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Hexagonal dielectric resonators and microcrystal lasers

Jan Wiersig*
Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany
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We study long-lived resonances~lowest-loss modes! in hexagonally shaped dielectric resonators in order to
gain insight into the physics of a class of microcrystal lasers. Numerical results on resonance positions and
lifetimes, near-field intensity patterns, far-field emission patterns, and effects of rounding of corners are pre-
sented. Most features are explained by a semiclassical approximation based on pseudointegrable ray dynamics
and boundary waves. The semiclassical model is also relevant for other microlasers of polygonal geometry.
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I. INTRODUCTION

A novel class of microlasers based on nanoporous
lecular sieve host-guest systems has been fabricated rec
by Vietze et al. @1#. Organic dye guest molecules were p
into the channel pores of a zeolitic microcrystal AlPO-5 ho
The aluminophosphate crystals grow with natural hexago
boundaries with a high degree of perfection. In terms
pump energy needed to reach lasing threshold these m
lasers can compete with semiconductor based vertical-ca
surface-emitting lasers. This makes them a promising ca
date for future applications as, e.g., optical communicat
devices.

Microlasers and microresonators are not only relevant
experiments and applications but they are also of great in
est from a theoretical point of view because they areopen~or
leaky! and they can bemesoscopic. In our case, the latte
depends on the lasing dye and on the crystal size. Both
troduce a characteristic length scale; the wavelengthl rang-
ing from 600 nm to 800 nm, and the side lengthR of the
hexagonal cross section of the crystal ranging from 2.6mm
to 4.6mm in Refs.@1,2#. In current experiments, larger crys
tals with R up to 20mm are under investigation. Only th
ratio of these two length scales is relevant. It can be
pressed by the dimensionless size parameter 20<kR<190,
wherek52p/l is the free-space wave number. For smallkR
the wavelength and the cavity size are of the same order.
system is microscopic. For large but finitekR the system is
mesoscopic.

The theoretical analysis of the lasing modes reduces to
two-dimensional problem of resonant modes in a passive
electric microresonator of regular hexagonal geometry~ig-
noring surface roughness!. In Ref. @2# preliminary numerical
computations of the full wave equations have been restric
to the near-field intensity pattern. We present a system
numerical analysis of the hexagonally shaped dielectric re
nator with 20<kR<60, including resonance positions an
lifetimes, near-field intensity patterns, far-field emission p
terns, and effects of rounding of corners. To avoid conv
gence problems at corners, which had been a problem in
@2#, we will employ the boundary element method~BEM!
@3#.

To study the deep mesoscopic regimekR.60, we will
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introduce a semiclassical ray model. The semiclass
~short-wavelength! approximation is applied in the field o
quantum chaos to relate quantum~wave! dynamics to their
underlying classical~ray! dynamics. Most research effort
have been focused on closed resonators, so-called billia
where the dielectric interface is replaced by a hard wall
which the wave function vanishes. The classical dynamic
free motion inside the billiard with specular reflections at t
boundary.

The regular hexagon belongs to the class of rational
lygonal billiards. All anglesf j between sides are rationall
related top, i.e., f j5mjp/nj , wheremj ,nj.0 are rela-
tively prime integers. If allmj are equal to unity, for ex-
ample, in the case of the rectangle, then the dynamic
integrable. In the presence ofcritical corners with mj.1,
the dynamics is not integrable but insteadpseudointegrable
@4#. As for integrable systems the phase space is foliated
two-dimensional invariant surfaces@5,6#. However, there are
some peculiar features that distinguish these billia
strongly from integrable ones~and also from fully or par-
tially chaotic billiards!: ~i! an invariant surface does not hav
the topology of a torus but instead that of a surface of hig
genus@4#, roughly speaking, a torus with additional handle
~ii ! the dynamics is not quasiperiodic. This is reflected,
example, by multifractal Fourier spectra of classical obse
ables@7,8#; ~iii ! the quantum-classical correspondence is
otic @9#; ~iv! the quantum spectrum obeys critical statist
@10#. To compute the quantum spectrum of a pseudoin
grable billiard with a semiclassical treatment is extrem
difficult, if possible at all. In the present paper, we will dem
onstrate that for asufficiently openhexagonal dielectric reso
nator the spectrum and the eigenmodes can be comp
semiclassically. As a byproduct, we gain an intuitive und
standing of the numerical results.

The paper is organized as follows. The system is defi
in Sec. II. Section III presents the numerical analysis. T
semiclassical ray model is introduced in Sec. IV. Final
Sec. V contains our conclusions.

II. THE SYSTEM

The numerical computation of lasing modes in a cav
with active medium and complex geometry is an extrem
difficult task; see Refs.@11,12#. Focusing on the effects o
the geometry, we here restrict our calculations to reson
modes in a passive cavity. Which of these resonant mo
©2003 The American Physical Society07-1



a
w

w

tio

c-

-

or

th
io

t
ay
es

e

e
in
ex
b

x

gn
,

e
d

e
y
em
ise.

n

e

f

es
t

0°

°

nce
se.

ers
of
ads

er.

the

he
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contribute to lasing, is not important in our case, since
long-lived resonant modes have very similar properties as
will see in the following.

In the experiments on the microcrystals it has been sho
that the electromagnetic field is TM polarized@1,2#. Max-
well’s equations reduce to a two-dimensional wave equa
@13#

2¹2c5n2~r !k2c, ~1!

with wave numberk and piece-wise constant index of refra
tion n(r ). The index of refraction isn51.466 inside the
cavity and 1 outside. The origin of the coordinate systemr
5(x,y)5(rcosu,r sinu) is located in the center of the hex
agonal cavity. The complex-valued wave functionc repre-
sents thez component of the real-valued electric-field vect
Ez(r ,t)5Re@c(r )exp(2ivt)# with i 2521, angular fre-
quencyv5ck and speed of light in vacuumc. c and“c are
continuous at the boundary of the resonator. To model
situation in a laser, we impose the outgoing-wave condit

c;h~u,k!
exp~ ikr !

Ar
~2!

for large r. With a real-valuedn ~passive resonator withou
absorption! this leads to modes that are exponentially dec
ing in time. The lifetimet of these so-called resonant mod
or short resonancesis given by t521/2c Im(k) with
Im(k),0. The lifetimet is related to the quality factorQ
5Re(v)t. The resonant modes are connected to the p
structure in scattering spectra; see, e.g., Ref.@14#. We are
here only interested in long-lived resonances that provid
sufficiently long lifetime for the light to accumulate the ga
required to overcome the lasing threshold. Note that
tremely long-lived resonances are not relevant for lasers
cause they do not supply enough output power.

A. Symmetry considerations

Figure 1 shows the eight symmetry classes of the he
gon; see, e.g., Ref.@15#. In the notation21a, . . . , thefirst
sign is 1 if the wave function is even with respect tox
→2x, and2 otherwise. Correspondingly, the second si
refers toy→2y. The lettera indicates two symmetry lines
whereas the letterb indicates six symmetry lines.

The 12a and the21a modes have exactly the sam
complexk. The reason is that a12a mode can be converte

FIG. 1. The eight symmetry classes of the hexagon. Odd~even!
symmetry is marked by solid~dashed! lines.
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to a 21a mode and vice versa in the following way. Tak
two copies of a single12a mode. Rotate the first copy b
60° clockwise around the origin of the coordinate syst
and the second copy by the same angle counterclockw
Subtracting the two gives a21a mode with the samek. The
way from 21a to 12a, from 11a to 22a, and from
22a to 11a is analog. Hence,a modes always appear i
degenerate pairs having the samek.

Each linear superposition of such a pair of degenerata
modes, we denote them byc1 andc2, is also a solution of
the wave equation~1!. Because of the six-fold symmetry o
the system, we can find always two superpositionsc65c1
1p6c2 with the property that the corresponding intensiti
uc1u2 and uc2u2 are invariant under 60° rotations. Tha
meansc1 and c2 change only by a phase factor expiV6

when rotated in real space by 60°. A full rotation about 36
does not change the wave function. Hence,V65pq/3 with
q522,21,0,1,2,3. Yet,q50 andq53 are not allowed be-
cause the intensities ofa modes are not invariant under 60
rotations. A rotation about 180° is identical to (x,y)
→(2x,2y). From this, we findV656p/3 for c6 formed
by a-modes of type12, 21, and V6562p/3 for c6

formed bya-modes of type11, 22. These requirements
lead to

p652
exp~ iV6!c1~r !2c1~ r̃ !

exp~ iV6!c2~r !2c2~ r̃ !
, ~3!

whererÞ(0,0) is an arbitrary point andr̃ is r rotated by 60°
counterclockwise. Formula~3! is valid for any relative phase
of c1 andc2.

The b modes cannot be converted into each other si
eachb mode is invariant under 60° rotations up to a pha
Hence,b modes do not form degenerate pairs.

B. Rounding

For our numerics, it will be necessary to round the corn
of the resonator slightly as depicted in Fig. 2. In terms
polar coordinates the parametrization of the boundary re

r s5
2Rs

S cosu2
1

A3
sinu D s

1S 2

A3
sinu D s

1S cosu1
1

A3
sinu D s ,

~4!

wheres is the rounding parameter, a positive even integ
s52 gives the circle, whereass→` gives the hexagon with
flat sides and sharp corners. The parametrization in Eq.~4!
preserves the full symmetry of the problem. Note that
parametrization used in Ref.@2# is different.

It is easy to show that the maximum curvature for t
rounded hexagon in Eq.~4! is given by (s21)/3R for s
>6. The radius of curvaturer per wavelength l
52p/Re(k) is, therefore, given by

r

l
5

3

2p

Re~kR!

s
~5!
7-2
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for larges.

III. NUMERICAL ANALYSIS

A frequently used numerical method to solve wave eq
tion ~1! with outgoing-wave condition~2! is the wave- or
mode-matching method@16#. The wave function is expande
in integer Bessel functions inside the cavity and in Han
functions of first kind outside, so that the outgoing-wa
condition~2! is fulfilled automatically. The Rayleigh hypoth
esis asserts that such an expansion is always possible. H
ever, it can fail for geometries which are not sufficien
weak deformations of a circular cavity@17#. So, using the
mode-matching method for the hexagonal resonator in R
@2# is questionable. And indeed, according to Ref.@18#, seri-
ous convergence problems appear in this situation. To a
this problem, we apply the BEM@3#. Exploiting Green’s
identity, the two-dimensional differential equation~1! is re-
placed by a one-dimensional integral equation defined o
along the boundary of the cavity. To be slightly more preci
the boundary appears twice in the formalism; one bounds
interior of the cavity and one bounds the exterior. T
boundaries are then discretized by dividing them intoN
small boundary elements. For the boundary~4!, we choose
the following discretization:

u5j1h sin@6~j1p/2!#. ~6!

FIG. 2. Shape and discretization~circles! of the resonator with
~a! s520, ~b! s5200, andh50.1. For illustrational reasons onl
N5200 discretization points are used.
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The discretization points on the circlejP@0,2p) are chosen
to be spaced equidistantly. The parameterh determines the
distribution of points on the cavity~the shape of which is
completely determined by the rounding parameters). h50
gives an uniform density of points, whileh.0 gives an
enhancement near the corners as illustrated in Fig. 2.
always useh50.1.

A. Resonance positions in the complex plane

Figure 3 shows the total cross sections as function of the
dimensionless wave numberkR @ Im(kR)50# for plane-
wave scattering with incidence angleu515°. For numerical
details of how to compute this quantity see Ref.@3#. We
observe asingle-mode spectrum, a series of roughly equidis
tant peaks~the fine structure aroundkR'24.5 is an artifact
of the BEM, which can be removed by increasing the nu
ber of discretization points@3#!. We will count the peaks by
themode index~or quantum number! m according to increas-
ing kR starting withm50 at kR50. The first peak atkR
'20.5 in Fig. 3 is then labeled bym523. The position of a
given peakkR and its widthG in Fig. 3 are related to the
complex value ofkRmodeof the corresponding resonant mod
by means ofkRmode'kR2 iG/2. The subscript ‘‘mode’’ will
be dropped from now on.

The BEM not only solves the scattering problem but
also can compute the resonant modes. In Fig. 4, we plot
real and imaginary part ofkR of a resonance as function o
the rounding parameters. Re(kR) saturates arounds555,
whereas Im(kR) saturates ats>100. We takes5100 trans-
lating to r/l'0.11. It is surprising that one has to decrea
r to values one order of magnitude smaller than the wa
length. In the following, we will fixr/l'0.11, that means
when we change Re(kR), we have to changes accordingly.

Figure 5 shows the long-lived resonances in the comp
plane inside the strip 20<Re(kR)<60. Our numerics canno
cover the full regime of the microlaser experiments@1,2#
20<Re(kR)<190. Small values ofuIm(kR)u correspond to
long-lived modes and, correspondingly, large values co
spond to short-lived modes. Four features in Fig. 5 are st
ing: ~i! the a modes are twofold degenerated as predic
from the symmetry considerations.~ii ! Theb modes come in
quasidegenerated pairs with slightly differentkR ~differences

FIG. 3. Calculated total scattering cross sections/R vs kR for a
hexagonal resonator. The plane wave is incidence at 15° to
horizontal side faces.s5100 and 2N52000.
7-3
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in Re(kR) and Im(kR) are of the same order which cann
be seen in Fig. 5!. It is not possible to resolve these sma
splittings in the scattering cross section in Fig. 3.~iii ! The
values of Re(kR) are approximately equidistantly space
~iv! Highly excited resonances with Re(kR)>34 lie approxi-
mately on a smooth curve.

The equidistant spacing of Re(kR) can be seen more
clearly in Fig. 6~a!. Pairs of ~quasi!degenerated modes a
labeled by the mode index. We see that all pairs lie extrem
close to a line Re(kR)5n(m1m0) with mode spacingn and
shift m0. Linear regression givesn'0.8238 and m0
'1.7516. The same mode spacing can be observed in Fi
The corresponding free spectral rangeDl5nl2/2pR is in
agreement with the experiments@1,2#.

From Fig. 6~b!, we can infer that the product of real an
imaginary part ofkR for highly excited modes does not de
pend on the mode indexm. We find

Im~kR!Re~kR!'22.87 ~7!

for n51.466. Later, we will see that this remarkable relati
is a good approximation not only in the numerical access

FIG. 4. Real and imaginary part ofkR as function of the round-
ing parameters. 2N52000, m526, kR522.87252 i0.1064 fors
5100.

FIG. 5. Long-lived resonances in the complex plane, cf. Fig
Filled circles on the solid line are the semiclassical solutions in E
~17! and ~24! from Sec. IV.
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regime but also in the full experimental regime. Relation~7!
implies that the lifetime is proportional to Re(k)R2 and the
quality Q is proportional to Re(kR)2 (Q ranges from roughly
70 to 6400). This finding is relevant for the future expe
ments on microcrystal lasers, it implies that the laser thre
old decreases as the size of the resonator is increased.

Due to the qualitative change in behavior arou
Re(kR)'34 in Figs. 5 and 6~b!, we distinguish the regions
Re(kR),34 and Re(kR).34. We refer to the former one a
the microscopic regime and to the latter as the mesosc
regime.

B. Mode structure

Figures 7~a! and 7~b! show the near-field intensity patter
of the resonances 2611a and 2622a ~mode indexm
526), respectively. While these two resonances are stan
waves ~ignoring the uniform temporal decay!, the corre-
sponding superpositionsc1 and c2 in Figs. 7~c! and 7~d!
are unidirectional traveling waves. We call them chir
modes. Such a mode is specified by its mode indexm and a
label 1 ~traveling counterclockwise! or 2 ~traveling clock-
wise!. In the following, we will deal only with these chira
modes which are more straightforward to compare to the
dynamics. We remark that the Husimi function represen
tion frequently applied to optical microcavities~see, e.g.,
Ref. @19#! does not provide more insight in our case.

Figure 8 shows a higher-excited superpositionc2 . The
following properties can be observed:~i! the intensity is con-
centrated along the boundary of the cavity, resembl
whispering-gallery modesin circular or weakly deformed
circular cavities.~ii ! The wave pattern looks regular. An ap
proximate nodal-line structure with a peculiar twist is visib
~iii ! The emission is predominantly at the corners. This is in
agreement with the laser emission measured in the exp
ments in Refs.@1,2#. ~iv! Outside the cavity the light propa
gates along certain directionsnot parallel to the facets. The
latter fact can be seen more clearly in the far-field distrib
tion shown in Fig. 9. There are six emission peaks with

.
s.

FIG. 6. ~a! Wave number Re(kR) vs mode indexm. The data
can be approximated by a straight line Re(kR)5n(m1m0) with
n'0.8238 andm0'1.7516.~b! Im(kR)Re(kR) vs m. For m>34,
the data is well approximated by the mean value'22.87.
7-4
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FIG. 7. ~Color! Calculated near-field intensity patternuc(r )u2 of twofold degenerated resonances.~a! 2611a and ~b! 2622a with
well-defined parity.~c! 261 and~d! 262 with well-defined chirality. Intensity is higher for redder colors, and vanishes in the dark reg
kR522.87252 i0.1064,s5100, 2N52000.
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of '17°.

The sensitivity to roundingfound for the resonance pos
tions in the complex plane, see Fig. 4, also shows up in
mode structure. Figure 10 shows the near-field intensity
tern of a rounded hexagon withs520, i.e.,r'l. The emis-
sion is again at the corners, but it is reduced. Moreover,
directionality has decreased and the high-intensity directi
02380
t
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are now parallel to the edges. The latter fact can be s
better in the far-field emission pattern in Fig. 11.

IV. SEMICLASSICAL ANALYSIS

Having computed numerically the long-lived resonanc
in the regime 20<Re(kR)<60, we now introduce a semi
classical ray model in order to see what happens in the d
7-5
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JAN WIERSIG PHYSICAL REVIEW A 67, 023807 ~2003!
mesoscopic regime Re(kR).60. So far, semiclassical ap
proximations of dielectric resonators have been discus
only for the case of smooth boundaries@16,20,21#. Our heu-
ristic approach is divided into three steps: geometric opt
semiclassical quantization, and emission mechanisms.

A. Geometric optics

Geometric optics follows from wave equation~1! in the
limit Re(kR)→` neglecting all interference effects. In th
following, we focus on low-index materials withnmin,n

FIG. 8. ~Color! Chiral resonance 502. kR542.6318
2 i0.06766,s5200, 2N54000.

FIG. 9. Far-field emission pattern,uc(r ,u)u2 for large r, of
~from above! 5022a, 5011a, 502, and 501 modes; cf. Fig. 8.
Vertical lines mark the directions parallel to the edges.
02380
ed

s,

,nmax where nmin51/sin 60°'1.16 and nmax51/sin 30°
52. The lower bound guarantees that a six-bounce perio
ray with angle of incidenceu i560°.uc ~with sinuc51/n) is
trapped within the hexagonal resonator by total internal
flection at the facets; see Fig. 12~some aspects of the muc
simpler casen,nmin have been studied in Ref.@22#!. The
periodic ray is marginally stable with respect to shifting
along the boundary. In this way, we obtain a whole family
periodic rays with identical length and angle of incidence

The upper boundnmax52 ensures that triangular-shape
periodic rays with 30° angle of incidence are not totally r

FIG. 10. ~Color! Resonance 502 in a rounded hexagon withs
520, cf. Fig. 8.kR542.70992 i0.01836, 2N54000.

FIG. 11. Far-field emission pattern of the resonance~from
above! 5022a, 5011a, 502, and 501 in the rounded hexagon
cf. Fig. 10.
7-6
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flected. The periodic-ray family withu i560° is then the only
long-lived family of short period. Yet, since periodic rays a
dense in phase space, we cannot exclude the possibility
there are also long-lived periodic rays of high period.

It should be emphasized at this point that the~infinite!
long lifetime of the rays is relevant for our purpose, where
the periodicity of the rays is not relevant. The latter comes
here simply because periodic rays~and their neighborhood!
can be long-lived. We will not apply methods from semicla
sical periodic-orbit theory@23#.

The periodic rays are unstable with respect of chang
the angle of incidence. Figure 12 shows a ray with sligh
different initial angle of incidence. The ray is slowly diverg
ing from the central one. After some time, it reaches
corner on its other side at~almost! normal incidence. Conse
quently, it then escapes refractively~with probability close to
1!.

As long as the ray does not escape from the cavity
behaves as if it were in a closed resonator, i.e., in a billia
It is illuminating to examine the ray dynamics of the op
system in terms of the invariant surface of the hexago
billiard. The genus of the invariant surfaces is given by
general formula@4#

g511
N
2 (

j

mj21

nj
, ~8!

where the sum is over all corners with anglesf j5mjp/nj
andN is the least common multiple of theni . For the hexa-
gon mj52 andnj53 for all j; hence,N53 and finally,g
54. The surface of genus four is shown schematically
Fig. 13. The topology is the same for all initial condition
First, we consider the special case where the surface is
ated by periodic orbits. Each periodic ray withu i560° ap-
pears here as two disjoint circles with different sense of

FIG. 12. Semiclassical ray model. Thick line marks a membe
the family of long-lived rays, other members are obtained by sh
ing the ray along the boundary~not shown!. The thin line marks a
ray with slightly different angle of incidence. Arrows indicate em
sion due to pseudointegrable dynamics~thin! and boundary waves
~dashed!.
02380
at

s
n

-

g
y

e

it
.

al
e

n

li-

-

tation. These two circles correspond to the two unidirectio
traveling waves. In the following, we will focus on the circ
with clockwise rotational sense. On the same invariant s
face we also find periodic rays of ‘‘bouncing-ball’’ type wit
angle of incidenceu i50°. In the open system, the bouncin
ball rays are not long-lived since they are not totally r
flected.

The dynamics on a generic invariant surface in the nei
borhood of the special surface discussed above is as follo
A nonperiodic ray starting near the central periodic ray w
slightly different initial angle of incidence stays in the vicin
ity of the central ray by winding around the handle ma
times. Finally, it has to leave the vicinity of the periodic ra
since pseudointegrable motion is ergodic on generic inv
ant surfaces@24#. Before the ray can reach another handle~in
the gray region in Fig. 13! and perform complicated dynam
ics, it escapes refractively from the cavity. Hence, the su
ciently open resonator does not see the complicated topo
of the full invariant surface but just two disjoint tori. In thi
sense, the openness moves the system closer to integra
That is the reason why we can derive in the following sect
a practical semiclassical approximation for the open hexa
nal resonator whereas this is impossible for the hexago
billiard.

B. Semiclassical quantization

Having identified the long-lived part of classical pha
space, we now quantize it in a semiclassical approximat
This approximation is valid for small 1/Re(kR) and it does
include interference effects, in contrast to the geomet
optics limit.

Because of the absence of stability of the periodic rays
conventional approach in laser optics, the paraxial appro
mation~see, e.g., Ref.@25#!, does not work. Nevertheless, th
semiclassical quantization is simple. The idea is that an in
ger number m51,2,3, . . . of wavelengths l inside5l/n
52p/nRe(k) fits on the path length of the long-lived ra
shown in Fig. 12, taking into account the phase shifts at
dielectric boundary. It will turn out that the numberm de-
fined in this way is identical to the mode indexm as used in
Sec. III.

To compute the phase shifts, we consider the textb
treatment of reflection of a plane wave at an infinitely e
tended dielectric interface; see, e.g., Ref.@26#. This simpli-
fied setup is justified ifl!R, i.e., Re(kR)@1. We shift the
origin of the coordinate system such thaty50 is the dielec-
tric boundary bounding the lower-index region from belo

f
-

FIG. 13. Invariant surface of the hexagonal billiard. The sm
circle on the left-~right-! hand side represents the central period
ray in Fig. 12 cycling~counter! clockwise. In the gray region the
condition for total internal reflection is not fulfilled.
7-7
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and the higher-index region from above. In the higher-ind
region there is an incident wave

c i5Aiexp@ iRe~k!n~x sinu i1y cosu i !#, ~9!

with amplitudeAi . We setAi51 without loss of generality.
The reflected wave is given by

c r5Arexp@ iRe~k!n~x sinu r2y cosu r !#. ~10!

In the lower-index region there is an emitted wave

ce5Aeexp@ iRe~k!~x sinue1y cosue!#. ~11!

The boundary conditions

c i~x,0!1c r~x,0!5ce~x,0! ~12!

and

]c i

]y U
(x,0)

1
]c r

]y U
(x,0)

5
]ce

]y U
(x,0)

~13!

lead tou i5u r , Snell’s lawn sinui5sinue, Ai1Ar5Ae and
the Fresnel formula

Ar5
12 ia

11 ia
~14!

with

a5
An2sin2u i21

n cosu i
. ~15!

The quantization~or resonance! condition then reads

einRe(k) lAr
651, ~16!

with the length of the periodic raysl 53A3R. After some
algebraic manipulations, we arrive at

Re~kR!5
2p

3A3n
~m1b! ~17!

with the total boundary phase shiftb given by

tan
p

6
b5a. ~18!

The quantization condition~17! explains the single-mode
spectrum in Figs. 3 and 6~a!. With n51.466 the mode spac
ing is 2p/3A3n'0.8248 in agreement withn50.8238 ob-
tained by fitting to the numerical data. However, the sh
b'1.562 differs a bit from the numerically obtained sh
m0'1.7516. To understand this discrepancy, we plot in F
14 the phase shiftsbm defined asb computed from Eq.~17!
inserting the numerically computed values of Re(kR).
Clearly, going towards the semiclassical limitm→` leaves
the crude fitting valuem0'1.7516 in favor of a smaller
valueb`5 limm→`bm closer to our semiclassical predictio
b'1.562.
02380
x

t

.

Let us assume thatbm has the following form:

bm5gm2d1b` ~19!

and thatb` equals our semiclassical solutionb'1.562. Fig-
ure 15 showsDb5bm2b` as function ofm>34 in a log-
log plot for fixed n51.466. Linear regression givesg
'0.89 andd'0.5038. Based on this numerical finding, w
conjecture that the next order in the semiclassical appr
mation ~17! is of the formg/Am.

Observation of Figs. 7~c! and 7~d! shows that the ‘‘nodal
lines’’ close to the boundary of the cavity are not exac
parallel to the boundary but slightly tilted~about5°). This
angular shift decreases as one goes to higher-excited mo
For example, it is not visible by eye in Fig. 8. Specul
reflection of a plane wave at the boundary leads always
nodal lines parallel to the boundary. Hence, it is reasona
to interpret the angular shift as a kind ofnonspecular reflec-
tion. The angular shift can be traced back to the fact that
wave function restricted to the boundary is a periodic fun
tion. Because of the periodicity, the Fourier spectrum of
wave function along the boundary is discrete. The discr
peaks can be related to a discrete set of allowed angle
incidence. The angleu i560° typically falls between two
neighboring discrete angles. In Sec. A in the Appendix,
compute the angular shift analytically to first order asDu
5u i260°5u i2p/3'2A3b/m in agreement with the nu
merics~not shown!. In the semiclassical limitm→` the an-
gular shift vanishes. Our angular shift is different from tho

FIG. 14. bm vs mode indexm. Dashed line marks the semiclas
sical predictionb'1.562.

FIG. 15. lnDb vs lnm with m>34. For quasidegenerate mode
the arithmetic mean ofDb is taken.
7-8
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cases discussed in the context of nonspecular reflections~see,
e.g., Ref.@27#!, in that it happens above the critical angle
total internal reflection. Moreover, it has nothing to do w
the angular Goos-Ha¨nchen effect~see, e.g., Ref.@28#!, which
is the Goos-Ha¨nchen shift at a curved interface.

The number of wavelengths fitting on a path length de
mines the symmetry class. Straightforward considerati
give Table I. The semiclassical quantization procedure n
ther distinguishes between12 and21 parties nor between
11 and 22 parties. Hence, within the semiclassical a
proximation these modes are exactly degenerated, regar
whether they are of typea or b. This explains the numerica
finding of quasidegenerateb modes.

The fact that our model predicts a single-mode spectr
a one-parameterm51,2, . . . family of long-lived reso-
nances, is related to the fact that there is only one long-li
family of periodic rays ~with short period!. There is no
‘‘transversal mode index’’ which would be expected if th
paraxial approximation were applicable. Higher transve
modes correspond to rays with angle of incidence consi
ably different from 60°. They are much shorter lived, whi
becomes clear in the following section when we discuss
emission mechanisms.

C. Emission mechanisms

Having derived a semiclassical quantization condition
the real part ofkR, we now compute its imaginary part. Th
temporal behavior of the intensity of a resonant mode iI
}exp@2 Im(v)t#. The outgoing relative intensity per un
time is

DI 52
1

I

dI

dt
522Im~v!522cIm~k!. ~20!

What are the mechanisms for this decay of intensity? Ob
ously, there is no classical mechanism. In the framework
ray optics, the periodic rays in Fig. 12 remain forever in t
cavity. Hence, we have to include explicitly wave effects. W
identify three candidates of such wave effects, all of wh
are related to the corners. The first one isdiffraction at cor-
ners. Corner diffraction may be an emission mechani
since a wave with finite wavelength coming close to a cor
is diffracted partly to the exterior and partly back into t
interior with another spectrum of directions for which th
condition of total internal reflection may not be fulfilled
the next reflection. We will argue that corner diffraction

TABLE I. Symmetry class and mode indexm. The table is pe-
riodic in m with period 6.

m Symmetry class

1 12a, 21a
2 11a, 22a
3 12b, 21b
4 11a, 22a
5 12a, 21a
6 11b, 22b
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important for theemission directionalitybut not for thees-
cape rate. For the escape rate, we find two relevant effe
which are responsible fortransport to corners. We call them
boundary-wave leakageandpseudointegrable leakage.

The boundary-wave leakage is illustrated in Fig. 12.
evanescent boundary wave travels along an infinitely
tended dielectric interface from2` to 1`. We assume tha
at a finite interface the boundary wave fully separates fr
the interface at the corner. In Sec. B in the Appendix,
determine the outgoing relative intensity for any regu
polygon ~equilateral triangle, square, hexagon, . . . ) due to
boundary waves. In particular, for the hexagon we find

DI bw5
3c

4Re~k!R2

n3

A3n2/421~n221!
. ~21!

The pseudointegrable leakage is due to the fact that w
optics does not realize exactlyu i560° as already mentione
and shown in Sec. A in the Appendix. Putting this sm
angular deviationDu into the initial conditions gives rise to
rays with finite lifetime due to the pseudointegrable dyna
ics; see Fig. 12. In Sec. C in the Appendix, we estimate
outgoing relative intensity due to pseudointegrable leak
for the hexagon as

DI p5
4pc

3Re~k!R2

b~n!

n2
. ~22!

The derivation can be easily extended to any regular po
gon. Cavities with integrable internal dynamics, like t
equilateral triangle and the square, haveDI p50. That means
the neighborhood of the long-lived family of periodic ray
has roughly the same lifetime as the periodic rays. In suc
case, we expect a multimode spectrum in the mesosc
regime. Indeed, this has been found in scattering experim
on the dielectric square in Ref.@29#.

Remarkably, both contributions in Eqs.~21! and~22! have
the same dependence on Re(k). In either case, the contribu
tion vanishes in the limit Re(k)→`, reflecting their wave
nature. Adding both contributions,

DI 5DI bw1DI p , ~23!

gives the central result

Im~kR!Re~kR!5 f ~n! ~24!

with

f ~n!5 f bw~n!1 f p~n!, ~25!

f bw~n!52
3n3

8A3n2/421~n221!
, ~26!

and

f p~n!52
2p

3

b~n!

n2
. ~27!
7-9
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JAN WIERSIG PHYSICAL REVIEW A 67, 023807 ~2003!
For n51.466, we find Im(kR)Re(kR)'22.837 in reason-
able agreement with the numerical data in Figs. 5 and 6~b!.
Figure 16 compares the semiclassical result in Eqs.~24!–
~27! to the numerical data as function ofn. While some
resonances are very well described by the semiclassica
proximation, some are only roughly described. The la
cases correspond to the strong fluctuations around the s
classical hyperbola~24! already visible in Fig. 5.

Our ray model also explains some aspects of the m
structure in Figs. 8 and 9. The whispering-gallery-like stru
ture is related to the geometry of long-lived rays; see Fig.
The envelopes of the emission direction are described by
boundary-wave leakage and the pseudointegrable leak
cf. Figs. 8, 9, and 12. The distribution within the envelopes
not predicted by our model. Here, corner diffraction is im
portant because both the boundary waves and the pseu
tegrable ray dynamics lead to escape arbitrarily close to
corner.

Our ray model gives a natural explanation for the sen
tivity to rounding of corners. Let us assume that a su
ciently small rounding only slightly weakens the loss due
boundary waves, whereas it reduces corner diffract
strongly. Numerical simulations of ray dynamics in round
hexagons show that the periodic rays, see Fig. 12, are s
lized. This statement is independent on the particular cho
boundary parametrization. Hence, there is no pseudoi
grable leakage. This leads to considerably larger lifetim
and emission parallel to the facets; compare Figs. 8–11.

V. CONCLUSION

We have discussed the properties of long-lived resonan
in hexagonally shaped dielectric microcavities. These mic
cavities play an important role for experiments on a class
microcrystal lasers@1,2#.

The numerical analysis revealed the following facts:~i!
The resonance positions in the complex plane are appr
mated by a hyperbola. This fact is relevant for future expe
ments on microcrystal lasers because it implies that the l
threshold is lower for larger crystals.~ii ! The near-field in-
tensity pattern show a whispering-gallery-like structure.~iii !

FIG. 16. Im(kR)Re(kR) vs n for several resonances withm
>50 ~solid curves!. The contribution of the boundary waves, E
~26!, is shown as dotted curve. The entire contribution, i.e., w
pseudointegrable leakage, Eq.~27!, is shown as dashed curve. Th
vertical line marksn51.466.
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The emission is at corners in agreement with the exp
ments.~iv! The emission is directed. The high-intensity d
rections are not parallel to the facets.~v! The lifetimes and
the emission directionality are sensitive to rounding of t
corners.

The numerical analysis does not cover the full experim
tal regime. To overcome this limitation, we have introduce
semiclassical approximation which can be easily extende
any cavity of regular polygonal geometry. Our semiclassi
ray model contains two emission mechanisms: leakage
to boundary waves and due to the pseudointegrable ray
namics. Explicit expressions for the resonance positions
be given even though the system is not integrable. The se
classical approximation explains all numerical findings~i!–
~v! in an intuitive way, except the emission directionality. T
describe the directionality properly it is necessary to consi
corner diffraction in the future.

Our results are not only relevant for microcrystal lase
but also for other kinds of polygonal-shaped microlasers.
name a few; hexagonal lasers with attached opt
waveguides based on semiconductor heterostructures@30#,
hexagonally shaped solid polymer dye microcavities@31#,
equilateral-triangular laser cavities fabricated from semic
ductor heterostructures@32#, and square laser micropilla
cavities based on dye-doped polymers@33#.
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APPENDIX A: ANGULAR SHIFT

In this section, we discuss the semiclassical deviation
the angle of incidence from 60°. Let us first investiga
22 and11 modes. Along the boundary, these modes
periodic with period 3R, i.e., c(s13R)5c(s), where the
arclengthsP@0,6R) parametrizes the boundary. Hence, t
wave function along the boundary can be expanded as
following Fourier series:

c~s!5 (
M52`

`

AMexpS i
2p

3R
MsD . ~A1!

From this, we see that the conjugate momentum tos or in
other words, the momentum component parallel to
boundary is ‘‘quantized’’ according to

nRe~k!sinu5
2p

3R
M , ~A2!

with integer M. Inserting the quantization condition~17!
leads to

sinu5A3
M

m1b
. ~A3!
7-10
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Linearizing this equation aroundu'u i560°5p/3 yield in
the semiclassical regimem@b

Du52A3S M

m
2

1

2D22A3
M

m

b

m
. ~A4!

The smallestDu is realized forM5m/2 (m is an even inte-
ger for 22 and11 modes, see Table I!,

Du52A3
b

m
52

2pb

3nRe~kR!
. ~A5!

Analogous arguments concerning21 and12 modes give
the same result as in Eq.~A5!.

APPENDIX B: BOUNDARY-WAVE LEAKAGE

In this section, we compute the leakage due to bound
waves. To estimate the loss, we consider the total inte
reflection (u i.uc) of a plane wave at an infinitely extende
dielectric interface. This consideration is justified if Re(kR)
@1 andu i not to close to the critical angle for total intern
reflectionuc . Sinceue is a complex number in Eq.~11!, the
wave in the lower-index region is evanescent, i.e., it dec
exponentially with increasing distance from the bounda
Along the boundary the evanescent wave propagates
constant velocity. The corresponding total energy~or better
intensity! flux at a given point at the boundary can be co
puted by means of

s5E
0

`

Sxdy, ~B1!

whereSx is thex component of the Poynting vector@13#

S5
c

8p
Re~E3H* !52

c

8pk
Re~ ic“c* !. ~B2!

Integration of Eq.~B1! using Eqs.~B2! and ~11! yields

s5
c

4p

n sinu i

kAn2sin2u i21

1

11a2
, ~B3!

with a from Eq. ~15!.
Now we relate the total flux to the intensity inside th

resonator. The intensity of the wave functionc i1c r per unit
area can be easily calculated to be 1/4p. Assuming that the
boundary waves fully leave the cavity at corners, the out
ing relative intensity per unit time is given by
02380
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DI bw5
c

A

n sinu i

kAn2sin2u i21

x

11a2
, ~B4!

wherex is the number of corners~where the light is emit-
ted!, A is the area of the resonator covered by the family
long-lived rays. Formula~B4! is valid for any regular poly-
gon. For the hexagon,x56 andA is given by the area of the
hexagon minus the region not accessible by the family
long-lived rays as depicted in Fig. 17. Elementary geome
yields

A5
3A3

2
~R22Rc

2!5A3R2. ~B5!

The final result for the hexagon is then given in Eq.~21!.

APPENDIX C: PSEUDOINTEGRABLE LEAKAGE

Here, we compute the pseudointegrable leakage. We
the angular shiftDu from Eq.~A5! into the initial conditions
for the ray dynamics. Elementary geometry, see Fig.
shows that after one round trip, i.e., six bounces, the ang
deviation gives rise to the spatial deviationDs5u2lDuu. The
time for each round trip isDt5 ln/c.

From Fig. 12, it is clear that points on the bounda
within the distanceDs from a corner leave the cavity afte
the next round trip. Hence, the relative outgoing intensity c
be computed as

DI p5
1

R

Ds

Dt
5

4pc

3Re~k!R2

b~n!

n2
. ~C1!

FIG. 17. Region~empty hexagon! not accessible by the family
of long-lived rays. The region is bounded by a hexagonal ‘‘caust
with side lengthRc5R/A3.
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@18# J.U. Nöckel ~private communication!.
@19# M. Hentschel, H. Schomerus, and R. Schubert, e-p

arXiv:physics/0208006.
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