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The generation of an entangled coherent state is one of the most important ingredients of quantum infor-
mation processing using coherent states. Recently, numerous schemes to achieve this task have been proposed.
In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical
Kerr effect enhancement in a dense medium in an electromagnetically induced transg&i@naggime,
seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme
recently proposedD. Petrosyan and G. Kurizki, Phys. Rev.65, 33 833(2002]: the quantization step is
performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two
interacting quantum fields of light that show how the dynamics of one field depends on the photon-number
operator of the other. The preparation of a Sclimger cat state, which is a superposition of two distinct
coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields
(initially prepared in coherent stajeand on a detection step performed using a 50:50 beam splitter and two
photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the
joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition
for entanglement based on quadrature variance measurement. We also show how robust our scheme is against
a low detection efficiency of homodyne detectors.
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[. INTRODUCTION be classical objects. Nevertheless, a fully quantum treatment
of nonlinear dynamics is relevant with respect to many as-
The generation of a Schdmger cat stat¢l1], which is a  pects of quantum information processing. For example, huge
superposition of two distinct coherent states, and an enKerr nonlinearities can be exploited in order to perform com-
tangled coherent state, which is an entanglement of the cgutation, as said above and as described in R&f43], to
herent states, serves the first step towards quantum informaerform quantum teleportation of an unknown stgté] or
tion processing using coherent stat2s Numerous schemes for quantum nondemolition measuremefts]. In all these
have been proposed in order to generate such a kind of c@xamples, a complete quantum treatment of the fields in-
herent superpositiof8—5]. Cavity quantum electrodynamics volved is required.
seems to be a promising environment to this f@gkand, in A full quantum analysis of the cross-phase-modulation
order to investigate their properties with respect to decoherproblem has been explicitly performed by Lukin and Imamo-
ence, recently a scheme to generate a mesoscopic versionglfl in Ref. [16], where a rather involved atomic system,
a cat state using trapped ions has been proppgedHow-  realized by mixing two different isotopes of the same alkali
ever, most of the suggested schemes for quantum computspecies, has been used. In order to suggest a more feasible
tion using coherent states is based on travelling-wave fieldexperimental realization of the process, Petrosyan and Kur-
Yurke and Stoler’s suggestion to produce a travelling-waveézki suggested a modification of the atomic model that allows
cat state was far from the experimental realization because ¢lfie use of just a single speciglsr]. Their analysis, however,
an extremely low efficiency and a high absorption rate ofwas again semiclassical.
nonlinear Kerr interaction, while the suggestion primarily In this paper, we investigate the fully quantum-
depends on it. mechanical description of Refl7] adopting a completely
Recently, it has been proved that the interaction of twoHamiltonian approachil9]. To the best of our knowledge,
traveling fields of light in an atomic mediufi,9] is able to  this method has never been used in this context. We envisage
show giant Kerr nonlinearities by means of the so-calledn a Y,SiOs crystal doped with P ions a good candidate to
cross-phase-modulatiofiL0]. Measured values of thg®) physically embody the atomic model we discuss: the scheme
parameter are up to six orders of magnitude larger than usuaf the atomic energy levels, in this system, seems quite ap-
[11]. This can open the way toward the use of this kind ofpropriate to be used for our purposes. Thé Pdoped
non-linear processes even for the very low photon-numbeY,SiO; has been used for the experimental demonstrations
case[12]. Usually, the approach to such processes is reef electromagnetically induced transparen®&T) [20] and
stricted to a semiclassical level: the medium is treated quargiant Kerr nonlinearityf21,22. Using realistic values for the
tum mechanically, while the interacting fields are assumed t@atomic parameters relative to this solid-state system, we find
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that a giant rate of nonlinearity is obtained in our fully 9H _

guantum-mechanical model. We derive the relative equations P= < " > e (oit=K2 L ¢ c.

of motion for the involved quantum fields. This allows us to JE;

write the interaction Hamiltonian in a form that explicitly ,

depends on the photon-number operators of the two quantum __ N_dJ IH e 0tk 4 ¢ o 3)
fields. Starting from this point, we show how entangled co- h a0t o

herent states and Scliinger cat states are generated when
the initial states of the fields are two independent coherenvhere(); is the Rabi frequency relative to théh field, d; is
states. the dipole matrix element of the corresponding transitidn,
The paper is structured as follows: in Sec. Il, we describds the density of the atomic medium, aktl is the single-
the Hamiltonian approach, we have chosen and apply it tparticle Hamiltonian. Here, we are assuming that all the at-
model cross-phase-modulation via HITO]. In Sec. lll, we  oms in the medium are equally coupled to the various fields.
apply this method to the atomic scheme for double-EIT sug- Introducing this equation into the Maxwell-Bloch equa-
gested in Refl17] and we derive the equations of motion for tions, we get rid of the atomic variables, obtaining a set of
the quantized fields. Section IV is devoted to the generatiorquations of motion for the Rabi frequencies that, in the
of entangled coherent states and Sdirger cat states of slowly varying envelope approximatiqi®VEA), reads
light. Finally, in Sec. V, we describe in full detail a scheme

for the detection of the entanglement in the generated en- 9 10 _ Ndjzwj oH’ _

tangled coherent state. The detection scheme is based on the —+ - | Q= i — ) Vi (4)
) S . . dz c at 2henC \ 90’

total variance criterion for continuous variable stdt&g). i

Changing the reference frame inte=z,7=t—2z/c, the

Il. THE HAMILTONIAN METHOD above equation can be reduced to
The standard method to describe the interaction of elec- iQ, _ Ndjzwj oH’
tromagnetic fields in a resonant medium is to derive the &—§=—|m — /- (5)
Bloch equations for the atomic density-matrix elements o€ | 941

which, when conditions of adiabaticity and moderate inten-

sities of the fields are valid, can be solved in steady—statE This approach has been used in R@83] to investigate

e problem of resonant forward four-wave mixing based on
IT. It is particularly convenient if an open-system Hamil-
tonian model is used to incorporadb initio the decay rates

the atomic levels and if the atoms follow adiabatically the
ields evolution. While the first condition can be satisfied
using an effective complex Hamiltonian, the second point
needs more explanations.

conditions. The solutions are, then, inserted into the Maxwel
equations to show the propagation of the fields. Howeve
when the number of fields involved in the problem is high
and the atomic system consists of several energy levels, th
procedure can be quite cumbersome.

A much simpler way to derive the field equations is given

by a full Hamiltonian approach19]. According to it, the Solving the Bloch equations that describe the atomic

polarization of the medium can be expressed as the parti i tri luti v invokes th led
derivative, with respect to the electric-field amplitude, of the ensity-matrix evolution, one usually invokes the so-calle
\{yeak-couplmg limit: the fields that couple an initially pre-

ver free-ener nsi f th mic medium. In oth ) ; .
averaged free-energy density of the atomic mediu othe ared, collective, atomic state to other states of the atomic

words P .
model are assumed to be very wealsually, there is less

than one photon per atom on an avepadéus, the probabil-
JH ity that, after the interaction, a state different from the initial
_< *> , (o one is populated is very small. This qualifies the initial state
JE . . . .
as a stationary state and the system will evolve in an adia-
batic fashion, following its dynamics. In these conditions, the
whereH is the interaction part of the HamiltoniaR,is the  averaged Hamiltonian that appears in Ei).can be replaced
complex amplitude of the electromagnetic field, @i the by the eigenvalue dfi’ that, in the limit of vanishing weak-
polarization of the mediumi19]. When several electromag- coupling fields, gives the energy of the initially prepared
netic fields interact with the mediunty can be expressed, state[23]. Thus
=iz —), ®)

following Ref.[19], as
€ '2hegc 07

P=

1
—H=2 xM(w))|Ej|*+ > Z BijlEE|*+---, (2
! ) where\ is the above cited eigenvalue Hf'.

The advantages of this approach are evident: the knowl-
whereB;; are the diagonal elements of the nonlinear third-edge of the eigenspectrum of the single-atom model suffices
order susceptibility, responsible for the nonlinear terms oto derive the field equation of motion directly. The quantiza-
the refractive index at frequenay; . Thus, the polarization tion of the fields is then performed in the canonical way, just
due to the jth electromagnetic field can be written as replacing the classical field variables in the effective Hamil-
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the secular equation fdd' results in a fourth-order polyno-
mial, whose coefficients can be expanded in power series of
|4 J/|Qq]. Retaining just the first significant terms of these
expansions, the relevant eigenvalue is found to be

24|70,/
(A—iyg)|Qql?

Taking the limit|Q4|,|Q,|—0, \g, tends to zero, which
is the energy of the initially prepared stdde, as assumed in
|3> Ref.[10].
Having\s,, the technique described in the preceding sec-
tion can be straightforwardly applied: deriving;, which
Jrow represents an effective interaction Hamiltonian, with re-

Imamoglu[10]. Fields E; and E, are assumed to be weak with spect tOQ’lc allows us to get an expressmn_fBﬁ, polariza-
respect to the strong driving field with fequeney . y, andy, are  tion of the medium at frequency,. According to Eq.(3),
the decay rates of statf) and|4), respectively. Statdd) and|3) ~ We have

are assumed to be metastable. In condition of two-photon Raman

resonance, the ensemble appears transparent tEfeftat propa- N|C112|2|C134|2 2

gates inside it with a very slow group velocif$,9]. A is the de- Pi(wy)= (A—iyy)|Q |2ﬁ3|E2| Ewl’ ©)
tuning of the|3)«|4) transition: this dispersive coupling induces Ya)2id

a.c. Stark shift in the stai8). This results in a shift of the refrac- and then

tive index curve of the medium. Because of the steepness of this

curve inside the EIT frequency window for field,, the value of

¥® is strongly enhanceflL6]. Y®(wy)=

®

SI=

FIG. 1. Sketch of the energy levels of the model by Schmidt an

N|d1|%d3q?
'~‘0(A_i7’4)|9d|2ﬁ3

(10

tonian represented by the explicit expressioi @nd assign-
ing appropriate commutation rules to thg®4]. Starting  This is exactly the main result obtained by Schmidt and Ima-
from this effective, fully quantized Hamiltonian, the quan- moglu[10]. Taking the real part of the comple¥® we get
tum generalization of the equations of motion for the fields isthe rate of nonlinearity of this process. Note that, differently
easily derived. We want to stress here that adopting thi§om the works in Refs[10,25, here, we do not have any
Hamiltonian approach, we do not introduce any other apx'") because of the assumed perfect resonance in the transi-
proximation with respect to the semiclassical case: we justion |1)«|2) and the zero atomic decay rate from st@p
eliminate the atomic variables evolution from that of the Measured values of the non linear refractive index, for this
fields without solving the corresponding Bloch equations. model, are of the order of I8cn?/W, resulting in an en-
Here, we propose an example to illustrate the power ohancement of the Kerr effect up to six orders of magnitude
the Hamiltonian approach and to show how to get huge nonwith respect to the best measured values for the case of cold
linear effects using the interaction of a field with a macro-trapped Cs atomfsL1].
scopic atomic ensemble in the EIT regime. The main result of this section has been to show that the
We refer explicitly to Ref.[10] (the atomic model is chosen Hamiltonian approach is able to reproduce correctly
sketched in Fig. lwhere, using the usual semiclassical ap-the results obtained by solving the equations of motion for
proach, it has been proved that giant values of the third-ordethe atomic density-matrix elements. Starting from it, we will
atomic susceptibilityy®® can be obtained. This result is a straightforwardly derive the full quantum description of a
consequence of the a.c. Stark shift experienced by the asiodel for double EIT.
sumed metastable staf8) because of the dispersive cou-
pling, induced by fieldE,, between states8) and|4). lll. CROSS-PHASE-MODULATION VIA A DOUBLE-EIT
The Hamiltonian that describes this interaction, with a EFFECT
canonical transformation and introducing the decay rates of ) ] . .
states|2) and |4), in the basis{|1),]2),|3),|4)} have the We refer again to Fig. 1 for the details of the following

effective matrix representation: discussion. As eXp|ained abOVe, in the EIT I’egime, the field
E;, travels in the medium with a very slow group velodify?
0 Qf 0 0 m/sec in Ref[11] and 45 m/sec in Ref22]), while E, has a

Q. —i a 0 very high propagation velocity. Harris and Hau proyéa]
) 1 12 S that the total phase-shift experienced by figldis limited by
H'=%] o Qf 0 Q5 |- () the time that the faster of the two fields spends inside the
0 0 Q, A—iy, medium. The efficiency of the nonlinear interaction is, thus,
strongly affected by any velocity mismatch. In order to get
rid of this bottleneck, strategies to induce EIT for bdgh
Assuming, as in Ref[10], that |Q4],|Q,|<|Qq4|,A,y4, andE, (double-EIT regimghave been developed. This will

023811-3



PATERNOSTRO, KIM, AND HAM PHYSICAL REVIEW A67, 023811 (2003

implies a complication of the atomic energy spectrum, it ap-
pears simpler under a realizable point of view. The energy
scheme is sketched in Fig. 2: it involves a six-level atomic
configuration and four electromagnetic fields. A magnetic-
field splits metastable triplef|1),|2),|3)} by A, and the
excited triplet {|4),|5),/6)} by Ay#A_. Transition
|2)«|5) is assumed to be forbidden, while sté2¢ is reso-
nantly coupled to statdg) and|6) by means of the two very
—1 weak probesg, and E,, respectively. These two fields
couple transitiong1)«|5) and |3)«|5) with a detuning
|A|=]Ay—A_|. The couplings|1)«|4) and|3)«|6) are
realized by two classical, intense fields of different frequen-
cies but equal Rabi frequencies. In these conditions, the sys-
tem divides itself into two parts. For the subsystem com-
posed of statekl),|4),|2),|5), EIT is induced for fieldE,
while an a.c. Stark shift effect on stdte) is determined by

Ey, to generate the required nonlinear interaction. For the
subsystem composed of stat8$,|6),|2),|5), an analogous
discussion can be done interchangig and E,,. The two
subsystems are related via the nonresonant couplings involv-
ing state|5). The double-EIT regime is, thus, established.

As we have discussed above, a Hamiltonian approach re-
veals its advantages when several atomic levels are involved.
In these cases, even if a Maxwell-Bloch approach is still
possible, the procedure itself is rather uncomfortable. Fur-
thermore, the generalization to a fully quantized version of a
nonlinear process can be hard to perfd@s].

For the system described in Fig. 2, we write the Hamil-
tonian in the interaction picture:

W

)

H'=hA[5)(5] +7{Qq[4)(1] +04[6)(3] + 4] 4)(2

FIG. 2. This figure shows the atomic model used to get a + + + —2iAt +
double-EIT regime for field&, , with frequencyw,, andE, with | Qb|5><l| Qb|6><2| Qe |5><3| c.c}.
wyp,. The fields that have frequencies;; w4, are assumed to be (11
classical, in the sense that their intensities is much greater than that

of E, and E,. The splittingA is assumed to be different with . L
respect ta, . |A|=|Ay—A,| is the detuning of fiel, relatively To show that our method is able to mimic the results

to the transitior{1)«|5) and of fieldE, with respect td3)«|5).  Obtained, at the semiclassical level, by the approach chosen

The excited-states decay rates are assumed to be equafdothe N Ref. [17], we appropriately change the signs in front of
sake of simplicity. each Rabi frequency in Eqll) and we introduce the

excited-states decay rates. In Rgif7], the sign in front of

each Rabi frequency is chosen according to the Clebsch-
maximize the interaction time, optimizing the efficiency of Gordan coefficient of the corresponding transition. Here, this
the process. While the scheme suggested in[Réf, even if  is performed in gphenomenologicalvay just to match our
extremely stimulating, seems to be hard to be experimentallyjnodel with the one reported there. We finally get the follow-
realized, Petrosyan and KurizKil7] proposed another ing matrix representation oH’ for the atomic basis
scheme for double EIT to simplify the model. Even if it {|1),/2),|3),|4),|5),|6)}:

0 0 -0 0
0 0 (0 0 -QF
0 O O Q*eZiAt _O*
H =# , a d (12)
Q4 Qg 0 —iy 0 0
-0, 0 Qe 0 A-iy 0
0 _Qb _Qd O 0 _|’}/
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The solution of the Schdinger equation for a state where L is the interaction length of the field&, experi-
ences, thus, a phase shift due to the presence of the second
6 field [16,17).
|¢>>:% Ai(t)]i) (13 We now apply the Hamiltonian approach, to show that the

results obtained solving perturbatively both the Maxwell
) ) ) ] ] equations for the fields and the equations for the atomic
is obtained assuming the weak-field lipf4, ,A>|Qa 5| probability amplitudes can be obtained just by looking for
and that bothy* andA " are larger tharT, the character- the gigenenergy of the system that, e, ,| 0, gives the
istic interaction time of the applied fields with the atomic energy of staté2) (that is the initial state of the system
medium. Under these conditions, we can use the SVEA for Tne secular equation for the matiik’ given in Eq.(12)
the atomic probability amplitude;(t) (i=1,...,6) and for s 5 six-order polynomial expression whose coefficients de-
the field amplitude€, andE,: this is equivalent to require pend on the Rabi frequenci€k, , 4. In the weak-field limit,
that the amplitudes of the applied weak fields do not chang@e se a series expansion @fa'bmd_ Retaining just the
too much duringT. Neglecting the highly oscillating terms, st orders and performing that kind of RWA that allows us

in such a way that a kind of rotating wave approximation, neglect all the very highly oscillating terms, we finally get
(RWA) is performed, the probability amplitudes reach sta-

tionary values. Note that this second assumption agrees with 20042 Qp|2 Qg2
an adiabatic solution of the equations of motion. o= - 2 CTPNTL (16)
If all the atoms in the ensemble are initially prepared in iyQ*—AlQq % Q]

state|2), in the weak-field limit, we can taka,(t)=1, V't
<T. Referencd17] shows that the atomic polarizability of
the medium at frequency, is given by

with |Q]= V] Qa|*+]Qp[*+[Qg|%

As pointed out, this equation has to be contrasted with
that for the eigenenergy of staf2) in absence of the weak
probes. If these fields are absent, it is easy to verify that the
(14) atomic model shown in Fig. 2 can be mapped into an effec-

tive five-level system that does not include stf2¢. The
diagonalization of the resulting Hamiltonidobtained from

wherea,=No, andoy is the resonant absorption cross sec-Ed- (12) getting rid of the second row and column of the
tion, generally defined byo=|d|2w/2€,ct y. Equation(14) ~ Matrix) shows that the statg4) and|4) are dressed by the
shows explicitly the effect of the cross-phase-modulation inintense field with frequencyq,, while the field with fre-
duced by the interaction between the two wehkt classi- dUeNCywq, dresses the transitid)«[3). This shows that
cal) fields: the polarizability at frequency,, due to field ~ State|2) is the only state that, in absence of weak fields but
E.. depends on the intensity of fiel, . Since a completely with the strong classical ones shined on the medium, has
analogous expression holds for the polarizabitify at fre-  Zero energy. Since, fdi2, | —0, we havex—0, Eq.(16)
quencywy,, the cross effect is evident. Here, we are assumiS the right solution. S

ing that the atomic ensemble is mantained at a sufficiently ASSUMIng once more the weak-field limit, we haj¢@|

low temperature to discard any Doppler broadening. Rigor=|Qd| and the expression for can be approximated to

ously speaking, the thermal distribution of the atomic veloci-

ties has an influence on the value of the susceptibility of the 20|Q4% Q0
medium, that has to be averaged over the velocity distribu- B (iy—A)|Qq?
tion function. If the temperature of the sample is kept low

(orders of 16 nK in Ref.[11]) and if we adopt a copropa- The partial derivative of Eq(17) with respect toQ}
gating beams configuration in order to get rid of residualgives us an explicit expression for the polarization of the
Doppler shifts, the broadening can be made small and thgedium at frequencw, and the equation of motion fdd, .

2iagy| Q|2
ag=——————,
(y+iA)| Qg

17

average can be avoidé¢d7]. The latter, finally, reads
In the above discussion, the influence by the inherent in-
dex of refraction of the host medium is not considered be- 90, 2iNogy|Qpl?

cause it is negligible compared with the effective refractive (18
index created by the EIT-group delay. However, it may be

important if slow light is not considergl@d4]. The contribu-

I (y+in)Qy?2

tion to the back 4 ind f refraction f i that exactly corresponds to the result semiclassically ob-
lon to e background index ot retraction rom COUupings, i4;neq jn Ref.[17]. In the same way, the partial derivative

not con5|der.ed in our model f“ is negligible 100. Indeed,. with respect td}}; leads to the polarizability at frequenay,
it depends, in general, on the inverse of the large detunmggnd to the equation of motion for the Rabi frequerie
relative to these out-of-resonance couplings. 4 q y.

. . . . Because of the symmetry of the system with respect to the
Introducinge, into the equation of motion fdg, , we get fiel i 26 that thei lociti
the solution two fields, we easily recognize t at their group velocities are
both equal ta 4= |Q4|*/Noyy<c. This inequality holds us-
L . ing the values reported in RéfLO]. As explained above, this
Ea(L,t)= Ea( 0f— _) expl i f a,dz!, (15) qual!y slow propagation of the two_fields inside the medium
c 0 optimizes the cross-phase-modulation effect.
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To have an _efficient nonlinear process, the rate of twonumber operator in the PU|§% (Nb). In the case of single-
photon-absorption has to be negligible with respect to thenode field, as a cw laser beam, the sum that appears in the
rate of_nonll_neanty. Since the former quantity is propornon_aldeﬁnition of O,,(zt) collapses and O,(zt)
to the imaginary part of the polarizability, while the latter is —d 5 (gt —ka2) . q
proportional to his real paftL.2], we can consider the follow- — ~24 l(“’a 2” Equ)ae” h ' ASS“'T“lng 7>1 an
ing figure of merit for the nonlinear interaction: properly co ectlng all the nonqperatorla quantities into a

rate of nonlinearityy, we can write Eq(20) as
Re{a,} A

Im{a,t v’ (19) Herr=fixa'ab'b, (21

n

with
If the experimental conditions are such thety, then
any absorption can be neglected and the process can be seen e| Nwawp|dogl?|dog?
X:

just as a mutually induced phaseshift of the fields. Note that
this is fully consistent with the requirement advanced in the

original theory of giant Kerr nonlinearity by Schmidt and . . .
Imamoglu[10]. Adopting the values chosen in REL7], an where we have assumed that the interaction volume coin-
' ’ cides with the quantization one. This cw-mode configuration

interaction length of the order of centimeter and an interac-

tion time of some microsecond-lead, for two focused beam&!!OWS US to give very interesting insights into the potentiali-
E, and E,, to a total phase shiffobtained integrating ties of the described system. Its validity is discussed in de-
a ’

Re{a,} over the interaction lengiithat can easily reachr. tails later in this section. This assumption was also employed

With these orders of magnitude, the total t\No-photon-in Ref. [16]'_ . .
absorption probability is smaller than 1%. Let us briefly turn to some experimental details. A prom-

The quantization of the fields, now, proceeds as foIIowsting candidate to embody the atomic model, we used for the

: ; ; ; ; +
we replace the complex Rabi frequencies that appear in E(ﬁj.OUble'ElT regime is a crystal of 8i0; doped with P¥

(17) with the positive and negative frequency components ofons (Pr:YSQ [26], both for an inter_esting similarity be-
the corresponding field operatofthat satisfy the bosonic tween the energy-level scheme described here and that of the

. A ~ transition3H,— 1D, in this crystal and for the possibility we
commutation ruleg (), ’QJT]OC‘S”L with ;; the Kronecker have, in a sélid-stzzite systen)wl, to limit the eﬁepct of they Dop-
symbol, I the identity operator, andj=a,b), multiply the  pler broadening. This solid-state system is notable for its
expression that is, thus, obtained by the density of the atomglatively narrow-linewidth EIT that, very recently, enabled
in the ensembléN) and integrate over the interaction volume the observation of ultraslow group velocity=@5 m/sec) and
V=AL, with A the effective cross section of the fields. Fol- storage of light pulse$measured delay times greater than
lowing this recipe, we get an effective Hamiltonian operatorgs ysec)[22]. For the ®H,— D, transition at a wavelength
that describes, in a completely quantum picture, the nonlingf ~600 nm considered in Reff22], the ground-state popu-
ear interaction of two quantum fields that propagate inside gation lifetime is of the order of minutes. The crystal sample

, 22)
2h2e5(iy—A)|Qql?V (

dense medium in condition of double EIT: can be taken as long as 1 mm and the laser beams used in the
L nonlinear interaction can be focused, by a lens, to have a
N 26AN [LOI0.010, typical diameter of 10Qum (full width at half maximum. A

dz (20 realistic value for the excited-states decay rateange be-

tween 10 and 100 kHzclose to the measured values for a

For the case of pulses propagating inside the nonlinea?@mPple at a temperature of 5)Khat, for detuningA
medium, we can follow a treatment analogous to that devel~ 1 MHz and coupling field Rabi frequendf)|~1 MHz

oped in Ref[27]. Thus, adopting the narrow bandwidth ap- &llows us to CO”Sid‘?W?AJQdL in accordance with our
proximation and assuming a finite range of frequencies intreatment. T_he _electrlc dipole matrix elemen_ts for the system
volved in the superpositions that build up the pulses weinder examination are three orders of magnitude weaker than

introduce the slowly varying positive frequency operatortnose, for the same range of frequencies, in "illzkga“ atoms.
0(21) = S (@ T2 eV ) At o 1@ 027¢ 40 the Taking, as typical values for an alkali atod10"“ Cm,
a(Z,1) = d2aZiV (w5 /2 €0V g)a(t) we can assumgd,, =|d,¢ ~10" 32 Cm. Finally, the atomic
analogous forQb(z,t),A where we explicitly introduced the density is taken adl~10' cm 3. Putting these values in
annihilation operatorsy.. Here,V, is the quantization vol- Eq.(22), we find that interaction timesin the range ofusec
ume,k is a label for the different wavelengths appearing inallow to reach a cross-phase shift yr~ 7 even when the
the superposition, an@d$®" is the centralcarrier) frequency intensity of the beams involvegroportional to(n, ,)) is no
of the pulse: the narrow-bandwidth approximation consists ifmgre than a few photons. We will see in the fo’||owing sec-
assuming that the width of the pulses, in the frequency dotion, how important, for the purposes of this paper, is the
main, is smaller than the carrier frequency itself. When theypjjity to get aw cross-phase shift of the interacting fields.
spatial integration is carried on, assuming that the medium Egr the case of pulses interacting in the atomic sample,
length is longer than all the wavevelengths in the pulses, thgome experimental difficulties rise. First of all, effects of
main contribution toH ¢ is due to terms a§kal(t)ak(t) diffraction, focusing and defocusing d&, andE, are to be
(and the same for fiel&,) which define the total photon- considered: they are due to the transverse intensity profile of

Aefr=—
(PN ) ITE
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Q4 that leads to variations in the radial refractive index ex- For the sake of simplicity, but without lacking the neces-
perienced by the weak probésis effect is known in litera-  sary experimental realism, in what follows we treat just the
ture as EIF28]). EIF changes the size of the weak beamscase of single-cw mode propagation and, from now on, we
from point to point inside the medium, thus, modifying the proceed taking in consideration the effective Hamiltonian in
interaction volumgthat becomes a function of the positjon Eg. (21).

and influencing the rate of nonlinearities. The effect, present

even in the cw regime, is less controllable in the case of IV. SCHRODINGER-CAT-STATE GENERATION

pulses because of the different frequencies involved in the

propagating packets. These nonlinear effects, indeed, seem to In this section, we want to apply the results obtained with
depend on the sign of the detunings between the componengsir fully quantized picture of the cross-phase-modulations
of the probes and the frequency of the atomic transitions thdnduced by double EIT in order to show that this specific
they guide. This implies, for example, focusing for somesystem can be used to produce a Sdinger cat stat¢l] of
components of a probe pulse accompanied by defocusing & single mode of field.

all the other componentéof the same pulsethat have a Given the interaction Hamiltoniai21), we derive the
detuning of opposite sign. The result is that different har-equations of motion for the annihilation operatarsind b.
monics, in a pullse, are subject to different radial evolutignsAdopting the usual notationﬁazéTé,ﬁbzﬁTB for the
tthu.Tf complicating the control on the dynamics of the fieldynoton-number operators of the two fields, these are

itself.

Another relevant point to be treated is that of the different
phase shifts acquired by the different parts of the cross-
interacting pulses. As it can be seen solving the Heisenberg
equations of motion for the field operatdts and E,, inter-
acting as described in E§20), and as it is proved in Ref.
[16], the evolution of the probe fields is given by

da=—ix[a,nan,]=—ixany,
(29)
db=—ix[b,nyny]=—ixbn,,

which, arranging the time scale in such a way tha0 is the
instant in which the interaction starts, lead to the time-
. ) dependent operators
Eap(L)=Eqp(01)elXEaONEC0  (23) ) o A L
aou(t)=e~"™a(0), bgy(t)=e 'XMb(0). (25

with t"=t—L/v, and xy the rate of nonlinearity specific for ; o ;
g
this case(that reduces to Eq22) when we consider cw Note that, in the approximation of a pure cross shift process,

fields). Note that this solution is the exact quantum analo-nayb_dO not gvolve bgcause of the_nonabsorption character of
gous of what has been found, in the semiclassical approacH€ intéraction considered. Defining=xt, the above evo-

in Eq. (15). Thus, the phase-shift experienced by pug®) lution is e}ttrlbuted to the action of the unitary time-evolution
depends on the total number of photons in piige) at the  operatorU(e)=e"'¢"a" on the field operators. We want to
earlier timet’ and this number changes with the amplitude ofspecialize the present analysis to the case in which the initial
E, (E,). The effect is that different parts of a propagating State of the two interacting fields |#(0))ap=|a)a®[ 7).
pulse acquire different phase shifts with respect to eaclwhere the coherent stafte),=D,(a)|0), with the displace-
other. It modifies, in essence, the relative phase relations beyent operatorD ,(«) = exp(eal—a*a) [30]. The coherent
tween the pulse components and distorts the pulse shapggate|y), has been defined likewise.

Spectral width enlargement, for example, can be a detrimen-
tal consequence for the purely dispersive propagation insidgX
the atomic medium: if some harmonics of the evolving
pulses exit from the EIT transparency window, they will be ﬁ x
strongly absorbed by the no-more-transparent medium. Usu- |#/(t))ab=Dal(@)Dp(¥)|0)a®[0)y,, (26)

ally, a way to bypass this kind of problem is to arrange the . . .

pulses to be within the EIT window since their entrance intoVhere we have defined the time-dependent displacement op-
the nonlinear medium, properly choosing their shape an§'ators

spectral width. For adiabatic evolution and for an optically

The evolution of the initial state by meanslb(qo) can be
pressed as follows:

thick medium, the pulses will last in the nonabsorptive re- Da(a)=0(¢)Da(a)0 Y(p)=eled~a*a)

gion of the refractive index of the medium through all the (27)
. . . . - ~ ~ ~ A ‘:T7 *‘:.‘
interaction timg 29]. But this result has been proved just for Dy(7)=0(e)Dy(7)0 " L(p) =P =7*b),

a simple atomicA system and it needs a deeper analysis

when we refer to the atomic energy scheme that we describe 8 SRR PSP T ienAct ienn

in this paper. In our opinion, all these points have to beWith a'=e"'“aale!¥a andb’=e '¢"a"b e'¢"a", Ex-
further investigated, even seeking for an experimental veriPliCitly using the operator expansion theorgdd], we obtain
fication of their real influence, in order to have a complete _ o A
comprehension of the kind of control we can reach for the a'=afe ¢, pf=pleiena, (28
cross-phase interaction of two weak fields in a medium that

exhibits giant Kerr nonlinearities. that is,
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D,(a)=expaa’e '¢™— a*ae' ™),

5 . . (29
Dy(y)=exn 7bTe7|¢na_ vt be'#"a). fieldmode a Detector 1
Introducing Eq.(29) into Eqg. (26), we get the time-
dependent state of the two fields: fieldmode &
|#(1))ap=Da( @) D(7)|0)2®|0)p
= e*|a|2/2eaéTe’i‘Pnb| O>a® | '}’>b , (30) BS
where the Campbell-Baker-Haussdorff theorgt] and the field mode &
fact that a coherent state is an eigenstate of the annihilation
operator have been used. Using the representation of coher-
ent states in the Fock number states, we have ’oc> Detector 2
C

n

[UO)p=e 7S, Jﬁlae“¢“>a®ln>b. (31)

If we are experimenta”y able to set the interaction time FIG. 3. Detection scheme to infer the state of the field made
and the value of the rate of nonlinearity so that 7 then,  In this figure, it is shown the symbol used to represent a photode-
splitting the sum in Eq(31) into one over the odd values of tector and that for the 50:50 beam splitt&S). According to Eq.

n and one over the even ones, the evolved state of the twiF¥: Detector 1 (2) clicks just if the state of modeis |a),
initially noninteracting fields takes the forf2] (]—a)a). Using this readout scheme, we have the possibility to

generate an even or an odd coherent state of the field imode
lp(mlx))av™ | @)adl v) + = Mo+ = @)all V) == ¥} _ y
equally weighted superpositions afout-of-phase coherent
(32)  stategy),*|— y)p: it collapses into a Schdinger cat state.

The point, now, is to show how to reliably discern the state
This is a particular expression for an entangled coherendf field E,, .

state: it can be reduced to the more familiar foia) .| ), To achieve this target, we need a 50:50 beam splitter

+|— @)l — ¥)p unitarily acting on the subsystemTo prove  (BS). After passing through a beam splitter, two coherent
the entanglement, we have to show the correlation of thenput fields|a)| 8) become 33]

fields of modesa andb as we unitarily transform, gradually,

from |y), to |y)p=|— ¥),. However, this involves another at B\ |—atp
nonlinear interaction. We thus discuss an indirect way to |‘3ac| a)al B)e= > ’ > , (34)
prove the production of the entangled coherent state. V2 3 V2 T

In Eqg. (32), linear superpositions of the coherent states

|v), and|— y), are Schrdinger cat states whereB, .= e(ﬂ/4)(éﬁéfaéT), with a (3) andc (¢) as the input

. 2i (outpuy modes of the beam splitter.
|7>b+|—7>b°<z 7_|2j>b, Thus, takingB8=a and referring to Fig. 3, we have the
0 V(2))! following readout scheme: if the input modss in the state
|a),, then detector 1 will click, revealing that some photons

i Y2t arrived at it, while detector 2 will not click. In this case, the
Vb= |= Vp* 2, ———=[2]+1)y, (33 field modeb will be projected in the even coherent state. In
10 V(2j+ D! the opposite occasion, the field mobdewill be in the odd

coherent state. Of course, there is a possibility to have both

e detectors not to click. In this case, we do not know where
the modea is so we have to repeat the experiment till we
Thave one detector to click.

which are sometimes called as the even and odd cohere
states. As shown in Eq432), a time-controlled interaction of
two fields in initially prepared coherent states results in a
entangled state: if we properly normalize stéém/x))ap
and we look to the reduced density operator of the fI%Ad
alone (tracing overb mode, we find an incoherent mixture
of two coherent states which are out of phaser}32]. The quantum state of an electromagnetic field is com-
Suppose we are, somehow, able to discern the state {fletely and unambigously determined once all the moments
which field E, is, after its crossing through our model of of its statistical distribution function are determingi]. To

hlgh'y nonlinear medium. B?Cause of the entangled StrUCthget this task, we need the density maﬁ;ix)f the state of the
of Eq. (32), the state of fieldg,, is projected onto one of the field: it contains all the available information about the given

V. DETECTION OF A CAT STATE
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guantum state and, having the most complete statistical "on is just a sufficient condition for inseparability. The es-
description of the system can be performed. On the othef@blished bound could, thus, be exceeded even by a continu-
hand, it is possible to demonstrate a biunique corresponden@!s variable state that is not separable. We will give an

between the density matrix and the Wigner function of a e'xplicit example of this possibility in the following discus-
radiation modg34] so that, determining the latter, we are sion. o . .
able to fully identify the quantum state of the field. This __Tn€ criterion by Duaret al. leaves a certain freedom in
correspondence is useful under an observable point of view"® choice of the couple of operators to use, we need to
numerous theoretical schemes for the reconstruction of thgonstructu andv. The only limitation imposed is that they
Wigner function of a radiation mode have been proposedhave to be conjugate operators.

They are essentially based on heterodyne or homodyne de- In problems related to the investigation of the quantum
tection[35]. The mathematical manipulation of the data col- State of light, it is often useful to consider the phase space of

lected by the homodyne detector allows also for the reconthe quadratures
struction ofp [36,37]. Recently, this homodyne tomographic

technique has been experimentally realiZ88]. This ap- -~ 1 8t+p
proach, however, may be limited by imperfect detection ef- X= E( +b)
ficiency.
Y (37)
A. Detection of entanglement via measurement of joint ISZ i_(B,r_ B)
quadrature variance 2 '

The procedure described above could certainly be used to
determine if our scheme for the nonlinear interaction of twoSo defined, the quadratures of a field are a couple of conju-
weak fields inside a Kerr-enhanced medium has been able tgate operators, sinde,p]=i. Operatively, their probability
generate a Schdinger cat state. However, as its completedistribution can be reconstructed by a homodyne detection
and satisfactory treatment is far beyond our purposes, wscheme[35,3]: the input mode to measure is mixed, at a
want to suggest alternative ways to show the signature of th80:50 beam splitter, with the coherent state of a local oscil-
quantum nature of the state generated. Recently, a sufficietdtor whose phase is directly controllable during the ex-
criterion for the inseparability of a continuous variable stateperiment and whose intensity is so high to consider it clas-
has been proposed by Duahal.[18]. They proved that, for sically. The difference between the number of photons in the
a separable continuous variable state, the total variance of@utput modes is, then, measured by two photodetectms
couple of suitably defined conjugate operators respects far each output modeThe data collected are proportional to
lower bound imposed by the uncertainty relation. For an enthe expectation value of the operator
tangled state, on the other hand, this bound can be violated,
providing a sufficient criterion for inseparability of the state. 1
More precisely: assume a continuous variable state com- Oy=—(bTe'?+be "), (39
posed of subsystems 1 and 2 and take the couple of opera- 2

tors, for both subsystems{X;, P} (i=1,2) such that i
[ ,P]=i8; . Because of this commutation rule, the simul- that, for=0 coincides withx, while for = 7/2 is equal to

taneous measurement of both the operators is affected by tfpe[35]. The couple of quadraturds,,pa}, {X,,py} relative
Heisenberg uncertainty principle. Following R¢L8], we to the field modes in Eq(32) are, thus, well suitable to

take an arbitrary, nonzero, real paramegeand define the construct operators ando for the joint system of modea

pair of collective operators andb. What we need, to calculate the total variance function
1 S, is just the variance of single quadratufsuch as
u=|q| X+ aﬁcz, ((AX4)?), for example and the expectation value of corre-

(35 lations as(X,X,) or (PaPy), Measurable collecting the coin-
A R cidences at the detectdr39].
v=|q|P;— =P,. We takeq=1, so that the bound value for the separability

q of the input state is 2. Unfortunately, the calculation of the
separability functiorSfor the entangled superposition in Eq.
(32) leads toS=2, whatever are the amplitudesandy. As
we stressed above, this certainly does not mean that the state
is separable but just makes this criterion unsuitable to reveal
the entangled nature of the investigated state. Because the
. . . ) behavior ofSis very state dependent, to bypass the negative
with ((Au)?) and((Av)?) theAaveraAge variances, calculated resylt we obtain using Eq32) directly, we propose the fol-
over the state of the system, wandv, respectively. In what lowing strategy. Assume we generated, as described at the
follows, we will often refer to the total variancgas to the end of Sec. IV, an even coherent state of mbd&Ve then
separability function. It is worthwhile to stress that the crite-mix it with the vacuum of mode at a 50:50 BS. Specializ-

For any separable state, it is possible to show that the fol
lowing inequality hold418]:

S={(AW)H)+((Av)®)=q?+q 2 (36)
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ing the general rule of a beam splitter in E®@4) for B

=0, the joint state of the BS output modes can be written as

L Y Y Y\l
'¢’>b°‘N[ ﬁ> E>’E> ﬁm @9

with N=1/y/2(1+e 2""). This is an entangled coherent
state of two field modes: note that, using this procedure, this

output state can be obtained only if the radiation mdein

an even coherent state. More generally, to describe the state

of modeb, we can take the density matrix

po=A{ VY +]| = V(= Y+ (= YI+]=7{(¥D}b.
(40

with O<|c|<1 and.4 a normalization constant. Far=0,
the state is a statistical mixture=1 (c=—1) gives us the
density matrix of an everfodd coherent state while, the
general case in which<Oc<1 corresponds to a nonoptimal
generation of the Schdinger cat state. After the action of

the 50:50 BS, the two output modbsandc (whose initial
density matrix wag0).(0|) will be described by

w5 AR
P 22| |2 2\ 22
-y v Y O~ Y —Y
+CE,E><—2,—2 +C—2,E>
<_sz£} (41)

It is evident that staté39) can be retrieved from this density

PHYSICAL REVIEW A67, 023811 (2003

3 ’Y

FIG. 4. Plot 0fSperrec=((AU)?)+((Av)?) as a function of the
coherent state amplitude The sufficient criterion for inseparabil-
ity states that, for any separable continuous variable state, this total
variance function has to be bound from below by a value that, for
the calculations shown in this paper, is equal to 2. The effect of
different values of the parameterin the density matrixﬁé; s
studied: the dot-dashed curve is for0, corresponding to to the
case of a statistical mixture. The dashed curve iscfe0.5, while
the solid curve represents the case of a perfectly generated even
coherent state of field mode. In this latter case, for the state
considered in Eq(39), the bound is beaten just unt4=2.

0.5 1 1.5 2 25

v=0. This gives the signature of the entangled nature of the
low intensity state, we have generated. The dip of the sepa-
rability function shows a maximum deviation from ti&

=2 bound equal to 28% foy=0.8 and is still about 5% for
vy=1.6.

Thus, the criterion seems to work sufficiently well for low
values of the amplitude of the input coherent states. This is
because reducing the value of the amplitude, the entangled
coherent state becomes similar to a Gaussian state, that is, a
class of states for which the total variance criterion for in-
separability works very efficiently. In Fig. 4, the separability

matrix only if c=1 (we have the case of an odd coherentfunction (42) is compared to what is obtained takieg-0

state in input whert=—1).

1. Perfect detection efficiency

andc=0.5(that is, midway between a statistical mixture and
a perfectly generated entangled coherent stdtee largest
effect of an imperfect generation of the input is to reduce the

The quadrature statistics of the two radiation modes arélip of the nonseparability well until, for the statistical mix-
measured by two homodyne detectors, as described abowviglre corresponding te=0, the criterion fails for whatever
The collected data allow to estimate the experimental totayalue of the input amplitude. The information we obtain with
variance for the input state. This has to be contrasted witthe detection scheme we are describing, give us a sufficient
what we get calculating the separability function. We thusinsight into the entangled nature of the st¢36).

test, by means of the sufficient criterion for inseparability,

the entanglement properties of st&3®) in order to infer the
state of the radiation mode Even if, by this means, we are
certainly not sure that the state of modesandc is exactly
the entangled coherent state in E§9), we will show the
entangled nature of the detected state.

If we calculateS for the case of statgb)yz, we get

—242

, 2e 77
1+e 2]’
A plot of S;¢r1ectas a function of the amplitude is given in

Fig. 4: the total variance function stays below the bosd
=2 just until y=2 (we haveS=1.995 fory=2) and except

Sperfectzz[ 1-vy (42)

2. The effect of detection inefficiency

We now show the robustness of the detection scheme for
entanglement with respect to the unavoidable homodyne de-
tector inefficiencies. In what follows, we attribute them es-
sentially to losses. Other possible sources of error are the
dark counts at the photodetectors, whose entity depend on
the width of the detection window. Their effects can be made
negligible taking the detection time short with respect to the
characteristic time of a dark-count occurrence. Finally, we
neglect the noise introduced by the local oscillators suppos-
ing their amplitudes to be well stabilized.

The effect of loss on the collected data can be modeled
replacing a real, inefficient, homodyne detector with a beam
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FIG. 6. Behavior of the separability function for st¢89), as a
function of the amplitudey, when imperfection in the homodyne
detection are taken into account. Here, the dot-dashed curve is for
detection efficiencyp=0, the dashed one is fay=0.4, and the
solid curve is forp=0.8. For lowers, the minimum values of
Simperfect Shift toward highery values: this is because the lower is
the efficiency of the homodyne detectors, the more 2@ re-
sembles a Gaussian state.

blackbody
absorber

ance shifts toward higher values ¢f(see Fig. 8 enlarging

FIG. 5. Sketch of the proposed scheme to infer the value of the(he range of amplitudes for which the separability function

total variance for the entangled state of moleandc when the

e , ) ) has values below 2.
inefficiency of homodyne detectors is taken into account. \With This effect can be explained directly referring to the prob-
andD,, we indicate perfect homodyne detectors that have to mea;

sure the quadratures of modésande. These are the fields trans- ability that the homodyne detector measures a valogthe

mitted (with probability %) by two beam splitters BS whose ef- quadraturex. Without loss of generality, but avoiding the
fect models the inefficiency of the homodyne detectors. The beami€ngthy calculation relative to stat@9), we investigate an
reflected by BS are absorbed by blackbodies. The local oscillators@ven coherent state. We let this state to be mixed with a
are prepared in very intense coherent states. This allows us to tregficuum field at a BS of transmittivity;. As before, the
them as classical fields. Their phases are experimentally controlleeesulting transmitted mode is then measured by a perfect
and adjustable. BSand BS are 50:50 beam splitters. homodyne detector, while the reflected field is traced out. We
finally get the following probability distribution for the in-

splitter (transmittivity ») followed by a perfect homodyne phase quadrature:

detector[3]. In Fig. 5 the experimental apparatus that con-
siders inefficient homodyne detectors according to the above a2V g (x—NZIN2 4 g (x+ Z7)?
equivalent model is sketched. Each beam splittey, Bthat P, oX)= ,
mixes a mode of the signal to measure with a vacuum state, n 2\m(1+e 27
transmits the signal with probabilityy and reflects it with (43
probability 1— 5. The amount of reflected input field gives a
measure of the losses of the detection apparatus, so that thelt shows thatP,, , o(x) is composed of two Gaussian hills
quantum efficiency of this latter can be identified with  centered at- 27y plus a third term that, foy sufficiently
itself. To avoid stray light to enter in the perfectly efficient |arge, is negligible with respect to the otheiesven for y
homodyne detector, we can imagine that the reflected output 2 it is negligible. The larger is the amplitude, the
field enters a blackbody absorber. Mathematically, this idarger the Gaussian hills are ap&8]. However, if an effi-
equivalent to tracing out the degrees of freedom relative t@iency 7»<100% is considered, the distance between the
the absorbed field mode. What the perfect homodyne dete@aussian hills for low values of is strongly reduced and the
tors measures, thus, is the statistic of the quadratures of thgint state appears more and more similar to a Gaussian state.
transmitted beams, irrespective of the state of the reflecteflo observe well separated Gaussian bells, we have to go
ones. toward largery (Fig. 7). It is possible to show that the same
The calculation of the total variance for the quadratures ogffect is observed in the probability distribution of an en-
modesb, ¢ when the detectors have an equal quantum effitangled coherent state as H89), with the suitable modifi-
ciency » leads to what is shown in Fig. 6. The separability cations due to the different nature of the state. This explains
function seems to keep its functional features even in théhe behavior of the separability function for an imperfect
case of imperfect detection. However, some differences, witthomodyne detector.
respect taSy¢rect, @ppear. As the quantum efficiency of the ~ However, the success of the total variance criterion for
homodyne detectors reduces, the mimimum of the total varilow values of the quantum homodyne inefficiency has not to
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Probability Distribution Probability Distribution
0.35 \
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FIG. 7. Plot ofP,, ,(x), for an input field in the even coherent FIG. 8. Probability distribution for a detected homodyne current
state withy=1.5. The effect of different values of is investi-  with 9= /2. In this plot, y=2, while » is scanned: the dashed
gated: the dot-dashed curve is fpr=0.1, the dashed one is for curve is for p=0.4, the dot-dashed one is far=0.9, while the
=0.4, and the solid one is fop=0.8. solid curve is foryp=0.95.

be considered positively. The imperfections in the detectiorhomodyne detection scheme is able to discern a Satger
device tend to hide the features of the input state that appeacst state from a mixed state of two coherent states which are
as a Gaussian state even if, in reality, it is well far to bemutually = out of phasd3].
Gaussian. This means that, in order to reliably test the en- It is important to stress the effect, on the oscillatory pat-
tangled nature of the input state, a sufficiently larghas to  tern, due to the Gaussian modulation: as it is evident from
be considered. Realistic values of the homodyne detector efig. 8, even a small reduction of leads, for a small ampli-
ficiency range between 0.6 and 0.85. In particular, accordingude coherent state, to the disappearance of the oscillations.
to our calculations,7=0.8 seems to be a good trade off Mathematically, this is due to the factor-1y that governs
between the reliability of the total variance criterion and thethe width of the Gaussian function in front of the oscillatory
realism of an experimentally achievable quantum homodyn¢erm: the smallery is, the more rapidly the Gaussian func-
efficiency. tion goes to zero, washing out the interference pattern. The

From the above analysis, it appears thatydarger than effect is, clearly, more evident for large values @f This
y=2, it is not possible to get any information about the means that this scheme is very vulnerable to the detection
entanglement in the input state of modesindc from the  inefficiencies.
total variance of quadrature amplitudes. We have to look for
other detection strategies. B. An alternative detection scheme for entanglement

If we still refer to the case of a generated even coherent
state in Eq.(33), the characteristic of the superposition of
|v)p and |— ), is well revealed by homodyne measure-
ments, as pointed out by Yurke and Stdl&f. As commented

An alternative approach to the investigation of the coher-
ences in the quantum superposition |of), and |— )y,
when the total variance criterion fails, can be the following.

b h litude of th s of h e prepare, once more, the entangled coherent state in Eq.
above, the amplitude of the components of an even co ere( 9) using an even coherent state as input. Similarly to the

state ccjan be inferred directly frgm the Qrobab|llty dlstrlbutlontechnique used by Kwiagt al. in Ref.[40], we operate uni-

of the in-phase quadrature. If instead>ofwe measure the  tarily on one of the components 0f)g;. Then, we detect
statistical distribution fory= /2 in Eq.(38), the following  the coincidences between the counts collected by two photo-
function has to be found: detectors facing the output modesandg (see Fig. 9.

2 —2(1- )y In the restricted Hilbert space spanne_d by the orthqgonal
e "{l+e VY cod 22y} even and odd coherent states, the rotation of a generic state

Jm(1+e 27 ' |8)5=A|y/\2)5+ Bl v/ V2)5 can be performed by a dis-
(449 placement operatoDy(i6) (6<R) that, acting on|d);,
etransforms it into

P Y, 7],17/2( X) =

This probability oscillates and is moduled, at the sam

time, by a Gaussian functiofsolid curve in Fig. 8 The S Y oy
oscillations, with a frequency dependent gras well as on |A)=Ag 2 —+i0> +Be 12— 4| 0> .

7, are an evidence of the quantum interferences between the V2 b V2 b
two out-of-phase components of the coherent superposition (49

in the even coherent state. It is, indeed, straightforward to _
prove that, if instead of a linear combination f), and  If we take 6<y/\2, on the Bloch sphere of the restricted
|- y)p the input state was the mixed state of E40) with Hilbert space that we are treating, the above equation ap-

Z

c=0, then this oscillatory behavior would be absent. Thus, groximates well the statétb(a)|5>5, with ﬁﬁ(a) the rota-

023811-12



GENERATION OF ENTANGLED COHERENT STATES VIA . .. PHYSICAL REVIEW &7, 023811 (2003

The output modes andg are then sent to detectérand
mode ¢ |0> B respectively, where the photocount coincidences are re-
SORS——— , vealed. We model the photodetectors Gsiger-like on-off
| ' photo-detector¢ O-OPD). These particular devices just dis-
~ ! ; criminate the vacuum from an input with any photons, irre-

mode b mode b | moded . . .

> \ » — '— spective of what the photon number[i42]. Again, losses
|\(>J—r |—Y> 3 BS 2 | DEICIFB make the quantum efficiency of the @OPD not optimal,

: : so that some of the coincidences will be missed. Quantum
mechanically, an inefficienD-OPD can be described by
fiode & 1 |1?> means of a suitably definedositive-operator-valued-

| | measure(POVM), that is, a set of diagonalizable, having
A' ”””””””” positive eigenvalues, projection operators. The appropriate
choice for this case is the following:

Detector

0) ”
I o (n)=% (1= 7)2"n)(n],

FIG. 9. The figure sketches the apparatus to detect the generated click
state of modéd. As before, the input evefodd) coherent state and (48)
the vacuum state of the auxiliary field mode center the 50:50 beam ) 0
splitter BS; and give rise to an entangled coherent state of the H(C'|)ick( 7)=1-11 Fok( ), (i=A,B)
clic

output modes andc. While modec is directly detected by the

photodetectorA, modeb is rotated by the device shown in the  \ye assume the same efficiengyfor both the detectors.
dashed box. It consists of the high transmittivily¢1) BS, that | yhe ahove definitions 4 7 is the probability that a single
superimposes a coherent stiit€) to the field modeb. The trans-  etector lacks to reveal a photon and the sum over all the
formation thus realized approxmateg well with that of a dlsplace-photon populations takes in account the impossibility to dis-
ment operator thatotatesthe field inb [see Eq.(47)]. The tras-  tinguish the photon number in the incident field. Within the

formed mode is, then, sent to detecBrBoth A andB are twoOn POVM formalism, the probability that th€©-OPD click
or Off photodetectors that are able to discriminate the vacuum fromyithin the same detection window is given by

any incoming photon. They are not able, however, to reveal the
number of incident photons. The coincidences of the counts at the A) ®)
two detectors are measured. Pociicks( Vs 7,@) = Trged | @) g @[T () T ik 7))

tion operator, by an angle/2=2y6, around the Bloch —Cf(er2— 1= m¥12)2
spherez axis. Experimentally, such a rotation can be accom-
plished superimposing modeon the coherent stafe€) of

an auxiliary modef, using a beam splitter with a high-
transmission coefficient. As shown in Ref[41], the trans-  with C=2e~ 72/\/ 2, Let us look to the asymptotic behavior of
formation operated by the— 1 beam splitter (BSin Fig. 9 the above probability: fop— 0, that is, for highly inefficient
gives an entangled state of two output field modes. The redetectors, we geP,gicks(7,0,@)—0. If the limit »—1 is
duced density matrix that describes the state of the outpuhstead considered, Eq49) shows thatPojicks(7,1.a)
modeg only can then b§ apgroximated b}/ t[]at of adisplaced ,(1+e- 72005(1). The oscillating part inPjicks( 7, 1.)

state according to pg=D"k;(i5\/1—T)p5D£(i5\/1—T). is the evidence of the coherences established in the even

+cosa(e” 2—e~(1-Mr)21 (49

wherepg, is the density matrix of the input fieldt2]. coherent state. Unfortunately, it has an exponential prefactor
If we vary & in such a way thap=EJ1—T<y/\/2, that that can cause experimental difficultié®r y=2 and 7
is, =0.75, a visibility of about 1% is achievidFurthermore,

possible errors connected to timation of a Schralinger cat
P a 49 state have to be considered.
=7 46 Once the entangled nature of the input stdig; is rec-
2y2(1=T)y ognized, however, the inference about the state of field mode

then, just controlling the amplitude of this ancillary mode, b, generated by the nonlinear interaction via double EIT, pro-

we can appropriatelyotate the state of modé by a/2. ceeds along the lines outlined before.

Following this lines, the entangled coherent state in Eq From the above d|scus_5|on, itis clear that the main prob-
. : - . lems related to the described schemes rely on the quantum
(39.)' after the interaction ob with f at therotation beam efficiency of the detection devices. As we have seen, imper-
splitter BS,, becomes fections in the homodyne detectors, for example, are respon-
_ sible for the disappearance of the oscillation pattern in the
l> ‘_y> +e il l>] probability distribution relative to the out-of-phase quadra-
V2 | V2 V2] ) - ture. For the case of a Scluioger cat state, this results in a

(47 loss of information relative to the quantum superposition of

|(D>9E:N[ eia/Z %>
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two coherent states. It is worthwhile to stress that for high Starting from these results, we have written an effective
value of , the oscillations inP,, , .(x) survive even for interaction Hamiltonian that, when the field is initially pre-
large values ofy. pared in two coherent states, leads to the possibility to gen-
The hard task represented by the detection of an eveerate entangled coherent states and even or odd coherent
(odd) coherent state or, more generally, of an entangled costates(Schralinger cat statgs In order to investigate the
herent state can be made easier by the recently improvegbantum features of a generated eyedd coherent state,
sensitivity of the available detectors. Values ©f-0.8 are  we described a scheme able to measure the total variance
realistic for a detector operating in a Geiger mode and veryjunction of the involved modes quadraturd9]. For low
sensitive photodetectors, with an efficiency as high asmplitudes of the investigated entangled coherent state, the
=0.93, have been developed. They, however, require a lowalue of this total variance is well below the bound imposed

temperature to properly operdi43]. by the inseparability criterion suggested in H&8]. We also
investigated the effects of an imperfect nonlinear process and
VI. CONCLUSIONS of detection inefficiencies on the above results. We found our

scheme robust against homodyne detection losses. For the
We have proposed a fully quantized picture of the modekases in which the total variance criterion is unuseful, we
for double EIT recently discussed by Petrosyan and KUriZkguggested a detection scheme based on the unitary manipu-
[17]. Our approach is based on a full Hamiltonian method,ation of one of the modes in the entangled coherent state
This allows to bypass the analytical solution of the equationsgollowed by the detection of coincidences of photocounts.
of motion of the atomic denSity'matriX elements. It SlmpllfleSWe discussed possib|e sources of errors and experimenta]
the computational problems related to systems that involvgiifficulties, we expect to appear in a real experiment, finding
many atomic energy levels coupled by electromagnetighat an optimal detection protocol basically requires high ef-

fields. _ _ _ _ ficiency of the detectors.
As shown in Ref[16], the nonlinear interaction of two

beams of light that pass through a dense atomic medium is
optimized by a double-EIT regime in which both the fields
propagate with a strongly reduced, equal, group velocity. The
atomic model proposed in Refl7] seems to be a good We want to thank Dr. Anatoly Zayats for the useful dis-
candidate to the experimental realization of such a physicatussions about optical Kerr effect enhancement. This work is
condition. In our fully quantum version of this model, we supported by the UK Engineering and Physical Science Re-
have shown that the quantum dynamics of one of the intersearch Council through Grant No. GR/R33304. B.H. ac-
acting beams is dramatically dependent on the intensity oknowledges the financial support from the Korean Ministry
the second and vice versa. Our results are consistent withf Science and Technology through the Creative Research
those reported in Ref16]. We suggested the Pr:YS[22] Initiative Program. M.P. acknowledges IRCHRBternational
crystal as a possible candidate to physically embody the difResearch Center for Experimental Physics, Queen’s Univer-
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