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Classical mechanics and the propagation of the discontinuities of the quantum wave function
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Geometrical optics can be regarded both as the short-wavelength approximation of the propagation of
electromagnetic waves, and as the exact way in which propagate the surfaces of discontinuity of the classical
electromagnetic field. In this work we translate this last idea to quantum mechanics~both relativistic and
nonrelativistic!. We find that the surfaces of discontinuity of the wave function propagate exactly following the
classical trajectories determined by the Hamilton-Jacobi equation. As an example, we consider the lack of
diffraction of abrupt wave fronts.
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In physics, as in many other areas of science, parti
contradicting theories can coexist, such as quantum ve
classical mechanics and geometrical versus electromag
optics as two paradigmatic examples. The question of t
mutual relationship is a basic and critical issue imposed
the consistency of science. This question is specially vi
concerning the relation between classical and quantum
chanics, which has been a subject of active research
controversy from the very beginning of the quantum the
till the present day. It is generally accepted that both class
mechanics and geometrical optics are approximations v
for short wavelengths@1,2#. However, in optics another rad
cally different approach is possible: geometrical optics is
exactway in which the surfaces of field discontinuity prop
gate, irrespective of the magnitude of the wavelength@3#. In
this paper we translate this approach from optics to mech
ics showing that classical mechanics is the exact way
which the discontinuities of the quantum wave functi
propagate.

First we recall the basic tools required to address
propagation of discontinuities in optics as well as in quant
mechanics. For both situations, we will consider that the e
lution is given by the solution of a system of linear part
differential equations:

(
m,n

]

]xm
~M j

m,ncn!50, ~1!

wherexm5x,y,z,t are the space-time coordinates,M j
m,n are

functions ofxh, and cn(xm) are the Cartesian componen
either of a spinorial quantum wave function or of a classi
electromagnetic field.

As discussed in Ref.@3#, Eqs. ~1! are conditions for the
componentscn at every point where they are continuous, b
they cannot establish conditions for the boundary values
cn on a surface of discontinuity. Therefore, in order to d
with discontinuities, it is advantageous to replace Eqs.~1! by
integral counterparts. To this end we consider volume in
grals of Eq.~1! which can be then suitably converted in
surface integrals with the use of the divergence theorem
carried out in Ref.@3#:
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m,n

]

]xm
~M j

m,ncn!5(
m,n

E
s
dsmM j

m,ncn50, ~2!

where dG5dx dy dz dt is the differential of four-
dimensional volume anddsm are the Cartesian componen
of the surface element normal to the three-dimensional
face s enclosingG. The last equality in Eq.~2! is fully
equivalent to Eq.~1! whencn are continuous. On the othe
hand Eq.~2! is more general since it can be applied witho
difficulties whencn are discontinuous.

The objective is to derive conditions for the discontinu
ties of cn by imposing Eq.~2!. Denoting byS(x,t)50 the
surface of discontinuity, we apply Eq.~2! to two volumes
G1 , G2 connected byS, as well as to the whole volumeG1
1G2 ~see Fig. 1!. This leads to

(
m,n

@cn#
]S

]xm
M j

m,n50, ~3!

where@cn# denotes the difference between the boundary v
ues ofcn at the two sides ofS. For the sake of definiteness
we have assumed thatM j

m,n are continuous atS. These are
the conditions we were looking for.

This formalism can be applied directly to optics provid
that the light propagates in the vacuum or in a nondispers
linear media in absence of free charge and currents. For
persive media, we have to restrict ourselves to tim
harmonic waves. In such a case, the Maxwell equations
be recasted in the form~1! being M j

m,n proportional to the
dielectric constant and the magnetic permeability. Express
Son the formS(x,t)5L(x)2ct, this formalism leads to the
eikonal equation~for isotropic media for simplicity! @3#

FIG. 1. Diagram illustrating the volumesG1 and G2 joined by
the surface of discontinuityS50.
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~“L !25n2, ~4!

wheren is the index of refraction. This equation implies th
the surface of discontinuity propagates along the rays of g
metrical optics@2,3#.

Next we turn our attention to the quantum case. Since
are dealing with first-order partial differential equations w
can begin with relativistic propagation equations:

i\
]C

]t
5S (

j 51

3

2 i\ca j

]

]xj
1mc2b1V~x!D C, ~5!

whereC(x,t) is a vector wave function, anda j , b are con-
stant matrices satisfying

~ca•p1mc2b!25c2p21m2c4, ~6!

for any real three-dimensional vectorp, wherea is a vector
notation for the three matricesa j .

At this stage we cannot apply directly the above form
ism because the inhomogeneous term (mc2b1V)C im-
pedes to express Eq.~5! on the form ~1!. As in classical
optics we can avoid this difficulty by restricting our analys
to time-harmonic wave functions for which

C~x,t !5
i\

E

]C~x,t !

]t
, ~7!

in some volumeG, whereE is a constant. Using this cond
tion we can express Eq.~5! as

Fc(
j 51

3

a j

]

]xj
1~E2mc2b2V!

1

E

]

]tGC50, ~8!

which is already of the form~1!. Then, the application of Eq
~3! leads to

S Eca•“S2mc2b
]S

]t D @C#5~V2E!
]S

]t
@C#. ~9!

Squaring the above equation and using Eq.~6! we get

E2c2~“S!21m2c4S ]S

]t D
2

5~V2E!2S ]S

]t D
2

, ~10!

whenever@C#Þ0. Since the Hamiltonian we are conside
ing is time independent, we can use the method of separa
of variables to separate out the time in the formS(x,t)
5W(x)2Et. From Eq.~10! we get

E5Ac2~“W!21m2c41V. ~11!

In the nonrelativistic limitu“Wu!mc so that

E2mc2.
~“W!2

2m
1V. ~12!

Equations~11! and ~12! are the main result of this pape
We have found that the surface of discontinuity of harmo
wave functions must satisfy the classical Hamilton-Jac
02410
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equation for the relativistic HamiltonianH5Ac2p21m2c4

1V(x) or H5p2/(2m)1V(x) in the nonrelativistic limit.
Therefore, the surfaces where the wave function is disc
tinuous evolve following classical trajectories@4#. The result
is exact since no approximation nor limiting procedure wh
soever have been used.

This behavior parallels the optical case. The main diff
ence is that mechanics always includes inhomogene
source terms that are the origin of the dispersive characte
the quantum propagation of massive particles. As it occur
optics, the dispersion limits the generality of the approa
and force us to consider just harmonic waves.

It is important to stress that the condition~7! does not
necessarily implies thatC is a stationary state. For instanc
we can haveC(x,t)5A1(x)e2 iEt/\ in a given volumeG1
and C(x,t)5A2(x)e2 iEt/\ in a different volumeG2 being
A1 , A2 two different eigenfunctions of a Hamiltonian with
degenerate eigenvalueE. Moreover we may haveA150.

As a particular example supporting the above results
can invoke the lack of diffraction of a beam of free particl
having an abrupt leading edge~the discontinuity! caused by
the opening or closing of an absorbing shutter. Such a si
tion can be addressed following the approach of Ref.@5#
where this problem is examined in the optical domain le
ing to the conclusion that the front of the wave propaga
without distortion or diffraction@5,6# ~the so-called electro-
magnetic missiles!.

The main difference between matter and light is the d
ferent dispersion relation. However, as discussed in Ref.@5#,
the propagation of the front of the wave is determined by
highest frequencies, and in such a limit the two dispers
relations tend to coincide. In the quantum case this lack
diffraction is a signature of classical propagation. The re
tivistic character of the beam of particles appears to be
sential. The nonrelativistic propagation is so strongly disp
sive that the discontinuity would hardly survive the evoluti
@7#.

Incidentally, let us note that the approximate relati
~short-wavelength limit! may be regarded as being include
in the exact relationship~propagation of discontinuities! as a
particular case. When the wavelength tends to zero the w
passes from maximum to minimum in increasingly sh
space-time distances. Loosely speaking, this might be un
stood as some kind of effective discontinuity taking place
every point.

Finally, we show that it is possible to arrive directly to th
nonrelativistic result~12! from the scalar Schro¨dinger equa-
tion for time-harmonic wave functions after splitting it i
two equations

i\
]c

]t
52

\2

2m
“•F1V

i\

E

]c

]t
,

~13!
i\

E

]F

]t
5“c,

where the last equation definesF and we have used th
condition~7! for F andc. The application of Eq.~3! leads to
2-2
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i ~E2V!
1

E
@c#

]S

]t
52

\

2m
@F#"“S,

~14!
i\

E
@F#

]S

]t
5@c#“S.

The elimination of the discontinuities@F#Þ0, @c#Þ0 and
the separation of the timeS5W2Et leads directly to
Eq. ~12!.
02410
For completeness we quote other approaches looking
for exact coincidence between classical and quantum
tions. The evolution of the wave function is governed
classical Hamilton-Jacobi equations with the addition of e
tra potential terms called quantum potentials. There are
ticular dynamical systems where the quantum potentia
constant so that quantum and classical evolutions coin
@8#. Other investigations concerning the relation betwe
relativistic quantum mechanics and the classical electrom
netic field can be found in Ref.@9#.
.
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