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Classical mechanics and the propagation of the discontinuities of the quantum wave function
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Geometrical optics can be regarded both as the short-wavelength approximation of the propagation of
electromagnetic waves, and as the exact way in which propagate the surfaces of discontinuity of the classical
electromagnetic field. In this work we translate this last idea to quantum mech#oits relativistic and
nonrelativistig. We find that the surfaces of discontinuity of the wave function propagate exactly following the
classical trajectories determined by the Hamilton-Jacobi equation. As an example, we consider the lack of
diffraction of abrupt wave fronts.
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In physics, as in many other areas of science, partially P
contradicting theories can coexist, such as quantum versus f dFE —(Mf"”l//v)=2 f do,M{“"4,=0, (2)
classical mechanics and geometrical versus electromagnetic /T #» dx* wy Ja
optics as two paradigmatic examples. The question of their
mutual relationship is a basic and critical issue imposed byhere dI'=dxdydzdt is the differential of four-
the consistency of science. This question is specially vividdimensional volume ando,, are the Cartesian components
concerning the relation between classical and quantum mef the surface element normal to the three-dimensional sur-
chanics, which has been a subject of active research arfdce o enclosingl’. The last equality in Eq(2) is fully
controversy from the very beginning of the quantum theoryequivalent to Eq(1) when ¢, are continuous. On the other
till the present day. It is generally accepted that both classicaiand Eq.(2) is more general since it can be applied without
mechanics and geometrical optics are approximations validifficulties wheny, are discontinuous.
for short wavelengthEl,2]. However, in optics another radi- The objective is to derive conditions for the discontinui-
cally different approach is possible: geometrical optics is theies of , by imposing Eq.(2). Denoting byS(x,t)=0 the
exactway in which the surfaces of field discontinuity propa- surface of discontinuity, we apply E@2) to two volumes
gate, irrespective of the magnitude of the wavelengihin  T';, T', connected byg as well as to the whole volumié,
this paper we translate this approach from optics to mechant+I", (see Fig. 1 This leads to
ics showing that classical mechanics is the exact way in
which the discontinuities of the quantum wave function 9S
propagate. > [l — M=o, 3
First we recall the basic tools required to address the v axH
propagation of discontinuities in optics as well as in quantum
mechanics. For both situations, we will consider that the evowhere[ ,] denotes the difference between the boundary val-
lution is given by the solution of a system of linear partial ues ofy, at the two sides o& For the sake of definiteness,
differential equations: we have assumed thd}"” are continuous ab These are
the conditions we were looking for.
E < (MET)=0 ) This fqrmalism can be.applied directly to optics p.rovide.d
i ' that the light propagates in the vacuum or in a nondispersive
linear media in absence of free charge and currents. For dis-
wherex*=x,y,z,t are the space-time coordinatés{"” are persive media, we have to restrict ourselves to time-
functions ofx”, and ¢,(x*) are the Cartesian components harmonic waves. In such a case, the Maxwell equations can
either of a spinorial quantum wave function or of a classicalbe recasted in the forrfl) being M{*” proportional to the
electromagnetic field. dielectric constant and the magnetic permeability. Expressing
As discussed in Ref.3], Egs.(1) are conditions for the Son the formS(x,t) =L(x) —ct, this formalism leads to the
components/, at every point where they are continuous, buteikonal equatiorifor isotropic media for simplicity[3]
they cannot establish conditions for the boundary values of
¢, on a surface of discontinuity. Therefore, in order to deal
with discontinuities, it is advantageous to replace Efjsby S=0
integral counterparts. To this end we consider volume inte-
grals of Eq.(1) which can be then suitably converted into
surface integrals with the use of the divergence theorem, as
carried out in Ref[3]:

FIG. 1. Diagram illustrating the volumds, andI', joined by
*Electronic address: alluis@fis.ucm.es the surface of discontinuit$$=0.
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(VL)?=n?, (4 equation for the relativistic Hamiltoniakl = \/c?p>+m?c?

. . . ) o +V(x) or H=p?/(2m)+V(x) in the nonrelativistic limit.
wheren is the |nldex of re.frac'uon. This equation implies that Therefore, the surfaces where the wave function is discon-

the surface of discontinuity propagates along the rays of geqyyous evolve following classical trajectorif§]. The result

metrical opticg[2,3]. _ _ is exact since no approximation nor limiting procedure what-
Next we turn our attention to the quantum case. Since Wggever have been used.

are dealing with first-order partial differential equations we  This pehavior parallels the optical case. The main differ-
can begin with relativistic propagation equations: ence is that mechanics always includes inhomogeneous

. 3 P source terms that are the origin of the dispersive character of
in =S - ifica— + mEB+V(x) | ¥, (5 the'quantum propagation pf massive part_lcles. As it occurs in
dat =1 ax! optics, the dispersion limits the generality of the approach
_ _ and force us to consider just harmonic waves.
whereW(xt) is a vector wave function, and; , 8 are con- It is important to stress that the conditidid) does not
stant matrices satisfying necessarily implies tha¥ is a stationary state. For instance
we can haveW(x,t)=A,(x)e 'EV" in a given volumel’
(ca-p+mcB)?=c?p’+mch, (6) (x,8) = 24 (%) g !

and W(x,t)=A,(x)e """ in a different volumel', being
A;, A, two different eigenfunctions of a Hamiltonian with a
degenerate eigenvalle Moreover we may havé,;=0.

As a particular example supporting the above results we
can invoke the lack of diffraction of a beam of free particles
having an abrupt leading edgthe discontinuity caused by
the opening or closing of an absorbing shutter. Such a situa-
tion can be addressed following the approach of REf.
where this problem is examined in the optical domain lead-

iz 9W(x,t) ing to the conclusion that the front of the wave propagates
W(x,t)= T a0 (7)  without distortion or diffraction5,6] (the so-called electro-
magnetic missiles

The main difference between matter and light is the dif-
ferent dispersion relation. However, as discussed in [Béf.
the propagation of the front of the wave is determined by the
highest frequencies, and in such a limit the two dispersion
=0, (8)  relations tend to coincide. In the quantum case this lack of
diffraction is a signature of classical propagation. The rela-
tivistic character of the beam of particles appears to be es-
sential. The nonrelativistic propagation is so strongly disper-

for any real three-dimensional vectpr whereea is a vector
notation for the three matrices; .

At this stage we cannot apply directly the above formal-
ism because the inhomogeneous termctg+V)W¥ im-
pedes to express E@5) on the form(1). As in classical
optics we can avoid this difficulty by restricting our analysis
to time-harmonic wave functions for which

in some volumd™, whereE is a constant. Using this condi-
tion we can express E@b) as

19
E ot

3
[cz aji.Jr(E—chB—V)
=1 “ox!

which is already of the fornil). Then, the application of Eq.

(3) leads to sive that the discontinuity would hardly survive the evolution
S S 7. . .

(ECa-VS—mCZ,B—)[‘I’]=(V—E)—[‘I’]. 9) Incidentally, let us note that the approximate relation

at at (short-wavelength limjtmay be regarded as being included

in the exact relationshifpropagation of discontinuitiggs a
particular case. When the wavelength tends to zero the wave
2 passes from maximum to minimum in increasingly short

, (10 space-time distances. Loosely speaking, this might be under-
stood as some kind of effective discontinuity taking place at

whenevel{ W]+ 0. Since the Hamiltonian we are consider- every point.

ing is time independent, we can use the method of separation Flnlaliy,_V\ga shovvl(tgg)t ]'ct IS p;)hssmle Ito aSrrl\r_/]_([abdlrectly to the
of variables to separate out the time in the fof(x,t) nonreiativistic resu rom the scalar schrhnger equa-

Squaring the above equation and using &j.we get

2.2 2 2~4
E“co(VS)“+m-c it

as)z_ Z(as
—| =(V—E) -

—W(x)—Et. From Eq.(10) we get tion for t|me—harmon|c wave functions after splitting it in
two equations
E=/cA(VW)Z+mZc+V. (1) _
ey h? it oy
In the nonrelativistic limit VW|<mc so that A ot %V PHVE ot
(VW)? _ (13
E—mc®= TRAL (12) if a@_v
Ea vV

Equations(11) and(12) are the main result of this paper.
We have found that the surface of discontinuity of harmonicwhere the last equation defind and we have used the
wave functions must satisfy the classical Hamilton-Jacobtondition(7) for @ and«. The application of Eq(3) leads to
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. 1 S h
H(E-V) ¥l =—5,[P1VS,
(14
i% S
Elel-=[y]Vs.
The elimination of the discontinuitiggP]+0, [ #]#0 and

the separation of the tim&=W-—Et leads directly to
Eqg. (12).
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For completeness we quote other approaches looking also
for exact coincidence between classical and quantum mo-

tions. The evolution of the wave function is governed by

classical Hamilton-Jacobi equations with the addition of ex-
tra potential terms called quantum potentials. There are par-
ticular dynamical systems where the quantum potential is
constant so that quantum and classical evolutions coincide
[8]. Other investigations concerning the relation between
relativistic quantum mechanics and the classical electromag-

netic field can be found in Ref9].
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