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Quantum entanglement of identical particles
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We consider entanglement in a system with a fixed number of identical particles. Since any operation should
be symmetrized over all the identical particles and there is the precondition that the spatial wave functions
overlap, the meaning of identical-particle entanglement is fundamentally different from that of distinguishable
particles. The identical-particle counterpart of the Schmidt basis is shown to be the single-particle basis in
which the one-particle reduced density matrix is diagonal. But it does not play a special role in the issue of
entanglement, which depends on the single-particle basis chosen. The nonfactorizatiotastigsyonmetri-
zation is naturally excluded by using ti@nt)symmetrized basis or, equivalently, the particle number repre-
sentation. The natural degrees of freedom in quantifying the identical-particle entanglement in a chosen single-
particle basis are occupation numbers of different single-particle basis states. The entanglement between
effectively distinguishable spins is shown to be a special case of the occupation-number entanglement.
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How does one characterize entanglement in a fixed nunmot play a similar role in characterizing the entanglement. On
ber of identical particles? Obviously, a correct characterizathe other hand, we show that like the Schmidt basis, the Yang
tion must exclude the nonfactorization due(emtjsymme-  basis is the single-particle basis in which the one-particle
trization. Here, we clarify that it can be done by using thereduced density matrix is diagonal. It is a common wisdom
(ant)symmetrized basis, which is equivalent to the particleto treat the entanglement between spins of identical particles,
number representation. This leads to the use of occupatioffhen they are effectively distinguished in terms of another
numbers of different single-particle basis states as(die  degree of freedom, in the way of distinguishable particles.
tinguishablé degrees of freedom in quantifying identical- We show that it is in fact a special case of the occupation-
partide entang|ememven when the number of partic|es is number entanglement with a constraint on the accessible
conservedThe occupation numbers of different modes havesubspace of the Fock space.
already been used in quantum comput{ig. The use of In terms of the product basis|ky, ... ky)
modes was made in a previous study of identical-particle=|k1)® - - - ®|ky), the N-particle state is
entanglement, based on formally mapping the Fock space to
the state space of qubits or harmonic oscillaf@ but it .
was under the unphysical presumption of full access to the |¢>_k1 2 aky, k)l k), (1)
Fock space. We shall elaborate that the concept of entangle-

ferent from that of distinguishable particles, for which en-he coefficientsy(ky, . . . ky) are(antjsymmetric.
tanglement is invariant under local unitary transformations. |t is often convenient to use the unnormalizeaht)sym-
There is no local operation that acts only on one of the idenetrized basis Ky, ... kN>(i)=E§!(—1)P|k1 k)

tical particles. The single-particle basis transformation iSynere P denotes permutations, +*" is for bosons while
made on each particle and chooses a different set of particles_» i tor fermions. Suppose,that ik,, ... ky, there
in representing the many-particle system. Thus, the entangle{:}l-re n, ks which area, then there are c;nIW!'/H;“:Ona!

ment property of a system of identical particles depends on; - (%)
thesingle-particlebasis used. The particle number basis statéa_lfferent permutations. Hence, ki, ... ky)

’ P H H
for a fixed number of particleds just the normalized (=1) H“n”‘lkl' - k) where the summation is
(ant)symmetrized basis in the configuration space, i.e.only over all different permutations. THe-particle state is
Slater determinants or permanents. Therefore the occupatioHlen
number entanglement in a fixed number of particles is
nothing but the situation that the state is a superposition of )=
different Slater determinants or permanents. Another conse- (k
guence is that the two-identical-particle counterpart of the

IEREEE.

Schmidt decomposition, which we call Yang decompositionwhere k4, ... ky), disregarding the order d€;, ... ky,
since the corresponding transformation of an antisymdis a single index Up to the sign depending on the order
metric matrix was first obtained by Yang long algtl, does  of ki, ... ky in q(kq, ... ky), qis equal tog, i.e., each

set of (ant)symmetrized terms in Eq(l) corresponds
to one term in Eq.(2). Equation (2) can be rewritten
*Email address: ys219@phy.cam.ac.uk in terms of the normalized(antisymmetrized basis
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Ky, - k)@= VINITI N ke, ... k), as [¢)  For a two-boson product stat, af |0), the one-particle
=3, kh ke, k) [k, k) ® reduced density matrix is given by(k,|p®k,)

For a fixed number of particles, the normalizegit)sym- = (k,|p™|k,)=1 and(k|p®|k,) = (k,|p™P|k;)=0, hence
metrized basis can be rewritten in terms of the occupatiothe one-particle partial entropy is log-®, contradicting the
numbers of different single-particle basis states. This is th@revious claim.

particle number representation, in which The dependence of entanglement on the single-particle
basis is consistent with the point of view that individual par-

_ ticles are excitation of quantum fields, and that each different

) nl,.E.. N f(ny, - ne)lng, - ona), ® single-particle basis, in fact, defines a different set of par-

) ] ] ticles representing the many-body state. In fact, in many-

wheren; is the occupation number of mogle[ny, ... ,n.)  pody physics, it is a routine to make various transformations,
=(a})"™, ...,@%)"[0), the summations are subject to the which usually changes the nature of entangleni&at

constraint> ,n,=N, hence in the complete summation, of  With (ant)symmetrization already made on the basis, the

course most of thé's are zero. correlation embedded in the coefficients naturally gives the

In Refs.[5-9], an arbitraryN-particle state, in an arbitrary  information on entanglement. A Slater determinant or perma-
single-particle basis, is inappropriately written asnent is just aantjsymmetrized basis state, hence is nonen-
Eir-'iNWil“-iNaiTl' . ~aiTN|0>, wherew; .. ; is (ant)symmet-  tangled with respect to the given single-particle basis. Fur-
ric, and each subscript of the creation operators runs over aifiermore, one can regard a superposition of the Slater deter-
the modes. One should note that the creation or annihilatiominant or permanent as entangled in the given single-particle
operators are associated wittanti)symmetrized basis basis. Any operation, even a one-body one, of which the
For example,aiTaﬂO): iajTaiT|0>=|1i>|1j>= 1/32 (i)|jy  single-particle basis transformation is an example, acts on all
+[i)j)), wherei=j. Thereforeaf . ‘aiT 0 in these pa- the par.t|cles. A transformation from a superposition of Slater

! N determinant or permanent to a single Slater determinant or
permanent, in another single-particle basis, must involve op-
erations on all particles and actually chooses a different set

. . ; . . . ., __of particles in representing the state. In a sense, there is a
. Single-particle basis transformatlpn for identical p.art'.desbuiltin nonseparability, based on both the symmetrization of
is not the counterpart of the local unitary transformation in a '

C . . . “any operatiorand the spatial wave function overlafonsis-
system of distinguishable particles. It acts on each |dent|caE y op P ap

. ) e . : ently, without spatial wave function overlap or under the
particle in the same way. For distinguishable particles, loca ¥ P P

. ; ondition of the so-called remotendd<?], the symmetriza-
unitary transformations do not change the entanglement. Iﬂon does not have any physical effect

contrast, for identical particles, the entanglement depends on .\« he entanglement is between different single-

n/]hlcsh ﬁmg(f—gamcle b"fr's 1S fcg_o?en. .Cﬁngfquentt.lﬁ’ unlt':]( article basis states. Whether a certain single-particle basis
€ schmidt decomposition of distinguishable particles, eaie jg entangled with other single-particle basis states can

Yang decomposition does not play a special role in Idem'calbe decided by whether the former is mixed with the latter in

pa;\tlcle ent_angllemerﬁlll].l id i il tat the single-particle basis transformation which transforms the
t f a simple €xample, consider a two-particle sta esuperposition into a single Slater determinant or permanent.
ag,ak,|0)= 1/V2 ([ky)|ko) = ko) [ky)), assuming kyko.

This can be seen most clearly by using the second quantiza-

In terms of momentum basis, this is only a basis state iR For example, in a two-particle state \ﬂal (af
particle number representation. Written in terms of the prod- ’ 17k

uct basis, the nonfactorization is only due(émt)symmetri- +"'+a|1m+l)|0>, wherek;’s are different from each other,
zation. Therefore, there is no entanglement. However, im>1, the|k,) state is obviously separated from the others.
terms of the  position basis, it becomes One can obtain the one-particle partial entropy as log 2
S, @0t dal al |0), which is entangled. +1logm>log 2.

Since a single-particle basis transformation is made on Since the distinguishable label is the set of occupation
every particle,both the reduced density matrix and its von Numbers — of  different  single-particle  basis states,
Neumann entropy depend on the single-particle bakigs  Clearly they can be used to quantify entanglement,
invalidates the claim that partial entropy is still a measure of? the way of entanglement between distinguishable
entanglement for two identical particl¢g]. The n-particle ~ Objects. From Eq. (3), one obtains the density
reduced density matrix for a N-particle system Matrix as

pers may be corrected to, - - -iy). On the other hand, if one
uses the particle number basis states,(ant)symmetriza-
tion needs to madEglO0].

is (Kp, . klp ™Ky, k) =Tr(ay - -aképaln- -ay),
with Trp™M=N(N—1)---(N—n+1). One can find (n},....n.lplny, ....n)
K-k p™ky - - k) =f*(ny, ....,n)f(ng, ... N,
1 (%) ’ !
NTED Ek (ki kpKnsae o kalpl from which one can obtain the reduced density matriaies
LN occupation numberd=or example, the reduced density ma-
XKy KyKna g - .kN>(i)_ (4) trix of mode 1 is defined as
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(nilpa(Dn)==p, . n(N1,N2, ... Np state must be a sum of productsIdfin, s}, under the con-
straint 2,n, =1, for relevant orbits. In the many-particle
X[ng,ng, .o ns). state, one simply rewriteH¢|n, s) as|Sy), whereSo is un-

. ) i ambiguously thes corresponding ta, ;= 1. This rigorously
S|m|IarIy, the reduced density matrix of the set of rnOdesjustifies the common wisdom that although it is meaningless
L...lis to identify which particle is in which orbit, it is meaningful
to say that the particle in a certain orbit is spin entangled
with the particle in another orbit. Hence, the entanglement
) . between Heisenberg spins, which appears as entanglement
= 2 (i eoonfnngpl between distinguishable objects, is in fact a special case of
occupation-number entanglement.
XNy, .o N Ng,Ng), 5 Entanglement between Heisenberg spins is the basis of
the quantum computing scheme based on electrons in double
the nonvanishing elements of which satisf§i_;n/  quantum dotg3]. When the electrons are separated in the
=3{_,n; as constrained by the particle number conservatwo dots, because there are only one-dot potentials, while the
tion. From these Fock-space reduced density matrices, Weoulomb interaction is negligible, the condition of remote-
can, for example, calculate bipartite entanglement betweeness12] is satisfied. One can verify that an antisymmetriza-
the occupation numbers bfnodes and the occupation num- tion between electrons in different dots has no physical ef-
bers of the other modes. fects. On the other hand, when they are close, and the
It is important to note that the use of occupation numbersnteraction is appreciable, the antisymmetrization has physi-
as the degrees of freedom in characterizing entanglement gl effects, and the entanglement can be characterized by
valid even when the particle number is conserved. Thisising the full formalism of occupation-number entangle-
physical constraint, as well as the constraints that for fermiment. During the interaction period, they access the full Hil-
onsn; is either 0 or 1 and that the number of the relevantpert space, which includes the state in which the two elec-
modes[14] may be finite are all automatically satisfied by trons, with opposite spins, locate in a same dot, i.e.,
the set of nonzerd. Hence, this approach is a natural one|1); ,)|1; ), wherei=1,2 represents the dots. There are
within the standard second-quantization formalism, compat41/2121=6 two-particle antisymmetrized basis states, or
ible with the representations of the observables in terms ofccupation-number basis states. Nevertheless, as far as the
creation or annihilation operators, which can be viewed asnitial and final states are in single occupancy, and the
coordinated transformations of occupation numbers of a safieisenberg model is a valid description, the interaction pe-
of modes. The second-quantized representation ofody  riod can be viewed as an intermediate process determining
operatorO is EaiT,- . -a?,(ii- ~+i|Oliq- - ~in)ain- --a;,. One  the effective spin coupling, while the leakage into the full
! " ilbert space of two identical particles during a two-particle
te operation does not cause any problem. In terms of the
ccupation-number states, the spin state of each electron in
gach dot is|1);=|1); 1[0} |, [1)i=[0)i ;|1)i ;. Because a
in qubit is in fact an occupation-number state, the loss of
glentification after separating from the double occupation, as

(ny, .../, ... D[Ny, . ..ny)

can observe that, for example, there is no operation WhiC}ll_|
only changes the occupation number of one mode. One m
consider “second-quantized computation.”

In principle, one can define entanglement with respect t
any reference state of the system. In this case, the occupati
number of each mode in defining the relative entanglement i din Refl15]. d ¢ matter. Note that the int
the difference with that in the reference state, as convenientl ondc_e;ne tlrt] e%h g %?S not mater. INote tha eth er
seen by considering the action of creation operators. The € tla € Sta?tw' ¢ ou s oc;cupagcynecetssarwog.t €
are two reference states that are of particular interest. Oniﬁoenc rons 1o interact in order fo undergo a two-qubit opera-
the empty state, as we have implicitly considered up to now. ™ _. . : .
Another one is the ground state of the system, which is suit- Finally, we come to the question th‘?‘t whatis spe_C|aI about
able when all physical processes are in a same bulk of m he Y_ang b_as_ls. For two d|s_t|ngU|_shabIe particles, th_e
terial. In discussing the entanglement in a ground state, it i Chm'dt basis is cle_arly .the onein il th.e rgduced Qensny
with respect to the empty state. The considerations can evdpatrx of each particle is diagonal: Falici|i)|i), of dis-

be extended to relativistic quantum field theory, where thémgu?shable _particleg andb, the elem_ents of the redgced
ground state is the vacuum. density matrix of eithera or b are given by(l|pa(b)|j>

An important situation is that the single-particle basis in-_ |ci|?8;; . In the following, we show that the Yang basis is
cludes both spin and orbitmomentum or position One can the basis in which the one-particle reduced density matrix is
denote the total index a,s), whereo substitutes for mo- diagonal. _ _ o
mentumk or positionr. A special case is half filing, i.e, " their Yang basis, a two-fermion state is likes)
each orbit is constrained to be occupied by only one particle C1(|1)12) =[2)[1)) +¢([3)|4) = [3)[4)) + - - - where we
i.e., Sn,<=1 for each relevant value af. Then with the useli) to denote c'hfferent single-particle basis statesk.lf
orbit modes as the labels with which the particles are effec= k2, thenki=k; is necessary for any ofkikj|p|kiky),
tively distinguished, the entanglement can be viewed as thékiKa|plkoky), (koka|plkikz) and(koky|plkzky) to be non-
spin entanglement among the particles in different orbitvanishing. Therefore using E@4), one finds(ky|p™)|k,)
modes. Under the constraint of half filling, the many-particle= 5k1k12k2(‘)<k1k2|p|k1k2>(‘). Hence,p™ is diagonal.
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In their Yang basis, a two-boson state is
|p)=d1|1)|1)+d,|2)|2)+ - - - . Then one finds

(kikalplkeka) = (kikal plkoky) = (koki| p|kyks)
= (kakq|p[koks) = 5kiké5klk2<klkll plkaka).

like particle in the same way. Indeed, individual particles are ex-
citations of a quantum field, and the single-particle basis de-
fines which set of particles are used in representing the
many-particle state. The many-particle state is entangled in
the corresponding single-particle basis when it is not a single
Slater determinant or permanent. The entanglement is be-
tween different single-particle basis states in the given basis.
We also show that the entanglement between effectively dis-
tinguishable spins of identical particles is a special case of
Ghe occupation-number entanglement. We have discussed its

clents T the ormalon ouenUsmelzalon a1 use n quantum compuing. Theecessanjeakage o te
9 C ; Y larger Hilbert spaceuring the intermediate two-particle pro-

made on the basis, then the coefficients unambiguously 9VEess is harmless. Finally it is shown that the two-identical-

the information on entanglement, with respect to the given " ; . . .
single-particle basis(Anti)symmetrized basis is equivalent particle counterpart of the Schmidt basis is the basis in which

to particle number representation, and the occupation nunfhe one-particle reduceq de_nsity matrix ,iS dia_lgona!. In. addi-
bers of different modes are distinguishable degrees of frediOn 0 guantum computing implementations involving iden-
dom which can be used in quantifying the entanglement evelical _part|cles, the result here is also useful for many-body
when particle number is conserved. Entanglement of identiPhysics[16].

cal particles is a property dependent on which single-particle This publication is an output from project activity funded

basis is chosen, as any operation should act on each identid The Cambridge-MIT Institute Limited.

Consequently, using Eq.4), one finds (kj|p™M|k,)
= 5k£kl(+)<k1k1|p|klk1>(+). Hence,p!) is diagonal.
Let us summarize. If one uses the product basis, the ¢
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