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Hyperspherical angular adiabatic separation for three-electron atomic systems
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The hypothesis of treating three-electron systems as a two-electron core plus a bound electron in the
hyperspherical adiabatic approach introduces a second adiabatic separation into hyperangular equations. Dif-
ferently from the main radial-angular hyperspherical adiabatic separation, the resulting couplings are necessary
to guarantee permutational and rotational invariance of the Hamiltonian. Thus, any kind of approximation,
disregarding such couplings, represents a loss of symmetry. This paper explores the consequences of such
approximations in the potential curve calculations for the lithium atom, showing that this symmetry breaking
is quite smooth and can be recovered within a good precision adding few couplings to the system of angular
differential equations.
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The hyperspherical adiabatic approdetAA), developed angular solutions. This choice produces a sec@rdjulay
in atomic physics by Macekl], Fano[2], and Lin[3], de- adiabatic separation between the innermost hyperangled
scribes the system in terms of “molecularlike” potential the outermost hyperangl@, transforming the problem of a
curves, derived from the adiabatic separation of the radiasystem of partial differential equations into the problem of
and angular parts of Schiimger equation in hyperspherical two coupled systems of ordinary differential equations. A
coordinates. Resonance positions of helium, associated to tffigst study of the angular adiabatic separation was done in
doubly excited states, potential curve calculations, and analyRef. [17]. The present work provides a complete description
sis of the two-electron correlations were performed byof the principal features and consequences of this approach.
Macek[1] and Lin[4], and numerically stable results have  Since the hyperradiuR is invariant under any electron
made possible the nonadiabatic calculations, establishingermutation and under (©) rotational transformations, all
highly accurate results for the two-electron atofss-10]. symmetry properties are located in the angular equations.
The three-electron system has been analyzed in the HAAThe second angular adiabatic separation introdaegular
since the 1980$11,17. New theoretical techniques have and radial dependentonadiabatic couplings as well as cou-
been applied for solving the three-electron adiabatic eigenplings due to the electron correlation between the outermost
value problem in direct numerical schenjd8—-17. Poten- and the two innermost electrons. These couplings are not
tial curves and channel functions were obtained focusing oimvariant under the above-mentioned symmetry operations.
the correlation properties of the doubly and triply excitedThus, the adiabatic approximation, disregarding the off-
states of the three-electron atorfs8], showing that the diagonal couplings in the angular equations, induces a loss of
HAA provides an elegant and conceptually clear descriptiorinvariance of the Hamiltonian in both permutational and ro-
of such systems. However, the extension of the HAA calcutational aspects. This paper investigates the consequences of
lation to three-electron systems has not reached the succeibis kind of approximation in a model problem considering
achieved for the two-electron system, preventing a quantitaust the electron-nucleus interactions. This model gives an
tive investigation. Consequently, the power and merit of theopportunity to analyze the convergence of the potential
hyperspherical approach are partially lost for such systemscurves when the nonadiabatic couplings are systematically

The potential curves and channel functions for two-introduced, without worrying about the convergence related
electron atoms are solutions of a coupled system of ordinarto the electron-electron couplings and allowing the learning
differential equations in the hyperangie which is related to  of an important aspect of the angular adiabatic separation,
the relative distances from the electrons to the nucleus. In th&hich must be considered for further precise description of
HAA, the inclusion of one more electron fundamentally the three-electron problem.
changes the hyperangular equations by the inclusion of one The hyperspherical coordinates for a three-electron sys-
more hyperanglgs and the potential curve calculations will tem are obtained replacing the electronic radial distanges
involve solutions of a coupled system of partial differentialr,, andrs, by a hyperradiu® and two hyperangles and 8
equations in both hyperangles and 8. Numerically this defined by r;=RsinBsina, r,=Rsingcose, and rj
problem is much more complicated than the analogous one R cosp, with 0s=R<«, Osa=</2, and O<B=<mw/2. The
for the two-electron atoms. Due to the energy dominant asspherical angles are kept unchanged.
pect of the two-electron core in three-electron atoftie In the HAA, the total wave function results from the adia-
ground-state energy of the Liion represents 97% of the batic separation of the angular and radial variable, expanded
ground-state energy of the Li atdnthe two-electron chan- in terms of the channel function basis, (R,(}),
nel functions have been used here as a basis for the hyper-

V(R,Q)= JL(R)®,(R,Q), 1
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where() is the set of all angles and is the channel index. electron separately. First of all, it is necessary to establish the
The channel function®, (R,Q) are the eigenfunctions of solutions of the two-electron problem to analyze the solu-

the angular equation tions of the three-electron potential equation in terms of the
R core potential curves.
UR,Q)P,(R,Q)=U,(R)®,(R,Q), 2 Traditionally, the two-electron channel functions, i.e., so-

o ] . lutions of Eq.(7), are expanded in terms of the generalized
with eigenvalues given by the potential curiég(R) ob-  spherical harmonics for two individual angular momenta. In
tained for fixed values oR. The radial dependence of the the present study, the two-electron channel functions have to
channel functions leads to an invariant set of coupled radiahe eigenfunctions with total angular momentusyincluding

equations the angular momentum of the third electron to form such
) state. Therefore, the channel functions are expanded in terms
d_2+ Ux(R)ZJr 1/4+2E 3(R) of the generalized spherical harmonis)’ . for three
dR R individual angular momenta
+> [ 2P (R d + R)|J,/(R)=0 .
2 | 2Pw (R gr*+Qu(R) [ (R)=0, $y(p.0) =2 G (pa) VN1 (Q1.05,Q0), (8)

I1l2

()
_ _ . where the(;'s are the spherical angles and labels the
whereP,, (R) andQ,,(R) are the nonadiabatic couplings solutionsG,(ﬁ)2 of the coupled system of ordinary differential

[19.20. The hyperangular potential operator equations deduced by applying E8) in Eq. (7) leading to
?  Up,Q)+14 L2 2Rz

URQ)=—+ + 7 11+ l(l+1)  2pZ  2pZ
: R _ Pe _
B sirt cogpB C€osp 2 srta o2a | sina ' cosa uy(p)
+2RCpeg(Q) (4)
I41
j . | XG(p@)==2p% C1H(a)G)(p.a), (9
contains the potential operator of the two-electron core given AR 12
by
141
N N where the couplingg ! ? are due to the electronic corre-
o) #1527 27 plings; ()
uip,{)=—-—">—- . lation given by the spherical harmonic expansion. In the
sin cos SRS
da® sifa  cosa “ “ electron-nucleus model the above equation is diagonal and
+2p&[ee](§) (5) the two-electron potential curves can be determined by im-

posing the vanishing of the solution or its first derivative at

Where p=Rsin,8=(r§+r§)1’2 and Q are, respectively, the &~ /4, for the triplet and singlet symmetries, respectively

two-electron hyperradius and the set of angles related to thLelg]'

. S . The functionsF@, from the angular adiabatic separation
core variablesCjeg represents the electron correlation of the[Eq_ (6)], are solutions of the set of coupled differential sys-

two innermost electrons andcq represents the correlation tem deduced from the orthogonality relations of the two-
between the outermost and the two innermost electrons. Ea@)ectron channel functions

I:i is the individual angular-momentum operator of the elec-

tronic motion. Thus, it is possible to establish an angula% > u,(p)+1/4 ly(l3+1) 2RZ

982 sirB cogB  cosB -

adiabatic separation expanding the total channel function i U\(R) |FM(R,B)

terms of the two-electron channel functioss, i.e.,

== 2 Wy (RBF(R.P). (10
Y

Differently from the two-electron angular problem, two
where y represents a set of quantum numbers. The twokinds of couplings have been found v, . One of them
electron channel functions form a complete set of orthonorC,, is the Coulombian coupling of the outermost electron
mal functions determined by the solution of the two-electronwith the innermost ones, and the other is the nonadiabatic

potential equation for fixed values pf couplings,p,, andq,, , due to the basis dependence on
the coordinates. Then,,,,, is given by

<I>X<R.m=27 FMR.B8)$,(p.Q), (6)

U(p, D) b,(p, ) =U,(p) $,(p, D), v ;
whereu,(p) is the two-electron core potential curve. There- W,y (R,B)==2R ny'(Rﬁ)“Lsz'(P)@+qw’(p)'
fore, this second adiabatic separation makes possible to ana- (11

lyze the whole problem in a different systematic, considering
the motion of the two innermost electrons and the outermosivhere
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FIG. 1. Potential curves and nonadiabatic couplings forlgfe

Li* ion. The nonadiabatic terms were calculated using a five point, %y
second-order differentiation formula and a Gauss-Legendre integra- ;>'
tion [21]. =
1%
pyy’(p): ¢y @ ¢y’ ) (12)
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d,,(p)={ ¢,| —=|d, |, (13 R (a.u.)
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FIG. 2. Potential curves for the Li atom, for the doublet and
where the integration is done over the spherical angles anguartet symmetries, calculated using the triplet two-electron poten-
the hyperanglex. Disregarding the electronic correlations, tial curves.
the only couplings are the angular nonadiabatic terms. A set
of two-electron potential curves and nonadiabatic couplingsparticular kind of degeneracy is expected. The channel func-
used in our three-electron potential curve calculations, aréons for such symmetry have two components; one is a sin-
shown in Fig. 1. The comparison between the two-electromjlet and the other is a triplet parent of the associated two-
potential curves and the nonadiabatic couplings in Fig. lelectron channel functions, combined to give an
indicate that the coupling terms of E(LO) are sufficiently — antisymmetric total wave function
small and a good convergence is therefore expected. The
three-electron potential curves are determined establishing ®,(R,Q)=xDD(R,Q)— xPOMN(R,Q), (19
the matching of alF (R,8) components and their first de-
rivative simultaneously a8= /4, i.e., the propagated solu- Where x(®) the is total spin eigenstat8=1/2 components
tions of Eq.(10) and their first derivative fronB=0 have to  With intermediate spis=0 (singleb ands=1 (triplet). Due
match the solutions propagated frof= /2, at B=m/4.  to the invariance of the potential-energy operdteq. (4)]
Since the matching condition does not take into account anyith respect to the spin, some of the three-electron potential
symmetry property, it is natural that some solutions do noturves calculated using singlet and triplet potential curves
pertain to the doublet and quartet symmetries of the lithiunfre expected to show the pattern of degenertiGyR)
atom and have to be excluded. In REf7] a set of approxi- =U{P(R)=UJ(R), associated with the doublet potential
mated boundary conditions was proposed in order to detecurves. Since the coupling terms of E40) depend essen-
mine the potential curves for the three-electron systemdially on the two-electron hyperradiys, they are invariant
However, this set of approximated boundary condition led taunder permutation of the innermost electrons ariél) @ota-

a qualitative investigation for both potential curves and chantional transformations in the absence of the electronic corre-
nel functions, since accurated physical solutions require exation. However, they are not invariant under the three-
act boundary conditions. In the present calculation, theelectron permutation group and the overall rotation group
unique approximation refer to the number of couplings con-O(9) individually, and the invariance of the Hamiltonian is
sidered in the Eqgs(9) and (10). Potential curves for the only reached considering all coupling terms. In this sense,
lithium atom in the diagonal approximation, including only the angular adiabatic approximation keeps the innermost
the diagonal tern,,,(p), are shown in Fig. 2 for both dou- symmetries but does not preserve the overall invariance.
blet and quartet symmetries in & and sp? angular- Since degeneracy in quantum mechanics is related to the
momentum configuration. existence of groups of symmetry under which the Hamil-
The main idea of the present study derives from the obtonian is invariant, the angular adiabatic approximation arti-
servation that for the doublet symmetry potential curves, dicially removes the above required degeneracy for the dou-

024501-3



BRIEF REPORTS

blet potential curves, causing a symmetry breaking. Thus, &
nonadiabatic angular calculation, i.e., introducing the off-
diagonal couplings, not only corrects the adiabatic separatior
features but also recovers the invariance of the Hamiltonia
and the above-mentioned degeneracy.
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In order to recover the invariance of the Hamiltonian, the 0 N — 0
convergence of the three-electron potential curves is ana

lyzed when the nonadiabatic couplings are introduced. The 45 Raw
difference AU, (R)=|UP(R)—U(R)|/(2R?), between — _ N @
. . . ®
the singlet and triplet parents, gives a measure of the deger %, 30} { &
eracy between the doublet potential curves, since it is ex-3 2
pected thatU{?(R)=UI)(R), for an exact calculation. As = 5T =
shown at Fig. 3, the degeneracy is recovered with good ac: 0 . . .
curacy when the coupling terms are included. This result 0 2 4 6 8 10 8 10
points out the accuracy of the potential curves calculated by R (au) R (au.)

solving Eq.(10), recovering the expected degeneracy. FIG. 3. DifferenceAU, (R) for the lowest potential curve cal-

In (_:on(_:lusion, the above re_sults_show th?‘ th? Sy_mme_t%ulated with one channel and two coupled channg@lsand (b),
breaking introduced b_y the_ adiabatic approximation is qL"terespectively, and for the second lowest potential curve with one and
smooth and the total invariance can be recovered when fey coupled channelgg) and (d), respectively.

couplings are introduced, which is reflected by the doublet

potential curve degeneracy. Thus, the method can be pointgdsi and precise numerical approach. This is the subject for
out as an alternative procedure to analyze the three-electrqQiyre investigation.

problem using two systems of ordinary differential equations

instead of solving partial differential equations. Only few  This work was supported by the Brazilian Agency Fun-
couplings need to be introduced to achieve good accuracga@o de Amparo aPesquisa do Estado de &sd&aulo
Moreover, the angular adiabatic separation makes possible ttAPESP, Process No. 97/00224-1. | wish to thank
calculate several potential curves supporting doubly and trie. S. Bernardes, J. J. De Groote, and M. Masili for useful
ply excited states in the adiabatic approximation with a verydiscussions.
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