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Bistability of liquid crystal microcavities

G. D’Alessandro and A. A. Wheeler
Department of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom

~Received 4 October 2002; published 28 February 2003!

We develop a model of a liquid crystal Fabry-Pe´rot microcavity. We study the homeotropic and the hybrid
cavity configurations and show that both are multistable. Moreover, in the hybrid case a branch of solutions
disconnected from the zero field solution exists.
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I. INTRODUCTION

Liquid crystals are in many respects ideal components
experiments in nonlinear optics: their large effective nonl
earity and slow time scale imply that complex bifurcatio
and behaviors can be observed at relatively low powers
detected with relatively inexpensive equipment. Of cour
the slow time scale has the drawback that liquid crystals
too slow for many applications~see Ref.@1# for a survey of
a recent collaboration to develop liquid crystal based opt
devices!. However, the rich dynamics of liquid crystal
which may involve optical and thermal nonlinearities t
gether with fluid motion, has been a fertile test bed for ma
experiments and theoretical models. For example, var
experiments@2–5# have detected filamentation and solito
formation during propagation of laser beams in liquid cry
tals. From the theoretical side, models of the formation a
evolution of filaments have been developed in Refs.@6,7#,
the propagation of beams has been investigated in R
@8–10#, while the interplay between optical nonlinearitie
and fluid motion has been discussed in Ref.@11#. Moreover,
it has long been known@12# that cavities filled with liquid
crystals are multistable and that thermal and optical non
earities may both be at play in shaping their dynamics. T
bistability is caused by the dispersive properties of the liq
crystal that acts in a very similar way to the sodium vapor
the cavities analyzed in Refs.@13,14#.

Here we develop and analyze a model of a planar mic
cavity filled with a nematic liquid crystal, such as the o
used in the experiments of Ref.@12# and Ref. @15#. This
device, illustrated schematically in Fig. 1, consists of a t
cavity of length L of the order of 100 light wavelength
entirely filled with a nematic liquid crystal. In the experime
of Ref. @12# the cavity is homeotropic, i.e., the director fie
on both sides of the cavity is orthogonal to the mirrors. In
experiment of Ref.@15# the cavity is hybrid: the director field
is orthogonal to the left mirror and parallel to the other. T
model we derive here is for generic boundary conditions
the director field. We discuss at length in Secs. III B a
III C the difference between the hybrid and homeotro
cases. A linearly polarized light beam of amplitudeFin and
frequencyv is injected in the cavity and the intensityI out of
the field leaking out from the right-hand mirror is measure
In particular, in the experiment of Ref.@15# it was observed
that the cavity is multistable and is able to switch from
uniform low-power state to a patterned high-power outp
Apart from the simple model introduced in Ref.@12# and
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subsequently used in Refs.@16,17#, we are not aware of the
existence of a detailed model of this device nor of any t
oretical prediction of this behavior. In the following sectio
we develop a model for the cavity of Fig. 1 under the a
sumption that fluid motion and thermal effects are not s
nificant, i.e., that the power of the intracavity laser field
sufficiently small. This hypothesis is consistent with the
sults of Ref.@15# and with the low-power results of Ref.@12#.
In Sec. III we restrict our attention to the purely longitudin
case and show that the cavity is multistable. The analyt
and numerical study of the model with transverse effect w
be discussed in a future paper.

II. THE MODEL

We choose a coordinate system as in Fig. 1: thex3 axis is
parallel to the cavity axis and thex1 axis is parallel to the
polarization of the input beam. Moreover, we assume that
director field at the boundaries has no component in thex2
direction. This implies that neither the electric nor the dire
tor field have components in thex2 direction anywhere in the
cavity.

The derivation of the model comprises a number of ste
We first derive the equation of propagation of an electrom
netic wave through a liquid crystal. This is subsequently
tended to the case of two counterpropagating waves. We
derive an equation for the director field and, finally, w
couple all the equations together and introduce conven
nondimensional variables.

The evolution of the electromagnetic field is given b

FIG. 1. Schematic diagram of the liquid crystal filled microca
ity analyzed in this paper. The liquid crystal director field, indicat
by the small arrows in the diagram, is anchored at given angles
the two sides of the cavity. A light beam of amplitudeFin is injected
in the left-hand side of the cavity.Fout is the amplitude of the field
exiting from the right-hand side of the cavity.
©2003 The American Physical Society16-1
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Maxwell’s equations in a medium@18# without free charges
and currents:

“•D50, “•B50,

“3E1
]B

]t
50, “3H5

]D

]t
, ~1!

whereE and B are, respectively, the electric and magne
fields. The liquid crystals can be considered magnetic
inactive so that the induction fieldH is H5B/m0, with m0
the vacuum magnetic permeability. The electric displacem
field is given by@6#

D j5«0«'« jkEk , ~2!

where we have used Einstein’s convention of summing
repeated indexes and we have indicated the components
generic vectorv as (v1 ,v2 ,v3). Here«0 is the vacuum di-
electric constant and«' is the relative dielectric constant o
the liquid crystal for an optical field polarized orthogonal
the orientation of the molecules. We represent the orienta
of the molecules of the liquid crystal using a unit vectorn.
The tensor« jk is related to the orientation vector by

« jk5d jk1anjnk , ~3!

where d jk is Kronecker’s delta anda is a dimensionless
measure of the birefringence of the liquid crystal at opti
frequencies,

a5
« i2«'

«'

, ~4!

with « i the relative dielectric constant for an optical fie
parallel to the crystal molecules.

Maxwell’s equations~1! can be recast as a wave equati
using Eq.~2!. Its expression in components is:

a]q] j~njnpEp!1] j] jEq5
1

v'
2

] ttEq1
a

v'
2

] tt~nqnpEp!,

q51,2,3 , ~5!
s

or
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where]q is the partial derivative with respect toxq , ] tt is the
second derivative with respect to time,v'

2 5c2/«' , andc is
the speed of light in vacuum.

In order to simplify Eq.~5! we assume thata is a small
parameter. From Eq.~5! we see that the electric field can b
written as a wave, solution of Eq.~5! with a50, whose
amplitude is modulated on a space and time scale of
order of 1/a. We can therefore make use of the slowly var
ing amplitude approximation and write the electric field a

Eq5
1

2
Aq~ x̄, x̄̄, . . . ,t, t̄ , t̄̄ , . . . !ei (kx32vt)1c.c.

1
a

2
Aq~ x̄, x̄̄, . . . ,t, t̄ , t̄̄ , . . . !ei (kx32vt)1c.c.

1
a2

2
Aq~ x̄, x̄̄, . . . ,t, t̄ , t̄̄ , . . . !ei (kx32vt)1c.c.

1O~a3!, q51,3, ~6!

wherex is a compact notation for the three spatial coor
nates,v is the frequency of the injected beam, andk is a
wave number whose value is fixed later on when expand
the wave equation~5! in powers of the small parametera
!1. The number of overbars indicates the order ina: for

example,x̄[ax and x̄̄[a2x. As the director field is modu-
lated by the amplitude of the electric field we can also
sume that its components are functions of the slow space
time variables,

nq5nq~ x̄, t̄ , . . . !. ~7!

The derivation of the field propagation equation consists
substituting the expressions~6! and~7! in the wave equation
~5!, collecting different powers ofa and ensuring that at al
orders the appropriate solvability conditions are satisfied.
ter rather long algebra one obtains that the wave numbk
has valuev/v' , that the longitudinal component is of th
order ofa, i.e., thatA350, and that the transverse comp
nentA1 satisfies, up to ordera2, the equation
1

v'
S 11

a

2
n1

2D ]

]t
A11

]

]x3
A15 i

ka

2
n1

2F12aS 12
3

4
n1

2D GA11
i

2k S ]2

]x1
2

1
]2

]x2
2D A12

a

2
A1n1S ]

]x3
1

3

v'

]

]t Dn1

2
a

2
A1

]

]x1
~n1n3!2an1n3

]

]x1
A1 , ~8!
where all the terms are measurable physical quantities.
The coefficient in front of the time derivative indicate

that the phase velocity of the field is equal tov' only if the
director field is orthogonal to the electric field, i.e., ifn1

50. The phase velocity in a medium with uniform direct
field is given by

v5v'A11an3
2

11a
. ~9!
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The coefficient in front of the time derivative in Eq.~8! is the
first-order expansion of 1/v in powers ofa. A similar argu-
ment explains the first term on the right-hand side of Eq.~8!:
if n1Þ0 the choice of wave number,k5v/v' , is not appro-
priate and a phase shift accumulates as the field propagat
the x3 direction.
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We now generalize Eq.~8! to the case of two counter
propagating fields in a cavity with injected signal as in F
1. We letF and B denote the slowly varying amplitudes o
the forward and backward fields, respectively. The forwa
field, is expanded exactly as in Eq.~6!. In the case of the
backward field the sign ofk in the exponential is changed
The equations for the two fields are
1

v'
S 11

a

2
n1

2D ]

]t S F

BD 6
]

]x3
S F

BD 5 i
ka

2
n1

2F12aS 12
3

4
n1

2D G S F

BD 1
i

2k S ]2

]x1
2

1
]2

]x2
2D S F

BD 2
a

2 S F

BD n1S 6
]

]x3
1

3

v'

]

]t Dn1

7
a

2 S F

BD ]

]x1
~n1n3!7an1n3

]

]x1
S F

BD , ~10!
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where the top and bottom signs refer to the forward a
backward fields, respectively. The boundary conditions
the two fields are

F~x1 ,x2,0,t !5RLB~x1 ,x2,0,t !1Fin ,

B~x1 ,x2 ,L,t !5RReidcF~x1 ,x2 ,L,t !, ~11!

whereRL,R are the left and right complex mirror reflectanc
respectively, anddc is the constant director field phase shi
dc[2kL mod2p .

The equation for the director field in the presence of
electric fieldE is @6,19#

g1

]n

]t
5K¹2n1mn1a«0«'~n•E!E, ~12!

where the rotational viscosityg1 is proportional to the liquid
crystal time constant, the elastic constantK is the liquid crys-
tal diffusion coefficient, andm is a Lagrange multiplier tha
ensures thatini51. In writing Eq. ~12! we have neglected
backflow~the coupling between the liquid flow and the nem
atic director! and we have assumed that the one elastic c
stant approximation holds.

In the configuration of the cavity of Fig. 1 the secon
component of the director field is zero. We can theref
represent the director field using the angleq betweenn and
the x3 axis,

n5@sin~q!,0,cos~q!#. ~13!

This representation automatically satisfies the constraintini
51, so that Eq.~12! can be written as
d
n

,

n

n-

e

g1

]q

]t
5K¹2q1a«0«'@E1 sin~q!1E3 cos~q!#@E1 cos~q!

2E3 sin~q!#. ~14!

The boundary conditions at the two ends of the cavity ar

q~x1 ,x2,0,t !5qL , q~x1 ,x2 ,L,t !5qR , ~15!

where qL,R are, respectively, the anchoring angles of t
director field at the left and right ends of the cavity.

The next step in the derivation of the model is to coup
the equations for the counter-propagating electric fields~10!
with the equation for the director field~14!. We start by
noticing that the dynamics of the liquid crystal is muc
slower than that of the electric field. We can therefore int
duce two different ‘‘times.’’ The electric field evolves ac
cording to a nondimensional fast ‘‘field time,’’t f , defined in
terms of the cavity round-trip timetC ,

tC5L/v' , t f5t/tC , ~16!

while the director field depends on a nondimensional sl
‘‘liquid crystal time,’’ i.e., the rotational diffusion time over a
distanceL, t, :

t,5g1L2/K, t,5t/t, . ~17!

In particular, this implies that the director field can be co
sidered as a time-independent quantity in the electric-fi
equations that can be written as
1

L F11
a

2
sin2~q!G ]

]t f
S F

BD 6
]

]x3
S F

BD 5 i
ka

2
sin2~q!H 12aF12

3

4
sin2~q!G J S F

BD 1
i

2k S ]2

]x1
2

1
]2

]x2
2D S F

BD
7

a

4
sin~2q!

]q

]x3
S F

BD 7
a

2 S F

BD cos~2q!
]q

]x1
7

a

2
sin~2q!

]

]x1
S F

BD . ~18!
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On the other hand, the liquid crystals are too slow to see
effect of the instantaneous electric field. We can theref
interpret the source terms in Eq.~14! as averages over a tim
scale that is considerably longer thantC , but shorter than
t, .

The second observation is that in the derivation of
electric-field equation we have assumed thata is a small
parameter. Applying the same approximation to the direc
field equation we can neglect the longitudinal component
the electric fields from the source term of Eq.~14!, which
can be written as

g1

t,

]q

]t,
5K¹2q1

a

4
«0«'sin~2q!^uFu21uBu2& t f

, ~19!

where the angular brackets indicate the averaging opera
over the timet f . Moreover, in writing Eq.~19! we have
implicitly assumed that the diffusion of the liquid crystal
strong enough that the standing wave patternFB* exp(i2kx3)
of the electric field intensity can be neglected.

Equations~18! and ~19! together with the boundary con
ditions ~11! and ~15! comprise our model. However, it i
convenient to express them in terms of nondimensional v
ables. We have already introduced two nondimensional t
variables. We scale the space variables with the cavity len
and introduce

xq85xq /L. ~20!

It is customary to scale the transverse coordinate wit
length whose Rayleigh range is the length of the cavity
cause this is the natural length scale for transverse patter
a ‘‘standard size’’ cavity@20#. However, the cavity analyze
in this paper is so short in units of the light wavelength th
such scaling length turns out to be inappropriate, being m
smaller than the diffusion length of the liquid crystal. Usin
the scaling~20! the electric field equations~18! become

F11
a

2
sin2~q!G ]

]t f
S F

BD 6
]

]x38
S F

BD
5 iD~q!S F

BD 1 ia¹'
2 S F

BD 7
a

4
sin~2q!

]q

]x38
S F

BD
7

a

2 S F

BD cos~2q!
]q

]x1
7

a

2
sin~2q!

]

]x1
S F

BD ,

~21!

where¹'
2 is the Laplacian in the nondimensional transve

coordinates anda[(2kL)21 is the diffraction parameter
The phase shift termD(q) is given by

D~q!5
a

4a
sin2~q!H 12aF12

3

4
sin2~q!G J . ~22!

For a 100 light wavelength long cavitya has value
(400p)21.0.0008. Typical values ofa are of the order of
a.0.1. These values imply thatD(q);O(100) and its
02381
e
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presence causes the electric fields to oscillate rapidly du
propagation. These oscillations may cause considerable
merical problems. It is therefore useful to eliminate t
phase-shift term from the field equations by introducing
field variables

S f

bD[
L

2
Aa«0«'

K S e2 iF(x38)F

e1 iF(x38)B
D , ~23!

where the phaseF(x38) is

F~x38!5E
0

x38
D~q!dz. ~24!

In terms of the new field variablesf andb the equations for
the electric fields~21! and the director~19! become

F11
a

2
sin2~q!G ]

]t f
S f

bD 6
]

]x38
S f

bD
5 iae7 iF¹'

2 e6 iFS f

bD 7
a

4
sin~2q!

]q

]x38
S f

bD
7

a

2 S f

bD cos~2q!
]q

]x1
7

a

2
sin~2q!

3e7 iF
]

]x1
Fe6 iFS f

bD G , ~25!

]q

]t,
5¹2q1sin~2q!^u f u21ubu2& t f

. ~26!

The boundary conditions on these equations can be obta
from Eqs.~11! and ~15! in terms of the new variables:

f ~x18 ,x28,0,t f !5RLb~x18 ,x28,0,t f !1 f in , ~27!

b~x18 ,x28,1,t f !5RReic f ~x18 ,x28,1,t f !, ~28!

q~x18 ,x28,0,t,!5qL , q~x18 ,x28,1,t,!5qR , ~29!

where f in is the scaled input field amplitude,

f in5L/2Aa«0«'

K
Fin . ~30!

Using ‘‘standard’’ values for the liquid crystal (ni51.7, n'

51.5, K510211 N) and for the electromagnetic cavity (l
5780 nm, L557 mm) we obtain that a field with nondi
mensional amplitudef 51 has power per unit area equal
approximately 4 MW m22. The phase shiftc that appear in
the boundary condition~28! can be written as

c5dc12F~1!5dc12E
0

1

D~q!dz . ~31!
6-4
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However, the constant director field phase shiftdc is not a
very appropriate physical quantity in this context. It is mo
convenient to introduce the zero-electric-field phase shift

de[dc12D~q0!, ~32!

whereq0 is the solution of Eq.~26! with u f u5ubu50. This
phase shift has a clear physical meaning: ifde50 a low
~nominally zero! intensity field is resonant with the cavity. I
terms ofde the total phase shiftc is

c5de12E
0

1

@D~q!2D~q0!#dz. ~33!

Equations~25! and ~26! together with the boundary con
ditions ~27!–~29! describe the evolution of the electroma
netic field in a liquid crystal cavity and are the main result
this section. They rest on several simplifying hypotheses:~1!
fluid motion and thermal effects can be neglected;~2! the
slowly varying amplitude approximation can be applied;~3!
the electric fields evolve on a much faster time scale than
liquid crystal; and~4! the birefringence parametera is small.

III. THE PLANE-WAVE LIMIT

A. Derivation of the model

The analysis of the full equations~25! and ~26! is in
progress and will be reported elsewhere. Here we wan
discuss a simpler problem, their plane-wave limit, name
the case that none of the fields depends on the transv
coordinates. In other words, we neglect all transverse der
tives in Eqs.~25! and ~26! to obtain

F11
a

2
sin2~q!G ]

]t f
S f

bD 6
]

]z S f

bD 57
a

4
sin~2q!

]q

]z S f

bD ,

~34!

]q

]t,
5

]2q

]z2
1sin~2q!^u f u21ubu2& t f

, ~35!

where we have usedz to indicatex38 . The boundary condi-
tions are

f ~0,t f !5RLB~0,t f !1 f in , ~36!

b~1,t f !5RReic f ~1,t f !, ~37!

q~0,t,!5qL , q~1,t,!5qR . ~38!

We now show that the only asymptotic solution of Eqs.~34!
is time stationary. This result is suggested by the physic
the problem: a field evolving in a linear cavity, albeit with
complicated refractive index. Any initial transient dies afte
sufficiently large number of reflections from the~leaky! cav-
ity mirrors and the cavity settles down in a stationary eq
librium configuration. More formally, taking the Laplac
transform of Eqs.~34!, ~36!, and ~37! and using the initial
conditions f (z,0)5b(z,0)50 we obtain that the forward
field is given by@29#
02381
f

e

to
,
rse
a-

of

-

f ~z,t !5
f in

2p i Eg2 i`

g1 i`est

s

e2sz2a sin2[q(z)]/4

12Re22seic
ds, ~39!

whereR[RLRR andg is chosen so that the integration pa
lies to the left of all the singularities of the integrand. Th
integrand has a pole ats50 and countably many poles at

sn5
1

2
log~R!1 i S c

2
1np D , n50,1,2, . . . . ~40!

The term in the residue expansion that corresponds to
pole ats50 is the stationary solution

f ~z!5
e2a sin2(q)/4

12Reic
f in . ~41!

The other poles give the Fourier series expansion of
backward and forward reflection of the initial step in th
boundary condition and decay exponentially fast with a
cay rate determined by the losses at the mirrors. In the s
manner we obtain that the asymptotic solution for the ba
ward field is

b~z!5
RReice2a sin2(q)/4

12Reic
f in . ~42!

The asymptotic solutions for the electric fields can be sub
tuted in the director field equation~35! to obtain the plane-
wave limit of equations~25! and ~26!:

]q

]t,
5

]2q

]z2
1u f inu2~11uRRu2!sin~2q!

e2a sin2(q)/2

u12Reicu2
, ~43!

with boundary conditionsq(0,t,)5qL andq(1,t,)5qR .

B. The hybrid cavity

We now apply the model~43! to the analysis of a hybrid
cavity like the one used in Ref.@15#, i.e, with boundary
conditions

q~0,t,!50, q~1,t,!5p/2. ~44!

The advantage of this configuration, with respect to a
meotropic one, is that there is no Fredericks transition a
the director field changes smoothly under the effect of
electric field. In particular, this implies that it is possible
express the director field as a regular power expansion in
input field amplitude.

To gain some insight on the number and nature of
stationary solutions of Eq.~43! with boundary conditions
~44!, we introduce two approximations that allow us to o
tain analytical estimates of some critical parameters invol
in selecting the solutions. First we approximate

e2a sin2(q)/2.1. ~45!

This is a reasonable approximation becausea is assumed to
be small and the argument of the exponential is in the ra
6-5
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G. D’ALESSANDRO AND A. A. WHEELER PHYSICAL REVIEW A67, 023816 ~2003!
@2a/2,0#. Second, we keep only the order one term in
a-expansion ofD(q), Eq. ~22!, and write the total phase
shift c as

c5de1
a

2aE0

1

@sin2~q!2sin2~q0!#dz. ~46!

Under these assumptions we can write the time station
version of Eq.~43! as

d2q

dz2
1b sin~2q!50, ~47!

with

b5
u f inu2~11RR

2 !

11R222R cos~c!
, ~48!

where, to make the notation lighter, we have assumed
the reflection coefficients are real.

The solution of Eq.~47!, and hence,c, depends onb. On
the other hand, from Eq.~48! we have thatb depends onc.
Therefore, the number of solutions of Eq.~47! is given by
the number of intersections of the graph ofb(c), Eq. ~48!,
with the graph ofbc(c), given implicitly by Eq.~46! once
we have solved Eq.~47!.

Equation~47! is analogous to the pendulum equation a
cannot be solved in closed form. However, we can look fo
solution of Eq.~47! as a power expansion inb. This is quite
successful: a comparison with the numerical solution of
~43! obtained using AUTO@21,22# ~see below! indicates that
a third-order approximation is good even for values ofb of
the order of 1.

In a nutshell, these results show that the system is gen
cally multistable and that it is easier to have multistability f
negative values of the zero-field phase shift,de . These re-
sults have an intuitive explanation: the effect of the intrac
ity field on the director field is ultimately to induce a positiv
phase shift proportional to the intracavity field intensity. Ifde
is negative then this positive phase shift may make the fi
resonant with the cavity~i.e., it induces an equivalent detun
ing equal to zero! and so greatly increase the intracavity fie
intensity. Once the field is locked in this configuration,
remains close to resonance even if the input field intensit
decreased. The same picture applies for positivede , but mul-
tistability is harder to achieve because the field-induc
phase shift must be large enough to cause resonance wit
next longitudinal cavity mode.

Solving Eq.~47! up to third order inb and substituting
into Eq. ~46! we obtain that

c5de1
a

2a S b

2p2
2

3b3

4p6D 1O~b5!, ~49!

which we can invert using the implicit function theorem
obtain
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bc54p2
a

a
~c2de!196p2

a3

a3
~c2de!

31OF a5

a5
~c2de!

5G .

~50!

Equation~47! has a solution wheneverbc is equal tob as
defined in Eq.~48!. The functionsb andbc are defined for
all real c. However, for representation purposes it is mo
convenient to restrictc to the range@2p,p). This does not
affectb because it depends onc only through cos(c). On the
other hand, in order to represent all the possible values ofbc
we must introduce a multibranched version of this functio

bc
(n)54p2

a

a
~c12np2de!196p2

a3

a3
~c12np2de!

3

1OF a5

a5
~c12np2de!

5G , n50,1,2, . . . , ~51!

with 2p<c,p. Equation~47! has a solution wheneverb
is equal to any of the branchesbc

(n) .
In Fig. 2 we have plotted the graphs ofb andbc

(n) for two
values of the zero-field phase shiftde . Consider first the case
de.0 ~right-hand side of Fig. 2 and bottom half of Fig. 6!.
For small input intensities there is only one solution and i
located in the positivec region. As the input intensity is
increased two new solutions appear on the branchbc

(1) with
slightly negativec. As the intensity is further increased on
of the two new solutions moves toward positivec while the
other has a more and more negativec. If the intensity is
increased even further two scenarios can be envisaged. I
first, new solutions appear on higher branches ofbc

(n) . In the
second, as the graph ofb is shifted even more upward, th
positive c tail of b no longer intersectsbc

(0) while a new
solution appears onbc

(1) with negativec. This then collides
with the negativec solution already on thebc

(1) branch and
the two disappear. This scenario happens at lower and lo
intensities asde gets closer and closer top.

FIG. 2. Graphs of the functionsb ~solid lines! andbc
(n) ~dashed

lines! as a function ofc for de52p/2 ~left! andde5p/4 ~right!.
The different graphs ofb correspond tou f inu25$0.01,0.05,0.1%
~left! and u f inu25$0.03,0.06% ~right! for increasing height of the
graph. In this and all the following figuresa50.1, a50.001, and
RL5RR50.9.
6-6
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FIG. 3. Graphs of the functionsb ~solid lines! andbc
(0) ~dashed lines! as a function ofc. u f inu25$0.001,0.002,0.003,0.004% from left to

right. In each panel, the left and right graphs ofbc
(0) correspond tode5$20.4,20.2%, respectively. Note that ifde is too close to zero there

in no bistability as the input intensity is increased.
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If de is negative~left-hand side of Fig. 2 and top half o
Fig. 6!, then for very small input field intensities there is on
one solution with a value ofc roughly equal tode . As the
intensity is increased two new solutions appear and the
tem is bistable. As the intensity is increased further one
these solutions collides with the first while the second
quires a positive value ofc. After the collision of the two
solutions with negativec there remains only one solution o
the branchbc

(0) , but other solutions may have already a
peared on the other branches ofbc

(n) , thus making the sys
tem multistable.

Note that if de is quite close to zero then the pair o
solutions do not form and the single solution on the fi
branch ofbc migrates smoothly from negative to positivec
~see Fig. 3!. In fact, for the additional pair of solutions t
form the graph ofbc

(0) must be tangent to that ofb. For
small c the slope ofbc

(0) is approximately constant as
function of c and given by

d

dc
bc

(0).
4p2a

a
. ~52!

The slope ofb, instead, is given by
o

fo

02381
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f
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db

dc
52u f inu2

2R~11RR
2 !sin~c!

@11R222R cos~c!#2
, ~53!

and ranges from zero to a maximum value that is prop
tional to u f inu2. As can be seen from Fig. 3 ifde is negative
and close to zero, the graphs ofb and bc cross at small
values ofu f inu2, so small that the maximum slope ofb is
smaller than the slope ofbc , Eq. ~52!, and the tangency
cannot take place. More quantitatively, to compute the up
bound onde for multistability to exist, we must do the fol
lowing.

~1! Find the valuecmax of c where b has maximum
slope.

~2! Impose thatb and bc
(0) have the same slope atc

5cmax and find the corresponding value of the input inte
sity, I max.

~3! Impose thatb5bc
(0) at c5cmax and u f inu25I max to

find the corresponding value of the zero-field phase sh
dmax. This is the upper bound onde for multistability to
occur.

We find thatcmax is given by
tan~cmax!52
A2~21210R21A1134R21R42R41R2A1134R21R4!1/2

212R21A1134R21R4
. ~54!
per
ion

ber

of
cal
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e

The value of the input intensity where the maximum slope
b is equal to Eq.~52! is

I max52
2pa

a

@11R222R cos~cmax!#
2

R~11RR
2 !

. ~55!

Finally, the upper bound on the zero-field phase shift
multistability to occur is

dmax5cmax2
a

4p2a

I max~11RR
2 !

11R222R cos~cmax!
. ~56!
f

r

As can be seen from Figs. 4 and 5, this estimate of the up
bound is in good agreement with the numerical investigat
of the bistability regions of Eq.~47! and, also, Eq.~43!.

These results are summarized in Fig. 4, where the num
of solutions of Eq.~47!, computed using Eqs.~48! and~51!,
is identified as a function of the input field intensity and
the zero-field phase shift. On the right of the nearly verti
curve, new solutions appear at tangencies betweenb and
successive branches ofbc

(n) as in the right panel of Fig. 2. On
the left of this curve, new solutions appear at tangencies w
the same branch ofbc

(n) as in the rightmost panel of Fig. 3
The foot of this curve is atde.dmax as estimated in Eq.~56!.
To obtain Fig. 4 we have used the property that Eq.~47! and
the equationb5bc

(n) have the same number of solutions. W
6-7
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G. D’ALESSANDRO AND A. A. WHEELER PHYSICAL REVIEW A67, 023816 ~2003!
have, therefore, computed the functionu f inu2(c) defined by
the equationb5bc

(n) for a given value ofde and a given
branch number. We have then counted the number of fold
this function at 400 different values ofu f inu2. This is the
number of solutions of Eq.~47! for a given value ofde and
for a given branch ofbc

(n) . We have repeated this procedu
for all the branches ofbc

(n) relevant to the plot in Fig. 4 and
for 400 different values ofde uniformly distributed in the
range (2p,p).

The results discussed so far in this subsection have b
obtained starting from Eq.~47!. This approach has been qui
fruitful, but it has two drawbacks: first of all Eq.~47! is an
approximation of the stationary form of Eq.~43!. Second, it
gives us no information on the stability of the stationa
solutions we have identified or on the existence of any tim
dependent solutions of Eq.~43!. In order to answer thes
questions we have studied numerically Eq.~43! using AUTO
@21,22#. We have discretized the spatial coordinate usin
Gauss-Lobatto grid@23#. This has allowed us to use
pseudo-spectral method to compute the spatial derivativ
q and a Gauss quadrature method@24# to compute the phas
integral c, Eqs. ~22! and ~33!. Sixteen grid points have
proved sufficient to ensure the reliability and the accuracy
the numerical results.

FIG. 4. Numerical multi-stability diagram of Eq.~47! in the
(de ,u f inu2) plane: the digit inside each region indicates the num
of solutions. The arrow on the horizontal axis indicates the value
dmax, Eq. ~56!.

FIG. 5. Numerical multistability diagram of Eq.~43! ~dashed
lines! superimposed to that of Eq.~47! ~solid lines!. The symbols
refer to the limit points in the corresponding bifurcation diagrams
Fig. 6.
02381
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Figure 5 is the equivalent for Eq.~43! of Fig. 4. The
dashed lines are the boundaries between regions of mult
bility for Eq. ~43! computed using AUTO, while the solid
lines are the boundaries for Eq.~47! as in Fig. 4. As expected
the agreement is quite good for low pump intensities: as
pump intensity is increased the director field changes m
and more from its zero-field configuration and the appro
mation ~46! becomes poorer and poorer. We have us
AUTO also to draw in Fig. 6 the bifurcation diagram of E
~43! for four different values of the zero-field phase sh
de5$2p/2,2p/4,p/4,p/2% and for a large range of inpu
intensities. To make the graphs clearer we useu f inu as bifur-
cation parameter instead of the input intensity,u f inu2. Note
that the corresponding range ofu f inu2 used in this figure is
roughly 100 times larger than in Figs. 2–5. The graphs c
firm the results of the multistability diagrams of Figs. 4 a
5. In particular, for negative values ofde it is possible to
observe the switch from one to three and then back to
solution ~see inset of thede52p/4 diagram, top right of
Fig. 6!. As an aid to the eye, the limit points in each blo
are identified with the same symbol in Fig. 6 and Fig.
Moreover, form the graphs ofc as a function ofu f inu we can
verify that new solutions appear whenc is approximately an
integer multiple of 2p, i.e., the new solutions are resona
with successive longitudinal modes of the cavity.

Figure 6 provides also information on the stability of th
solutions: as expected from standard results of bifurca
theory @25# at each limit point there is a change of stabili
and if the system has 2n11 solutions thenn11 of these are
stable andn are unstable. No bifurcation to a time-depende
solution has been detected. To clarify whether tim
dependent solutions disconnected from the station
branches may exist we have integrated numerically Eq.~43!.
We have used a Chebychev collocation method and a Ga
Lobatto grid to compute the spatial derivative and a varia
order variable step method@26# to integrate the resulting or
dinary differential equations in time. Various simulations f
a range of values of the input field intensity have been r
but in all cases the system settled on a time stationary s
tion.

To summarize, we have shown that in the plane-wa
limit a hybrid microcavity shows multistability for both sign
of the cavity detuning. The mechanisms for bistability a
slightly different in the two cases and, as a consequence,
possible to have very low power bistability only for negati
values of the detuning. Moreover, the model has only ti
stationary solutions to which it relaxes after a fairly sho
transient. Another set of stationary solutions, disconnec
from the zero-field solution, is discussed at the end of
following section.

C. The homeotropic cavity

The boundary conditions on the director field for a h
meotropic cavity are

q~0,t,!50, q~1,t,!50. ~57!

With these boundary conditions Eq.~43! admits a zero solu-
tion, q0(z,t,)50, for all values of the input field amplitude

r
f
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FIG. 6. Bifurcation diagrams of Eq.~43! for de5$2p/2,2p/4,p/4,p/2% per block clockwise from top left. In all diagrams the horizont
axis is the modulus of the input pump. The vertical axis of the left~right! diagram in each block is the output intensity~total phase shiftc).
The solid~dashed! lines indicate~un!stable solutions. The symbols on the limit points correspond to those used in Fig. 5. The insets
top right block are enlargements of the region near the origin of their respective graphs.
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f in . This becomes unstable for sufficiently large input fie
intensity and it is possible to derive an equation for the a
plitude of its perturbation in a neighborhood of the bifurc
tion point. To simplify the notation we assume that the
flectance of the mirrors is real and write Eq.~43! as

]q

]t,
5

]2q

]z2
1sin~2q!

u f inu2~11RR
2 !

11R222R cos~c!
e2a sin2(q)/2.

~58!

By linearizing Eq.~58! around the zero solution we obta
that the instability mode with lowest threshold is sin(pz) and
that the threshold input intensity,u f in

(0)u2, is given by

~11RR
2 !u f in

(0)u25
p2

2
@11R222R cos~de!#. ~59!

We define the bifurcation parameterh by

u f inu25u f in
(0)u21h, h!1, ~60!

and expand the director field equations in powers ofh as

q~z,z̄, t̄ , . . . !5hq1~ z̄, t̄ , . . . !sin~pz!

1h2(
n51

`

q2n sin~npz!1O~h3!, ~61!

where the overbar symbols refer to the order inh. For ex-
ample, z̄5hz. Expanding in powers ofh and requiring at
02381
-
-
-

each order that the appropriate solvability conditions@27# are
satisfied, we obtain that the director field can be written n
threshold as

q~z,t,!5q̃~ t,!sin~pz!1
1

48
q̃3sin~3pz!1O~q̃4!,

~62!

where up to orderh3 the amplitudeq̃(t,) of the perturbation
obeys the equation

dq̃

dt,
5

2~11RR
2 !~ u f inu22u f in

(0)u2!

11R222R sin~de!
q̃

2
p2

2 H 11
a~12a!R sin~de!

a@11R222R sin~de!#
J q̃3. ~63!

In particular, we also obtain that the bifurcation is eith
subcritical or supercritical and that the boundary between
two regimes is given by

11
a~12a!R sin~de!

a@11R222R sin~de!#
50 . ~64!

The numerical value ofde obtained from this equation fo
the parametersRL5RR50.9, a50.1 and a50.001 (de
520.000 495 2) is in excellent agreement with the nume
cal estimates obtained using AUTO to draw the bifurcat
diagrams of Eq.~58!.
6-9
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G. D’ALESSANDRO AND A. A. WHEELER PHYSICAL REVIEW A67, 023816 ~2003!
We can interpret the two different bifurcation regimes
the homeotropic case in terms of the bifurcation diagrams
the hybrid case. In Fig. 7 we have drawn the numerical
furcation diagram of Eq.~58! with boundary conditions

q~0,t,!50, q~1,t,!5ep/2, ~65!

for different values ofe: e51 corresponds to the hybri
cavity whilee50 corresponds to the homeotropic cavity. W
can see that forde52p/2 the bifurcation diagram of the
hybrid cavity is smoothly changed into the subcritical bifu
cation of the homeotropic cavity~left-hand panel of Fig. 7!.
For de5p/2, instead, the change is to a supercritical bif
cation.

Conversely, the bifurcation diagram of the homeotro
cavity gives the possibility of detecting solutions of the h
brid cavity that are not connected to the zero electric fi
solution. With suitable scaling we can write Eq.~63! in su-
percritical regime as the normal form

ẋ5mx2x3, ~66!

wherem is the bifurcation parameter andx is a generic vari-
able. A generic perturbation of this normal form transform
into ~p. 276 of Ref.@28#!

FIG. 8. Bifurcation diagram of Eq.~66!, left, and Eq.~67!, right.
n50.1 in the right panel.

FIG. 7. Bifurcation diagram forde52p/2 ~left! and de5p/2
~right! for log10(e)5$0,21,23,29% from left to right in each pic-
ture. The symboli•i2 indicates theL2 norm, while the symbolq0

indicates the zero electric field stationary solution of the direc
field equation~58!. The solid~dashed! lines refer to~un!stable so-
lutions. The values of the other parameters area50.1 and a
50.001.
02381
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ẋ5n1mx2x3 ~67!

and the bifurcation diagram is altered quite dramatically
can be seen in Fig. 8: the pitchfork bifurcation point disa
pears and the lower and upper branches become dis
nected.

We can expect that a nonzero boundary condition on
right-hand side of the cavity, i.e.,eÞ0 in Eq. ~65!, will give
rise to a nonzero constant term in Eq.~63! and transform it in
a form similar to Eq.~67!. In this case, a disconnected bran
of solutions will appear: the director field becomes negat
in a neighborhood of the left-hand boundary and th
switches to positive values as it gets closer to the right mir
so as to satisfy the boundary condition there. This is ind
the case: we have used AUTO to track the negativeq branch
from e50 to e51. We have then drawn a complete bifu
cation diagram fore51 ~hybrid cavity, see Fig. 9! and cal-
culated solutions of the director field equation both on
branch that is connected to the zero-field solution and on
one disconnected from it~see Fig. 10!. As can be seen from
Fig. 9 the disconnected solution is stable, albeit in a sm
region of parameter space. However, its basin of attrac

FIG. 10. Graphs of the director field as a function of the co
dinate along the cavity. The graphs on the left-hand side corresp
to three different solutions on the connected branch~points 1,2,3 in
Fig. 9, u f inu5$1.99,3.47,6.63%, respectively, from 1 to 3). The
graph on the right-hand side is a stable solution on the disconne
branch corresponding tou f inu518.667, point 4 in Fig. 9.

r

FIG. 9. Bifurcation diagram of Eq.~43! showing both the
branch connected to the zero-field solution and the branch dis
nected from it. The vertical axes on the two diagrams are the ou
field intensity ~left! and the total phase shiftc ~right!. The solid
~dashed! lines refer to~un!stable solutions. The numbers refer to th
solutions drawn in Fig. 10. The values of the other parameters
de52p/2, a50.001, anda50.1.
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BISTABILITY OF LIQUID CRYSTAL MICROCAVITIES PHYSICAL REVIEW A 67, 023816 ~2003!
may be small and it may not be trivial to make the syst
choose this configuration instead of the solution connecte
zero.

IV. CONCLUSIONS

We have derived and analyzed a model of a liquid crys
filled microcavity, i.e., a cavity whose length is only a fe
hundred wavelengths. We would like to conclude by discu
ing how the model ought to be modified if the length of t
cavity is outside this range. This parameter appears twic
the derivation of the model: when making the slowly varyi
amplitude approximation and when choosing the scaling
the definition of the nondimensional variables.

The slowly varying amplitude approximation requires t
electric field amplitude and the director field to vary on
length scale much longer that the light wavelength. This
proximation is clearly untenable if the length of the cav
itself is only a few wavelengths. In this case, Maxwel
wave equation~5! cannot be simplified using the slowl
varying amplitude approximation. A possible method
analysis is to consider only the time stationary case, the
proach of Refs.@6,7#. Another possibility is to focus on the
propagation of a single cavity mode, an approach simila
that of Ref.@10#. However, even though the model~43! is not
valid for very short cavities, some of its properties still ho
in this limit. In particular, the scaling of the electric field, E
~23!, is proportional to the length of the cavity: as a cons
quence, as the cavity gets shorter a higher and higher i
pump power is required to observe bistability. This is to
expected since the frequency spacing between longitud
modes increases with decreasing cavity length and m
hopping becomes, as a consequence, harder.

If the cavity is more than a few orders of magnitu
longer than the light wavelength~but still short enough for
scattering from the liquid crystal not to extinguish the field!,
M.

e

D

D

.
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then the model should be slightly modified. The choice
scaling in the definition of the nondimensional transve
coordinates, Eq.~20!, is dictated by the fact that the width o
a spot whose Rayleigh length is equal to the length of
cavity is of the order of a few wavelengths. Therefore, d
fraction is not the dominant factor in selecting the size of
transverse pattern and the transverse diffusion of the liq
crystal is the main constraint on the size of the patterns
the same time, the liquid crystal molecules are forced
change direction from 0 top/2 in a short distance and, as
consequence, are rather ‘‘stiff.’’ As the cavity length i
creases, these statements lose their validity: diffraction
gins to dominate over diffusion and the liquid crystal mo
ecules in the bulk feel only weakly the constraints impos
on the boundaries of the cavity. Equations~25! and ~26! re-
main valid in the long cavity limit, but it is more appropriat
to scale the transverse coordinates with Ref.@20# LT

[Ap/lL, wherel is the light wavelength. Moreover, th
liquid crystal time scalet, should be defined as the tim
taken by the rotation to diffuse over a distanceLT . With this
scaling the transverse Laplacian in Eqs.~25! and ~26! has
coefficient equal to one, while the coefficient of the seco
derivative of the director field in the longitudinal directio
tends to zero as the length of the cavity increases to infin
reflecting the ever decreasing relevance of the longitud
elastic restorative force.
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