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Bistability of liquid crystal microcavities
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We develop a model of a liquid crystal Fabryr®emicrocavity. We study the homeotropic and the hybrid
cavity configurations and show that both are multistable. Moreover, in the hybrid case a branch of solutions
disconnected from the zero field solution exists.
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[. INTRODUCTION subsequently used in Refd.6,17], we are not aware of the
existence of a detailed model of this device nor of any the-
Liquid crystals are in many respects ideal components fopretical prediction of this behavior. In the following section
experiments in nonlinear optics: their large effective nonlin-we develop a model for the cavity of Fig. 1 under the as-
earity and slow time scale imply that complex bifurcationssumption that fluid motion and thermal effects are not sig-
and behaviors can be observed at relatively low powers an@ificant, i.e., that the power of the intracavity laser field is
detected with relatively inexpensive equipment. Of coursesufficiently small. This hypothesis is consistent with the re-
the slow time scale has the drawback that liquid crystals argults of Ref[15] and with the low-power results of R¢fl2].
too slow for many applicationésee Ref[1] for a survey of  In Sec. Ill we restrict our attention to the purely longitudinal
a recent collaboration to develop liquid crystal based opticafase and show that the cavity is multistable. The analytical
devices. However, the rich dynamics of liquid crystals, and numerical study of the model with transverse effect will
which may involve optical and thermal nonlinearities to- be discussed in a future paper.
gether with fluid motion, has been a fertile test bed for many
exper@ments and theoretical modgls. For gxample, vgrious Il. THE MODEL
experimentg 2-5] have detected filamentation and soliton
formation during propagation of laser beams in liquid crys- We choose a coordinate system as in Fig. 1:xhaxis is
tals. From the theoretical side, models of the formation angarallel to the cavity axis and the axis is parallel to the
evolution of filaments have been developed in Rgfs7],  polarization of the input beam. Moreover, we assume that the
the propagation of beams has been investigated in Refslirector field at the boundaries has no component inxthe
[8—10], while the interplay between optical nonlinearities direction. This implies that neither the electric nor the direc-
and fluid motion has been discussed in R&f]. Moreover, tor field have components in thg direction anywhere in the
it has long been knowpl2] that cavities filled with liquid cavity.
crystals are multistable and that thermal and optical nonlin- The derivation of the model comprises a number of steps.
earities may both be at play in shaping their dynamics. Th&Ve first derive the equation of propagation of an electromag-
bistability is caused by the dispersive properties of the liquidhetic wave through a liquid crystal. This is subsequently ex-
crystal that acts in a very similar way to the sodium vapor intended to the case of two counterpropagating waves. We then
the cavities analyzed in Refgl3,14]. derive an equation for the director field and, finally, we
Here we develop and analyze a model of a planar microeouple all the equations together and introduce convenient
cavity filled with a nematic liquid crystal, such as the onenondimensional variables.
used in the experiments of Refl2] and Ref.[15]. This The evolution of the electromagnetic field is given by
device, illustrated schematically in Fig. 1, consists of a thin
cavity of lengthL of the order of 100 light wavelengths
entirely filled with a nematic liquid crystal. In the experiment
of Ref.[12] the cavity is homeotropic, i.e., the director field
on both sides of the cavity is orthogonal to the mirrors. In the
experiment of Ref[15] the cavity is hybrid: the director field
is orthogonal to the left mirror and parallel to the other. The
model we derive here is for generic boundary conditions on
the director field. We discuss at length in Secs. 1l B and

Il C the difference between the hybrid and homeotropic ’ I
cases. A linearly polarized light beam of amplitudlg and
frequencyw is injected in the cavity and the intensity, of FIG. 1. Schematic diagram of the liquid crystal filled microcav-

the field leaking out from the right-hand mirror is measured ity analyzed in this paper. The liquid crystal director field, indicated
In particular, in the experiment of RdfL5] it was observed py the small arrows in the diagram, is anchored at given angles on
that the cavity is multistable and is able to switch from athe two sides of the cavity. A light beam of amplituglg is injected
uniform low-power state to a patterned high-power outputin the left-hand side of the cavit§,,, is the amplitude of the field
Apart from the simple model introduced in Rgfl2] and  exiting from the right-hand side of the cavity.
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Maxwell's equations in a mediurfl8] without free charges whered, is the partial derivative with respectxq, dy is the

and currents: second derivative with respect to timei =c?/g, , andcis

the speed of light in vacuum.

In order to simplify Eq.(5) we assume thak is a small
parameter. From Ed5) we see that the electric field can be

JB dD ' : ; =

VXE+—=0, VXH=—1oy, (1)  Written as a wave, solution of Ed5) with =0, whose
d ot amplitude is modulated on a space and time scale of the

hereE and B tivelv. the electri d i order of 1. We can therefore make use of the slowly vary-
wheret andb are, respectively, the electric and magne ICing amplitude approximation and write the electric field as
fields. The liquid crystals can be considered magnetically

inactive so that the induction field is H=B/uq, with ug

V.-D=0, V.B=0,

the vacuum magnetic permeability. The electric displacement Eq:lAq(T; Lt L eileme e e
field is given by[6] 2
Dj=g0z, &jkEx, 2 +%A_q(rx_, ottt et e
where we have used Einstein’s convention of summing on
repeated indexes and we have indicated the components of a o= _— — i (kg — ot)
H . . J— 3~ @
generic vectow as @p,v,,v3). Heregq is the vacuum di- + 2 AqxX, . LLL, L. )e ree

electric constant and, is the relative dielectric constant of 3

the liquid crystal for an optical field polarized orthogonal to +0(e”), q=13, ()
the orientation of the molecules. We represent the orientation

of the molecules of the liquid crystal using a unit vector wherex is a compact notation for the three spatial coordi-

The tensory is related to the orientation vector by nates,w is the frequency of the injected beam, akds a
wave number whose value is fixed later on when expanding
gjk= Sjk+anjny, (3  the wave equatiort5) in powers of the small parameter

. , ) ) , <1. The number of overbars indicates the ordewinfor
where §; is Kronecker’s delta andv is a dimensionless

measure of the birefringence of the liquid crystal at optical®X@Mplex=ax andx=a"x. As the director field is modu-

frequencies lated by the amplitude of the electric field we can also as-
' sume that its components are functions of the slow space and
g|—€, time variables,
== 4
— (4
. . . . i ] Ng=nNg(X,t, ...). (7)
with ¢ the relative dielectric constant for an optical field
parallel to the crystal molecules.  The derivation of the field propagation equation consists in
Maxwell’'s equationg1) can be recast as a wave equationspstituting the expressiolt) and(7) in the wave equation
using Eq.(2). Its expression in components is: (5), collecting different powers of and ensuring that at all
1 orders the appropriate solvability conditions are satisfied. Af-
« r rather long algebra on ins that the wave nurkber
S ) e oo ri
° v° w/v, , that the longitudinal component is of the
order of a, i.e., thatA;=0, and that the transverse compo-
g=1,2,3, (5) nentA, satisfies, up to ordew?, the equation
|
11a2aA aA_kazl l32Aia2 azAaA g 39
— |1+ =nj|=A;+—A;=i—n7 1—- ——n +—| —+—|A—= AN —+——=|n
o |72 et kgt 2 T T A M k| g T ) T 20 kg Ty at)
a J Jd
_EAlU—,_Xl(nln3)_anln3o—,_xlAlv (8)

where all the terms are measurable physical quantities.  field is given by
The coefficient in front of the time derivative indicates

that the phase velocity of the field is equalutp only if the

director field is orthogonal to the electric field, i.e.,nf v=0 1+an;g

=0. The phase velocity in a medium with uniform director + 1+a

C)
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The coefficient in front of the time derivative in E@) is the
first-order expansion of &/in powers ofa. A similar argu-
ment explains the first term on the right-hand side of @By.
if n,# 0 the choice of wave numbek= w/v, , is not appro-

priate and a phase shift accumulates as the field propagates

the x5 direction.

11+a2(9F+(? F_.ka2
v\ 2Matl ) Tkl T2 ™

o

4

3
1—a(1——n§)

_aF) o _ d F
+§ B a_Xl(nln3)+C¥n1n3a_Xl B y
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We now generalize Eq@8) to the case of two counter-
propagating fields in a cavity with injected signal as in Fig.
1. We letF and B denote the slowly varying amplitudes of
the forward and backward fields, respectively. The forward
field, is expanded exactly as in E¢p). In the case of the
B3ckward field the sign ok in the exponential is changed.
The equations for the two fields are

F

+(7+3 a
*t—+——|n
%3 v, dt) *t

(10

where the top and bottom signs refer to the forward and g9 ) _
backward fields, respectively. The boundary conditions ony1 = =KV-9+aepe [E; siN(¥) +Ezcogd)][E; cog )

the two fields are
F(X1,X2,01) =R B(Xq,%X5,0t)+F;,,

B(X1,X,L,t)=Rge' %F(x;,X,,L,1), 11

whereR|_y are the left and right complex mirror reflectance,
respectively, and, is the constant director field phase shift,

6.=2kLmod,,,.

The equation for the director field in the presence of a

electric fieldE is [6,19]

an
ylEZszn-F,un—i—asosi(n E)E, (12
where the rotational viscosity; is proportional to the liquid
crystal time constant, the elastic constins the liquid crys-
tal diffusion coefficient, angk is a Lagrange multiplier that
ensures thaftn||=1. In writing Eq. (12) we have neglected

backflow(the coupling between the liquid flow and the nem-

at

—E5sin(9)]. (14)

The boundary conditions at the two ends of the cavity are
19(xl IX21O!t) = 19|_ ’

ﬁ(xl,X2,L,t):’l§R, (15)

where ¥, g are, respectively, the anchoring angles of the

ndirector field at the left and right ends of the cavity.

The next step in the derivation of the model is to couple
the equations for the counter-propagating electric fi¢lds
with the equation for the director fiel@l4). We start by
noticing that the dynamics of the liquid crystal is much
slower than that of the electric field. We can therefore intro-
duce two different “times.” The electric field evolves ac-
cording to a nondimensional fast “field timet}, defined in
terms of the cavity round-trip timec,

(16)

Tc=Llv,, t=t/rc,

atic directoy and we have assumed that the one elastic con-

stant approximation holds.

In the configuration of the cavity of Fig. 1 the second «
component of the director field is zero. We can thereforey

represent the director field using the angldoetweenn and
the x5 axis,
n=[sin(¥),0,co$9)]. (13

This representation automatically satisfies the constfiaiht
=1, so that Eq(12) can be written as

1
L

J [F

o

F—sin(29)

2

a d (F\ ka |
1+ ESInz(ﬁ)}atf(B)ia—Xg(B)zl7SIn2(ﬂ)r1—a’

while the director field depends on a nondimensional slow
liquid crystal time,” i.e., the rotational diffusion time over a
istancel, 7, :

T(Z’)/lLZ/K, t(:t/Tg. (17)
In particular, this implies that the director field can be con-
sidered as a time-independent quantity in the electric-field
equations that can be written as

i [0 9%\(F
+—| —+—
B/ 2k|gx2 ox3/\B

3 .
1—ZS|n2(19)H

Y [F\ «afF 20&19_0['219&':
axs\B) T2\ 02N G TSI Sl g

(18
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On the other hand, the liquid crystals are too slow to see thpresence causes the electric fields to oscillate rapidly during
effect of the instantaneous electric field. We can therefor@ropagation. These oscillations may cause considerable nu-
interpret the source terms in E@.4) as averages over a time merical problems. It is therefore useful to eliminate the
scale that is considerably longer thap, but shorter than phase-shift term from the field equations by introducing the

Te - field variables
The second observation is that in the derivation of the

electric-field equation we have assumed thats a small f\ L [aeee, e IPQE

parameter. Applying the same approximation to the director (b) = E\/ K LoeDR | (23

field equation we can neglect the longitudinal components of € ¥B

the electric fields from the source term of Hd4), which

can be written as where the phasé®(x3) is
v, 99 « ) A
= — =KV29+—gge, siN29){|F|?+|B|?), (19 (I)(xg)zf A(9)d¢. (24
T &t( 4 f 0

where the angular brackets indicate the averaging operation terms of the new field variablesandb the equations for

over the timet;. Moreover, in writing Eq.(19) we have  the electric fieldg21) and the director19) become

implicitly assumed that the diffusion of the liquid crystal is

strong enough that the standing wave patfeBt exp(2kxs) w 9 [f o [f

of the electric field intensity can be neglected. 1+ —sir?(ﬁ)}—( )i—( )
Equations(18) and (19) together with the boundary con- 2 ati\ b X3 b

ditions (11) and (15 comprise our model. However, it is

convenient to express them in terms of nondimensional vari- _ iae:iq)vzeiiq)( f) Izsin(Zﬂ)ﬁ( f)

ables. We have already introduced two nondimensional time L b/ 4 ax4\b

variables. We scale the space variables with the cavity length

and introduce _alf 0 I a 0y
1 cog )(?—Xl+§sm( )

Xq=Xq/L. (20
_ 4 [ f
It is customary to scale the transverse coordinate with a Xe*"l’&T ei"l’(b) , (25)
length whose Rayleigh range is the length of the cavity be- 1
cause this is the natural length scale for transverse patterns in 79
a “standard size” cavityf 20]. However, the cavity analyzed = V29+sin(29)(| |2+ |b|2>t,- (26)

in this paper is so short in units of the light wavelength that aty
such scaling length turns out to be inappropriate, being much
smaller than the diffusion length of the liquid crystal. Using The boundary conditions on these equations can be obtained

the scaling(20) the electric field equation€l8) become from Egs.(11) and(15) in terms of the new variables:
o J F J F f(Xi,Xé,O,’[f):RLb(Xi,Xé,O,tf)'i‘fin, (27)
+ — — +—
= |
b(x],X5,1t;) =Rge"f(x],X5,11¢), (28
S| D +iave| D sinze)”
=i ( ) B la n B +ZS|r( )(?_Xé B ﬂ(xilxéyo,t{{):ﬁl_, ﬁ(xirxéllat{f):ﬁR! (29)

wheref;, is the scaled input field amplitude,

21) fmzL/zx/asKﬁFm. (30)

whereV? is the Laplacian in the nondimensional transverse

coordinates anda=(2kL)"! is the diffraction parameter. YSing “standi':\lr(lj" values for the liquid crystah(=1.7, n,
The phase shift term () is given by =1.5, K=10"""N) and for the electromagnetic cavity (
=780 nm, L=57 um) we obtain that a field with nondi-

3 mensional amplitudé=1 has power per unit area equal to
1- Zsinz(ﬁ)”. (22)  approximately 4 MW mZ. The phase shift that appear in
the boundary conditioi28) can be written as

_afF 21?(919_01_219(9 F
+§ B cog )a—Xl+ES|n( )0,’—)(1 B/’

A(9) = ~sir(9)] 1
(9)=Zzsim(9))1-a
For a 100 light wavelength long cavita has value L

(400m) ~1=0.0008. Typical values of are of the order of Y=05,+2B(1)=6 +2f A(9)d¢. (31)
a=0.1. These values imply thak(9)~0(100) and its ¢ " “Jo
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However, the constant director field phase shiftis not a £ (yrieeSt @ Sz-asif[H(2)]/4
very appropriate physical quantity in this context. It is more f(z,t)= 5 'n.f = —_stlds, (39
convenient to introduce the zero-electric-field phase shift, mJy-i= S 1-Re %€

8= 8.+ 2A( D), (320  WhereR=R_ Ry andy is chosen so that the integration path

lies to the left of all the singularities of the integrand. The
where 9, is the solution of Eq(26) with |f|=|b|=0. This integrand has a pole at=0 and countably many poles at
phase shift has a clear physical meaningsdi&=0 a low
(nominally zerg intensity field is resonant with the cavity. In

o f +na
terms of &, the total phase shify is

5 . n=0,12.... (40

1
snzzlog(R) +i

1 The term in the residue expansion that corresponds to the
=Gt Zfo [A(9)—A(Do)]d{. (33 pole ats=0 is the stationary solution
Equations(25) and (26) together with the boundary con e e st
q g y f(z)=———fi,. (41

ditions (27)—(29) describe the evolution of the electromag-
netic field in a liquid crystal cavity and are the main result of
this section. They rest on several simplifying hypothegBs: The other poles give the Fourier series expansion of the
fluid motion and thermal effects can be neglect&);the  backward and forward reflection of the initial step in the
slowly varying amplitude approximation can be appli€®); boundary condition and decay exponentially fast with a de-
the electric fields evolve on a much faster time scale than theay rate determined by the losses at the mirrors. In the same
liquid crystal; and4) the birefringence parameteris small.  manner we obtain that the asymptotic solution for the back-
ward field is

1-Re?

I1l. THE PLANE-WAVE LIMIT ) )
Ree'e @ sin?(9)/4

A. Derivation of the model b(z)=

The analysis of the full equation®5) and (26) is in
progress and will be reported elsewhere. Here we want tThe asymptotic solutions for the electric fields can be substi-
discuss a simpler problem, their plane-wave limit, namelytuted in the director field equatiof85) to obtain the plane-
the case that none of the fields depends on the transverggve limit of equationg25) and (26):
coordinates. In other words, we neglect all transverse deriva-

A fin. 42
1-Rd? 42

tives in Egs.(25) and(26) to obtain a9 929 ) . g~ @ sir()/2
I:_2+|fin| (1+|Rgl )Sin29)———5, (43
L aﬁ(ﬂ)}a(f) a(f) a'n(Zﬁ)aﬂ(f) ¢ 0z |1-R€eY|
+ =i — +— =¥ —si — ,
2 dtr\b) dz\b 4 gz \b @4 with boundary conditiong}(0t,) =9, and 9(1t) = 9g.
99 529 B. The hybrid cavity
I=—2+sin(2ﬁ)(|f|2+ |b|2)tf, (35 We now apply the modgid3) to the analysis of a hybrid
¢ oz cavity like the one used in Refl5], i.e, with boundary
conditions
where we have userlto indicatex;. The boundary condi-
tions are 9(0t,)=0, I(Lt,)=ml2. (44)
f(0t)=R.B(Ot;)+ T, (36)  The advantage of this configuration, with respect to a ho-
‘ meotropic one, is that there is no Fredericks transition and
b(1t;)=Rge'’f(1t), (37)  the director field changes smoothly under the effect of the
electric field. In particular, this implies that it is possible to
J(Oty)=3, IH1Lt,)=17IR. (38 express the director field as a regular power expansion in the
_ _ input field amplitude.
We now show that the only asymptotic solution of E() To gain some insight on the number and nature of the

is time stationary. This result is suggested by the physics oftationary solutions of Eq43) with boundary conditions
the problem: a field evolving in a linear cavity, albeit with a (44), we introduce two approximations that allow us to ob-
complicated refractive index. Any initial transient dies after atain analytical estimates of some critical parameters involved
sufficiently large number of reflections from tlleaky) cav-  in selecting the solutions. First we approximate

ity mirrors and the cavity settles down in a stationary equi-

librium configuration. More formally, taking the Laplace g asif(9)2_ 1 (45)
transform of Eqs(34), (36), and (37) and using the initial

conditions f(z,0)=b(z,0)=0 we obtain that the forward This is a reasonable approximation becauss assumed to
field is given by[29] be small and the argument of the exponential is in the range
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4

[—«/2,0]. Second, we keep only the order one term in the
a-expansion ofA(d), Eq. (22), and write the total phase
shift ¢ as

1
W=+ %fo [SiI(9)—sirf(9)]dz.  (46)

Under these assumptions we can write the time stationary

version of Eq.(43) as % T R T
d29 FIG. 2. Graphs of the functions (solid lineg and 8" (dashed
—+Bsin(29)=0, (47) lines) as a function ofy for §,= — w/2 (left) and .= w/4 (right).
dz* The different graphs of3 correspond to|f;,|?={0.01,0.05,0.1

(lefty and |f;,]2={0.03,0.06 (right) for increasing height of the
with graph. In this and all the following figures=0.1, a=0.001, and
RL: RR: 09
|finl*(1+ R)
T 1+R’—2Rcogy)’ 49 a a’ a®
v By=4m7— (Y= 50+ 96m>— (14— 0)°+0| = (= 0,)° .
a a

where, to make the notation lighter, we have assumed that

the reflection coefficients are real. (50
The solution of Eq(47), and henceys, depends or8. On

the other hand, from Eq48) we have tha3 depends ony. Equation(47) has a solution wheneves,, is equal toB as

Therefore, the _number _Of solutions of E@) is given by defined in Eq.(48). The functionsgB andﬁb are defined for

th.e number of mtersectlor)s of .the Qfaphﬁ(f‘ﬂ)' Eq. (48), all real . However, for representation purposes it is more

with the graph of,(y), given implicitly by Eq.(46) once convenient to restric/ to the rangd — 7, 7). This does not

we have solved Eq47). :
. . . affect 8 because it depends @nonly through cosf). On the
Equation(47) is analogous to the pendulum equation andother hand, in order to represent all the possible valugg,of

cannot be solved in closed form. Howgver, we can Iook for &ve must introduce a multibranched version of this function:
solution of Eq.(47) as a power expansion j8. This is quite

successful: a comparison with the numerical solution of Eqg.

(43) obtained using AUT(021,22 (see belowindicates that ") ,a , a® 3

a third-order approximation is good even for valuesgobf By =4m—(+2nm— Ge) +96m" — (¢ 2nT— Se)

the order of 1. “«
In a nutshell, these results show that the system is generi-

cally multistable and that it is easier to have multistability for +0

negative values of the zero-field phase shift, These re-

sults have an intuitive explanation: the effect of the intracav-

ity field on the director field is ultimately to induce a positive with — < < 7. Equation(47) has a solution whenevgs
phase shift proportional to the intracavity field intensityslf  js equal to any of the branche" .

is negative then this positive phase shift may make the field |, Fig. 2 we have plotted the graphs@fandﬂﬁb”) for two

resonant with the cavityi.e., it induces an equivalent detun- ;65 of the zero-field phase shit. Consider first the case
ing equal to zerpand so greatly increase the intracavity field 5.>0 (right-hand side of Fig. 2 and bottom half of Fig). 6

intensity. Once the field is locked in this configuration, it gor smal input intensities there is only one solution and it is
remains close to resonance even if the input field intensity i$ocated in the positivey region. As the input intensity is

decreased. The same picture applies for pos#jvebut mul- ed'ncreased two new solutions appear on the bra@%ﬁ with

tlstab|I|ty_|s harder to achieve because the f|eld-|ndgc r§Iightly negativey. As the intensity is further increased one
phase shift must be large enough to cause resonance with t ¢ . - .
of the two new solutions moves toward positigenhile the

next longitudinal cavity mode. other has a more and more negatiye If the intensity is
Solving Eq.(47) up to third order in8 and substituting . 9 >nsity
. . increased even further two scenarios can be envisaged. In the
into Eq. (46) we obtain that . : .
first, new solutions appear on higher branchesfﬂf In the
3 second, as the graph ¢ is shifted even more upward, the
O A 5 positive  tail of 8 no longer intersect®?) while a new
=06t +0(8), (49) : . . Y .
2a\ 272 4qS solution appears oﬁg,,) with negativey. This then collides
with the negativey solution already on th@ﬁ,}) branch and
which we can invert using the implicit function theorem to the two disappear. This scenario happens at lower and lower
obtain intensities asd, gets closer and closer to.

a5

—5(¢+2n77—5e)5, n=0,12..., (51
o
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FIG. 3. Graphs of the functiong (solid lineg andﬁfﬁo) (dashed lingsas a function ofy. | f;,|2={0.001,0.002,0.003,0.094rom left to
right. In each panel, the left and right graphs[ﬁ/f) correspond ta5,={—0.4,— 0.2, respectively. Note that i, is too close to zero there
in no bistability as the input intensity is increased.

If S is negative(left-hand side of Fig. 2 and top half of dgB 2R(1+R2)sin(¢)
Fig. 6), then for very small input field intensities there is only — =—|f;,|? 5 R 5 (53
one solution with a value off roughly equal tod,. As the dy [1+R°—2Rcog¢)]

intensity is increased two new solutions appear and the sys-

tem is bistable. As the intensity is increased further one ofind ranges from zero to a maximum value that is propor-

these solutions collides with the first while the second actional to|f;,|2. As can be seen from Fig. 3 &, is negative

quires a positive value ofs. After the collision of the two and close to zero, the graphs gfand g, cross at small

solutions with negatives there remains only one solution on values of|f;,|?, so small that the maximum slope gf is

the branchg!?), but other solutions may have already ap-smaller than the slope o8,, Eg. (52, and the tangency

peared on the other branches,@(.f), thus making the sys- cannot take place. More quantitatively, to compute the upper

tem multistable. bound oné, for multistability to exist, we must do the fol-
Note that if &, is quite close to zero then the pair of lowing.

solutions do not form and the single solution on the first

branch of,, migrates smoothly from negative to positive (1) Find the valuey,a of ¢ where g has maximum

(see Fig. 3 In fact, for the additional pair of solutions to Slope.

form the graph ofg{”) must be tangent to that ¢8. For (2) Impose thatg and 8% have the same slope at

small ¢ the slope of!Y is approximately constant as a = ¥max and find the corresponding value of the input inten-

function of ¢ and given by sity, I max- . ,
(3) Impose thatB= B, at = thmax and |fip|*=1myay t0
find the corresponding value of the zero-field phase shift,

d ) 47a Smax- This is the upper bound o#, for multistability to
dyPr = a4 52 occur.
The slope ofB, instead, is given by We find thati,.x IS given by

. V2(—1-10R?*+ 1+ 34R%+ R*— R*+ R?\/1+ 34R?+ RH) 112
a =— .
me —1-R%*+1+34R%+R*

(54)

The value of the input intensity where the maximum slope ofAs can be seen from Figs. 4 and 5, this estimate of the upper
B is equal to Eq(52) is bound is in good agreement with the numerical investigation
of the bistability regions of Eq47) and, also, Eq(43).
2 2 These results are summarized in Fig. 4, where the number
L 27a [1+R°— 2R oy /max) ] (55  of solutions of Eq(47), computed using Eq$48) and (51),
max a R(1+R3) ' is identified as a function of the input field intensity and of
the zero-field phase shift. On the right of the nearly vertical
curve, new solutions appear at tangencies betwgemnd

Finally, the upper bound on the zero-field phase shift forgccessive branches,@f;”) as in the right panel of Fig. 2. On

multistability to occur is the left of this curve, new solutions appear at tangencies with
the same branch 8!} as in the rightmost panel of Fig. 3.
o I nad 1+ R2) The foof[ of Fhis curve is af.= 6,4, as estimated in E456).
Omax= Ymax™ 7 > . (56  To obtain Fig. 4 we have used the property that &) and
4m°a 1+ R~ 2R €O ¥max) the equation3= B} have the same number of solutions. We
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0.15
2
If;,!

0.10

Figure 5 is the equivalent for Eq43) of Fig. 4. The
dashed lines are the boundaries between regions of multista-
bility for Eq. (43) computed using AUTO, while the solid
lines are the boundaries for E@.7) as in Fig. 4. As expected
the agreement is quite good for low pump intensities: as the
pump intensity is increased the director field changes more
and more from its zero-field configuration and the approxi-
mation (46) becomes poorer and poorer. We have used
AUTO also to draw in Fig. 6 the bifurcation diagram of Eq.
(43 for four different values of the zero-field phase shift
Ll Se={—m2,— wl4,ml4,m/2} and for a large range of input
0 5, m intensities. To make the graphs clearer we |dgg as bifur-

cation parameter instead of the input intensjfy,|2. Note

FIG. 4. Numerical multi-stability diagram of Ed47) in the  that the corresponding range |d-fm|2 used in this figure is
(5e,|finJ2) plane: the digit inside gach regio.n !nd!cates the number,-ougmy 100 times larger than in Figs. 2—5. The graphs con-
of solutions. The arrow on the horizontal axis indicates the value ofjym the results of the multistability diagrams of Figs. 4 and
dmax, EQ. (56). 5. In particular, for negative values @, it is possible to
have, therefore, computed the functidiy,|2(1) defined by observe the s_witch from one to threg and then bz?lck to one
the equation,@zﬁfp“) for a given value of5, and a given Solution (see inset of the5.= —m/4 diagram, top right of
branch number. We have then counted the number of folds dfig- 6- As an aid to the eye, the limit points in each block
this function at 400 different values df;,|2. This is the are identified with the same symbol in Fig. 6 and Fig. 5.
number of solutions of Eq47) for a given value ofs, and  Moreover, form the graphs af as a function off;,| we can
for a given branch o8}’ . We have repeated this procedure Verify that new solutions appear whenis approximately an
for all the branches 0B}” relevant to the plot in Fig. 4 and Inteéger multiple of 2r, i.e., the new solutions are resonant
for 400 different values o, uniformly distributed in the With successive longitudinal modes of the cavity.
range ( r, ). F|gure 6 provides also information on the stablllty of th_e

The results discussed so far in this subsection have bedplutions: as expected from standard results of bifurcation

obtained starting from Eq47). This approach has been quite €0rY[25] at each limit point there is a change of stability
fruitful, but it has two drawbacks: first of all E¢47) is an ~ @nd if the system hasr2+ 1 solutions them+1 of these are

approximation of the stationary form of EG3). Second, it stable anch are unstable. No bifurcation to a time-dependent

gives us no information on the stability of the stationarySolution has been detected. To clarify whether time-

solutions we have identified or on the existence of any timedeépendent solutions  disconnected from the stationary
dependent solutions of E@43). In order to answer these Pranches may exist we have integrated numerically(&8).
questions we have studied numerically ) using AUTO We have used a Chebychev collocation method and a Gauss-

[21,22. We have discretized the spatial coordinate using d-obatto g'rid to compute the spat_ial derivative and qvariable
Gauss-Lobatto grid23]. This has allowed us to use a Order variable step methd@e to integrate the resulting or-
pseudo-spectral method to compute the spatial derivative ghinary differential equations in time. Various simulations for
9 and a Gauss quadrature metli@d] to compute the phase & range of values of the input field intensity have been run,
integral ¢, Egs. (22) and (33). Sixteen grid points have but in all cases the system settled on a time stationary solu-

proved sufficient to ensure the reliability and the accuracy of'©": _ _
the numerical results. To summarize, we have shown that in the plane-wave

limit a hybrid microcavity shows multistability for both signs
oY i S N L e of the cavity detuning. The mechanisms for bistability are
£, P slightly different in the two cases and, as a consequence, it is
m possible to have very low power bistability only for negative
010 valu_es of the d(_atuning. Moreover, the model has _only time
' stationary solutions to which it relaxes after a fairly short
transient. Another set of stationary solutions, disconnected
from the zero-field solution, is discussed at the end of the
following section.

0.05

1
0.00 L1 11 1 7
T

0.05

C. The homeotropic cavity

TR /Y

000t P a1 The boundary conditions on the director field for a ho-
- w2 0 w23 = meotropic cavity are
FIG. 5. Numerical multistability diagram of Ed43) (dashed 9(0t,)=0, I(1t,)=0. (57)

lines) superimposed to that of E¢47) (solid lineg. The symbols . N .
refer to the limit points in the corresponding bifurcation diagrams inWith these boundary conditions E@3) admits a zero solu-
Fig. 6. tion, ¥¢(z,t,)=0, for all values of the input field amplitude
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FIG. 6. Bifurcation diagrams of E¢43) for ;={— 7/2,— w/4,m/4,7/2} per block clockwise from top left. In all diagrams the horizontal
axis is the modulus of the input pump. The vertical axis of the(lght) diagram in each block is the output intengitgtal phase shifty).
The solid(dashedl lines indicate(un)stable solutions. The symbols on the limit points correspond to those used in Fig. 5. The insets in the
top right block are enlargements of the region near the origin of their respective graphs.

fin. This becomes unstable for sufficiently large input fieldeach order that the appropriate solvability conditifi2ig are
intensity and it is possible to derive an equation for the amsatisfied, we obtain that the director field can be written near
plitude of its perturbation in a neighborhood of the bifurca-threshold as

tion point. To simplify the notation we assume that the re-
flectance of the mirrors is real and write E¢3) as 9(z.t,)= ﬁ(t{;)5|n(7rz)+ 63&“3#2”0(&4)
9o 9?9 [fin]2(1+R3)

. 62
*7+Sin(2’l9) e*aSlnz(ﬁ)/Z. ( )
1+ R?— 2R cog ¢)

e 92 ~
¢ oz (59) where up to order? the amplituded(t,) of the perturbation
obeys the equation

By linearizing Eq.(58) around the zero solution we obtain

that the instability mode with lowest threshold is siz( and dd 2(1+R 2 ([ finl?— |f(0)|2)3
that the threshold input intensity{?’|?, is given by dt, 11R’_2Rsin(s,)
772 2 _ :
(1+RR|F)?==-[1+ R~ 2Rcog )] (59 S a(1-a)RSIN%) |55 (g3

a[1+R2—2Rsin(5,)]

We define the bifurcation parametgrby In particular, we also obtain that the bifurcation is either

[finl2=1£912+ 5, p=<1, (60) subcriti(_:al or _sup_ercritical and that the boundary between the
two regimes is given by
and expand the director field equations in powers;ais
L . a(l—a)Rsin(S,)
Hzzt,...)=gh(zt, ...)siN72) a[1+R2—2Rsin(3,)]
+ 7]22 on siN(N7z)+O(7%), (61) The numerical value ob, obtained from this equation for
n=1 the parameterR =Rz=0.9, «=0.1 and a=0.001 (5,
=—0.0004952) is in excellent agreement with the numeri-
where the overbar symbols refer to the orderinFor ex-  cal estimates obtained using AUTO to draw the bifurcation
ample,z= »z. Expanding in powers of; and requiring at diagrams of Eq(58).

(64)
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FIG. 7. Bifurcation diagram fow,= — /2 (left) and 5= /2 FIG. 9. Bifurcation diagram of Eq(43) showing both the

(right) for log,o(€) ={0,—1,—3,~ 9} from left to right in each pic-  pranch connected to the zero-field solution and the branch discon-
ture. The symbo - ||, indicates the., norm, while the symbollo  nected from it. The vertical axes on the two diagrams are the output
indicates the zero electric field stationary solution of the directorsig|g intensity (left) and the total phase shift (right). The solid

field equation(58). The solid(dashed lines refer to(un)stable so-  (gasheglines refer toun)stable solutions. The numbers refer to the
lutions. The values of the other parameters are0.1 anda  sojutions drawn in Fig. 10. The values of the other parameters are
=0.001. 8.=— /2, a=0.001, andx=0.1.

We can interpret the two different bifurcation regimes of X= v+ ux—x> (67)
the homeotropic case in terms of the bifurcation diagrams for
the hybrid case. In Fig. 7 we have drawn the numerical bi

‘and the bifurcation diagram is altered quite dramatically as
furcation diagram of Eq(58) with boundary conditions g d y

can be seen in Fig. 8: the pitchfork bifurcation point disap-
pears and the lower and upper branches become discon-
F(O0ty)=0, (1t =€m/2, (65  nected.

We can expect that a nonzero boundary condition on the
for different values ofe: e=1 corresponds to the hybrid right-hand side of the cavity, i.ee#0 in Eq.(65), will give
cavity while e=0 corresponds to the homeotropic cavity. We rise to a nonzero constant term in E3) and transform it in
can see that fo,=— /2 the bifurcation diagram of the a form similar to Eq(67). In this case, a disconnected branch
hybrid cavity is smoothly changed into the subcritical bifur- of solutions will appear: the director field becomes negative
cation of the homeotropic cavitifeft-hand panel of Fig.)7  in a neighborhood of the left-hand boundary and then
For .= m/2, instead, the change is to a supercritical bifur-switches to positive values as it gets closer to the right mirror
cation. S0 as to satisfy the boundary condition there. This is indeed

Conversely, the bifurcation diagram of the homeotropicthe case: we have used AUTO to track the negafiie@anch
cavity gives the possibility of detecting solutions of the hy-from e=0 to e=1. We have then drawn a complete bifur-
brid cavity that are not connected to the zero electric fieldcation diagram fore=1 (hybrid cavity, see Fig. 9and cal-
solution. With suitable scaling we can write E§3) in su-  culated solutions of the director field equation both on the

percritical regime as the normal form branch that is connected to the zero-field solution and on the
one disconnected from {see Fig. 10 As can be seen from
X= pux— X3, (66)  Fig. 9 the disconnected solution is stable, albeit in a small

region of parameter space. However, its basin of attraction
whereu is the bifurcation parameter axds a generic vari-

able. A generic perturbation of this normal form transforms it #2 L (O T
into (p. 276 of Ref[28]) oF @ 1 9
2 r T T T ] o 1 L
x| ] /4 @ i 0.0
1t . ' “o
o B o Voo bl oaf
[ [ ] 0.0 0.5 z 1.0 0.0 0.5 2 1.0
- _ - _ _ FIG. 10. Graphs of the director field as a function of the coor-
r 3 dinate along the cavity. The graphs on the left-hand side correspond

e e to three different solutions on the connected brafpdints 1,2,3 in
Fig. 9, |fin]| ={1.99,3.47,6.68 respectively, from 1 to 3). The
FIG. 8. Bifurcation diagram of Eq66), left, and Eq{(67), right. graph on the right-hand side is a stable solution on the disconnected
v=0.1 in the right panel. branch corresponding td;,|=18.667, point 4 in Fig. 9.
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may be small and it may not be trivial to make the systenthen the model should be slightly modified. The choice of
choose this configuration instead of the solution connected tecaling in the definition of the nondimensional transverse
Zero. coordinates, Eq.20), is dictated by the fact that the width of
a spot whose Rayleigh length is equal to the length of the
IV. CONCLUSIONS cavity is of the order of a few wavelengths. Therefore, dif-
. o fraction is not the dominant factor in selecting the size of the
~ We have derived and analyzed a model of a liquid crystajyansverse pattern and the transverse diffusion of the liquid
filled microcavity, i.e., a cavity whose length is only a few ¢rystal is the main constraint on the size of the patterns. At
hundred wavelengths. We would like to conclude by discussthe same time, the liquid crystal molecules are forced to
ing how the model ought to be modified if the length of the change direction from 0 ter/2 in a short distance and, as a
cavity is outside this range. This parameter appears twice igonsequence, are rather “stif.” As the cavity length in-
the derivation of the model: when making the slowly varying creases, these statements lose their validity: diffraction be-
amplitude approximation and when choosing the scaling iyins to dominate over diffusion and the liquid crystal mol-
the definition of the nondimensional variables. _ ecules in the bulk feel only weakly the constraints imposed
Th(_a slpwly varying amplitude apprommgﬂon requires the gy the boundaries of the cavity. Equatio@$) and (26) re-
electric field amplitude and the dlr_ector field to vary oN amain valid in the long cavity limit, but it is more appropriate
length scale much longer that the light wavelength. This ap;y scale the transverse coordinates with REZO] L.

proximation is clearly untenable if the length of the cavityE\/m where\ is the light wavelength. Moreover, the
itself is only a few wavelengths. In this case, Maxwell's i iq crystal time scaler, should be defined as the time
wave equation(5) cannot be simplified using the slowly o en by the rotation to diffuse over a distarige With this
varying amplitude approximation. A possible method Ofscaling the transverse Laplacian in E@@5) and (26) has

analyiis :Etho fcogs7idir onrlly the tims'llstayionarfy case, thﬁ ¥oefficient equal to one, while the coefficient of the second
proach of Refs[6,7]. Another possibility is to focus on the oy ative of the director field in the longitudinal direction

propagation of a single cavity mode, an approach similar 1Qands to zero as the len P .

. gth of the cavity increases to infinity,
thzﬁjo; Ref.[lo].hHowevgr, even thou?h the mod@B) IS 'rlllortl Id reflecting the ever decreasing relevance of the longitudinal
valid for very short cavities, some of its properties still hold | tic restorative force.

in this limit. In particular, the scaling of the electric field, Eq.
(23), is proportional to the length of the cavity: as a conse-
guence, as the cavity gets shorter a higher and higher input
pump power is required to observe bistability. This is to be We would like to thank the authors of R¢1L5] for letting
expected since the frequency spacing between longitudinals know their results prior to publication and, in particular,
modes increases with decreasing cavity length and modgeremy Baumberg and Sjoerd Hoogland for starting us on
hopping becomes, as a consequence, harder. this project. We would also like to thank Dr. Stefania Resi-
If the cavity is more than a few orders of magnitude dori (Institut Non Lineire de Nice for her advice and sup-
longer than the light wavelengttibut still short enough for port. Part of this work was carried out while G.D. was on
scattering from the liquid crystal not to extinguish the field leave and supported by MRC Grant No. GO000974/55045.
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