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Quantum entanglement of identical particles

Yu Shi*
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road,

Cambridge CB3 0WA, United Kingdom
and Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

~Received 20 May 2002; revised manuscript received 1 August 2002; published 6 February 2003!

We consider entanglement in a system with a fixed number of identical particles. Since any operation should
be symmetrized over all the identical particles and there is the precondition that the spatial wave functions
overlap, the meaning of identical-particle entanglement is fundamentally different from that of distinguishable
particles. The identical-particle counterpart of the Schmidt basis is shown to be the single-particle basis in
which the one-particle reduced density matrix is diagonal. But it does not play a special role in the issue of
entanglement, which depends on the single-particle basis chosen. The nonfactorization due to~anti!symmetri-
zation is naturally excluded by using the~anti!symmetrized basis or, equivalently, the particle number repre-
sentation. The natural degrees of freedom in quantifying the identical-particle entanglement in a chosen single-
particle basis are occupation numbers of different single-particle basis states. The entanglement between
effectively distinguishable spins is shown to be a special case of the occupation-number entanglement.
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How does one characterize entanglement in a fixed n
ber of identical particles? Obviously, a correct characteri
tion must exclude the nonfactorization due to~anti!symme-
trization. Here, we clarify that it can be done by using t
~anti!symmetrized basis, which is equivalent to the parti
number representation. This leads to the use of occupa
numbers of different single-particle basis states as the~dis-
tinguishable! degrees of freedom in quantifying identica
particle entanglementeven when the number of particles
conserved. The occupation numbers of different modes ha
already been used in quantum computing@1#. The use of
modes was made in a previous study of identical-part
entanglement, based on formally mapping the Fock spac
the state space of qubits or harmonic oscillators@2#, but it
was under the unphysical presumption of full access to
Fock space. We shall elaborate that the concept of entan
ment in a system of identical particles is fundamentally d
ferent from that of distinguishable particles, for which e
tanglement is invariant under local unitary transformatio
There is no local operation that acts only on one of the id
tical particles. The single-particle basis transformation
made on each particle and chooses a different set of part
in representing the many-particle system. Thus, the entan
ment property of a system of identical particles depends
thesingle-particlebasis used. The particle number basis st
for a fixed number of particlesis just the normalized
~anti!symmetrized basis in the configuration space, i
Slater determinants or permanents. Therefore the occupa
number entanglement in a fixed number of particles
nothing but the situation that the state is a superposition
different Slater determinants or permanents. Another con
quence is that the two-identical-particle counterpart of
Schmidt decomposition, which we call Yang decomposit
since the corresponding transformation of an antisy
metric matrix was first obtained by Yang long ago@4#, does
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not play a similar role in characterizing the entanglement.
the other hand, we show that like the Schmidt basis, the Y
basis is the single-particle basis in which the one-part
reduced density matrix is diagonal. It is a common wisdo
to treat the entanglement between spins of identical partic
when they are effectively distinguished in terms of anoth
degree of freedom, in the way of distinguishable particl
We show that it is in fact a special case of the occupati
number entanglement with a constraint on the access
subspace of the Fock space.

In terms of the product basis uk1 , . . . ,kN&
[uk1& ^ •••^ ukN&, theN-particle state is

uc&5 (
k1 , . . . ,kN

q~k1 , . . . ,kN!uk1 , . . . ,kN&, ~1!

where summations are made overk1 , . . . ,kN independently,
the coefficientsq(k1 , . . . ,kN) are ~anti!symmetric.

It is often convenient to use the unnormalized~anti!sym-
metrized basis, uk1 , . . . ,kN& (6)5(P

N! (21)Puk1 , . . . ,kN&,
where P denotes permutations, ‘‘1’’ is for bosons while
‘‘ 2 ’’ is for fermions. Suppose that ink1 , . . . ,kN , there
are na ki ’s which area, then there are onlyN!/ )a50

` na!
different permutations. Hence, uk1 , . . . ,kN& (6)

5(P8 (21)P)anauk1 , . . . ,kN&, where the summation is
only over all different permutations. TheN-particle state is
then

uc&5 (
(k1 , . . . ,kN)

g~k1 , . . . ,kN!uk1 , . . . ,kN& (6), ~2!

where (k1 , . . . ,kN), disregarding the order ofk1 , . . . ,kN ,
is a single index. Up to the sign depending on the ord
of k1 , . . . ,kN in q(k1 , . . . ,kN), q is equal tog, i.e., each
set of ~anti!symmetrized terms in Eq.~1! corresponds
to one term in Eq.~2!. Equation ~2! can be rewritten
in terms of the normalized ~anti!symmetrized basis
©2003 The American Physical Society01-1
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uk1 , . . . ,kN& (s)5A1/N! )ana! uk1 , . . . ,kN& (6), as uc&
5( (k1 , . . . ,kN)h(k1 , . . . ,kN)uk1 , . . . ,kN& (s).

For a fixed number of particles, the normalized~anti!sym-
metrized basis can be rewritten in terms of the occupa
numbers of different single-particle basis states. This is
particle number representation, in which

uc&5 (
n1 , . . . ,n`

f ~n1 , . . . ,n`!un1 , . . . ,n`&, ~3!

wherenj is the occupation number of modej, un1 , . . . ,n`&
[(a1

†)n1, . . . ,(a`
† )n`u0&, the summations are subject to th

constraint(ana5N, hence in the complete summation,
course most of thef ’s are zero.

In Refs.@5–9#, an arbitraryN-particle state, in an arbitrary
single-particle basis, is inappropriately written
( i 1••• i N

wi 1••• i N
ai 1

†
•••ai N

† u0&, wherewi 1••• i N
is ~anti!symmet-

ric, and each subscript of the creation operators runs ove
the modes. One should note that the creation or annihila
operators are associated with(anti)symmetrized basis.
For example,ai

†aj
†u0&56aj

†ai
†u0&5u1i&u1 j&5 1/A2 (u i &u j &

6u i &u j &), where iÞ j . Thereforeai 1
†
•••ai N

† u0& in these pa-

pers may be corrected tou i 1••• i N&. On the other hand, if one
uses the particle number basis states,no ~anti!symmetriza-
tion needs to made@10#.

Single-particle basis transformation for identical partic
is not the counterpart of the local unitary transformation in
system of distinguishable particles. It acts on each ident
particle in the same way. For distinguishable particles, lo
unitary transformations do not change the entanglemen
contrast, for identical particles, the entanglement depend
which single-particle basis is chosen. Consequently, un
the Schmidt decomposition of distinguishable particles,
Yang decomposition does not play a special role in identic
particle entanglement@11#.

As a simple example, consider a two-particle st
ak1

† ak2

† u0&5 1/A2 (uk1&uk2&6uk2&uk1&), assuming k1Þk2.

In terms of momentum basis, this is only a basis state
particle number representation. Written in terms of the pr
uct basis, the nonfactorization is only due to~anti!symmetri-
zation. Therefore, there is no entanglement. However
terms of the position basis, it become
( r1 ,r2

ei (k1•r11k2•r2)ar1

† ar2

† u0&, which is entangled.

Since a single-particle basis transformation is made
every particle,both the reduced density matrix and its vo
Neumann entropy depend on the single-particle basis. This
invalidates the claim that partial entropy is still a measure
entanglement for two identical particles@8#. The n-particle
reduced density matrix for a N-particle system
is ^k18 , . . . ,kn8ur

(n)uk1 , . . . ,kn&5Tr(ak
18
•••ak

n8
rakn

†
•••ak1

† ),

with Trr (n)5N(N21)•••(N2n11). One can find

^k18•••kn8ur
(n)uk1•••kn&

5
1

~N2n!! (
kn11•••kN

(6)^k18•••kn8kn11•••kNuru

3k1•••knkn11•••kN& (6). ~4!
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For a two-boson product stateak1

† ak2

† u0&, the one-particle

reduced density matrix is given by^k1ur (1)uk1&
5^k2ur (1)uk2&51 and^k1ur (1)uk2&5^k2ur (1)uk1&50, hence
the one-particle partial entropy is log 2.0, contradicting the
previous claim.

The dependence of entanglement on the single-par
basis is consistent with the point of view that individual pa
ticles are excitation of quantum fields, and that each differ
single-particle basis, in fact, defines a different set of p
ticles representing the many-body state. In fact, in ma
body physics, it is a routine to make various transformatio
which usually changes the nature of entanglement@13#.

With ~anti!symmetrization already made on the basis,
correlation embedded in the coefficients naturally gives
information on entanglement. A Slater determinant or perm
nent is just a~anti!symmetrized basis state, hence is none
tangled with respect to the given single-particle basis. F
thermore, one can regard a superposition of the Slater d
minant or permanent as entangled in the given single-par
basis. Any operation, even a one-body one, of which
single-particle basis transformation is an example, acts on
the particles. A transformation from a superposition of Sla
determinant or permanent to a single Slater determinan
permanent, in another single-particle basis, must involve
erations on all particles and actually chooses a different
of particles in representing the state. In a sense, there
builtin nonseparability, based on both the symmetrization
any operationand the spatial wave function overlap. Consis-
tently, without spatial wave function overlap or under t
condition of the so-called remoteness@12#, the symmetriza-
tion does not have any physical effect.

Hence, the entanglement is between different sing
particle basis states. Whether a certain single-particle b
state is entangled with other single-particle basis states
be decided by whether the former is mixed with the latter
the single-particle basis transformation which transforms
superposition into a single Slater determinant or perman
This can be seen most clearly by using the second quan

tion. For example, in a two-particle state 1/Amak1

† (ak2

†

1¯1akm11

† )u0&, wherek i ’s are different from each other

m.1, the uk1& state is obviously separated from the othe
One can obtain the one-particle partial entropy as lo
11

2 logm.log 2.
Since the distinguishable label is the set of occupat

numbers of different single-particle basis state
clearly they can be used to quantify entangleme
in the way of entanglement between distinguisha
objects. From Eq. ~3!, one obtains the density
matrix as

^n18 , . . . ,n8̀ urun1 , . . . ,n`&

5 f * ~n18 , . . . ,n8̀ ! f ~n1 , . . . ,n`!,

from which one can obtain the reduced density matricesof
occupation numbers. For example, the reduced density m
trix of mode 1 is defined as
1-2
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^n18ur1~1!un1&5(n2 , . . . ,n`
^n18 ,n2 , . . . ,n`ur

3un1 ,n2 , . . . ,n`&.

Similarly, the reduced density matrix of the set of mod
1, . . . ,l is

^n18 , . . . ,nl8ur l~1, . . . ,l !un1 , . . . ,nl&

5 (
nl 11 , . . . ,n`

^n18 , . . . ,nl8 ,nl 11 ,n`uru

3n1 , . . . ,nl ,nl 11 ,n`&, ~5!

the nonvanishing elements of which satisfy( i 51
l ni8

5( i 51
l ni as constrained by the particle number conser

tion. From these Fock-space reduced density matrices
can, for example, calculate bipartite entanglement betw
the occupation numbers ofl modes and the occupation num
bers of the other modes.

It is important to note that the use of occupation numb
as the degrees of freedom in characterizing entangleme
valid even when the particle number is conserved. T
physical constraint, as well as the constraints that for fer
ons nj is either 0 or 1 and that the number of the releva
modes@14# may be finite are all automatically satisfied b
the set of nonzerof. Hence, this approach is a natural o
within the standard second-quantization formalism, comp
ible with the representations of the observables in terms
creation or annihilation operators, which can be viewed
coordinated transformations of occupation numbers of a
of modes. The second-quantized representation of ann-body
operatorO is (ai

18
†
•••ai

n8
†

^ i 18••• i n8uOu i 1••• i n&ai n
•••ai 1

. One

can observe that, for example, there is no operation wh
only changes the occupation number of one mode. One
consider ‘‘second-quantized computation.’’

In principle, one can define entanglement with respec
any reference state of the system. In this case, the occup
number of each mode in defining the relative entanglemen
the difference with that in the reference state, as convenie
seen by considering the action of creation operators. Th
are two reference states that are of particular interest. On
the empty state, as we have implicitly considered up to n
Another one is the ground state of the system, which is s
able when all physical processes are in a same bulk of
terial. In discussing the entanglement in a ground state,
with respect to the empty state. The considerations can e
be extended to relativistic quantum field theory, where
ground state is the vacuum.

An important situation is that the single-particle basis
cludes both spin and orbit~momentum or position!. One can
denote the total index as (o,s), whereo substitutes for mo-
mentumk or position r . A special case is half filling, i.e.
each orbit is constrained to be occupied by only one parti
i.e., (sno,s51 for each relevant value ofo. Then with the
orbit modes as the labels with which the particles are eff
tively distinguished, the entanglement can be viewed as
spin entanglement among the particles in different o
modes. Under the constraint of half filling, the many-parti
02430
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state must be a sum of products of)suno,s&, under the con-
straint (sno,s51, for relevant orbits. In the many-particl
state, one simply rewrites)suno,s& as uSo&, whereSo is un-
ambiguously thes corresponding tono,s51. This rigorously
justifies the common wisdom that although it is meaningl
to identify which particle is in which orbit, it is meaningfu
to say that the particle in a certain orbit is spin entang
with the particle in another orbit. Hence, the entanglem
between Heisenberg spins, which appears as entangle
between distinguishable objects, is in fact a special cas
occupation-number entanglement.

Entanglement between Heisenberg spins is the basi
the quantum computing scheme based on electrons in do
quantum dots@3#. When the electrons are separated in t
two dots, because there are only one-dot potentials, while
Coulomb interaction is negligible, the condition of remot
ness@12# is satisfied. One can verify that an antisymmetriz
tion between electrons in different dots has no physical
fects. On the other hand, when they are close, and
interaction is appreciable, the antisymmetrization has ph
cal effects, and the entanglement can be characterized
using the full formalism of occupation-number entang
ment. During the interaction period, they access the full H
bert space, which includes the state in which the two el
trons, with opposite spins, locate in a same dot, i
u1& i ,↑&u1i ,↓&, where i 51,2 represents the dots. There a
4!/2!2!56 two-particle antisymmetrized basis states,
occupation-number basis states. Nevertheless, as far a
initial and final states are in single occupancy, and
Heisenberg model is a valid description, the interaction
riod can be viewed as an intermediate process determi
the effective spin coupling, while the leakage into the f
Hilbert space of two identical particles during a two-partic
gate operation does not cause any problem. In terms of
occupation-number states, the spin state of each electro
each dot isu↑& i5u1& i ,↑u0& i ,↓ , u↓& i5u0& i ,↑u1& i ,↓. Because a
spin qubit is in fact an occupation-number state, the loss
identification after separating from the double occupation
concerned in Ref.@15#, does not matter. Note that the inte
mediate state with double occupancy isnecessaryfor the
electrons to interact in order to undergo a two-qubit ope
tion.

Finally, we come to the question that what is special ab
the Yang basis. For two distinguishable particles,
Schmidt basis is clearly the one in which the reduced den
matrix of each particle is diagonal: For( ici u i &au i &b of dis-
tinguishable particlesa and b, the elements of the reduce
density matrix of eithera or b are given by^ i ura(b)u j &
5uci u2d i j . In the following, we show that the Yang basis
the basis in which the one-particle reduced density matri
diagonal.

In their Yang basis, a two-fermion state is likeuc f&
5c1(u1&u2&2u2&u1&)1c2(u3&u4&2u3&u4&)1••• where we
use u i & to denote different single-particle basis states. Ifk28
5k2, then k185k1 is necessary for any of̂k18k28uruk1k2&,
^k18k28uruk2k1&, ^k28k1uruk1k2& and ^k28k1uruk2k1& to be non-
vanishing. Therefore using Eq.~4!, one finds^k18ur

(1)uk1&
5dk

18k1
(k2

(2)^k1k2uruk1k2&
(2). Hence,r (1) is diagonal.
1-3
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In their Yang basis, a two-boson state is lik
ucb&5d1u1&u1&1d2u2&u2&1••• . Then one finds

^k18k28uruk1k2&5^k18k28uruk28k1&5^k28k18uruk1k2&

5^k28k18uruk2k1&5dk
18k

28
dk1k2

^k1k1uruk2k2&.

Consequently, using Eq.~4!, one finds ^k18ur
(1)uk1&

5dk
18k1

(1)^k1k1uruk1k1&
(1). Hence,r (1) is diagonal.

Let us summarize. If one uses the product basis, the
efficients mix the information on~anti!symmetrization and
that on entanglement. If, instead, the~anti!symmetrization is
made on the basis, then the coefficients unambiguously
the information on entanglement, with respect to the giv
single-particle basis.~Anti!symmetrized basis is equivalen
to particle number representation, and the occupation n
bers of different modes are distinguishable degrees of f
dom which can be used in quantifying the entanglement e
when particle number is conserved. Entanglement of ide
cal particles is a property dependent on which single-part
basis is chosen, as any operation should act on each iden
re
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particle in the same way. Indeed, individual particles are
citations of a quantum field, and the single-particle basis
fines which set of particles are used in representing
many-particle state. The many-particle state is entangle
the corresponding single-particle basis when it is not a sin
Slater determinant or permanent. The entanglement is
tween different single-particle basis states in the given ba
We also show that the entanglement between effectively
tinguishable spins of identical particles is a special case
the occupation-number entanglement. We have discusse
use in quantum computing. The~necessary! leakage into the
larger Hilbert spaceduring the intermediate two-particle pro
cess is harmless. Finally it is shown that the two-identic
particle counterpart of the Schmidt basis is the basis in wh
the one-particle reduced density matrix is diagonal. In ad
tion to quantum computing implementations involving ide
tical particles, the result here is also useful for many-bo
physics@16#.

This publication is an output from project activity funde
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