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Generation of entangled coherent states via cross-phase-modulation in a double
electromagnetically induced transparency regime
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The generation of an entangled coherent state is one of the most important ingredients of quantum infor-
mation processing using coherent states. Recently, numerous schemes to achieve this task have been proposed.
In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical
Kerr effect enhancement in a dense medium in an electromagnetically induced transparency~EIT! regime,
seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme
recently proposed@D. Petrosyan and G. Kurizki, Phys. Rev. A65, 33 833 ~2002!#: the quantization step is
performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two
interacting quantum fields of light that show how the dynamics of one field depends on the photon-number
operator of the other. The preparation of a Schro¨dinger cat state, which is a superposition of two distinct
coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields
~initially prepared in coherent states! and on a detection step performed using a 50:50 beam splitter and two
photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the
joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition
for entanglement based on quadrature variance measurement. We also show how robust our scheme is against
a low detection efficiency of homodyne detectors.

DOI: 10.1103/PhysRevA.67.023811 PACS number~s!: 42.50.Dv, 42.50.Gy, 03.67.2a, 42.65.2k
e
c

rm
s
c

s

e
on

u
ld
v
e
o

ily

w

le

su
o
b
re
a

d

ent
as-
uge
m-

in-

ion
o-
,

ali
sible
ur-

ws
,

-

,
age

me
ap-

ons

find
I. INTRODUCTION

The generation of a Schro¨dinger cat state@1#, which is a
superposition of two distinct coherent states, and an
tangled coherent state, which is an entanglement of the
herent states, serves the first step towards quantum info
tion processing using coherent states@2#. Numerous scheme
have been proposed in order to generate such a kind of
herent superposition@3–5#. Cavity quantum electrodynamic
seems to be a promising environment to this task@6# and, in
order to investigate their properties with respect to decoh
ence, recently a scheme to generate a mesoscopic versi
a cat state using trapped ions has been proposed@7#. How-
ever, most of the suggested schemes for quantum comp
tion using coherent states is based on travelling-wave fie
Yurke and Stoler’s suggestion to produce a travelling-wa
cat state was far from the experimental realization becaus
an extremely low efficiency and a high absorption rate
nonlinear Kerr interaction, while the suggestion primar
depends on it.

Recently, it has been proved that the interaction of t
traveling fields of light in an atomic medium@8,9# is able to
show giant Kerr nonlinearities by means of the so-cal
cross-phase-modulation@10#. Measured values of thex (3)

parameter are up to six orders of magnitude larger than u
@11#. This can open the way toward the use of this kind
non-linear processes even for the very low photon-num
case @12#. Usually, the approach to such processes is
stricted to a semiclassical level: the medium is treated qu
tum mechanically, while the interacting fields are assume
1050-2947/2003/67~2!/023811~15!/$20.00 67 0238
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be classical objects. Nevertheless, a fully quantum treatm
of nonlinear dynamics is relevant with respect to many
pects of quantum information processing. For example, h
Kerr nonlinearities can be exploited in order to perform co
putation, as said above and as described in Refs.@2,13#, to
perform quantum teleportation of an unknown state@14# or
for quantum nondemolition measurements@15#. In all these
examples, a complete quantum treatment of the fields
volved is required.

A full quantum analysis of the cross-phase-modulat
problem has been explicitly performed by Lukin and Imam
glu in Ref. @16#, where a rather involved atomic system
realized by mixing two different isotopes of the same alk
species, has been used. In order to suggest a more fea
experimental realization of the process, Petrosyan and K
izki suggested a modification of the atomic model that allo
the use of just a single species@17#. Their analysis, however
was again semiclassical.

In this paper, we investigate the fully quantum
mechanical description of Ref.@17# adopting a completely
Hamiltonian approach@19#. To the best of our knowledge
this method has never been used in this context. We envis
in a Y2SiO5 crystal doped with Pr31 ions a good candidate to
physically embody the atomic model we discuss: the sche
of the atomic energy levels, in this system, seems quite
propriate to be used for our purposes. The Pr31 doped
Y2SiO5 has been used for the experimental demonstrati
of electromagnetically induced transparency~EIT! @20# and
giant Kerr nonlinearity@21,22#. Using realistic values for the
atomic parameters relative to this solid-state system, we
©2003 The American Physical Society11-1
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PATERNOSTRO, KIM, AND HAM PHYSICAL REVIEW A67, 023811 ~2003!
that a giant rate of nonlinearity is obtained in our ful
quantum-mechanical model. We derive the relative equat
of motion for the involved quantum fields. This allows us
write the interaction Hamiltonian in a form that explicitl
depends on the photon-number operators of the two quan
fields. Starting from this point, we show how entangled c
herent states and Schro¨dinger cat states are generated wh
the initial states of the fields are two independent cohe
states.

The paper is structured as follows: in Sec. II, we descr
the Hamiltonian approach, we have chosen and apply i
model cross-phase-modulation via EIT@10#. In Sec. III, we
apply this method to the atomic scheme for double-EIT s
gested in Ref.@17# and we derive the equations of motion f
the quantized fields. Section IV is devoted to the genera
of entangled coherent states and Schro¨dinger cat states o
light. Finally, in Sec. V, we describe in full detail a schem
for the detection of the entanglement in the generated
tangled coherent state. The detection scheme is based o
total variance criterion for continuous variable states@18#.

II. THE HAMILTONIAN METHOD

The standard method to describe the interaction of e
tromagnetic fields in a resonant medium is to derive
Bloch equations for the atomic density-matrix eleme
which, when conditions of adiabaticity and moderate inte
sities of the fields are valid, can be solved in steady-s
conditions. The solutions are, then, inserted into the Maxw
equations to show the propagation of the fields. Howe
when the number of fields involved in the problem is hi
and the atomic system consists of several energy levels,
procedure can be quite cumbersome.

A much simpler way to derive the field equations is giv
by a full Hamiltonian approach@19#. According to it, the
polarization of the medium can be expressed as the pa
derivative, with respect to the electric-field amplitude, of t
averaged free-energy density of the atomic medium. In o
words

P52K ]H

]E* L , ~1!

whereH is the interaction part of the Hamiltonian,E is the
complex amplitude of the electromagnetic field, andP is the
polarization of the medium@19#. When several electromag
netic fields interact with the medium,H can be expressed
following Ref. @19#, as

2H5(
j

x (1)~v j !uEj u21
1

2 (
i j

Bi j uEiEj u21••• , ~2!

whereBi j are the diagonal elements of the nonlinear thi
order susceptibility, responsible for the nonlinear terms
the refractive index at frequencyv j . Thus, the polarization
due to the jth electromagnetic field can be written as
02381
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Pj5K ]H

]Ej*
L e2 i (v j t2kjz)1c.c.

52
Ndj

\ K ]H8

]V j*
L e2 i (v j t2kjz)1c.c., ~3!

whereV j is the Rabi frequency relative to thej th field, dj is
the dipole matrix element of the corresponding transitionN
is the density of the atomic medium, andH8 is the single-
particle Hamiltonian. Here, we are assuming that all the
oms in the medium are equally coupled to the various fie

Introducing this equation into the Maxwell-Bloch equ
tions, we get rid of the atomic variables, obtaining a set
equations of motion for the Rabi frequencies that, in t
slowly varying envelope approximation~SVEA!, reads

S ]

]z
1

1

c

]

]t DV j52 i
Ndj

2v j

2\e0c K ]H8

]V j*
L , ; j . ~4!

Changing the reference frame intoj5z,t5t2z/c, the
above equation can be reduced to

]V j

]j
52 i

Ndj
2v j

2\e0c K ]H8

]V j*
L . ~5!

This approach has been used in Ref.@23# to investigate
the problem of resonant forward four-wave mixing based
EIT. It is particularly convenient if an open-system Ham
tonian model is used to incorporateab initio the decay rates
of the atomic levels and if the atoms follow adiabatically t
fields evolution. While the first condition can be satisfi
using an effective complex Hamiltonian, the second po
needs more explanations.

Solving the Bloch equations that describe the atom
density-matrix evolution, one usually invokes the so-cal
weak-coupling limit: the fields that couple an initially pre
pared, collective, atomic state to other states of the ato
model are assumed to be very weak~usually, there is less
than one photon per atom on an average!. Thus, the probabil-
ity that, after the interaction, a state different from the init
one is populated is very small. This qualifies the initial sta
as a stationary state and the system will evolve in an a
batic fashion, following its dynamics. In these conditions, t
averaged Hamiltonian that appears in Eq.~5! can be replaced
by the eigenvalue ofH8 that, in the limit of vanishing weak-
coupling fields, gives the energy of the initially prepar
state@23#. Thus

]V j

]j
52 i

Ndj
2v j

2\e0c K ]l

]V j*
L , ~6!

wherel is the above cited eigenvalue ofH8.
The advantages of this approach are evident: the kno

edge of the eigenspectrum of the single-atom model suffi
to derive the field equation of motion directly. The quantiz
tion of the fields is then performed in the canonical way, ju
replacing the classical field variables in the effective Ham
1-2
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GENERATION OF ENTANGLED COHERENT STATES VIA . . . PHYSICAL REVIEW A67, 023811 ~2003!
tonian represented by the explicit expression ofl and assign-
ing appropriate commutation rules to them@24#. Starting
from this effective, fully quantized Hamiltonian, the qua
tum generalization of the equations of motion for the fields
easily derived. We want to stress here that adopting
Hamiltonian approach, we do not introduce any other
proximation with respect to the semiclassical case: we
eliminate the atomic variables evolution from that of t
fields without solving the corresponding Bloch equations

Here, we propose an example to illustrate the power
the Hamiltonian approach and to show how to get huge n
linear effects using the interaction of a field with a mac
scopic atomic ensemble in the EIT regime.

We refer explicitly to Ref.@10# ~the atomic model is
sketched in Fig. 1! where, using the usual semiclassical a
proach, it has been proved that giant values of the third-o
atomic susceptibilityx (3) can be obtained. This result is
consequence of the a.c. Stark shift experienced by the
sumed metastable stateu3& because of the dispersive co
pling, induced by fieldE2, between statesu3& and u4&.

The Hamiltonian that describes this interaction, with
canonical transformation and introducing the decay rate
statesu2& and u4&, in the basis$u1&,u2&,u3&,u4&% have the
effective matrix representation:

H85\S 0 V1* 0 0

V1 2 ig2 Vd 0

0 Vd* 0 V2*

0 0 V2 D2 ig4

D . ~7!

Assuming, as in Ref.@10#, that uV1u,uV2u!uVdu,D,g4,

FIG. 1. Sketch of the energy levels of the model by Schmidt a
Imamoglu @10#. Fields E1 and E2 are assumed to be weak wit
respect to the strong driving field with fequencyvd . g2 andg4 are
the decay rates of statesu2& andu4&, respectively. Statesu1& andu3&
are assumed to be metastable. In condition of two-photon Ra
resonance, the ensemble appears transparent to fieldE1 that propa-
gates inside it with a very slow group velocity@8,9#. D is the de-
tuning of theu3&↔u4& transition: this dispersive coupling induce
a.c. Stark shift in the stateu3&. This results in a shift of the refrac
tive index curve of the medium. Because of the steepness of
curve inside the EIT frequency window for fieldE1, the value of
x (3) is strongly enhanced@16#.
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the secular equation forH8 results in a fourth-order polyno
mial, whose coefficients can be expanded in power serie
uV1,2u/uVdu. Retaining just the first significant terms of the
expansions, the relevant eigenvalue is found to be

lSI.2\
uV1u2uV2u2

~D2 ig4!uVdu2
. ~8!

Taking the limit uV1u,uV2u→0, lSI tends to zero, which
is the energy of the initially prepared stateu1&, as assumed in
Ref. @10#.

HavinglSI , the technique described in the preceding s
tion can be straightforwardly applied: derivinglSI , which
now represents an effective interaction Hamiltonian, with
spect toV1* allows us to get an expression forP1, polariza-
tion of the medium at frequencyv1. According to Eq.~3!,
we have

P1~v1!5
Nud12u2ud34u2

~D2 ig4!uVdu2\3
uE2u2Ev1

, ~9!

and then

x (3)~v1!5
Nud12u2ud34u2

e0~D2 ig4!uVdu2\3
. ~10!

This is exactly the main result obtained by Schmidt and Im
moglu @10#. Taking the real part of the complexx (3) we get
the rate of nonlinearity of this process. Note that, differen
from the works in Refs.@10,25#, here, we do not have an
x (1) because of the assumed perfect resonance in the tr
tion u1&↔u2& and the zero atomic decay rate from stateu3&.
Measured values of the non linear refractive index, for t
model, are of the order of 1021cm2/W, resulting in an en-
hancement of the Kerr effect up to six orders of magnitu
with respect to the best measured values for the case of
trapped Cs atoms@11#.

The main result of this section has been to show that
chosen Hamiltonian approach is able to reproduce corre
the results obtained by solving the equations of motion
the atomic density-matrix elements. Starting from it, we w
straightforwardly derive the full quantum description of
model for double EIT.

III. CROSS-PHASE-MODULATION VIA A DOUBLE-EIT
EFFECT

We refer again to Fig. 1 for the details of the followin
discussion. As explained above, in the EIT regime, the fi
E1 travels in the medium with a very slow group velocity~17
m/sec in Ref.@11# and 45 m/sec in Ref.@22#!, while E2 has a
very high propagation velocity. Harris and Hau proved@12#
that the total phase-shift experienced by fieldE1 is limited by
the time that the faster of the two fields spends inside
medium. The efficiency of the nonlinear interaction is, thu
strongly affected by any velocity mismatch. In order to g
rid of this bottleneck, strategies to induce EIT for bothE1
andE2 ~double-EIT regime! have been developed. This wi
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PATERNOSTRO, KIM, AND HAM PHYSICAL REVIEW A67, 023811 ~2003!
maximize the interaction time, optimizing the efficiency
the process. While the scheme suggested in Ref.@16#, even if
extremely stimulating, seems to be hard to be experiment
realized, Petrosyan and Kurizki@17# proposed anothe
scheme for double EIT to simplify the model. Even if

FIG. 2. This figure shows the atomic model used to ge
double-EIT regime for fieldsEa , with frequencyva , andEb , with
vb . The fields that have frequenciesvd1 ,vd2 are assumed to be
classical, in the sense that their intensities is much greater than
of Ea and Eb . The splittingDU is assumed to be different with
respect toDL . uDu5uDU2DLu is the detuning of fieldEa relatively
to the transitionu1&↔u5& and of fieldEb with respect tou3&↔u5&.
The excited-states decay rates are assumed to be equal tog, for the
sake of simplicity.
02381
lly

implies a complication of the atomic energy spectrum, it a
pears simpler under a realizable point of view. The ene
scheme is sketched in Fig. 2: it involves a six-level atom
configuration and four electromagnetic fields. A magnet
field splits metastable triplet$u1&,u2&,u3&% by DL and the
excited triplet $u4&,u5&,u6&% by DUÞDL . Transition
u2&↔u5& is assumed to be forbidden, while stateu2& is reso-
nantly coupled to statesu4& andu6& by means of the two very
weak probesEa and Eb , respectively. These two field
couple transitionsu1&↔u5& and u3&↔u5& with a detuning
uDu5uDU2DLu. The couplingsu1&↔u4& and u3&↔u6& are
realized by two classical, intense fields of different freque
cies but equal Rabi frequencies. In these conditions, the
tem divides itself into two parts. For the subsystem co
posed of statesu1&,u4&,u2&,u5&, EIT is induced for fieldEa
while an a.c. Stark shift effect on stateu1& is determined by
Eb to generate the required nonlinear interaction. For
subsystem composed of statesu3&,u6&,u2&,u5&, an analogous
discussion can be done interchangingEa and Eb . The two
subsystems are related via the nonresonant couplings inv
ing stateu5&. The double-EIT regime is, thus, established

As we have discussed above, a Hamiltonian approach
veals its advantages when several atomic levels are invol
In these cases, even if a Maxwell-Bloch approach is s
possible, the procedure itself is rather uncomfortable. F
thermore, the generalization to a fully quantized version o
nonlinear process can be hard to perform@23#.

For the system described in Fig. 2, we write the Ham
tonian in the interaction picture:

H85\Du5&^5u1\$Vdu4&^1u1Vdu6&^3u1Vau4&^2

u1Vbu5&^1u1Vbu6&^2u1Vae22iDtu5&^3u1c.c.%.

~11!

To show that our method is able to mimic the resu
obtained, at the semiclassical level, by the approach cho
in Ref. @17#, we appropriately change the signs in front
each Rabi frequency in Eq.~11! and we introduce the
excited-states decay rates. In Ref.@17#, the sign in front of
each Rabi frequency is chosen according to the Clebs
Gordan coefficient of the corresponding transition. Here, t
is performed in aphenomenologicalway just to match our
model with the one reported there. We finally get the follo
ing matrix representation ofH8 for the atomic basis
$u1&,u2&,u3&,u4&,u5&,u6&%:

a

at
H85\S 0 0 0 Vd* 2Vb* 0

0 0 0 Va* 0 2Vb*

0 0 0 0 Va* e2iDt 2Vd*

Vd Va 0 2 ig 0 0

2Vb 0 Vae22iDt 0 D2 ig 0

0 2Vb 2Vd 0 0 2 ig

D . ~12!
1-4
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GENERATION OF ENTANGLED COHERENT STATES VIA . . . PHYSICAL REVIEW A67, 023811 ~2003!
The solution of the Schro¨dinger equation for a state

uf&5(
i ,1

6

Ai~ t !u i & ~13!

is obtained assuming the weak-field limituVdu,g,D@uVa,bu
and that bothg21 andD21 are larger thanT, the character-
istic interaction time of the applied fields with the atom
medium. Under these conditions, we can use the SVEA
the atomic probability amplitudesAi(t) ( i 51, . . . ,6) and for
the field amplitudesEa andEb : this is equivalent to require
that the amplitudes of the applied weak fields do not cha
too much duringT. Neglecting the highly oscillating terms
in such a way that a kind of rotating wave approximati
~RWA! is performed, the probability amplitudes reach s
tionary values. Note that this second assumption agrees
an adiabatic solution of the equations of motion.

If all the atoms in the ensemble are initially prepared
stateu2&, in the weak-field limit, we can takeA2(t).1, ;t
<T. Reference@17# shows that the atomic polarizability o
the medium at frequencyva is given by

aa5
2ia0guVbu2

~g1 iD!uVdu2
, ~14!

wherea05Ns0 ands0 is the resonant absorption cross se
tion, generally defined bys05udu2v/2e0c\g. Equation~14!
shows explicitly the effect of the cross-phase-modulation
duced by the interaction between the two weak~but classi-
cal! fields: the polarizability at frequencyva , due to field
Ea , depends on the intensity of fieldEb . Since a completely
analogous expression holds for the polarizabilityab at fre-
quencyvb , the cross effect is evident. Here, we are assu
ing that the atomic ensemble is mantained at a sufficie
low temperature to discard any Doppler broadening. Rig
ously speaking, the thermal distribution of the atomic velo
ties has an influence on the value of the susceptibility of
medium, that has to be averaged over the velocity distri
tion function. If the temperature of the sample is kept lo
~orders of 102 nK in Ref. @11#! and if we adopt a copropa
gating beams configuration in order to get rid of resid
Doppler shifts, the broadening can be made small and
average can be avoided@17#.

In the above discussion, the influence by the inherent
dex of refraction of the host medium is not considered
cause it is negligible compared with the effective refract
index created by the EIT-group delay. However, it may
important if slow light is not considered@44#. The contribu-
tion to the background index of refraction from coupling
not considered in our model forH8 is negligible too. Indeed
it depends, in general, on the inverse of the large detun
relative to these out-of-resonance couplings.

Introducingaa into the equation of motion forEa , we get
the solution

Ea~L,t !5EaS 0,t2
L

c DexpH i E
o

L

aadzJ , ~15!
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where L is the interaction length of the fields.Ea experi-
ences, thus, a phase shift due to the presence of the se
field @16,17#.

We now apply the Hamiltonian approach, to show that
results obtained solving perturbatively both the Maxw
equations for the fields and the equations for the ato
probability amplitudes can be obtained just by looking f
the eigenenergy of the system that, foruVa,bu→0, gives the
energy of stateu2& ~that is the initial state of the system!.

The secular equation for the matrixH8 given in Eq.~12!
is a six-order polynomial expression whose coefficients
pend on the Rabi frequenciesVa,b,d . In the weak-field limit,
we use a series expansion ofVa,b /Vd . Retaining just the
first orders and performing that kind of RWA that allows
to neglect all the very highly oscillating terms, we finally g

l.
2\uVau2uVbu2uVdu2

iguVu42DuVdu2uVu2
, ~16!

with uVu5AuVau21uVbu21uVdu2.
As pointed out, this equation has to be contrasted w

that for the eigenenergy of stateu2& in absence of the weak
probes. If these fields are absent, it is easy to verify that
atomic model shown in Fig. 2 can be mapped into an eff
tive five-level system that does not include stateu2&. The
diagonalization of the resulting Hamiltonian~obtained from
Eq. ~12! getting rid of the second row and column of th
matrix! shows that the statesu1& and u4& are dressed by the
intense field with frequencyvd1, while the field with fre-
quencyvd2 dresses the transitionu6&↔u3&. This shows that
stateu2& is the only state that, in absence of weak fields b
with the strong classical ones shined on the medium,
zero energy. Since, foruVa,bu→0, we havel→0, Eq. ~16!
is the right solution.

Assuming once more the weak-field limit, we haveuVu
.uVdu and the expression forl can be approximated to

l.
2\uVau2uVbu2

~ ig2D!uVdu2
. ~17!

The partial derivative of Eq.~17! with respect toVa*
gives us an explicit expression for the polarization of t
medium at frequencyva and the equation of motion forVa .
The latter, finally, reads

]Va

]j
5

2iNs0guVbu2

~g1 iD!uVdu2
Va , ~18!

that exactly corresponds to the result semiclassically
tained in Ref.@17#. In the same way, the partial derivativ
with respect toVb* leads to the polarizability at frequencyvb

and to the equation of motion for the Rabi frequencyVb .
Because of the symmetry of the system with respect to
two fields, we easily recognize that their group velocities
both equal tovg.uVdu2/Ns0g!c. This inequality holds us-
ing the values reported in Ref.@10#. As explained above, this
equally slow propagation of the two fields inside the mediu
optimizes the cross-phase-modulation effect.
1-5
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PATERNOSTRO, KIM, AND HAM PHYSICAL REVIEW A67, 023811 ~2003!
To have an efficient nonlinear process, the rate of tw
photon-absorption has to be negligible with respect to
rate of nonlinearity. Since the former quantity is proportion
to the imaginary part of the polarizability, while the latter
proportional to his real part@12#, we can consider the follow
ing figure of merit for the nonlinear interaction:

h[
Re$aa%

Im$aa%
5

D

g
. ~19!

If the experimental conditions are such thatD@g, then
any absorption can be neglected and the process can be
just as a mutually induced phaseshift of the fields. Note t
this is fully consistent with the requirement advanced in
original theory of giant Kerr nonlinearity by Schmidt an
Imamoglu@10#. Adopting the values chosen in Ref.@17#, an
interaction length of the order of centimeter and an inter
tion time of some microsecond-lead, for two focused bea
Ea and Eb , to a total phase shift~obtained integrating
Re$aa% over the interaction length! that can easily reachp.
With these orders of magnitude, the total two-photo
absorption probability is smaller than 1%.

The quantization of the fields, now, proceeds as follow
we replace the complex Rabi frequencies that appear in
~17! with the positive and negative frequency components
the corresponding field operators~that satisfy the bosonic
commutation rules@V̂ i ,V̂ j

†#}d i j 1̂, with d i j the Kronecker

symbol, 1̂ the identity operator, andi , j 5a,b), multiply the
expression that is, thus, obtained by the density of the at
in the ensemble~N! and integrate over the interaction volum
V5AL, with A the effective cross section of the fields. Fo
lowing this recipe, we get an effective Hamiltonian opera
that describes, in a completely quantum picture, the non
ear interaction of two quantum fields that propagate insid
dense medium in condition of double EIT:

Ĥe f f5
2\AN

~ ig2D!
E

0

LV̂a
†V̂aV̂b

†V̂b

uVdu2
dz. ~20!

For the case of pulses propagating inside the nonlin
medium, we can follow a treatment analogous to that de
oped in Ref.@27#. Thus, adopting the narrow bandwidth a
proximation and assuming a finite range of frequencies
volved in the superpositions that build up the pulses,
introduce the slowly varying positive frequency opera

V̂a(z,t)5d24(kA(va
car/2\e0Vq)âk(t)e

2 i (vk2va
car)z/c and the

analogous forV̂b(z,t), where we explicitly introduced the
annihilation operatorsâk . Here,Vq is the quantization vol-
ume,k is a label for the different wavelengths appearing
the superposition, andva

car is the central~carrier! frequency
of the pulse: the narrow-bandwidth approximation consist
assuming that the width of the pulses, in the frequency
main, is smaller than the carrier frequency itself. When
spatial integration is carried on, assuming that the med
length is longer than all the wavevelengths in the pulses,
main contribution toĤe f f is due to terms as(kâk

†(t)âk(t)
~and the same for fieldEb) which define the total photon
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number operator in the pulseN̂a (N̂b). In the case of single-
mode field, as a cw laser beam, the sum that appears in
definition of V̂a,b(z,t) collapses and V̂a(z,t)
5d24A(va/2\e0Vq)âe2 i (vat2kaz). Assuming h@1 and
properly collecting all the nonoperatorial quantities into
rate of nonlinearityx, we can write Eq.~20! as

Ĥe f f5\xâ†âb̂†b̂, ~21!

with

x5ReH Nvavbud24u2ud26u2

2\2e0
2~ ig2D!uVdu2V

J , ~22!

where we have assumed that the interaction volume c
cides with the quantization one. This cw-mode configurat
allows us to give very interesting insights into the potentia
ties of the described system. Its validity is discussed in
tails later in this section. This assumption was also emplo
in Ref. @16#.

Let us briefly turn to some experimental details. A prom
ising candidate to embody the atomic model, we used for
double-EIT regime is a crystal of Y2SiO5 doped with Pr31

ions ~Pr:YSO! @26#, both for an interesting similarity be
tween the energy-level scheme described here and that o
transition3H4→1D2 in this crystal and for the possibility we
have, in a solid-state system, to limit the effect of the Do
pler broadening. This solid-state system is notable for
relatively narrow-linewidth EIT that, very recently, enable
the observation of ultraslow group velocity ('45 m/sec) and
storage of light pulses~measured delay times greater th
65 msec)@22#. For the3H4→1D2 transition at a wavelength
of ;600 nm considered in Ref.@22#, the ground-state popu
lation lifetime is of the order of minutes. The crystal samp
can be taken as long as 1 mm and the laser beams used
nonlinear interaction can be focused, by a lens, to hav
typical diameter of 100mm ~full width at half maximum!. A
realistic value for the excited-states decay rateg range be-
tween 10 and 100 kHz~close to the measured values for
sample at a temperature of 5 K! that, for detuningD
;1 MHz and coupling field Rabi frequencyuVdu;1 MHz
allows us to considerg!D,uVdu, in accordance with our
treatment. The electric dipole matrix elements for the syst
under examination are three orders of magnitude weaker
those, for the same range of frequencies, in alkali ato
Taking, as typical values for an alkali atomd;10229 Cm,
we can assumeud24u.ud26u;10232 Cm. Finally, the atomic
density is taken asN;1015 cm23. Putting these values in
Eq. ~22!, we find that interaction timest in the range ofmsec
allow to reach a cross-phase shiftw5xt;p even when the
intensity of the beams involved~proportional tô n̂a,b&) is no
more than a few photons. We will see in the following se
tion, how important, for the purposes of this paper, is t
ability to get ap cross-phase shift of the interacting fields

For the case of pulses interacting in the atomic sam
some experimental difficulties rise. First of all, effects
diffraction, focusing and defocusing onEa andEb are to be
considered: they are due to the transverse intensity profil
1-6
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Vd that leads to variations in the radial refractive index e
perienced by the weak probes~this effect is known in litera-
ture as EIF@28#!. EIF changes the size of the weak bea
from point to point inside the medium, thus, modifying th
interaction volume~that becomes a function of the positio!
and influencing the rate of nonlinearities. The effect, pres
even in the cw regime, is less controllable in the case
pulses because of the different frequencies involved in
propagating packets. These nonlinear effects, indeed, see
depend on the sign of the detunings between the compon
of the probes and the frequency of the atomic transitions
they guide. This implies, for example, focusing for som
components of a probe pulse accompanied by defocusin
all the other components~of the same pulse! that have a
detuning of opposite sign. The result is that different h
monics, in a pulse, are subject to different radial evolutio
thus, complicating the control on the dynamics of the fie
itself.

Another relevant point to be treated is that of the differe
phase shifts acquired by the different parts of the cro
interacting pulses. As it can be seen solving the Heisenb
equations of motion for the field operatorsÊa and Êb inter-
acting as described in Eq.~20!, and as it is proved in Ref
@16#, the evolution of the probe fields is given by

Êa,b~L,t !5Êa,b~0,t8!e$ i x̃Êb,a
† (0,t8)Êb,a(0,t8)%, ~23!

with t85t2L/vg andx the rate of nonlinearity specific fo
this case~that reduces to Eq.~22! when we consider cw
fields!. Note that this solution is the exact quantum ana
gous of what has been found, in the semiclassical appro
in Eq. ~15!. Thus, the phase-shift experienced by pulsea ~b!
depends on the total number of photons in pulseb ~a! at the
earlier timet8 and this number changes with the amplitude
Eb (Ea). The effect is that different parts of a propagati
pulse acquire different phase shifts with respect to e
other. It modifies, in essence, the relative phase relations
tween the pulse components and distorts the pulse sh
Spectral width enlargement, for example, can be a detrim
tal consequence for the purely dispersive propagation in
the atomic medium: if some harmonics of the evolvi
pulses exit from the EIT transparency window, they will
strongly absorbed by the no-more-transparent medium. U
ally, a way to bypass this kind of problem is to arrange
pulses to be within the EIT window since their entrance in
the nonlinear medium, properly choosing their shape
spectral width. For adiabatic evolution and for an optica
thick medium, the pulses will last in the nonabsorptive
gion of the refractive index of the medium through all t
interaction time@29#. But this result has been proved just f
a simple atomicL system and it needs a deeper analy
when we refer to the atomic energy scheme that we desc
in this paper. In our opinion, all these points have to
further investigated, even seeking for an experimental v
fication of their real influence, in order to have a comple
comprehension of the kind of control we can reach for
cross-phase interaction of two weak fields in a medium t
exhibits giant Kerr nonlinearities.
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For the sake of simplicity, but without lacking the nece
sary experimental realism, in what follows we treat just t
case of single-cw mode propagation and, from now on,
proceed taking in consideration the effective Hamiltonian
Eq. ~21!.

IV. SCHRÖDINGER-CAT-STATE GENERATION

In this section, we want to apply the results obtained w
our fully quantized picture of the cross-phase-modulatio
induced by double EIT in order to show that this speci
system can be used to produce a Schro¨dinger cat state@1# of
a single mode of field.

Given the interaction Hamiltonian~21!, we derive the
equations of motion for the annihilation operatorsâ and b̂.
Adopting the usual notationn̂a5â†â,n̂b5b̂†b̂ for the
photon-number operators of the two fields, these are

] tâ52 ix@ â,n̂an̂b#52 ixân̂b ,
~24!

] tb̂52 ix@ b̂,n̂an̂b#52 ixb̂n̂a ,

which, arranging the time scale in such a way thatt50 is the
instant in which the interaction starts, lead to the tim
dependent operators

âout~ t !5e2 ixtn̂bâ~0!, b̂out~ t !5e2 ixtn̂ab̂~0!. ~25!

Note that, in the approximation of a pure cross shift proce
n̂a,b do not evolve because of the nonabsorption characte
the interaction considered. Definingw5xt, the above evo-
lution is attributed to the action of the unitary time-evolutio
operatorÛ(w)5e2 iwn̂an̂b on the field operators. We want t
specialize the present analysis to the case in which the in
state of the two interacting fields isuc(0)&ab5ua&a^ ug&b ,
where the coherent stateua&a5D̂a(a)u0&a with the displace-
ment operatorD̂a(a)5exp(aâ†2a* â) @30#. The coherent
stateug&b has been defined likewise.

The evolution of the initial state by means ofÛ(w) can be
expressed as follows:

uc~ t !&ab5 D̃̂a~a!D̃̂b~g!u0&a^ u0&b , ~26!

where we have defined the time-dependent displacemen
erators

D̃̂a~a![Û~w!D̂a~a!Û21~w!5e(a ã̂†2a* ã̂),
~27!

D̃̂b~g![Û~w!D̂b~g!Û21~w!5e(g b̃̂†2g* b̃̂),

with ã̂†5e2 iwn̂an̂bâ†eiwn̂an̂b and b̃̂†5e2 iwn̂an̂bb̂†eiwn̂an̂b. Ex-
plicitly using the operator expansion theorem@31#, we obtain

ã̂†5â†e2 iwn̂b, b̃̂†5b̂†e2 iwn̂a, ~28!

that is,
1-7
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PATERNOSTRO, KIM, AND HAM PHYSICAL REVIEW A67, 023811 ~2003!
D̃̂a~a!5exp~aâ†e2 iwn̂b2a* âeiwn̂b!,
~29!

D̃̂b~g!5exp~gb̂†e2 iwn̂a2g* b̂eiwn̂a!.

Introducing Eq. ~29! into Eq. ~26!, we get the time-
dependent state of the two fields:

uc~ t !&ab5 D̃̂a~a!D̃̂b~g!u0&a^ u0&b

5e2uau2/2eaâ†e2 iwn̂bu0&a^ ug&b , ~30!

where the Campbell-Baker-Haussdorff theorem@31# and the
fact that a coherent state is an eigenstate of the annihila
operator have been used. Using the representation of co
ent states in the Fock number states, we have

uc~ t !&ab5e2ugu2/2(
n,0

`
gn

An!
uae2 iwn&a^ un&b . ~31!

If we are experimentally able to set the interaction tim
and the value of the rate of nonlinearity so thatw5p then,
splitting the sum in Eq.~31! into one over the odd values o
n and one over the even ones, the evolved state of the
initially noninteracting fields takes the form@32#

uc~p/x!&ab}ua&a$ug&1u2g&%b1u2a&a$ug&2u2g&%b .

~32!

This is a particular expression for an entangled cohe
state: it can be reduced to the more familiar formua&aug&b
1u2a&au2g&b unitarily acting on the subsystemb. To prove
the entanglement, we have to show the correlation of
fields of modesa andb as we unitarily transform, gradually
from ug&b to ug&b6u2g&b . However, this involves anothe
nonlinear interaction. We thus discuss an indirect way
prove the production of the entangled coherent state.

In Eq. ~32!, linear superpositions of the coherent sta
ug&b and u2g&b are Schro¨dinger cat states

ug&b1u2g&b}(
j ,0

`
g2 j

A~2 j !!
u2 j &b ,

ug&b2u2g&b}(
j ,0

`
g2 j 11

A~2 j 11!!
u2 j 11&b , ~33!

which are sometimes called as the even and odd cohe
states. As shown in Eq.~32!, a time-controlled interaction o
two fields in initially prepared coherent states results in
entangled state: if we properly normalize stateuc(p/x)&ab

and we look to the reduced density operator of the fieldÊa
alone~tracing overb mode!, we find an incoherent mixture
of two coherent states which are out of phase byp @32#.

Suppose we are, somehow, able to discern the stat
which field Êa is, after its crossing through our model o
highly nonlinear medium. Because of the entangled struc
of Eq. ~32!, the state of fieldÊb is projected onto one of the
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equally weighted superpositions ofp-out-of-phase coheren
statesug&b6u2g&b : it collapses into a Schro¨dinger cat state.
The point, now, is to show how to reliably discern the sta
of field Êa .

To achieve this target, we need a 50:50 beam spli
~BS!. After passing through a beam splitter, two cohere
input fieldsua&ub& become@33#

B̂acua&aub&c5Ua1b

A2
L

ã

U2a1b

A2
L

c̃

, ~34!

whereB̂ac[e(p/4)(â†ĉ2âĉ†), with a (ã) andc ( c̃) as the input
~output! modes of the beam splitter.

Thus, takingb5a and referring to Fig. 3, we have th
following readout scheme: if the input modea is in the state
ua&a , then detector 1 will click, revealing that some photo
arrived at it, while detector 2 will not click. In this case, th
field modeb will be projected in the even coherent state.
the opposite occasion, the field modeb will be in the odd
coherent state. Of course, there is a possibility to have b
the detectors not to click. In this case, we do not know wh
the modea is so we have to repeat the experiment till w
have one detector to click.

V. DETECTION OF A CAT STATE

The quantum state of an electromagnetic field is co
pletely and unambigously determined once all the mome
of its statistical distribution function are determined@31#. To
get this task, we need the density matrixr̂ of the state of the
field: it contains all the available information about the giv

FIG. 3. Detection scheme to infer the state of the field modea.
In this figure, it is shown the symbol used to represent a photo
tector and that for the 50:50 beam splitter~BS!. According to Eq.
~34!, Detector 1 (2) clicks just if the state of modea is ua&a

(u2a&a). Using this readout scheme, we have the possibility
generate an even or an odd coherent state of the field modeb.
1-8



l
th
en

re
is
ie
th
e
d

ol
on
ic

ef

d
wo
le
te
w
th
ie

at

o
ts
en
te
e
om
e

l-
y

fo

ed

te

s-
tinu-
an
-

n
to

y

m
e of

nju-

tion
a

cil-
-
as-
the

to

ion

-
-

ity
he
.

state
eal
the

tive

the

-

GENERATION OF ENTANGLED COHERENT STATES VIA . . . PHYSICAL REVIEW A67, 023811 ~2003!
quantum state and, havingr̂, the most complete statistica
description of the system can be performed. On the o
hand, it is possible to demonstrate a biunique correspond
between the density matrixr̂ and the Wigner function of a
radiation mode@34# so that, determining the latter, we a
able to fully identify the quantum state of the field. Th
correspondence is useful under an observable point of v
numerous theoretical schemes for the reconstruction of
Wigner function of a radiation mode have been propos
They are essentially based on heterodyne or homodyne
tection@35#. The mathematical manipulation of the data c
lected by the homodyne detector allows also for the rec
struction ofr̂ @36,37#. Recently, this homodyne tomograph
technique has been experimentally realized@38#. This ap-
proach, however, may be limited by imperfect detection
ficiency.

A. Detection of entanglement via measurement of joint
quadrature variance

The procedure described above could certainly be use
determine if our scheme for the nonlinear interaction of t
weak fields inside a Kerr-enhanced medium has been ab
generate a Schro¨dinger cat state. However, as its comple
and satisfactory treatment is far beyond our purposes,
want to suggest alternative ways to show the signature of
quantum nature of the state generated. Recently, a suffic
criterion for the inseparability of a continuous variable st
has been proposed by Duanet al. @18#. They proved that, for
a separable continuous variable state, the total variance
couple of suitably defined conjugate operators respec
lower bound imposed by the uncertainty relation. For an
tangled state, on the other hand, this bound can be viola
providing a sufficient criterion for inseparability of the stat
More precisely: assume a continuous variable state c
posed of subsystems 1 and 2 and take the couple of op
tors, for both subsystems,$X̂i ,P̂i% ( i 51,2) such that

@X̂i ,P̂j #5 id i j . Because of this commutation rule, the simu
taneous measurement of both the operators is affected b
Heisenberg uncertainty principle. Following Ref.@18#, we
take an arbitrary, nonzero, real parameterq and define the
pair of collective operators

û5uquX̂11
1

q
X̂2 ,

~35!

v̂5uquP̂12
1

q
P̂2 .

For any separable state, it is possible to show that the
lowing inequality holds@18#:

S5^~Dû!2&1^~D v̂ !2&>q21q22, ~36!

with ^(Dû)2& and^(D v̂)2& the average variances, calculat
over the state of the system, ofû andv̂, respectively. In what
follows, we will often refer to the total varianceS as to the
separability function. It is worthwhile to stress that the cri
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rion is just a sufficient condition for inseparability. The e
tablished bound could, thus, be exceeded even by a con
ous variable state that is not separable. We will give
explicit example of this possibility in the following discus
sion.

The criterion by Duanet al. leaves a certain freedom i
the choice of the couple of operators to use, we need
constructû and v̂. The only limitation imposed is that the
have to be conjugate operators.

In problems related to the investigation of the quantu
state of light, it is often useful to consider the phase spac
the quadratures

x̂5
1

A2
~ b̂†1b̂!

~37!

p̂5
i

A2
~ b̂†2b̂!.

So defined, the quadratures of a field are a couple of co
gate operators, since@ x̂,p̂#5 i . Operatively, their probability
distribution can be reconstructed by a homodyne detec
scheme@35,3#: the input mode to measure is mixed, at
50:50 beam splitter, with the coherent state of a local os
lator whose phaseq is directly controllable during the ex
periment and whose intensity is so high to consider it cl
sically. The difference between the number of photons in
output modes is, then, measured by two photodetectors~one
for each output mode!. The data collected are proportional
the expectation value of the operator

Ôq5
1

A2
~ b̂†eiq1b̂e2 iq!, ~38!

that, forq50 coincides withx̂, while for q5p/2 is equal to
p̂ @35#. The couple of quadratures$x̂a ,p̂a%, $x̂b ,p̂b% relative
to the field modes in Eq.~32! are, thus, well suitable to
construct operatorsû and v̂ for the joint system of modesa
andb. What we need, to calculate the total variance funct
S, is just the variance of single quadrature~such as

^(D x̂a,b)2&, for example! and the expectation value of corre
lations aŝ x̂ax̂b& or ^ p̂ap̂b&, measurable collecting the coin
cidences at the detectors@39#.

We takeq51, so that the bound value for the separabil
of the input state is 2. Unfortunately, the calculation of t
separability functionS for the entangled superposition in Eq
~32! leads toS>2, whatever are the amplitudesa andg. As
we stressed above, this certainly does not mean that the
is separable but just makes this criterion unsuitable to rev
the entangled nature of the investigated state. Because
behavior ofS is very state dependent, to bypass the nega
result we obtain using Eq.~32! directly, we propose the fol-
lowing strategy. Assume we generated, as described at
end of Sec. IV, an even coherent state of modeb. We then
mix it with the vacuum of modec at a 50:50 BS. Specializ
1-9
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ing the general rule of a beam splitter in Eq.~34! for b
50, the joint state of the BS output modes can be written

uf& b̃c̃5NH U g

A2
L U2

g

A2
L 1U2

g

A2
L U g

A2
L J

b̃c̃

, ~39!

with N51/A2(11e22g2
). This is an entangled coheren

state of two field modes: note that, using this procedure,
output state can be obtained only if the radiation modeb is in
an even coherent state. More generally, to describe the
of modeb, we can take the density matrix

r̂b5A$ug&^gu1u2g&^2gu1c~ ug&^2gu1u2g&^gu!%b ,

~40!

with 0<ucu<1 andA a normalization constant. Forc50,
the state is a statistical mixture;c51 (c521) gives us the
density matrix of an even~odd! coherent state while, the
general case in which 0,c,1 corresponds to a nonoptima
generation of the Schro¨dinger cat state. After the action o
the 50:50 BS, the two output modesb̃ and c̃ ~whose initial
density matrix wasu0&c^0u) will be described by

r̂ b̃c̃
8 5AH U g

A2
,
2g

A2
L K g

A2
,
2g

A2
U1U2g

A2
,

g

A2
L K 2g

A2
,

g

A2
U

1cU2g

A2
,

g

A2
L K g

A2
,
2g

A2
U1cU g

A2
,
2g

A2
L

3K 2g

A2
,

g

A2
UJ

b̃c̃

. ~41!

It is evident that state~39! can be retrieved from this densit
matrix only if c51 ~we have the case of an odd cohere
state in input whenc521).

1. Perfect detection efficiency

The quadrature statistics of the two radiation modes
measured by two homodyne detectors, as described ab
The collected data allow to estimate the experimental t
variance for the input state. This has to be contrasted w
what we get calculating the separability function. We th
test, by means of the sufficient criterion for inseparabil
the entanglement properties of state~39! in order to infer the
state of the radiation modeb. Even if, by this means, we ar
certainly not sure that the state of modesb̃ and c̃ is exactly
the entangled coherent state in Eq.~39!, we will show the
entangled nature of the detected state.

If we calculateS for the case of stateuF& b̃c̃ , we get

Sper f ect52H 12g2
2e22g2

11e22g2J . ~42!

A plot of Sper f ect as a function of the amplitudeg is given in
Fig. 4: the total variance function stays below the boundS
52 just untilg.2 ~we haveS51.995 forg52) and except
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g50. This gives the signature of the entangled nature of
low intensity state, we have generated. The dip of the se
rability function shows a maximum deviation from theS
52 bound equal to 28% forg.0.8 and is still about 5% for
g51.6.

Thus, the criterion seems to work sufficiently well for lo
values of the amplitude of the input coherent states. Thi
because reducing the value of the amplitude, the entan
coherent state becomes similar to a Gaussian state, that
class of states for which the total variance criterion for
separability works very efficiently. In Fig. 4, the separabili
function ~42! is compared to what is obtained takingc50
andc50.5 ~that is, midway between a statistical mixture a
a perfectly generated entangled coherent state!. The largest
effect of an imperfect generation of the input is to reduce
dip of the nonseparability well until, for the statistical mix
ture corresponding toc50, the criterion fails for whatever
value of the input amplitude. The information we obtain wi
the detection scheme we are describing, give us a suffic
insight into the entangled nature of the state~39!.

2. The effect of detection inefficiency

We now show the robustness of the detection scheme
entanglement with respect to the unavoidable homodyne
tector inefficiencies. In what follows, we attribute them e
sentially to losses. Other possible sources of error are
dark counts at the photodetectors, whose entity depend
the width of the detection window. Their effects can be ma
negligible taking the detection time short with respect to
characteristic time of a dark-count occurrence. Finally,
neglect the noise introduced by the local oscillators supp
ing their amplitudes to be well stabilized.

The effect of loss on the collected data can be mode
replacing a real, inefficient, homodyne detector with a be

FIG. 4. Plot ofSper f ect5^(Du)2&1^(Dv)2& as a function of the
coherent state amplitudeg. The sufficient criterion for inseparabil
ity states that, for any separable continuous variable state, this
variance function has to be bound from below by a value that,
the calculations shown in this paper, is equal to 2. The effec

different values of the parameterc in the density matrixr̂ b̃,c̃
8 is

studied: the dot-dashed curve is forc50, corresponding to to the
case of a statistical mixture. The dashed curve is forc50.5, while
the solid curve represents the case of a perfectly generated
coherent state of field modeb. In this latter case, for the stat
considered in Eq.~39!, the bound is beaten just untilg.2.
1-10
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GENERATION OF ENTANGLED COHERENT STATES VIA . . . PHYSICAL REVIEW A67, 023811 ~2003!
splitter ~transmittivity h) followed by a perfect homodyne
detector@3#. In Fig. 5 the experimental apparatus that co
siders inefficient homodyne detectors according to the ab
equivalent model is sketched. Each beam splitter BSh , that
mixes a mode of the signal to measure with a vacuum st
transmits the signal with probabilityh and reflects it with
probability 12h. The amount of reflected input field gives
measure of the losses of the detection apparatus, so tha
quantum efficiency of this latter can be identified withh
itself. To avoid stray light to enter in the perfectly efficie
homodyne detector, we can imagine that the reflected ou
field enters a blackbody absorber. Mathematically, this
equivalent to tracing out the degrees of freedom relative
the absorbed field mode. What the perfect homodyne de
tors measures, thus, is the statistic of the quadratures o
transmitted beams, irrespective of the state of the refle
ones.

The calculation of the total variance for the quadratures
modesb̃, c̃ when the detectors have an equal quantum e
ciencyh leads to what is shown in Fig. 6. The separabil
function seems to keep its functional features even in
case of imperfect detection. However, some differences, w
respect toSper f ect, appear. As the quantum efficiency of th
homodyne detectors reduces, the mimimum of the total v

FIG. 5. Sketch of the proposed scheme to infer the value of

total variance for the entangled state of modesb̃ and c̃ when the
inefficiency of homodyne detectors is taken into account. WithD1

andD2, we indicate perfect homodyne detectors that have to m
sure the quadratures of modesd and e. These are the fields trans
mitted ~with probability h) by two beam splitters BSh , whose ef-
fect models the inefficiency of the homodyne detectors. The be
reflected by BSh are absorbed by blackbodies. The local oscillat
are prepared in very intense coherent states. This allows us to
them as classical fields. Their phases are experimentally contro
and adjustable. BS1 and BS2 are 50:50 beam splitters.
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ance shifts toward higher values ofg ~see Fig. 6!, enlarging
the range of amplitudes for which the separability functi
has values below 2.

This effect can be explained directly referring to the pro
ability that the homodyne detector measures a valuex of the
quadraturex̂. Without loss of generality, but avoiding th
lengthy calculation relative to state~39!, we investigate an
even coherent state. We let this state to be mixed wit
vacuum field at a BS of transmittivityh. As before, the
resulting transmitted mode is then measured by a per
homodyne detector, while the reflected field is traced out.
finally get the following probability distribution for the in
phase quadraturex̂:

Pg,h,0~x!5
2e2x222g2

1e2(x2A2hg)2
1e2(x1A2hg)2

2Ap~11e22g2
!

.

~43!

It shows thatPg,h,0(x) is composed of two Gaussian hill
centered at6A2hg plus a third term that, forg sufficiently
large, is negligible with respect to the others~even for g
52, it is negligible!. The larger is the amplitudeg, the
larger the Gaussian hills are apart@3#. However, if an effi-
ciency h,100% is considered, the distance between
Gaussian hills for low values ofg is strongly reduced and th
joint state appears more and more similar to a Gaussian s
To observe well separated Gaussian bells, we have to
toward largerg ~Fig. 7!. It is possible to show that the sam
effect is observed in the probability distribution of an e
tangled coherent state as Eq.~39!, with the suitable modifi-
cations due to the different nature of the state. This expla
the behavior of the separability function for an imperfe
homodyne detector.

However, the success of the total variance criterion
low values of the quantum homodyne inefficiency has no

e

a-

s
s
eat
ed

FIG. 6. Behavior of the separability function for state~39!, as a
function of the amplitudeg, when imperfection in the homodyn
detection are taken into account. Here, the dot-dashed curve i
detection efficiencyh50, the dashed one is forh50.4, and the
solid curve is forh50.8. For lowerh, the minimum values of
Simper f ect shift toward higherg values: this is because the lower
the efficiency of the homodyne detectors, the more state~39! re-
sembles a Gaussian state.
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be considered positively. The imperfections in the detect
device tend to hide the features of the input state that app
as a Gaussian state even if, in reality, it is well far to
Gaussian. This means that, in order to reliably test the
tangled nature of the input state, a sufficiently largeh has to
be considered. Realistic values of the homodyne detecto
ficiency range between 0.6 and 0.85. In particular, accord
to our calculations,h50.8 seems to be a good trade o
between the reliability of the total variance criterion and t
realism of an experimentally achievable quantum homod
efficiency.

From the above analysis, it appears that forg larger than
g.2, it is not possible to get any information about t
entanglement in the input state of modesb̃ and c̃ from the
total variance of quadrature amplitudes. We have to look
other detection strategies.

If we still refer to the case of a generated even coher
state in Eq.~33!, the characteristic of the superposition
ug&b and u2g&b is well revealed by homodyne measur
ments, as pointed out by Yurke and Stoler@3#. As commented
above, the amplitude of the components of an even cohe
state can be inferred directly from the probability distributi
of the in-phase quadrature. If instead ofx̂, we measure the
statistical distribution forq5p/2 in Eq. ~38!, the following
function has to be found:

Pg,h,p/2~x!5
e2x2

$11e22(12h)g2
cos~2A2hgx!%

Ap~11e22g2
!

.

~44!

This probability oscillates and is moduled, at the sa
time, by a Gaussian function~solid curve in Fig. 8!. The
oscillations, with a frequency dependent ong as well as on
h, are an evidence of the quantum interferences between
two out-of-phase components of the coherent superpos
in the even coherent state. It is, indeed, straightforward
prove that, if instead of a linear combination ofug&b and
u2g&b the input state was the mixed state of Eq.~40! with
c50, then this oscillatory behavior would be absent. Thus

FIG. 7. Plot ofPg,h(x), for an input field in the even coheren
state withg51.5. The effect of different values ofh is investi-
gated: the dot-dashed curve is forh50.1, the dashed one is forh
50.4, and the solid one is forh50.8.
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homodyne detection scheme is able to discern a Schro¨dinger
cat state from a mixed state of two coherent states which
mutually p out of phase@3#.

It is important to stress the effect, on the oscillatory p
tern, due to the Gaussian modulation: as it is evident fr
Fig. 8, even a small reduction ofh leads, for a small ampli-
tude coherent state, to the disappearance of the oscillat
Mathematically, this is due to the factor 12h that governs
the width of the Gaussian function in front of the oscillato
term: the smallerh is, the more rapidly the Gaussian fun
tion goes to zero, washing out the interference pattern.
effect is, clearly, more evident for large values ofg. This
means that this scheme is very vulnerable to the detec
inefficiencies.

B. An alternative detection scheme for entanglement

An alternative approach to the investigation of the coh
ences in the quantum superposition ofug&b and u2g&b ,
when the total variance criterion fails, can be the followin
We prepare, once more, the entangled coherent state in
~39! using an even coherent state as input. Similarly to
technique used by Kwiatet al. in Ref. @40#, we operate uni-
tarily on one of the components ofuf& b̃c̃ . Then, we detect
the coincidences between the counts collected by two ph
detectors facing the output modesc̃ andg ~see Fig. 9!.

In the restricted Hilbert space spanned by the orthogo
even and odd coherent states, the rotation of a generic
ud& b̃5Aug/A2& b̃1Bu2g/A2& b̃ can be performed by a dis
placement operatorD̂b̃( iu) (uPR) that, acting onud& b̃ ,
transforms it into

uD&5Aeiug/A2U g

A2
1 iuL

b̃

1Be2 iug/A2U2
g

A2
1 iuL

b̃

.

~45!

If we take u!g/A2, on the Bloch sphere of the restricte
Hilbert space that we are treating, the above equation
proximates well the stateR̂b̃

z(a)ud& b̃ , with R̂b̃
z(a) the rota-

FIG. 8. Probability distribution for a detected homodyne curre
with q5p/2. In this plot,g52, while h is scanned: the dashe
curve is forh50.4, the dot-dashed one is forh50.9, while the
solid curve is forh50.95.
1-12
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GENERATION OF ENTANGLED COHERENT STATES VIA . . . PHYSICAL REVIEW A67, 023811 ~2003!
tion operator, by an anglea/25A2gu, around the Bloch
spherez axis. Experimentally, such a rotation can be acco
plished superimposing modeb̃ on the coherent stateu iE& of
an auxiliary modef, using a beam splitter with a high
transmission coefficientT. As shown in Ref.@41#, the trans-
formation operated by theT→1 beam splitter (BS2 in Fig. 9!
gives an entangled state of two output field modes. The
duced density matrix that describes the state of the ou
modeg only can then be approximated by that of a displac
state according to r̂g5D̂b̃( iEA12T) r̂ b̃D̂ b̃

†( iEA12T),

wherer̂ b̃ is the density matrix of the input field@42#.
If we vary E in such a way thatu5EA12T!g/A2, that

is,

E5
a

2A2~12T!g
, ~46!

then, just controlling the amplitude of this ancillary mod
we can appropriatelyrotate the state of modeb̃ by a/2.

Following this lines, the entangled coherent state in
~39!, after the interaction ofb̃ with f at the rotation beam
splitter BS2, becomes

uF&gc̃5NH eia/2U g

A2
L U2g

A2
L 1e2 ia/2U2g

A2
L U g

A2
L J

gc̃

.

~47!

FIG. 9. The figure sketches the apparatus to detect the gene
state of modeb. As before, the input even~odd! coherent state and
the vacuum state of the auxiliary field mode center the 50:50 b
splitter BS1 and give rise to an entangled coherent state of

output modesb̃ and c̃. While modec̃ is directly detected by the

photodetectorA, mode b̃ is rotated by the device shown in the
dashed box. It consists of the high transmittivity (T→1) BS2 that

superimposes a coherent stateu iE& to the field modeb̃. The trans-
formation thus realized approximates well with that of a displa

ment operator thatrotates the field in b̃ @see Eq.~47!#. The tras-
formed mode is, then, sent to detectorB. Both A andB are twoOn
or Off photodetectors that are able to discriminate the vacuum f
any incoming photon. They are not able, however, to reveal
number of incident photons. The coincidences of the counts at
two detectors are measured.
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The output modesc̃ andg are then sent to detectorA and
B respectively, where the photocount coincidences are
vealed. We model the photodetectors asGeiger-like on-off
photo-detectors(O-OPD). These particular devices just di
criminate the vacuum from an input with any photons, irr
spective of what the photon number is@42#. Again, losses
make the quantum efficiency of the anO-OPD not optimal,
so that some of the coincidences will be missed. Quan
mechanically, an inefficientO-OPD can be described b
means of a suitably definedpositive-operator-valued-
measure~POVM!, that is, a set of diagonalizable, havin
positive eigenvalues, projection operators. The appropr
choice for this case is the following:

P
click

no

( i )

~h!5(
n,0

`

~12h!2nun& i^nu,

~48!

Pclick
( i ) ~h!512P

click
no

( i )

~h!, ~ i 5A,B!

We assume the same efficiencyh for both the detectors
In the above definitions 12h is the probability that a single
detector lacks to reveal a photon and the sum over all
photon populations takes in account the impossibility to d
tinguish the photon number in the incident field. Within th
POVM formalism, the probability that theO-OPD click
within the same detection window is given by

P2clicks~g,h,a!5Trgc̃$uF&gc̃^FuPclick
(A) ~h!Pclick

(B) ~h!%

5C$~eg2/22e(12h)g2/2!2

1cosa~e2g2/22e2(12h)g2/2!2%, ~49!

with C52e2g2N 2. Let us look to the asymptotic behavior o
the above probability: forh→0, that is, for highly inefficient
detectors, we getP2clicks(g,0,a)→0. If the limit h→1 is
instead considered, Eq.~49! shows that P2clicks(g,1,a)
→2(11e2g2

cosa). The oscillating part inP2clicks(g,1,a)
is the evidence of the coherences established in the e
coherent state. Unfortunately, it has an exponential prefa
that can cause experimental difficulties~for g.2 and h
.0.75, a visibility of about 1% is achieved!. Furthermore,
possible errors connected to therotation of a Schro¨dinger cat
state have to be considered.

Once the entangled nature of the input stateuF& b̃c̃ is rec-
ognized, however, the inference about the state of field m
b, generated by the nonlinear interaction via double EIT, p
ceeds along the lines outlined before.

From the above discussion, it is clear that the main pr
lems related to the described schemes rely on the quan
efficiency of the detection devices. As we have seen, imp
fections in the homodyne detectors, for example, are resp
sible for the disappearance of the oscillation pattern in
probability distribution relative to the out-of-phase quad
ture. For the case of a Schro¨dinger cat state, this results in
loss of information relative to the quantum superposition
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PATERNOSTRO, KIM, AND HAM PHYSICAL REVIEW A67, 023811 ~2003!
two coherent states. It is worthwhile to stress that for h
value of h, the oscillations inPg,h,p/2(x) survive even for
large values ofg.

The hard task represented by the detection of an e
~odd! coherent state or, more generally, of an entangled
herent state can be made easier by the recently impro
sensitivity of the available detectors. Values ofh;0.8 are
realistic for a detector operating in a Geiger mode and v
sensitive photodetectors, with an efficiency as high
.0.93, have been developed. They, however, require a
temperature to properly operate@43#.

VI. CONCLUSIONS

We have proposed a fully quantized picture of the mo
for double EIT recently discussed by Petrosyan and Kur
@17#. Our approach is based on a full Hamiltonian meth
This allows to bypass the analytical solution of the equati
of motion of the atomic density-matrix elements. It simplifi
the computational problems related to systems that invo
many atomic energy levels coupled by electromagn
fields.

As shown in Ref.@16#, the nonlinear interaction of two
beams of light that pass through a dense atomic medium
optimized by a double-EIT regime in which both the fiel
propagate with a strongly reduced, equal, group velocity. T
atomic model proposed in Ref.@17# seems to be a goo
candidate to the experimental realization of such a phys
condition. In our fully quantum version of this model, w
have shown that the quantum dynamics of one of the in
acting beams is dramatically dependent on the intensity
the second and vice versa. Our results are consistent
those reported in Ref.@16#. We suggested the Pr:YSO@22#
crystal as a possible candidate to physically embody the
cussed atomic model.
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Starting from these results, we have written an effect
interaction Hamiltonian that, when the field is initially pre
pared in two coherent states, leads to the possibility to g
erate entangled coherent states and even or odd coh
states~Schrödinger cat states!. In order to investigate the
quantum features of a generated even~odd! coherent state,
we described a scheme able to measure the total vari
function of the involved modes quadratures@39#. For low
amplitudes of the investigated entangled coherent state,
value of this total variance is well below the bound impos
by the inseparability criterion suggested in Ref.@18#. We also
investigated the effects of an imperfect nonlinear process
of detection inefficiencies on the above results. We found
scheme robust against homodyne detection losses. Fo
cases in which the total variance criterion is unuseful,
suggested a detection scheme based on the unitary ma
lation of one of the modes in the entangled coherent s
followed by the detection of coincidences of photocoun
We discussed possible sources of errors and experime
difficulties, we expect to appear in a real experiment, find
that an optimal detection protocol basically requires high
ficiency of the detectors.
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