3

LM ~V1 ,V2 ,V3!, ~8!

where theV i ’s are the spherical angles andg labels the
solutionsGl 1l 2

(g) of the coupled system of ordinary differentia

equations deduced by applying Eq.~8! in Eq. ~7! leading to

S ]2

]a2
2

l 1~ l 111!

sin2a
2

l 2~ l 211!

cos2a
1

2rZ

sina
1

2rZ

cosa
2ug~r!D

3Gl 1l 2
(g) ~r,a!522r(

l 18 l 28
C

l
18 l

28

l 1l 2~a!Gl
18 l

28
(g)

~r,a!, ~9!

where the couplingsC
l
18 l

28

l 1l 2(a) are due to the electronic corre

lation given by the spherical harmonic expansion. In t
electron-nucleus model the above equation is diagonal
the two-electron potential curves can be determined by
posing the vanishing of the solution or its first derivative
a5p/4, for the triplet and singlet symmetries, respective
@19#.

The functionsFg
l , from the angular adiabatic separatio

@Eq. ~6!#, are solutions of the set of coupled differential sy
tem deduced from the orthogonality relations of the tw
electron channel functions

S ]2

]b2
1

ug~r!11/4

sin2b
2

l 3~ l 311!

cos2b
1

2RZ

cosb
2Ul~R!D Fg

l~R,b!

52(
g8

Wgg8~R,b!Fg8
l

~R,b!. ~10!

Differently from the two-electron angular problem, tw
kinds of couplings have been found inWgg8 . One of them
Cgg8 is the Coulombian coupling of the outermost electr
with the innermost ones, and the other is the nonadiab
couplings,pgg8 and qgg8 , due to the basis dependence
the coordinateb. Then,Wgg8 is given by

Wgg8~R,b!522R Cgg8~R,b!12pgg8~r!
]

]b
1qgg8~r!,

~11!

where
1-2
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pgg8~r!5 K fgU ]

]b Ufg8L , ~12!

qgg8~r!5K fgU ]2

]b2Ufg8L , ~13!

where the integration is done over the spherical angles
the hyperanglea. Disregarding the electronic correlation
the only couplings are the angular nonadiabatic terms. A
of two-electron potential curves and nonadiabatic couplin
used in our three-electron potential curve calculations,
shown in Fig. 1. The comparison between the two-elect
potential curves and the nonadiabatic couplings in Fig.
indicate that the coupling terms of Eq.~10! are sufficiently
small and a good convergence is therefore expected.
three-electron potential curves are determined establis
the matching of allFg(R,b) components and their first de
rivative simultaneously atb5p/4, i.e., the propagated solu
tions of Eq.~10! and their first derivative fromb50 have to
match the solutions propagated fromb5p/2, at b5p/4.
Since the matching condition does not take into account
symmetry property, it is natural that some solutions do
pertain to the doublet and quartet symmetries of the lithi
atom and have to be excluded. In Ref.@17# a set of approxi-
mated boundary conditions was proposed in order to de
mine the potential curves for the three-electron syste
However, this set of approximated boundary condition led
a qualitative investigation for both potential curves and ch
nel functions, since accurated physical solutions require
act boundary conditions. In the present calculation,
unique approximation refer to the number of couplings c
sidered in the Eqs.~9! and ~10!. Potential curves for the
lithium atom in the diagonal approximation, including on
the diagonal termqgg(r), are shown in Fig. 2 for both dou
blet and quartet symmetries in as3 and sp2 angular-
momentum configuration.

The main idea of the present study derives from the
servation that for the doublet symmetry potential curves

FIG. 1. Potential curves and nonadiabatic couplings for the1Se

Li1 ion. The nonadiabatic terms were calculated using a five po
second-order differentiation formula and a Gauss-Legendre inte
tion @21#.
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particular kind of degeneracy is expected. The channel fu
tions for such symmetry have two components; one is a
glet and the other is a triplet parent of the associated t
electron channel functions, combined to give
antisymmetric total wave function

Fl~R,V!5x (0)Fl
(0)~R,V!2x (1)Fl

(1)~R,V!, ~14!

where x (s) the is total spin eigenstateS51/2 components
with intermediate spins50 ~singlet! ands51 ~triplet!. Due
to the invariance of the potential-energy operator@Eq. ~4!#
with respect to the spin, some of the three-electron poten
curves calculated using singlet and triplet potential cur
are expected to show the pattern of degeneracyUl(R)
5Ul

(0)(R)5Ul
(1)(R), associated with the doublet potenti

curves. Since the coupling terms of Eq.~10! depend essen
tially on the two-electron hyperradiusr, they are invariant
under permutation of the innermost electrons and O~6! rota-
tional transformations in the absence of the electronic co
lation. However, they are not invariant under the thre
electron permutation group and the overall rotation gro
O~9! individually, and the invariance of the Hamiltonian
only reached considering all coupling terms. In this sen
the angular adiabatic approximation keeps the innerm
symmetries but does not preserve the overall invarian
Since degeneracy in quantum mechanics is related to
existence of groups of symmetry under which the Ham
tonian is invariant, the angular adiabatic approximation a
ficially removes the above required degeneracy for the d

t,
a-

FIG. 2. Potential curves for the Li atom, for the doublet a
quartet symmetries, calculated using the triplet two-electron po
tial curves.
1-3
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blet potential curves, causing a symmetry breaking. Thu
nonadiabatic angular calculation, i.e., introducing the o
diagonal couplings, not only corrects the adiabatic separa
features but also recovers the invariance of the Hamilton
and the above-mentioned degeneracy.

In order to recover the invariance of the Hamiltonian, t
convergence of the three-electron potential curves is a
lyzed when the nonadiabatic couplings are introduced.
difference DUl(R)5uUl

(0)(R)2Ul
(1)(R)u/(2R2), between

the singlet and triplet parents, gives a measure of the de
eracy between the doublet potential curves, since it is
pected thatUl

(0)(R)5Ul
(1)(R), for an exact calculation. As

shown at Fig. 3, the degeneracy is recovered with good
curacy when the coupling terms are included. This res
points out the accuracy of the potential curves calculated
solving Eq.~10!, recovering the expected degeneracy.

In conclusion, the above results show that the symme
breaking introduced by the adiabatic approximation is qu
smooth and the total invariance can be recovered when
couplings are introduced, which is reflected by the doub
potential curve degeneracy. Thus, the method can be poi
out as an alternative procedure to analyze the three-elec
problem using two systems of ordinary differential equatio
instead of solving partial differential equations. Only fe
couplings need to be introduced to achieve good accur
Moreover, the angular adiabatic separation makes possib
calculate several potential curves supporting doubly and
ply excited states in the adiabatic approximation with a v
.I.
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fast and precise numerical approach. This is the subject
future investigation.
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FIG. 3. DifferenceDUl(R) for the lowest potential curve cal
culated with one channel and two coupled channels,~a! and ~b!,
respectively, and for the second lowest potential curve with one
two coupled channels,~c! and ~d!, respectively.
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