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Few-cycle pulse propagation
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We present a comprehensive framework for treating the nonlinear interaction of few-cycle pulses using an
envelope description that goes beyond the traditional slowly varying envelope approximation method. This is
applied to a range of simulations that demonstrate how the effectyéf anonlinearity differs between the
many-cycle and few-cycle cases. Our approach, which includes diffraction, dispersion, multiple fields, and a
wide range of nonlinearities, builds upon the work of Brabec and KrelisBrabec and F. Krausz, Phys. Rev.

Lett. 78, 3282(1997] and PorragM. A. Porras, Phys. Rev. A0, 5069(1999]. No approximations are made
until the final stage when a particular problem is considered.
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[. INTRODUCTION harmonic generation and degenerate parametric amplifica-
tion, can be seen in Refll]. The only previous multiple

The analysis of optical pulse propagation traditionally in-field application of this kind of result was for four wave
volves describing a pulse in terms of a complex field envemixing [12].
lope, while neglecting the underlying rapid oscillations at its \We compare the SEWA-SEEA equations to our aBec.
carrier frequency. The resulting “slowly varying envelope 1), and explain the differences and subsequent adjustments
approximation” (SVEA) (see e.g., Refl3]), which reduces to the necessary approximations. This theory enables us to
second-order differential equations to first order, is validrigorously study what combination of approximations affords
when the envelope encompasses many cycles of the opticﬁ]e most efficient method for treating a given nonlinear in-
field and varies slowly. The alternative approach is to solvderaction involving few-cycle pulses. Net$ec. ll) we dis-
Maxwell’s equations numericallysee e.g., Refs[1,4]), cuss they® nonlinearity and a scaling scheme designed to
which is more general but involves greater computationareveal the few-cycle effects. Then we compare the SVEA
effort, and lacks the intuitive picture of a pulse “envelope.” predictions to the few-cycle GFEA theory using idealized

For example, optical parametric oscillat¢@POS3 based  situations(Sec. IV) and more realistic OPO modeiSec. ).
on aperiodically poled lithium niobate have generated 53-f§inally, we present our conclusiofiSec. V).
idler pulses at 3um that are nearly transform limited, and
contain only five optical cycle§5]; laser pulses with less
than three optical cycles have been generated in other con-
texts [6]. Under these circumstances, the validity of the This section contains a summary of a complete rederiva-
slowly varying envelope approximation is clearly open totion [13] of a Brabec and Krausz style theory, which yields
question. an evolution equation for an envelope description of pulse

Brabec and Krauspl] derived corrections to the SVEA, propagation in the few-cycle regime. Our result is more com-
which they included in their “slowly evolving wave approxi- plicated than the SEWA equatidf], but reduces to it in the
mation” (SEWA). This enabled the few-cycle regime to be appropriate limits; it also explains the slight differences be-
modeled with improved accuracy, and the SEWA has subsaween their result and that of Porrg).
quently been applied in different situations, including ul- Following Brabec-Krausz, we consider the case of small
trashort IR laser pulses in fused silica8], the filamentation transverse inhomogeneities of the polarization, and so start
of ultrashort laser pulses in i8], and even in microstruc- with the three-dimensional wave equation
tured optical fibre$10]. Later, Porra$2] proposed a slightly
different “slowly evolving envelope approximatiofSEEA) 1 ¢
that included corrections for the transverse behavior of the (,9§+ Vf)E(F,t)— _2‘7t2J dt’e(t—t’)E(F,t’)
field. c -

Here we use a field envelope approach to simulate the
propagation of ultrashort pulses inxd® medium. The dif-
ference is that wéa) derive a more general form than that of
Brabec and Krausz, called the “generalized few-cycle enve-
lope approximationl{GFEA); and(b) apply it to both optical 2 .
(nondegenerajgparametric amplificatiodNPA) and the op- Here Vi .'S the transverse Laplace opgrat@& Is short-
tical parametric oscillatofOPO. More comprehensive re- hand notation ford/da, e(t)=2m) Y . doe(w)e',
sults, including some for a variety of systems such as seconéw)=1+47x(w), and x(w) is the linear electric suscep-

tibility. The electric fieldE propagates along thedirection.
Both E and the nonlinear polarizatio®,, are polarized par-
*Electronic address: Dr.Paul.Kinsler@physics.org allel to thex axis.
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We can transform Ed2) into frequency space in order to
expande(w) in powers ofw, thus enabling us to treat the |(|,30+ Bodg— woB1d,)*+ V7
material parameters as a power series which we can truncate
to an appropriate order. However, for simplicity it is better to
expand k about a suitablew, instead. Using ‘e(w) +
=c?k(w)? w?, it follows that

[

2

2
> 2 °< 13,) } ]A(rl,g.ﬂfwj"’
C

X (1+13,)2B(r, ,&7A)=0. 8

- ¥n( 0) . . . .
k(w)=> o For convenience we also introduce the dimensionless ra-
n=0 ' tio of phase and group velocitieso=wyB1/Bo
=(wo/Bo)/(L/B1)=vilvg, and use the fact that the refrac-
yn:azk(w)|wo:5n+|an :Bn.aneR. 2) tive index atwq is ng=cBy/wy. We also define a dispersion
termD in a similar way to Brabec-Krausz, but instead use a

We can now write the frequency space version of @y,  Sc@led (dimensionlessversion D' =(wo/B0)D in the fol-

as lowing equations so that
~ o - 7nw871
1y, ﬁt-l—lwo) 2 . D'=—l1ay(10)+ 2, ———(14,)" 9
(2+V2)E(r,0)+ Z 2 E(r) 0 =
Hence we get
47 -
=—5 P ). 3
C |a’0
0= (dg=0d,)+ —10(1d,) ———
Bo
We introduce an envelope and carrier form for the field in )
the usual way, using=(r, ,z), so that +1D’ +'§ 1o(19, )_,8_+ID } AP, £,7)
0
E(r)=A(r, ,ze=+A%(r, ,zthe %, (4) o
+—(1+19,)°B(r ,&,7A). (10)
- . _ n
and similarly P.(r,t)=B(r, ,z,t;A)e'= °
+B*(r, ,z,t;A)e 'E. The symbol=E = Boz— wet + g is in- This form can be rearranged without approximation to
troduced as a convenient shorthand for the argument of the
exponential. With these envelope-carrier substitutions, the - B N -
equation of motion can be written as IA(rL €, 7)=| — ,3_0+|D ATy, &,7)
; (112B5) V%
4 2+ 2
([IBO 072] VL)A(rL,Z,t) (1_'_'0_&7) A(rlvfaT)
o0 ( n 2
e 2
2 —at) AT, ,z,1) 2w (14197 . Ta
= — . +
no (1+104,) B(r..&mA) 1+10d,’
4rw? I 2
= — °(1+ —at) B(iL .ztA). (5 (D
(¥ @o
where
Equation(5) has the opposite sign on the RHS to Brabec and 192 a - \? -
Krausz's Equation2), but agreement is recovered later in Tr=| — 5 a§+2 B——ID') }A(rl E,7). (12
0

Eq. (1).

As usual, we introduce comoving variables . . . : .
Equation(11) is exact—it contains no more approxima-

tions than our starting point E¢l) except for the expansion
T=wo(t—B12), d=wyd,, (6) of € in powers ofw. We recover the full field from Eq.(4)
by recombiningA and knowing the carrier. The partial de-
rivatives (d,) in the denominators can, if necessary, be

§=Boz,  97=Pod~ woB10;, ™) treated by Fourier transforming into the conjugate frequency
space (1). Note that liker, Q) is scaled relative to the car-
and Eq.(5) now becomes rier frequency.
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If we setTr=0, this gives us a GFEA equation, which Input L, Output
contains the SVEA3], SEWA[1], and SEEA 2] within it as o —
special cases. Of course we cannot just setTtheerm to 1}3{2?
zero without some justification, and this is discussed below. Signal Signal
The (2#7/n2)KB polarization term from Eq(11) has I V
prefactors that depend on the time derivative of the polariza- Pump 1, A
tion, and these new terms are what add the effect of finite 75
pulse lengths to the pulse evolution. Note that we can write
this polarization term in different forms, N FIG. 1 Pump timing_ offsetsee Sec. _IDI. The pump pulse is
injected into the crystal just before the signal pulse is reflected off
(1+ |¢9T)2 2,(97_4_(1_,_0)(95 the input mirror. The faster moving signal pulse then catches the
K= ———=(1+100d,)|1+(1—0) ———— pump pulse up about halfway through the crystal, and an idler pulse
(1+107,) (1+10d,)? is generated.
—(1+19.)] 1+ 1(1-0)d; _ (13) envelope and some arbitrary choices of carrier phase
T (1+104,)? e[0,27). The final state is then given by the chosgn

combined with the final form of the envelope.
With o=1, these reduce to thE=1+19, SEWA [1]
form. Similarly, to first order in §—1), one can get th&

i ll. THE x® NONLINEAR SYSTEM
=1+10d, SEEA[2] form. Finally, for a SVEA theoryK

=1, since thed, terms are assumed to be negligible. When modelingy?) nonlinear systems we split the opti-
TheTg term is negligible if the following conditions hold: cal field into two or three parts, depending on whether a
(i) Dispersion terms i, can be neglected if degenerate or nondegenerate system is being treated. For ex-

ample, a parametric amplifier would have pump, signal, and

m_, . . .
o ¥Ym ~ ~ idler field components. We then define an enveldpeand
‘(ﬂom! Qm)A(ri Q<AL ED] 1D aprieret=., E o= BaZ— 0qdt+ oo for each field compo-
nent, and use a separate propagation equation for each. The
(i) Evolution terms in¢9§ can be neglected if total field is then the sum of these different components,
|0 AT, EQ)|<|Ar, ,£Q), (15) E=E,+Est+Ei=Ae&r+Age=s+Are =itcoc.
(18)

and Eq.(15) only holds if, in additioniii ) diffraction terms
in Vf can be neglected if Because the wave equation, Ed), is linear in the elec-
tric field, we can use Eq18) in the theory of Sec. Il, then
split the propagation equation into a separate GFEA-like
equation for each field component in the usual Waly

Our chosen nonlinear crystal is congruent LiNpGor

(1+0Q)Biwi>1, (16)

(iv) nonlinearity is “weak” if

2 B ) which we calculate refractive index and dispersion data from
No (1+00) s |B~(ri’§’Q’A)| ) (17)  the Sellmeier equations of Jur{d4]. We model the nonlin-
27 (1+Q)%  |A(r,,£Q)] ear polarization using the square of the total electric field,

) N retaining the parts resonant with our field carriers in the nor-
We use() instead ofid, for these conditions because g way. Our OPO simulationsee Sec. Yassumed a pump
conditions, on the frequency components of the variougequency of 357.1 THz, with nominal signal and idler car-
terms are better defined than those for time derivatives.  (jgr frequencies of 257.5 THz and 99.6 THz, respectively
These conditions are the same as those required for th@vavelengths 0.84002m, 1.16500xm, 3.0110xm). This
SEWA and SEEA theories, with the SVEA conditions beingmeans that the pump pulse will travel through LiNp@ore
a special case gained by settif@|<1 for the diffraction  gjowly than the signal, and it therefore needs to be injected
and nonlinearity conditions—implying that modulations in jhig the crystal ahead of isee Fig. 1 When the two over-
the envelope are so slow compared to the carrier frequenqyy an idler is generated by the nonlinear interaction, and the
that they can be neglected. Note that backward propagatingree pulses then continue to interact with each other as they
behavior has not bee|_1 explicitly excluded., but since it WOUldpropagate through the crystal. Note that our ideal nondegen-
appear as a modulation on the enveldpét would be ap-  grate parametric amplifier simulatiofsee Sec. I use the
proximated away as part of the evolution conditiffq.  same field frequencies, but idealize the crystal parameters by

(15)]. ) setting the group velocities and dispersions to zero.
Note that the exact solution of E¢L1) makes no refer-

ence to a particular choice of carrier phagg This implies
that once a solution for the propagation of a particular enve-
lope has been obtained, the problem has, in fact, been solved In a typical experiment, the crystal length would be fixed,
for a set of pulsesand initial conditions based on different as would any properties defined by its design, such as peri-
carrier phases—where that set is determined by the initiabdic poling. If we were to investigate this case for a range of

A. System scalings
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pulse durations, there would naturally be differences between Pump w— | — | m—

the results, even within the SVEA. For example, the relative Sienal - "

pulse broadening caused by traveling through a 1060 Idler —— >

crystal is greater for a 12-fs pump pulse than for a 48 fs one.

Similarly, a fixed timing offset for injection would have dif- £ 2 NPA, nondegenerate parametric amplification. The

ferent effects; and a fixed pump pulse power would generatgckness of the arrows is intended to give an indication of how the
dlf'fel’ent Strengths Of non“near interaction for dlf‘fel’ent pulseenergy of the field Components Changes during propagation through
lengths. All these effects would confuse any attempt at anhe crystal.

systematic comparison of the few-cycle effects in the models

we consider. , . tal, they interact within it, then exit at the far end. However,
Therefore, in order to isolate spec_mc few-cycle ef,feCtS'because real nonlinear crystalsuch as LiNb@) tend to
we must scale the pump pulse full width at half maximumy, e significant dispersion, very short pulses quickly spread
(FWHM) 7;, crystal lengthLc, pump pulse energyV, and 4, ‘making them difficult to create, and reducing the few-
pump timing offset, in such a way as to ensure the effectscyde effects we aim to study.
of group velocity, pump timing, and nonlinearity occurinthe ", order to demonstrate clearly the nature of few-cycle
same proportions to one another over the range of pulSgiects in y(2) materials, in this section we investigate an
lengths. ) . o ideal case by setting the dispersion to zero, and make the
_ We can work out an appropriate scaling by examining &yyoyp velocity the same at all frequencies. This means that
simple version of the propagation equatidy. 19, where [ _ 1 g the “few-cycle” polarization prefactdt is identi-
we write the group velocity prefactors &, the second- 4 for hoth the SEWA and GFEA theories. Note that it is
order 9|sper5|on prefactors g, and the polarization terms ifficult to do no-dispersion simulations over long times, be-
asC@f. To assist us with the hscallng process we also write;ase pulse self-steepening causes both the numerical inte-
g=r"'¢', r=r"97', andA=r"A’, wherer is the scaling  gration and the theoretical approximations to break down.
factor. Our simple propagation equation is therefore We inject Gaussian pump and signal pulses at exactly the
, , 2, , same time(i.e. t,=0), with the same width. They then
rh+f’9§’A =1""9B19. A +rh+2952(9T,A Fr2CAZ, travel down the ?:ryst)al with maximum overlap, intZracting
(19 all the way. Other parameters are fixed by the scaling rules
We can easily match the LHS term with the polarizationfrom Sec. lll A. Further, whergraphing results for the fig-
term by setting = h; but then we must choose eitherg to ~ Ures, we scale the tlmes“for e?ch pulse length to the 6 fs case
match group velocities, of=2g to match the second-order (€-9- for a 24 fs pulse, #=10" corresponds to 40 s and
dispersion—we cannot match both. For our chosen opé??"e the.pulse intensities in proportlo_n .t(_a their |r)|pa| inten-
situation(see Sec. Y/ it is best to match the group velocity sities. This means that graphs of. the !nltlal conditions for a
terms, which control how long the pump and signal pulsed@nge of pulse lengths would be identical. , ,
overlap—in general, the dispersion has a much smaller ef- Fm_ally,_ note that in _thes_e |_d_eal results, the nonlinear in-
fect. teraction is “strong,” with significant transfer of energy be-
We take our reference situation to be a 20-nJ 24-fdween the fields.
FWHM pump pulse propagating through a 5@én crystal,
with a pump timing offset of 48 fs. For the chosen parameter A. Nondegenerate parametric amplification(NPA)

scaling f=g=h) We consider first a nondegenerate parametric amplifier

T L. ty, 20 nJ with pump, signal, and idler frequencies such thgt— w
= = = (20 +w; and ws# w;. In the 24 fs reference case, the initial
24 fs 500 pm 48 fs W pump energy is 20 nJ and the initial signal energy is 10 pJ,

scaling the crystal parameters. If we scale the crystal dispefhe energies were scaled according to @@). Figures 2 and
sion with B,=r ~9B}, the relative amount of pulse spread- 3 sh.ow how, according tp the (_BFEA, the idler pulse intensity
ing changes to become the same for each simulation—e.g., Arofiles A7 generated in a single pass of the crystal vary
the 48 fs pulse widens by 10% in a 10@Gn crystal, the 12 with pulse duration. The profiles show little variation with

fs will also be widen by 10% in its 25@m crystal. We did  PulS€ duration except for the shortest pulses 20), where

a set of SVEA simulations on this basis, and as expected/istortion is evident; the signal and pump profiles show de-
saw identical pulse profiles regardless of the chosen pulgdations of a comparable magnitude. More dramatic effects
length. However, we chose not to use this perfect scheme f@PPear in the phase profiles: in Fig. 4, the phases of the pulse

the bulk of our OPO simulations, because it is far from beingENVelopes at pulse durations of 18 fs and 96 fs are shown
experimentally practical. with the phase distortions due to the finite pulse lenfises

Eq. (13)]. As the pulse duration shortens, the principal effect
is to increase the magnitude of the phase distortion, leaving
the shape of each profile largely unchanged; however, more
A parametric amplifier is a single-pass device: pump andcomplex phase oscillations develop for the shortest pulses.
signal pulses are injected into one end of the nonlinear crysAt 96 fs, the profiles show a smaller distortion, and are tend-

IV. IDEAL PARAMETRIC INTERACTIONS
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Pump = | >

Signal — ¢ —e & -

Idler ——e | m———— —& -

FIG. 5. NPD, nondegenerate parametric deamplification. The
thickness of the arrows is intended to give an indication of how the
energy of the field components changes during propagation through
A the crystal.
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% \\\\\\%g.-}’ S b& increases, amplification takes over. In a comparison of SVEA
@/@ \\\\\\\:\\\\E\ff &Q» and GFEA models, the effect caused by the phase distortion
Ox \\\\:\\:\:\i\\\“ “° e is more visible when the interaction is strong enough for the
% 0 R S input component of the signal pulse to be strongly depleted,
f’fy ~ and also is much stronger for shorter pulses

The GFEA signal pulse profiles on exit from the crystal as
FIG. 3. NPA, scaled GFEA idler pulse envelodéd? on exit  a function of pulse duration are presented in Fig. 6. Note that
from the ideal dispersionless crystal. The SVEA resultsafbpulse ~ the SVEA prediction corresponds to the long-pulse limit of
lengths are essentially identical to the 96 fs result. the GFEA figure, but those limiting features are too small to
be seen. The GFEA output pulse energies are displayed in
ing towards the long-pulse SVEA limit. In this limit, the Fig. 7, which shows how the behavior changes both with
profiles are essentially flat, although the pump field develop$ulse length and initial phase. The data #§y,.~ 7/2 dem-
nodes that give rise to a steplike change in the phase. onstrates the effects of exact initial conditions and finite
pulse length; maximum deamplification occurs in the long-
pulse (SVEA) limit. If we instead start with a signal phase
. . ) . slightly different from/2, e.g., 0.5%, the deamplification
As a variant on the case just treated, signal and idleg jess efficient and will eventually be overtaken by the am-
pulses with equal numbers of photons were injected, and thﬁlifica’[ion, even for the SVEA model. Consequently, com-
relative phases of the pulses set to ensure that the signal aBQrisons for imperfect initial phases are dependent on the
idler experience ini_tial Qeampl?f?catidlsee Fig. 3 Since the length of the crystal. However, since we use a scaling pro-
subsequent evolution is sensitive to phase changes, and thgqyre, the results still behave in a systematic way, even if
finite pulse length terms in the GFEA affect the phases, th'?hey are not completely generic.
is an intgresting situation to examine. In the SVEA, the sig- ¢ course, changing other initial conditions can also dis-
nal and idler decay away towards zero as the pulses propg;ry the deamplification, e.g., different numbers of signal and
gate, so the SVEA output signal is just some residual part ofyjer photons. Although both signal and idler will initially be
the input. The GFEA evolution is different, as can be seerygampiified, as they approach zero photon number, one field
from Eq.(13)—the finite pulse lengths alter the phase profilej| «gyershoot” the zero and be inverted. This alters the
of the nonlinearity, and hence change the evolution of theyhase relationships, and so again amplification takes over. As

pulses. During an initial period of deamplification, the pulsesy, example, simulations based on our 18 fs pulses suggested
undergo a gradual phase distortion. Then, as the discrepancy

B. Nondegenerate parametric deamplification(NPD)

S —— 0.4 T T

-10 -5 5 10 -10 -5 ¢} 5 10
scaled T scaled T
T ., T LA AL
, [ 18fs= V-96fs | svea |
i

e 0| H J

21 Pump ! ] : . -

P SPP B s v FIG. 6. NPD, output GFEA signal intensities f@r,= /4 and

IR SO 10 ¢,=0 for a range of pulse durations, peak vatué x 10°. Equiva-
lent SVEA results are very different, they are the same for all pulse
FIG. 4. NPA, envelope-phase profiles for 18- and 96-fs pulsdengths, are too small to show up on the scale of this gthping
durations. Top to bottom, idler, signal, pump; SVE#ashed ling ~3% of the height of the 48-fs GFEA peaksnd the two peaks
GFEA 96 fs(dash-dotted ling GFEA 18 fs(curved ling. are located further from the origitat 7=~ = 10).
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o F s e T ~e ]
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—40 =20 0 20 40 -50 0 50
time t (fs) time t (fs)
b A ] g ‘\\ Signal,:

A, ()]
lAgs (O

- 24fs /\A ] 361 Mmﬁ
FIG. 7. NPD, output GFEA pulse energies&fna (P P S L1 A W N ]

|-
= [|Asignal 2d, arbitrary unit3 for a range of initial signalenve- -ree (fs)1 00 -0 8 (o) 200
lope) phasesp and pulse lengthg, .. The intensities and times
are scaled in our usual way. The SVEA results are nearly identical FIG. 9. Scaled OPO, time domain representation of the modulus
for all pulse lengths, and differ from the 48 fse., log(48)  squared of the pulse envelopes, for a range of injected pump pulse
=1.68] results in that the neafy,— 7/2 give significantly lower  durations: 6 fqtop), 12, 24, 36 fgbottom). For each subfigure, the
energies—down to fOrather than X 10° for /2. curves compargbottom to top pump, signal, and idler for the

SVEA simulations(dashedl and GFEA onesgcurved.
that photon number mismatches of about 1% would not no-

ticeably disrupt the appearance of either Fig. 6 or 7. cated. Figure 9 shows intensity profiles for the pump, signal,
and idler(bottom to top in each framéor the SVEA(dashed
V. OPTICAL PARAMETRIC OSCILLATION (OPO) line) and GFEA(solid line) for four different pulse durations.

The first point to note in Fig. 9 is that the SVEA results
are not identical in all frames, even though the scaling pro-
cedure in Sec. lllA is designed to make them, as far as

As sho_vvn in Fi_g. 8, we co_nside_red the case of a LiI_}.,IbO possible,independenbf pulse duration. The reason is that
crystal in an optical cavity with mirrors that reflect the signal the dispersion scales in a different way to the group time

wavelength only. The oscillator is driven by a train of Gauss'delay and so is not correctly compensated by ). A

ian pump pulses whpse periodipity C'OS?'Y matches the na,tLEecond rather surprising feature is that we might expect the
ral period of the cavity, and which amplify, and then sustaing e results to tend to the SVEA as pulse length increases,
the signal pulse confined W'th.'n It The cavity length can bey, s this is not evident from the graphs. The explanation for
tur:jed habourt] exact s?/ncr;ron!zatlon. Thg L(]jler pﬁlse’ 9€Nerihis is that the steady state of the OPO can change suddenly
atel when the s!gng [:;]u S€ r|1ntehracts with- eac ”eWhP“hmas the parameters are varied. This property is highlighted in
pulse, 1S .transm|t.te t. rough the output mirror W_'t t eFig. 10, which shows the GFEA signal pulse profile for pulse
pump, while the signal is strongly reflected. For a given sl asions from 6 fs to 192 fs; the sudden adjustment of the
of parameter values, we modeled the development of thgrea when moving from 36 fs to 48 fs takes it close to the

signal pulse over many cavity transits uptil it rea_ched 3SVEA, and the difference between the two gradually disap-
steady state. Typically, we found that the signal stabilized E

| hundred lts althouah. in a f i ears as the pulse duration is increased furfeee Fig. 11
several hundred transits although, in a few cases, no equility,y Rafr11]). Note that the scaling procedure used for Fig.

rium was achieved and the system oscillated indefinitelylo is an extension of Eq20) in that the dispersion term is

Here we present results for the perfectly phase matched, S¥lso scaled, making the SVEA results completely indepen-

chronized case. dent of pulse duration. Spectral profiles corresponding to the
temporal profiles of Fig. 9 are shown in Fig. 12. The spectral
A. Scaled OPO shape for each field is similar across all pulse durations, with

The complex nature of the dynamics, which arises from@ Pulse of double thétime) width naturally having half the
repetitive cycling of the signal pulse in the presence of manyandwidth. Notice that the pump and signal spectra in the 6
interacting processes makes the isolation and analysis &% frame are close to overlapping, which indicates that the

few-cycle effects within the different models quite compli- Separation of the total field into distinct pump, signal, and
idler components is becoming a questionable assumption. In-

We move on from optical parametric amplification to a
synchronously pumped optical parametric oscillaoPO.

S LINGG S clusion of the carrier wave in the results raises some quite
DEs N subtle issues that need careful consideration. It must be
m— Pump = = =§ 840nm : - :
= Iginp S stressed again that the carrier drops out of the analysis lead-
_.Si g;l ’. 301lnm ing to Eq.(11). The envelope description is therefore com-
§ I <g_1 1160nm plete, although the phases of two of the three envelope func-

tions can be changed by arbitrary constants without any
FIG. 8. Simplifed optical parametric oscillator experiment setupeffect on the computations apart from an appropriate adjust-
(see Sec. V. ment in the phase of the third envelope. For instance, if the
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FIG. 12. Scaled OPO, frequency domain representation of the
modulus squared of the pulse envelopes, for pump pulse durations
FIG. 10. Dispersion scaled OPO, time domain representation off 6, 12, and 36 fs. For each subfigure, the curves com{partéom
the GFEA signal amplitude, for a range injected pump pulse dural© P pump, signal, and idler for the SVEA simulatiofuiashed
tions from 6—192 fs. Here the crystal dispersion is adjusted in adline) and GFEA onescurved ling.

dition to the other scalings to make a SVEA theory fully scale

invariant. The SVEA profile in this case very similar to the 192-fs 1 he reference point used in calculating the phase drift is
GFEA profile. at the maximum amplitude of the envelope of the signal

pulse, which is in fact not necessarily at the point of maxi-

mum electric field. This is a good choice for our purposes,

phases of the pump and signal envelopes are changed B¥:ase it does not move between passes once a steady state
A ¢, andA ¢, the phase of the idler envelope is changed bys established. Although these phase drifts are quite small,

A¢i=A¢d,—A¢s. Adjustments of this kind show up in the giscrepancies between the SVEA and GFEA will quickly ac-
results only if graphs of the complete electric-field profiles,,mulate.

including the carrier waves, are displayed, as in Fig. 13. If
the simulations in that figure were rerun with differing enve-
lope phases, this would be reflected in temporal displace-
ments of the carrierlike oscillations beneath the envelopes. We have presented a different and more complete deriva-
A further interesting feature is that, while the moduli of tion of how the envelopes of extremely short optical pulses
the pulse envelopes may have stabilized in a simulation, thevolve in nonlinear interactions. We have compared the re-
envelope phases cgand usually dp change from pass to sults of our new(GFEA) model to those of the traditional
pass; this process continues indefinitely, so a movie made uglowly varying envelope approximatiofSVEA) using a
of frames from successive transits would show the pump,
signal, and idler electric-field oscillations drifting across un- il ' A ]
derneath the respective steady envelope profiles. The differ. I ! 1
ent models discussed in this paper give significantly different= */WV\'\/\/\]\/\/\/W\/VWW %<
results for the pass-to-pass phase drift. Figure 14 shows th® | gfg A 1o
phase change for the signal pulses as a function of pulse

length for the SVEA, SEWA, and GFEA; note that the o 0 o 20 0 B ———

VI. CONCLUSIONS

SEWA and GFEA results are similar to each other, while the time t (fs) time t (fs)
(less accurajeSVEA exhibits a very different dependence. — W dior]
. ; signali
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T e FIG. 13. Scaled OPO, time domain representation of the electric
50 100 150 fields of the pulse, for pump pulse durations of 6, 12, and 36 fs. For
pulse length (fs) each subfigure, the solid curvésurved ling compare(bottom to

top) pump, signal, and idler for the GFEA simulations, for 6 fs the
FIG. 11. Dispersion scaled OPO, maximum difference betweerSVEA fields are also indicatedlashed ling The phases are chosen
GFEA and SVEA simulations over the middle quarter of the scaledso that the maximum excursion of the signal envelope is purely real
7 range, on a log, scale. valued, and the idler phase is chosen so that ¢;= ¢, .
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o T model is insensitive to pulse length, the GFEA theory shows
clear changes as the pulses get shorter and contain fewer
optical cycles.

Further, when we studied the highly sensitive deamplifi-
cation casdi.e. NPD, we saw dramatic differences between
the SVEA and GFEA simulations even outside the few-cycle
A regime. These arose from the phase distorting effects of the
30 40 few-cycle terms in the theory disrupting the exact phase re-
lationships needed for deamplification. While the absolute

FIG. 14. Scaled OPO, pass-to-pass phase drift for a range dfize of these differences do depend on the chosen parameters
parameters, comparing SVE@ashed ling GFEA (curved ling,  of crystal length, pulse energy, and so on, they will always
and SEWA(dash dotted linesimulation results. The differences are get dramatically larger for shorter pulses.
taken between the phase at the peak of th_e modulus-squared of the o, the other hand, the repetitive cycling nature of the
envelopes at the end of one pass of the signal pulse and the nexbptical parametric oscillatofOPO) produces more compli-

cated and subtle dynamics; small changes in parameter val-
scaling procedure to distinguish specific few-cycle effectsues can, for instance, cause sudden changes in the steady-
from other phenomena caused by changing pulse duration. $tate fields. It is therefore no surprise that comparison of the
should be noted that the SVEA becomes inadequate, whemesults predicted by the different models is less straightfor-
ever the envelope changes rapidly within a few carrier periward in the OPO case. The new model certainly produces
ods. Strictly speaking, a few-cycle pulse is not required, bedifferences in the pulse envelopes as well as the phases, al-
cause a steep edge within a longer pulse also fulfills théhough the way in which the GFEA tends to the SVEA in the
conditions. long-pulse limit has some interesting features. The two mod-

The effect of the extra “few-cycle” terms in the GFEA els also predict different results for the pass-to-pass phase
evolution equation is to add a phase distortion to the nonlindrift of OPO pulses, and this implies significant differences
ear polarization term, which then imposes itself on the pulsén the electric-field structures. In both cases, the carrier wave
envelopes. This is demonstrated by our single-pass opticahoves under the envelope from one transit to the next, but
parametric amplifier NPA model where, whilst the SVEA by different amounts.
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