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Few-cycle pulse propagation

P. Kinsler* and G. H. C. New
Department of Physics, Imperial College, Prince Consort Road, London SW7 2BW, United Kingdom

~Received 12 September 2002; published 28 February 2003!

We present a comprehensive framework for treating the nonlinear interaction of few-cycle pulses using an
envelope description that goes beyond the traditional slowly varying envelope approximation method. This is
applied to a range of simulations that demonstrate how the effect of ax (2) nonlinearity differs between the
many-cycle and few-cycle cases. Our approach, which includes diffraction, dispersion, multiple fields, and a
wide range of nonlinearities, builds upon the work of Brabec and Krausz@T. Brabec and F. Krausz, Phys. Rev.
Lett. 78, 3282~1997!# and Porras@M. A. Porras, Phys. Rev. A60, 5069~1999!#. No approximations are made
until the final stage when a particular problem is considered.
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I. INTRODUCTION

The analysis of optical pulse propagation traditionally
volves describing a pulse in terms of a complex field en
lope, while neglecting the underlying rapid oscillations at
carrier frequency. The resulting ‘‘slowly varying envelop
approximation’’~SVEA! ~see e.g., Ref.@3#!, which reduces
second-order differential equations to first order, is va
when the envelope encompasses many cycles of the op
field and varies slowly. The alternative approach is to so
Maxwell’s equations numerically~see e.g., Refs.@1,4#!,
which is more general but involves greater computatio
effort, and lacks the intuitive picture of a pulse ‘‘envelope

For example, optical parametric oscillators~OPOs! based
on aperiodically poled lithium niobate have generated 53
idler pulses at 3mm that are nearly transform limited, an
contain only five optical cycles@5#; laser pulses with less
than three optical cycles have been generated in other
texts @6#. Under these circumstances, the validity of t
slowly varying envelope approximation is clearly open
question.

Brabec and Krausz@1# derived corrections to the SVEA
which they included in their ‘‘slowly evolving wave approx
mation’’ ~SEWA!. This enabled the few-cycle regime to b
modeled with improved accuracy, and the SEWA has sub
quently been applied in different situations, including u
trashort IR laser pulses in fused silica@7,8#, the filamentation
of ultrashort laser pulses in air@9#, and even in microstruc
tured optical fibres@10#. Later, Porras@2# proposed a slightly
different ‘‘slowly evolving envelope approximation’’~SEEA!
that included corrections for the transverse behavior of
field.

Here we use a field envelope approach to simulate
propagation of ultrashort pulses in ax (2) medium. The dif-
ference is that we~a! derive a more general form than that
Brabec and Krausz, called the ‘‘generalized few-cycle en
lope approximation’’~GFEA!; and~b! apply it to both optical
~nondegenerate! parametric amplification~NPA! and the op-
tical parametric oscillator~OPO!. More comprehensive re
sults, including some for a variety of systems such as sec
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harmonic generation and degenerate parametric ampli
tion, can be seen in Ref.@11#. The only previous multiple
field application of this kind of result was for four wav
mixing @12#.

We compare the SEWA-SEEA equations to our own~Sec.
II !, and explain the differences and subsequent adjustm
to the necessary approximations. This theory enables u
rigorously study what combination of approximations affor
the most efficient method for treating a given nonlinear
teraction involving few-cycle pulses. Next~Sec. III! we dis-
cuss thex (2) nonlinearity and a scaling scheme designed
reveal the few-cycle effects. Then we compare the SV
predictions to the few-cycle GFEA theory using idealiz
situations~Sec. IV! and more realistic OPO models~Sec. V!.
Finally, we present our conclusions~Sec. VI!.

II. THEORY

This section contains a summary of a complete reder
tion @13# of a Brabec and Krausz style theory, which yiel
an evolution equation for an envelope description of pu
propagation in the few-cycle regime. Our result is more co
plicated than the SEWA equation@1#, but reduces to it in the
appropriate limits; it also explains the slight differences b
tween their result and that of Porras@2#.

Following Brabec-Krausz, we consider the case of sm
transverse inhomogeneities of the polarization, and so s
with the three-dimensional wave equation

~]z
21¹'

2 !E~rW,t !2
1

c2
] t

2E
2`

t

dt8e~ t2t8!E~rW,t8!

5
4p

c2
] t

2Pnl~rW,t !. ~1!

Here ¹'
2 is the transverse Laplace operator,]a is short-

hand notation for ]/]a, e(t)5(2p)21*2`
` dvẽ(v)eıvt,

ẽ(v)5114px(v), andx(v) is the linear electric suscep
tibility. The electric fieldE propagates along thez direction.
Both E and the nonlinear polarizationPnl are polarized par-
allel to thex axis.
©2003 The American Physical Society13-1
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We can transform Eq.~1! into frequency space in order t
expandẽ(v) in powers ofv, thus enabling us to treat th
material parameters as a power series which we can trun
to an appropriate order. However, for simplicity it is better
expand k about a suitablev0 instead. Using ẽ(v)
5c2k(v)2/v2, it follows that

k~v!5 (
n50

`
gn~v2v0!n

n!
,

gn5]v
n k~v!uv0

5bn1ıan ;bn ,anPR. ~2!

We can now write the frequency space version of Eq.~1!
as

~]z
21¹'

2 !E~rW,t !1F (
n50

`
ıngn~] t1ıv0!n

n! G2

E~rW,t !

5
4p

c2
] t

2Pnl~rW,t !. ~3!

We introduce an envelope and carrier form for the field
the usual way, usingrW[(rW' ,z), so that

E~rW,t !5A~rW' ,z,t !eıJ1A* ~rW' ,z,t !e2ıJ, ~4!

and similarly Pnl(rW,t)5B(rW' ,z,t;A)eıJ

1B* (rW' ,z,t;A)e2ıJ. The symbolJ5b0z2v0t1c0 is in-
troduced as a convenient shorthand for the argument of
exponential. With these envelope-carrier substitutions,
equation of motion can be written as

~@ ıb01]z#
21¹'

2 !A~rW' ,z,t !

1F (
n50

` gnv0
n

n! S ı

v0
] tD nG2

A~rW' ,z,t !

52
4pv0

2

c2 S 11
ı

v0
] tD 2

B~rW' ,z,t;A!. ~5!

Equation~5! has the opposite sign on the RHS to Brabec a
Krausz’s Equation~2!, but agreement is recovered later
Eq. ~11!.

As usual, we introduce comoving variables

t5v0~ t2b1z!, ] t[v0]t , ~6!

j5b0z, ]z[b0]j2v0b1]t , ~7!

and Eq.~5! now becomes
02381
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H ~ ıb01b0]j2v0b1]t!
21¹'

2

1F (
n50

` gnv0
n

n!
~ ı]t!

nG2J A~rW' ,j,t!1
4pv0

2

c2

3~11ı]t!
2B~rW' ,j,t;A!50. ~8!

For convenience we also introduce the dimensionless
tio of phase and group velocitiess5v0b1 /b0
5(v0 /b0)/(1/b1)5v f /vg , and use the fact that the refrac
tive index atv0 is n05cb0 /v0. We also define a dispersio
term D̂ in a similar way to Brabec-Krausz, but instead use
scaled~dimensionless! version D̂85(v0 /b0)D̂ in the fol-
lowing equations so that

D̂85
v0

b0
F ıa1~ ı]t!1 (

n52

` gnv0
n21

n!
~ ı]t!

nG . ~9!

Hence we get

05H ~]j2s]t!1
1

2ı
~]j2s]t!

21
1

2ıb0
2
¹'

2 2F ıs~ ı]t!2
ıa0

b0

1ıD̂8G1
ı

2 F ıs~ ı]t!2
ıa0

b0
1ıD̂8G2J A~rW' ,j,t!

1
2p

ın0
2 ~11ı]t!

2B~rW' ,j,t;A!. ~10!

This form can be rearranged without approximation to

]jA~rW' ,j,t!5S 2
a0

b0
1ıD̂8DA~rW' ,j,t!

1
~ ı/2b0

2!¹'
2

~11ıs]t!
A~rW' ,j,t!

1
2ıp

n0
2

~11ı]t!
2

~11ıs]t!
B~rW' ,j,t;A!1

TR

11ıs]t
,

~11!

where

TR5F2
ıq2

2
]j

21
ı

2 S a0

b0
2ıD̂8D 2GA~rW' ,j,t!. ~12!

Equation~11! is exact—it contains no more approxima
tions than our starting point Eq.~1! except for the expansion
of e in powers ofv. We recover the full fieldE from Eq.~4!
by recombiningA and knowing the carrier. The partial de
rivatives (ı]t) in the denominators can, if necessary,
treated by Fourier transforming into the conjugate freque
space (V). Note that liket, V is scaled relative to the car
rier frequency.
3-2
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If we set TR50, this gives us a GFEA equation, whic
contains the SVEA@3#, SEWA@1#, and SEEA@2# within it as
special cases. Of course we cannot just set theTR term to
zero without some justification, and this is discussed bel

The (2ıp/n0
2)KB polarization term from Eq.~11! has

prefactors that depend on the time derivative of the polar
tion, and these new terms are what add the effect of fi
pulse lengths to the pulse evolution. Note that we can w
this polarization term in different forms,

K5
~11ı]t!

2

~11ıs]t!
5~11ıs]t!F11~12s!

2ı]t1~11s!]t
2

~11ıs]t!
2 G

5~11ı]t!F11
ı~12s!]t

~11ıs]t!
2G . ~13!

With s51, these reduce to theK511ı]t SEWA @1#
form. Similarly, to first order in (s21), one can get theK
511ıs]t SEEA @2# form. Finally, for a SVEA theory,K
51, since the]t terms are assumed to be negligible.

TheTR term is negligible if the following conditions hold
~i! Dispersion terms in]t can be neglected if

US v0
mgm8

b0m!
VmD Ã~rW' ,j,V!U!uÃ~rW' ,j,V!u. ~14!

~ii ! Evolution terms in]j
2 can be neglected if

u]jÃ~rW' ,j,V!u!uÃ~rW' ,j,V!u, ~15!

and Eq.~15! only holds if, in addition,~iii ! diffraction terms
in ¹'

2 can be neglected if

~11sV!b0
2w0

2@1, ~16!

~iv! nonlinearity is ‘‘weak’’ if

n0
2

2p

~11sV!

~11V!2
@

uB̃~rW' ,j,V;A!u

uÃ~rW' ,j,V!u
. ~17!

We useV instead of ı]t for these conditions becaus
conditions, on the frequency components of the vario
terms are better defined than those for time derivatives.

These conditions are the same as those required for
SEWA and SEEA theories, with the SVEA conditions bei
a special case gained by settinguVu!1 for the diffraction
and nonlinearity conditions—implying that modulations
the envelope are so slow compared to the carrier freque
that they can be neglected. Note that backward propaga
behavior has not been explicitly excluded, but since it wo
appear as a modulation on the envelopeA, it would be ap-
proximated away as part of the evolution condition@Eq.
~15!#.

Note that the exact solution of Eq.~11! makes no refer-
ence to a particular choice of carrier phasec0. This implies
that once a solution for the propagation of a particular en
lope has been obtained, the problem has, in fact, been so
for a set of pulses~and initial conditions! based on different
carrier phases—where that set is determined by the in
02381
.

-
te
e

s

he

cy
ng
d

-
ed

al

envelope and some arbitrary choices of carrier phasec1
P@0,2p). The final state is then given by the chosenc1
combined with the final form of the envelope.

III. THE x „2… NONLINEAR SYSTEM

When modelingx (2) nonlinear systems we split the opt
cal field into two or three parts, depending on whethe
degenerate or nondegenerate system is being treated. Fo
ample, a parametric amplifier would have pump, signal, a
idler field components. We then define an envelopeAa and
carriereıJa, Ja5ba,0z2va,0t1ca,0 for each field compo-
nent, and use a separate propagation equation for each
total field is then the sum of these different components,

E5Ep1Es1Ei5ApeıJp1Ase
ıJs1Ai* e2ıJ i1c.c.

~18!

Because the wave equation, Eq.~1!, is linear in the elec-
tric field, we can use Eq.~18! in the theory of Sec. II, then
split the propagation equation into a separate GFEA-l
equation for each field component in the usual way@3#.

Our chosen nonlinear crystal is congruent LiNbO3, for
which we calculate refractive index and dispersion data fr
the Sellmeier equations of Jundt@14#. We model the nonlin-
ear polarization using the square of the total electric fie
retaining the parts resonant with our field carriers in the n
mal way. Our OPO simulations~see Sec. V! assumed a pump
frequency of 357.1 THz, with nominal signal and idler ca
rier frequencies of 257.5 THz and 99.6 THz, respectiv
~wavelengths 0.84000mm, 1.16500mm, 3.0110mm). This
means that the pump pulse will travel through LiNbO3 more
slowly than the signal, and it therefore needs to be injec
into the crystal ahead of it~see Fig. 1!. When the two over-
lap, an idler is generated by the nonlinear interaction, and
three pulses then continue to interact with each other as
propagate through the crystal. Note that our ideal nondeg
erate parametric amplifier simulations~see Sec. IV! use the
same field frequencies, but idealize the crystal parameter
setting the group velocities and dispersions to zero.

A. System scalings

In a typical experiment, the crystal length would be fixe
as would any properties defined by its design, such as p
odic poling. If we were to investigate this case for a range

FIG. 1. Pump timing offset~see Sec. III!. The pump pulse is
injected into the crystal just before the signal pulse is reflected
the input mirror. The faster moving signal pulse then catches
pump pulse up about halfway through the crystal, and an idler p
is generated.
3-3
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pulse durations, there would naturally be differences betw
the results, even within the SVEA. For example, the relat
pulse broadening caused by traveling through a 1000mm
crystal is greater for a 12-fs pump pulse than for a 48 fs o
Similarly, a fixed timing offset for injection would have dif
ferent effects; and a fixed pump pulse power would gene
different strengths of nonlinear interaction for different pu
lengths. All these effects would confuse any attempt a
systematic comparison of the few-cycle effects in the mod
we consider.

Therefore, in order to isolate specific few-cycle effec
we must scale the pump pulse full width at half maximu
~FWHM! Tp , crystal lengthLc , pump pulse energyW, and
pump timing offsettD in such a way as to ensure the effec
of group velocity, pump timing, and nonlinearity occur in th
same proportions to one another over the range of p
lengths.

We can work out an appropriate scaling by examining
simple version of the propagation equation~Eq. 11!, where
we write the group velocity prefactors asB1, the second-
order dispersion prefactors asB2, and the polarization term
asCA2. To assist us with the scaling process we also w
j5r 2 fj8, t5r 2gt8, and A5r hA8, where r is the scaling
factor. Our simple propagation equation is therefore

r h1 f]j8A85r h1gB1]t8A81r h12gB2]t8
2 A81r 2hCA82.

~19!

We can easily match the LHS term with the polarizati
term by settingf 5h; but then we must choose eitherh5g to
match group velocities, orf 52g to match the second-orde
dispersion—we cannot match both. For our chosen O
situation~see Sec. V!, it is best to match the group velocit
terms, which control how long the pump and signal puls
overlap—in general, the dispersion has a much smaller
fect.

We take our reference situation to be a 20-nJ 24
FWHM pump pulse propagating through a 500mm crystal,
with a pump timing offset of 48 fs. For the chosen parame
scaling (f 5g5h)

Tp

24 fs
5

Lc

500 mm
5

tD

48 fs
5

20 nJ

W . ~20!

We could choose to make the scaling perfect, by a
scaling the crystal parameters. If we scale the crystal dis
sion with B25r 2gB28 , the relative amount of pulse sprea
ing changes to become the same for each simulation—e.
the 48 fs pulse widens by 10% in a 1000mm crystal, the 12
fs will also be widen by 10% in its 250mm crystal. We did
a set of SVEA simulations on this basis, and as expec
saw identical pulse profiles regardless of the chosen p
length. However, we chose not to use this perfect scheme
the bulk of our OPO simulations, because it is far from be
experimentally practical.

IV. IDEAL PARAMETRIC INTERACTIONS

A parametric amplifier is a single-pass device: pump a
signal pulses are injected into one end of the nonlinear c
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tal, they interact within it, then exit at the far end. Howeve
because real nonlinear crystals~such as LiNbO3) tend to
have significant dispersion, very short pulses quickly spr
out, making them difficult to create, and reducing the fe
cycle effects we aim to study.

In order to demonstrate clearly the nature of few-cy
effects in x (2) materials, in this section we investigate a
ideal case by setting the dispersion to zero, and make
group velocity the same at all frequencies. This means
s51, so the ‘‘few-cycle’’ polarization prefactorK is identi-
cal for both the SEWA and GFEA theories. Note that it
difficult to do no-dispersion simulations over long times, b
cause pulse self-steepening causes both the numerical
gration and the theoretical approximations to break down

We inject Gaussian pump and signal pulses at exactly
same time~i.e. tD50), with the same width. They the
travel down the crystal with maximum overlap, interactin
all the way. Other parameters are fixed by the scaling ru
from Sec. III A. Further, whengraphing results for the fig-
ures, we scale the times for each pulse length to the 6 fs
~e.g., for a 24 fs pulse, ‘‘t510’’ corresponds to 40 fs!, and
scale the pulse intensities in proportion to their initial inte
sities. This means that graphs of the initial conditions fo
range of pulse lengths would be identical.

Finally, note that in these ideal results, the nonlinear
teraction is ‘‘strong,’’ with significant transfer of energy be
tween the fields.

A. Nondegenerate parametric amplification„NPA…

We consider first a nondegenerate parametric ampl
with pump, signal, and idler frequencies such thatvp→vs
1v i and vsÞv i . In the 24 fs reference case, the initi
pump energy is 20 nJ and the initial signal energy is 10
with a negligible~but finite! idler. For other pulse durations
the energies were scaled according to Eq.~20!. Figures 2 and
3 show how, according to the GFEA, the idler pulse intens
profiles uAi u2 generated in a single pass of the crystal va
with pulse duration. The profiles show little variation wit
pulse duration except for the shortest pulses (t&20), where
distortion is evident; the signal and pump profiles show
viations of a comparable magnitude. More dramatic effe
appear in the phase profiles: in Fig. 4, the phases of the p
envelopes at pulse durations of 18 fs and 96 fs are sh
with the phase distortions due to the finite pulse lengths@see
Eq. ~13!#. As the pulse duration shortens, the principal effe
is to increase the magnitude of the phase distortion, leav
the shape of each profile largely unchanged; however, m
complex phase oscillations develop for the shortest pul
At 96 fs, the profiles show a smaller distortion, and are te

FIG. 2. NPA, nondegenerate parametric amplification. T
thickness of the arrows is intended to give an indication of how
energy of the field components changes during propagation thro
the crystal.
3-4
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FEW-CYCLE PULSE PROPAGATION PHYSICAL REVIEW A67, 023813 ~2003!
ing towards the long-pulse SVEA limit. In this limit, th
profiles are essentially flat, although the pump field devel
nodes that give rise to a steplike change in the phase.

B. Nondegenerate parametric deamplification„NPD…

As a variant on the case just treated, signal and id
pulses with equal numbers of photons were injected, and
relative phases of the pulses set to ensure that the signa
idler experience initial deamplification~see Fig. 5!. Since the
subsequent evolution is sensitive to phase changes, an
finite pulse length terms in the GFEA affect the phases,
is an interesting situation to examine. In the SVEA, the s
nal and idler decay away towards zero as the pulses pr
gate, so the SVEA output signal is just some residual par
the input. The GFEA evolution is different, as can be se
from Eq.~13!—the finite pulse lengths alter the phase profi
of the nonlinearity, and hence change the evolution of
pulses. During an initial period of deamplification, the puls
undergo a gradual phase distortion. Then, as the discrep

FIG. 3. NPA, scaled GFEA idler pulse envelopesuAu2 on exit
from the ideal dispersionless crystal. The SVEA results forall pulse
lengths are essentially identical to the 96 fs result.

FIG. 4. NPA, envelope-phase profiles for 18- and 96-fs pu
durations. Top to bottom, idler, signal, pump; SVEA~dashed line!,
GFEA 96 fs~dash-dotted line!, GFEA 18 fs~curved line!.
02381
s

r
he
nd

the
is
-
a-

of
n

e
s
cy

increases, amplification takes over. In a comparison of SV
and GFEA models, the effect caused by the phase distor
is more visible when the interaction is strong enough for
input component of the signal pulse to be strongly deplet
and also is much stronger for shorter pulses

The GFEA signal pulse profiles on exit from the crystal
a function of pulse duration are presented in Fig. 6. Note t
the SVEA prediction corresponds to the long-pulse limit
the GFEA figure, but those limiting features are too small
be seen. The GFEA output pulse energies are displaye
Fig. 7, which shows how the behavior changes both w
pulse length and initial phase. The data forfsignal5p/2 dem-
onstrates the effects of exact initial conditions and fin
pulse length; maximum deamplification occurs in the lon
pulse ~SVEA! limit. If we instead start with a signal phas
slightly different fromp/2, e.g., 0.51p, the deamplification
is less efficient and will eventually be overtaken by the a
plification, even for the SVEA model. Consequently, com
parisons for imperfect initial phases are dependent on
length of the crystal. However, since we use a scaling p
cedure, the results still behave in a systematic way, eve
they are not completely generic.

Of course, changing other initial conditions can also d
turb the deamplification, e.g., different numbers of signal a
idler photons. Although both signal and idler will initially b
deamplified, as they approach zero photon number, one
will ‘‘overshoot’’ the zero and be inverted. This alters th
phase relationships, and so again amplification takes ove
an example, simulations based on our 18 fs pulses sugge

e

FIG. 5. NPD, nondegenerate parametric deamplification. T
thickness of the arrows is intended to give an indication of how
energy of the field components changes during propagation thro
the crystal.

FIG. 6. NPD, output GFEA signal intensities forfs5p/4 and
fp50 for a range of pulse durations, peak value'63105. Equiva-
lent SVEA results are very different, they are the same for all pu
lengths, are too small to show up on the scale of this graph~being
;3% of the height of the 48-fs GFEA peaks!, and the two peaks
are located further from the origin~at t'610).
3-5
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P. KINSLER AND G.H.C. NEW PHYSICAL REVIEW A67, 023813 ~2003!
that photon number mismatches of about 1% would not
ticeably disrupt the appearance of either Fig. 6 or 7.

V. OPTICAL PARAMETRIC OSCILLATION „OPO…

We move on from optical parametric amplification to
synchronously pumped optical parametric oscillator~OPO!.
As shown in Fig. 8, we considered the case of a LiNb3
crystal in an optical cavity with mirrors that reflect the sign
wavelength only. The oscillator is driven by a train of Gau
ian pump pulses whose periodicity closely matches the n
ral period of the cavity, and which amplify, and then sust
the signal pulse confined within it. The cavity length can
‘‘tuned’’ about exact synchronization. The idler pulse, gen
ated when the signal pulse interacts with each new pu
pulse, is transmitted through the output mirror with t
pump, while the signal is strongly reflected. For a given
of parameter values, we modeled the development of
signal pulse over many cavity transits until it reached
steady state. Typically, we found that the signal stabilized
several hundred transits although, in a few cases, no equ
rium was achieved and the system oscillated indefinit
Here we present results for the perfectly phase matched
chronized case.

A. Scaled OPO

The complex nature of the dynamics, which arises fr
repetitive cycling of the signal pulse in the presence of ma
interacting processes makes the isolation and analysi
few-cycle effects within the different models quite comp

FIG. 7. NPD, output GFEA pulse energies (Esignal

5* uAsignalu2dt, arbitrary units! for a range of initial signal~enve-
lope! phasesfs and pulse lengthsTpulse. The intensities and times
are scaled in our usual way. The SVEA results are nearly iden
for all pulse lengths, and differ from the 48 fs@i.e., log10(48)
51.68] results in that the nearfsignal5p/2 give significantly lower
energies—down to 104 rather than 33105 for p/2.

FIG. 8. Simplifed optical parametric oscillator experiment se
~see Sec. V!.
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cated. Figure 9 shows intensity profiles for the pump, sign
and idler~bottom to top in each frame! for the SVEA~dashed
line! and GFEA~solid line! for four different pulse durations

The first point to note in Fig. 9 is that the SVEA resul
are not identical in all frames, even though the scaling p
cedure in Sec. III A is designed to make them, as far
possible,independentof pulse duration. The reason is th
the dispersion scales in a different way to the group ti
delay, and so is not correctly compensated by Eq.~20!. A
second rather surprising feature is that we might expect
GFEA results to tend to the SVEA as pulse length increas
but this is not evident from the graphs. The explanation
this is that the steady state of the OPO can change sudd
as the parameters are varied. This property is highlighte
Fig. 10, which shows the GFEA signal pulse profile for pu
durations from 6 fs to 192 fs; the sudden adjustment of
GFEA when moving from 36 fs to 48 fs takes it close to t
SVEA, and the difference between the two gradually dis
pears as the pulse duration is increased further~see Fig. 11
and Ref.@11#!. Note that the scaling procedure used for F
10 is an extension of Eq.~20! in that the dispersion term is
also scaled, making the SVEA results completely indep
dent of pulse duration. Spectral profiles corresponding to
temporal profiles of Fig. 9 are shown in Fig. 12. The spec
shape for each field is similar across all pulse durations, w
a pulse of double the~time! width naturally having half the
bandwidth. Notice that the pump and signal spectra in th
fs frame are close to overlapping, which indicates that
separation of the total field into distinct pump, signal, a
idler components is becoming a questionable assumption
clusion of the carrier wave in the results raises some q
subtle issues that need careful consideration. It must
stressed again that the carrier drops out of the analysis l
ing to Eq. ~11!. The envelope description is therefore com
plete, although the phases of two of the three envelope fu
tions can be changed by arbitrary constants without
effect on the computations apart from an appropriate adj
ment in the phase of the third envelope. For instance, if

al FIG. 9. Scaled OPO, time domain representation of the modu
squared of the pulse envelopes, for a range of injected pump p
durations: 6 fs~top!, 12, 24, 36 fs~bottom!. For each subfigure, the
curves compare~bottom to top! pump, signal, and idler for the
SVEA simulations~dashed! and GFEA ones~curved!.
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FEW-CYCLE PULSE PROPAGATION PHYSICAL REVIEW A67, 023813 ~2003!
phases of the pump and signal envelopes are change
Dfp andDfs , the phase of the idler envelope is changed
Df i5Dfp2Dfs . Adjustments of this kind show up in th
results only if graphs of the complete electric-field profile
including the carrier waves, are displayed, as in Fig. 13
the simulations in that figure were rerun with differing env
lope phases, this would be reflected in temporal displa
ments of the carrierlike oscillations beneath the envelope

A further interesting feature is that, while the moduli
the pulse envelopes may have stabilized in a simulation,
envelope phases can~and usually do! change from pass to
pass; this process continues indefinitely, so a movie mad
of frames from successive transits would show the pum
signal, and idler electric-field oscillations drifting across u
derneath the respective steady envelope profiles. The di
ent models discussed in this paper give significantly differ
results for the pass-to-pass phase drift. Figure 14 shows
phase change for the signal pulses as a function of p
length for the SVEA, SEWA, and GFEA; note that th
SEWA and GFEA results are similar to each other, while
~less accurate! SVEA exhibits a very different dependence

FIG. 10. Dispersion scaled OPO, time domain representatio
the GFEA signal amplitude, for a range injected pump pulse du
tions from 6–192 fs. Here the crystal dispersion is adjusted in
dition to the other scalings to make a SVEA theory fully sca
invariant. The SVEA profile in this case very similar to the 192
GFEA profile.

FIG. 11. Dispersion scaled OPO, maximum difference betw
GFEA and SVEA simulations over the middle quarter of the sca
t range, on a log10 scale.
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The reference point used in calculating the phase drif
at the maximum amplitude of the envelope of the sig
pulse, which is in fact not necessarily at the point of ma
mum electric field. This is a good choice for our purpos
because it does not move between passes once a steady
is established. Although these phase drifts are quite sm
discrepancies between the SVEA and GFEA will quickly a
cumulate.

VI. CONCLUSIONS

We have presented a different and more complete der
tion of how the envelopes of extremely short optical puls
evolve in nonlinear interactions. We have compared the
sults of our new~GFEA! model to those of the traditiona
slowly varying envelope approximation~SVEA! using a

of
-
-

n
d

FIG. 12. Scaled OPO, frequency domain representation of
modulus squared of the pulse envelopes, for pump pulse dura
of 6, 12, and 36 fs. For each subfigure, the curves compare~bottom
to top! pump, signal, and idler for the SVEA simulations~dashed
line! and GFEA ones~curved line!.

FIG. 13. Scaled OPO, time domain representation of the elec
fields of the pulse, for pump pulse durations of 6, 12, and 36 fs.
each subfigure, the solid curves~curved line! compare~bottom to
top! pump, signal, and idler for the GFEA simulations, for 6 fs t
SVEA fields are also indicated~dashed line!. The phases are chose
so that the maximum excursion of the signal envelope is purely
valued, and the idler phase is chosen so thatfs1f i5fp .
3-7
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P. KINSLER AND G.H.C. NEW PHYSICAL REVIEW A67, 023813 ~2003!
scaling procedure to distinguish specific few-cycle effe
from other phenomena caused by changing pulse duratio
should be noted that the SVEA becomes inadequate, w
ever the envelope changes rapidly within a few carrier p
ods. Strictly speaking, a few-cycle pulse is not required,
cause a steep edge within a longer pulse also fulfills
conditions.

The effect of the extra ‘‘few-cycle’’ terms in the GFEA
evolution equation is to add a phase distortion to the non
ear polarization term, which then imposes itself on the pu
envelopes. This is demonstrated by our single-pass op
parametric amplifier NPA model where, whilst the SVE

FIG. 14. Scaled OPO, pass-to-pass phase drift for a rang
parameters, comparing SVEA~dashed line!, GFEA ~curved line!,
and SEWA~dash dotted line! simulation results. The differences a
taken between the phase at the peak of the modulus-squared o
envelopes at the end of one pass of the signal pulse and the n
t.

p

pt
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model is insensitive to pulse length, the GFEA theory sho
clear changes as the pulses get shorter and contain f
optical cycles.

Further, when we studied the highly sensitive deampl
cation case~i.e. NPD!, we saw dramatic differences betwee
the SVEA and GFEA simulations even outside the few-cy
regime. These arose from the phase distorting effects of
few-cycle terms in the theory disrupting the exact phase
lationships needed for deamplification. While the absol
size of these differences do depend on the chosen param
of crystal length, pulse energy, and so on, they will alwa
get dramatically larger for shorter pulses.

On the other hand, the repetitive cycling nature of t
optical parametric oscillator~OPO! produces more compli-
cated and subtle dynamics; small changes in parameter
ues can, for instance, cause sudden changes in the ste
state fields. It is therefore no surprise that comparison of
results predicted by the different models is less straight
ward in the OPO case. The new model certainly produ
differences in the pulse envelopes as well as the phases
though the way in which the GFEA tends to the SVEA in t
long-pulse limit has some interesting features. The two m
els also predict different results for the pass-to-pass ph
drift of OPO pulses, and this implies significant differenc
in the electric-field structures. In both cases, the carrier w
moves under the envelope from one transit to the next,
by different amounts.
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