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Hexagonal dielectric resonators and microcrystal lasers
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We study long-lived resonancéswest-loss modegsn hexagonally shaped dielectric resonators in order to
gain insight into the physics of a class of microcrystal lasers. Numerical results on resonance positions and
lifetimes, near-field intensity patterns, far-field emission patterns, and effects of rounding of corners are pre-
sented. Most features are explained by a semiclassical approximation based on pseudointegrable ray dynamics
and boundary waves. The semiclassical model is also relevant for other microlasers of polygonal geometry.
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[. INTRODUCTION introduce a semiclassical ray model. The semiclassical
(short-wavelengthapproximation is applied in the field of
A novel class of microlasers based on nanoporous mogquantum chaos to relate quantumave dynamics to their
lecular sieve host-guest systems has been fabricated recentlpderlying classicalray) dynamics. Most research efforts
by Vietze et al. [1]. Organic dye guest molecules were put have been focused on closed resonators, so-called billiards,
into the channel pores of a zeolitic microcrystal AIPO-5 hostwhere the dielectric interface is replaced by a hard wall on
The aluminophosphate crystals grow with natural hexagonakihich the wave function vanishes. The classical dynamics is
boundaries with a high degree of perfection. In terms offree motion inside the billiard with specular reflections at the
pump energy needed to reach lasing threshold these micrdoundary.
lasers can compete with semiconductor based vertical-cavity The regular hexagon belongs to the class of rational po-
surface-emitting lasers. This makes them a promising candlygonal billiards. All angles$; between sides are rationally
date for future applications as, e.g., optical communicatiorrelated tom, i.e., ¢j=m;m/n;, wherem;,n;>0 are rela-
devices. tively prime integers. If allm; are equal to unity, for ex-
Microlasers and microresonators are not only relevant foample, in the case of the rectangle, then the dynamics is
experiments and applications but they are also of great inteintegrable. In the presence ofitical corners with m;>1,
est from a theoretical point of view because they@ren(or  the dynamics is not integrable but instgasbudointegrable
leaky) and they can benesoscopicln our case, the latter [4]. As for integrable systems the phase space is foliated by
depends on the lasing dye and on the crystal size. Both irwo-dimensional invariant surfacgs,6]. However, there are
troduce a characteristic length scale; the wavelengtang- some peculiar features that distinguish these billiards
ing from 600 nm to 800 nm, and the side lend®hof the  strongly from integrable onegnd also from fully or par-
hexagonal cross section of the crystal ranging from 206 tially chaotic billiards: (i) an invariant surface does not have
to 4.6 um in Refs.[1,2]. In current experiments, larger crys- the topology of a torus but instead that of a surface of higher
tals with R up to 20um are under investigation. Only the genus[4], roughly speaking, a torus with additional handles;
ratio of these two length scales is relevant. It can be ex{ii) the dynamics is not quasiperiodic. This is reflected, for
pressed by the dimensionless size parameterKR< 190, example, by multifractal Fourier spectra of classical observ-
wherek=27/\ is the free-space wave number. For srk@®  ables[7,8]; (iii) the quantum-classical correspondence is ex-
the wavelength and the cavity size are of the same order. Thafic [9]; (iv) the quantum spectrum obeys critical statistics
system is microscopic. For large but fink® the system is [10]. To compute the quantum spectrum of a pseudointe-
mesoscopic. grable billiard with a semiclassical treatment is extremely
The theoretical analysis of the lasing modes reduces to theifficult, if possible at all. In the present paper, we will dem-
two-dimensional problem of resonant modes in a passive dienstrate that for aufficiently opernexagonal dielectric reso-
electric microresonator of regular hexagonal geoméigy  hator the spectrum and the eigenmodes can be computed
noring surface roughnesdn Ref.[2] preliminary numerical ~semiclassically. As a byproduct, we gain an intuitive under-
computations of the full wave equations have been restrictegtanding of the numerical results.
to the near-field intensity pattern. We present a systematic The paper is organized as follows. The system is defined
numerical analysis of the hexagonally shaped dielectric resdn Sec. Il. Section Ill presents the numerical analysis. The
nator with 26skR<60, including resonance positions and semiclassical ray model is introduced in Sec. IV. Finally,
lifetimes, near-field intensity patterns, far-field emission pat-Sec. V contains our conclusions.
terns, and effects of rounding of corners. To avoid conver-
gence problems at corners, which had been a problem in Ref.

[2], we will employ the boundary element methGBEM) Il THE SYSTEM
[3]. The numerical computation of lasing modes in a cavity
To study the deep mesoscopic regiki@>60, we will  with active medium and complex geometry is an extremely

difficult task; see Refs[11,12. Focusing on the effects of
the geometry, we here restrict our calculations to resonant
*Electronic address: jwiersig@mpipks-dresden.mpg.de modes in a passive cavity. Which of these resonant modes
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++a to a —+a mode and vice versa in the following way. Take
two copies of a singler —a mode. Rotate the first copy by
60° clockwise around the origin of the coordinate system
and the second copy by the same angle counterclockwise.
Subtracting the two gives a +a mode with the samk. The
way from —+a to + —a, from ++a to — —a, and from
——ato ++ais analog. Hencea modes always appear in
degenerate pairs having the sakie

Each linear superposition of such a pair of degenesate
modes, we denote them by, and ¢, is also a solution of
the wave equatiofil). Because of the six-fold symmetry of
the system, we can find always two superpositigns= ¢,

contribute to lasing, is not important in our case, since all* p+‘ﬂ2 with thez property that the corresponding intensities
long-lived resonant modes have very similar properties as we/+|> and [¢_|? are invariant under 60° rotations. That
will see in the following. meansljur and ¢_ change only by a phase factor &&p

In the experiments on the microcrystals it has been showWhen rotated in real space by 60°. A full rotation about 360°
that the electromagnetic field is TM polariz§d, 2. Max-  does not change the wave function. Herde,= wq/3 with
well's equations reduce to a two-dimensional wave equatiofl= —2,—1,0,1,2,3. Yetq=0 andq=3 are not allowed be-

FIG. 1. The eight symmetry classes of the hexagon. @ddn
symmetry is marked by soli(Hashedl lines.

[13] cause the intensities @ modes are not invariant under 60°
rotations. A rotation about 180° is identical tox,y)
—V2y=n?(r)k?y, (1)  —(—x,—y). From this, we find}. = = /3 for .. formed
by a-modes of type+—, —+, and Q. ==*2x/3 for ¢

with wave numbek and piece-wise constant index of refrac- formed bya-modes of type+ +, — —. These requirements

tion n(r). The index of refraction i;n=1.466 inside the |ead to

cavity and 1 outside. The origin of the coordinate system

=(x,y)=(rcosé,r sind) is located in the center of the hex- exp(i Q)¢ (r)— (1)

agonal cavity. The complex-valued wave functignrepre- Ppr=- exti Q2 ) Y1) — (1) ©)
sents thez component of the real-valued electric-field vector A8 V2

E,(r,t)=Rd y(r)exp(iwt)] with i?=—1, angular fre-
guencyw=ck and speed of light in vacuum s andV ¢ are
continuous at the boundary of the resonator. To model th

of ¢, and ¢
situation in a laser, we impose the outgoing-wave condition® ¥1 2 . .
P going- The b modes cannot be converted into each other since

explikr) eachb mode is invariant under 60° rotations up to a phase.
7 2) Hence,b modes do not form degenerate pairs.

for larger. With a real-valuech (passive resonator without
absorption this leads to modes that are exponentially decay- For our numerics, it will be necessary to round the corners
ing in time. The lifetimer of these so-called resonant modes Of the resonator slightly as depicted in Fig. 2. In terms of
or short resonancesis given by 7=—1/2cIm(k) with polar coordinates the parametrization of the boundary reads

Im(k)<<0. The lifetime r is related to the quality facta®

wherer #(0,0) is an arbitrary point andis r rotated by 60°
80unterc|0ckW|se Formulgd) is valid for any relative phase

J~h(6,k) ——

B. Rounding

=Re(w) 7. The resonant modes are connected to the peaks_ 2R®

structure in scattering spectra; see, e.g., IRef]. We are 1 s s 1 s’
here only interested in long-lived resonances that provide a (COSQ——SiHG +| —=siné cosf+ —=sin 6)
sufficiently long lifetime for the light to accumulate the gain 3 ‘/§ ‘/§

required to overcome the lasing threshold. Note that ex- S
tremely long-lived resonances are not relevant for lasers b

Qvheres is the rounding parameter, a positive even integer.
cause they do not supply enough output power. gp - ap g

s=2 gives the circle, whereas—~ gives the hexagon with
flat sides and sharp corners. The parametrization in(&q.

A. Symmetry considerations preserves the full symmetry of the problem. Note that the
Figure 1 shows the eight symmetry classes of the hexaParametrization used in Ref2] is different.
gon; see, e.g., Ref15]. In the notation— +a, . . ., thefirst It is easy to show that the maximum curvature for the

sign is + if the wave function is even with respect to rounded hexagon in Ed4) is given by 6—1)/3R for s
— —x, and — otherwise. Correspondingly, the second sign=6. The radius of curvaturep per wavelength \
refers toy— —vy. The lettera indicates two symmetry lines, =2m/Re(k) is, therefore, given by
whereas the lettep indicates six symmetry lines.

The + —a and the— +a modes have exactly the same
complexk. The reason is that &« —a mode can be converted

p 3 RekR)
N 27 s ®)
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FIG. 3. Calculated total scattering cross sectidR vs kR for a
hexagonal resonator. The plane wave is incidence at 15° to the
horizontal side faces=100 and N=2000.

The discretization points on the circes [0,277) are chosen

to be spaced equidistantly. The paramejedetermines the
distribution of points on the cavitythe shape of which is
completely determined by the rounding parameders =0
gives an uniform density of points, whil@>0 gives an
enhancement near the corners as illustrated in Fig. 2. We
always usen=0.1.

(b) A. Resonance positions in the complex plane

Figure 3 shows the total cross sectieras function of the
dimensionless wave numb&R [Im(kR)=0] for plane-
wave scattering with incidence angle= 15°. For numerical
details of how to compute this quantity see REg]. We
observe asingle-mode spectryna series of roughly equidis-
for larges. tant peakdthe fine structure arounklR~24.5 is an artifact

of the BEM, which can be removed by increasing the num-
ber of discretization pointg3]). We will count the peaks by
IIl. NUMERICAL ANALYSIS themode indexor quantum numbgm according to increas-

A frequently used numerical method to solve wave equaind kR starting withm=0 atkR=0. The first peak akR
tion (1) with outgoing-wave conditior(2) is the wave- or ~20.5in Fig. 3 is then labeled by =23. The position of a
mode-matching methdd.6]. The wave function is expanded 9iven peakkR and its widthT" in Fig. 3 are related to the
in integer Bessel functions inside the cavity and in HankelcOmplex value okRpqq¢.0f the corresponding resonant mode
functions of first kind outside, so that the outgoing-wavebyY means okRpyyq4e~kR—iI'/2. The subscript “mode” will
condition(2) is fulfilled automatically. The Rayleigh hypoth- be dropped from now on. _ .
esis asserts that such an expansion is always possible. How- The BEM not only solves the scattering problem but it
ever, it can fail for geometries which are not sufficiently &S0 can compute the resonant modes. In Fig. 4, we plot the
weak deformations of a circular cavifil7]. So, using the ~real and imaginary part R of a resonance as function of
mode-matching method for the hexagonal resonator in Rethe rounding parametes. Re(kR) saturates around=55,
[2] is questionable. And indeed, according to HéB], seri-  Whereas IMKR) saturates as=100. We takes= 100 trans-
ous convergence problems appear in this situation. To avoititing to p/A~0.11. It is surprising that one has to decrease
this problem, we apply the BEM3]. Exploiting Green’s p to values one order of magnitude smaller than the wave-
identity, the two-dimensional differential equati¢t) is re-  length. In the following, we will fixp/A~0.11, that means
placed by a one-dimensional integral equation defined onlyvhen we change ReR), we have to change accordingly.
along the boundary of the cavity. To be slightly more precise, Figure 5 shows the long-lived resonances in the complex
the boundary appears twice in the formalism; one bounds thelane inside the strip 20Re(kR) <60. Our numerics cannot
interior of the cavity and one bounds the exterior. Thecover the full regime of the microlaser experimefis2]
boundaries are then discretized by dividing them inté 2 20<Re(kR)=<190. Small values ofim(kR)| correspond to

small boundary elements. For the boundéty, we choose long-lived modes and, correspondingly, large values corre-
the following discretization: spond to short-lived modes. Four features in Fig. 5 are strik-

ing: (i) the a modes are twofold degenerated as predicted
from the symmetry consideration@.) The b modes come in
0=¢&+ npsiN6(&E+ 7/2)]. (6) quasidegenerated pairs with slightly differéR (differences

FIG. 2. Shape and discretizatidaircles of the resonator with
(a) s=20, (b) s=200, andn=0.1. For illustrational reasons only
N =200 discretization points are used.
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FIG. 4. Real and imaginary part &R as function of the round- FIG. 6. () Wave number R&(R) vs mode indexm. The data
Tg parametes. 2N=2000, m=26, kR=22.8725-10.1064 fors ., pe approximated by a straight line RBf=v(m+mg) with
=100. »~0.8238 andmy~1.7516.(b) Im(kR)Re(kR) vs m. For m= 34,

i . the data is well approximated by the mean vatue 2.87.
in Re(kR) and ImKR) are of the same order which cannot

be seen in Fig. b It is not possible to resolve these small \egime but also in the full experimental regime. Relatigh
splittings in the scattering cross section in Fig.(id.) The implies that the lifetime is proportional to ReR? and the
v_alue_s of ReK_R) are approxma@tely eqwdlstantly spa(_:ed. quality Q is proportional to R&KR)? (Q ranges from roughly
(iv) Highly excited resonances with Re) =34 lie approxi- 70 15 6400). This finding is relevant for the future experi-
mately on a smooth curve. ments on microcrystal lasers, it implies that the laser thresh-
The equidistant spacing of ReR) can be seen more 4 gecreases as the size of the resonator is increased.
clearly in Fig. @a). Pairs of(quasjdegenerated modes are  pe to the qualitative change in behavior around
labeled by the mode index. We see that all pairs lie extremelhe(kR)%M in Figs. 5 and @), we distinguish the regions
close to a line Re(R) = »(m+mp) with mode spacing and  pe(kR) <34 and RekR) > 34. We refer to the former one as

shift mo. Linear regression givesv~0.8238 and My he microscopic regime and to the latter as the mesoscopic
~1.7516. The same mode spacing can be observed in Fig. ?égime.

The corresponding free spectral ranfyg = v\2/27R is in
agreement with the experiments,2].

From Fig. Gb), we can infer that the product of real and
imaginary part okkR for highly excited modes does not de-  Figures Ta) and 1b) show the near-field intensity pattern

B. Mode structure

pend on the mode index. We find of the resonances 26+a and 26- —a (mode indexm
=26), respectively. While these two resonances are standing
Im(kR)Re(kR)~ —2.87 (7)  waves (ignoring the uniform temporal decgpythe corre-

for n=1.466. Later, we will see that this remarkable relationSpondmg. sup_erposmon&r and y_ in Figs. 4c) and 7d) .
are unidirectional traveling waves. We call them chiral

is a good approximation not only in the numerical acces&blqmdes. Such a mode is specified by its mode inteand a

-0.04 : : : label + (traveling counterclockwigeor — (traveling clock-
wise). In the following, we will deal only with these chiral
modes which are more straightforward to compare to the ray
dynamics. We remark that the Husimi function representa-
tion frequently applied to optical microcavitigsee, e.g.,
Ref.[19]) does not provide more insight in our case.

Figure 8 shows a higher-excited superpositipn. The
following properties can be observedd). the intensity is con-
centrated along the boundary of the cavity, resembling
whispering-gallery mode# circular or weakly deformed
circular cavities(ii) The wave pattern looks regular. An ap-
proximate nodal-line structure with a peculiar twist is visible.
(iii) The emission is predominantly at the cornemhis is in
agreement with the laser emission measured in the experi-
ments in Refs[1,2]. (iv) Outside the cavity the light propa-

FIG. 5. Long-lived resonances in the complex plane, cf. Fig. 1.9ates along certain directiom®t parallel to the facetsThe
Filled circles on the solid line are the semiclassical solutions in Egslatter fact can be seen more clearly in the far-field distribu-
(17) and(24) from Sec. IV. tion shown in Fig. 9. There are six emission peaks with an-

Im(kR)

-0.12 : - :
20 30 40 50 60
Re(kR)
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(b)

(d)

FIG. 7. (Color Calculated near-field intensity pattef(r)|? of twofold degenerated resonancés). 26+ +a and (b) 26— —a with
well-defined parity(c) 26+ and(d) 26— with well-defined chirality. Intensity is higher for redder colors, and vanishes in the dark regions.
kR=22.8725-10.1064,s=100, 2N=2000.

gular width of~14° and angular distance to the nearest faceaire now parallel to the edges. The latter fact can be seen
of ~17°. better in the far-field emission pattern in Fig. 11.

The sensitivity to roundingound for the resonance posi-
tions in the complex plane, see Fig. 4, also shows up in the IV. SEMICLASSICAL ANALYSIS
mode structure. Figure 10 shows the near-field intensity pat-
tern of a rounded hexagon with= 20, i.e.,p~\. The emis- Having computed numerically the long-lived resonances
sion is again at the corners, but it is reduced. Moreover, théh the regime 26Re(kR)<60, we now introduce a semi-
directionality has decreased and the high-intensity directionslassical ray model in order to see what happens in the deep
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FIG. 8. (Color) Chiral resonance 50. kR=42.6318 FIG. 10. (Color) Resonance 50 in a rounded hexagon with
—i0.06766,s=200, 2N=4000. =20, cf. Fig. 8.kR=42.7099-i0.01836, A =4000.

mesoscopic regime ReR)>60. So far, semiclassical ap- <Nmax Where Npj,=1/sin60°~1.16 and Npq,=1/sin30°
proximations of dielectric resonators have been discussed 2 The lower bound guarantees that a six-bounce periodic
only for the case of smooth boundar{ds$,20,21. Our heu- '8y with angle of incidencé; =60°> 6., (with sin6.=1/n) is
ristic approach is divided into three steps: geometric opticsifapped within the hexagonal resonator by total internal re-
semiclassical quantization, and emission mechanisms.  flection at the facets; see Fig. 18ome aspects of the much
simpler casen<n,,, have been studied in Ref22]). The
, , periodic ray is marginally stable with respect to shifting it
A. Geometric optics along the boundary. In this way, we obtain a whole family of
Geometric optics follows from wave equati¢h) in the  periodic rays with identical length and angle of incidence.
limit Re(kR)—« neglecting all interference effects. In the  The upper bound,,=2 ensures that triangular-shaped
following, we focus on low-index materials with,,,<<n  periodic rays with 30° angle of incidence are not totally re-

2 2
= =
5 ; J\
3 0
E 8
> z
2 2
£ £
-180 -120 -60 0 60 120 180 -180 -120 -60 0 60 120 180
0 (degree) 0 (degree)
FIG. 9. Far-field emission pattery(r,6)|? for large r, of FIG. 11. Far-field emission pattern of the resonarifrem
(from above 50— —a, 50+ +a, 50—, and 50+ modes; cf. Fig. 8.  above 50— —a, 50+ +a, 50—, and 50+ in the rounded hexagon;
Vertical lines mark the directions parallel to the edges. cf. Fig. 10.
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FIG. 13. Invariant surface of the hexagonal billiard. The small
/ circle on the left-(right-) hand side represents the central periodic

ray in Fig. 12 cycling(countej clockwise. In the gray region the
{ condition for total internal reflection is not fulfilled.

EE tation. These two circles correspond to the two unidirectional
traveling waves. In the following, we will focus on the circle
/’7 with clockwise rotational sense. On the same invariant sur-
face we also find periodic rays of “bouncing-ball” type with
angle of incidence;=0°. In the open system, the bouncing-
ball rays are not long-lived since they are not totally re-
FIG. 12. Semiclassical ray model. Thick line marks a member offlected.
the family of long-lived rays, other members are obtained by shift-  The dynamics on a generic invariant surface in the neigh-
ing the ray along the boundafyot shown. The thin line marks a borhood of the special surface discussed above is as follows.
ray with slightly different angle of incidence. Arrows indicate emis- A nonperiodic ray starting near the central periodic ray with
sion due to pseudointegrable dynamitsin) and boundary waves slightly different initial angle of incidence stays in the vicin-
(dashed ity of the central ray by winding around the handle many
times. Finally, it has to leave the vicinity of the periodic ray
flected. The periodic-ray family with;=60° is then the only  since pseudointegrable motion is ergodic on generic invari-
long-lived family of short period. Yet, since periodic rays are ant surface$§24|. Before the ray can reach another har(ite
dense in phase space, we cannot exclude the possibility thete gray region in Fig. 13and perform complicated dynam-
there are also long-lived periodic rays of high period. ics, it escapes refractively from the cavity. Hence, the suffi-
It should be emphasized at this point that tiefinite)  ciently open resonator does not see the complicated topology
long lifetime of the rays is relevant for our purpose, whereaof the full invariant surface but just two disjoint tori. In this
the periodicity of the rays is not relevant. The latter comes irsense, the openness moves the system closer to integrability.
here simply because periodic ragend their neighborhogd That is the reason why we can derive in the following section
can be long-lived. We will not apply methods from semiclas-a practical semiclassical approximation for the open hexago-
sical periodic-orbit theory23]. nal resonator whereas this is impossible for the hexagonal
The periodic rays are unstable with respect of changingpilliard.
the angle of incidence. Figure 12 shows a ray with slightly
different initial angle of incidence. The ray is slowly diverg- _ . o
ing from the central one. After some time, it reaches the B. Semiclassical quantization
corner on its other side @&lmos) normal incidence. Conse- Having identified the long-lived part of classical phase
quently, it then escapes refractivelyith probability close to  space, we now quantize it in a semiclassical approximation.
1). This approximation is valid for small 1/ReR) and it does
As long as the ray does not escape from the cavity iinclude interference effects, in contrast to the geometric-
behaves as if it were in a closed resonator, i.e., in a billiardeptics limit.
It is illuminating to examine the ray dynamics of the open  Because of the absence of stability of the periodic rays the
system in terms of the invariant surface of the hexagonatonventional approach in laser optics, the paraxial approxi-
billiard. The genus of the invariant surfaces is given by themation(see, e.g., Ref25]), does not work. Nevertheless, the

general formuld4] semiclassical quantization is simple. The idea is that an inte-
ger numberm=1,23... of wavelengths \j,sige=AN/N
g=1+ ﬁfz mj_ly (8) =2m/nRe(k) fits on the path length of the long-lived ray
2 i nj

shown in Fig. 12, taking into account the phase shifts at the
dielectric boundary. It will turn out that the number de-
where the sum is over all corners with anglgs=m;/n; fined in this way is identical to the mode indexas used in
and\is the least common multiple of the . For the hexa- Sec. IIl.

gonm;=2 andn;=3 for all j; hence /=3 and finally,g To compute the phase shifts, we consider the textbook
=4. The surface of genus four is shown schematically intreatment of reflection of a plane wave at an infinitely ex-
Fig. 13. The topology is the same for all initial conditions. tended dielectric interface; see, e.g., R&6]. This simpli-
First, we consider the special case where the surface is folfied setup is justified ih<R, i.e., RekR)>1. We shift the
ated by periodic orbits. Each periodic ray wiék=60° ap-  origin of the coordinate system such thyat 0 is the dielec-
pears here as two disjoint circles with different sense of rotric boundary bounding the lower-index region from below
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and the higher-index region from above. In the higher-index . .
region there is an incident wave 175 | .
e, * 7 o 443
Ji=AexdiRek)n(x sin g, +y cosé,)], 9) e e —a
with amplitudeA; . We setA;=1 without loss of generality. o 8o a2 eTe
The reflected wave is given by 165 ¢ Trb
* =4
¥, =A.exdiRe(k)n(x sin 6, —y cosé,)]. (10) R
In the lower-index region there is an emitted wave qgs LIl
20 30 40 50 60 70
Pe=Acexd iRek)(xsinf.+y cosby)]. (12) m
The boundary conditions FIG. 14. B, vs mode indexm. Dashed line marks the semiclas-
sical prediction3~1.562.
i (X,0) + ¢ (X,0) = he(x,0) (12 _
Let us assume tha,, has the following form:
and s
Bm=ym °+ B (19
i Iy _ e . . . .
v - = (13)  and thatB., equals our semiclassical soluti@~1.562. Fig-
Yo Yo Y lxo ure 15 showsA 8= B,— B.. as function ofm=34 in a log-

lead to ;= 6, , Snell's lawn sing=sing,, A;+A,=A. and

the Fresnel formula

_1—ia 14
T 14ia (14

with
_ n%sirg,— 1 15

n cosé,

The quantizatior{or resonancecondition then reads

einRe(k)IA?: 1,

with the length of the periodic rays=33R. After some

algebraic manipulations, we arrive at

(16)

log plot for fixed n=1.466. Linear regression givesg
~0.89 ands~0.5038. Based on this numerical finding, we
conjecture that the next order in the semiclassical approxi-
mation (17) is of the formy//m.

Observation of Figs. (€) and 7d) shows that the “nodal
lines” close to the boundary of the cavity are not exactly
parallel to the boundary but slightly tilte@bout5°). This
angular shift decreases as one goes to higher-excited modes.
For example, it is not visible by eye in Fig. 8. Specular
reflection of a plane wave at the boundary leads always to
nodal lines parallel to the boundary. Hence, it is reasonable
to interpret the angular shift as a kind ménspecular reflec-
tion. The angular shift can be traced back to the fact that the
wave function restricted to the boundary is a periodic func-
tion. Because of the periodicity, the Fourier spectrum of the
wave function along the boundary is discrete. The discrete
peaks can be related to a discrete set of allowed angles of
incidence. The angle,=60° typically falls between two

2 neighboring discrete angles. In Sec. A in the Appendix, we
Re(kR)= ﬁ(””ﬂ) (17) compute the angular shift analytically to first order &8
= 6,—60°= 6,— w/3~ — \/3B/m in agreement with the nu-
with the total boundary phase shjt given by merics(not shown. In the semiclassical limin— o the an-
gular shift vanishes. Our angular shift is different from those
tang f=a. (19 18
The quantization conditiofiLl7) explains the single-mode '
spectrum in Figs. 3 and(&. With n=1.466 the mode spac- -2 ¢
ing is 27/3\/3n~0.8248 in agreement witlr=0.8238 ob- g ,,
tained by fitting to the numerical data. However, the shift £
B~1.562 differs a bit from the numerically obtained shift 22
my=~1.7516. To understand this discrepancy, we plot in Fig.
14 the phase shiftg,, defined as3 computed from Eq(17) 23
inserting the numerically computed values of REJ. 24 - - - - -
12 125 13 135 14 145 15

Clearly, going towards the semiclassical limit—c leaves
the crude fitting valuemy~1.7516 in favor of a smaller
value B,.=Ilim,_,..By closer to our semiclassical prediction
B~1.562.
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TABLE I. Symmetry class and mode index The table is pe- important for theemission directionalityput not for thees-

riodic in m with period 6. cape rate For the escape rate, we find two relevant effects
which are responsible fdransport to cornersWe call them
m Symmetry class boundary-wave leakagend pseudointegrable leakage

The boundary-wave leakage is illustrated in Fig. 12. An

1 +—-a, —+a oo
> tia ——a evanescent boundary wave travels along an infinitely ex-
3 N 7b’ —4b tended dielectric interface from « to +. We assume that

’ at a finite interface the boundary wave fully separates from
4 ++a, ——a . . .
5 PP the interface at the corner. In Sec. B in the Appendix, we
6 ++2’ __Z determine the outgoing relative intensity for any regular

polygon (equilateral triangle, square, hexagon.) due to
boundary waves. In particular, for the hexagon we find

cases discussed in the context of nonspecular refleqiers

3
e.g., Ref[27]), in that it happens above the critical angle of Alpy= 3¢ n _ (21)

total internal reflection. Moreover, it has nothing to do with " 4Rgk)R? 3n%4—1(n?-1)

the angular Goos-Hehen effect{see, e.g., Ref28]), which

is the Goos-Hachen shift at a curved interface. The pseudointegrable leakage is due to the fact that wave

The number of wavelengths fitting on a path length deteroptics does not realize exacthy=60° as already mentioned
mines the symmetry class. Straightforward considerationgnd shown in Sec. A in the Appendix. Putting this small
give Table |. The semiclassical quantization procedure neiangular deviation\ ¢ into the initial conditions gives rise to
ther distinguishes between— and— + parties nor between rays with finite lifetime due to the pseudointegrable dynam-
++ and —— parties. Hence, within the semiclassical ap-ics; see Fig. 12. In Sec. C in the Appendix, we estimate the
proximation these modes are exactly degenerated, regardle@stgoing relative intensity due to pseudointegrable leakage
whether they are of type or b. This explains the numerical for the hexagon as
finding of quasidegeneratemodes.

The fact that our model predicts a single-mode spectrum, _ A4mc  B(n)
a one-parametem=1,2, ... family of long-lived reso- AIP_3RE(|()R2 2
nances, is related to the fact that there is only one long-lived
family of periodic rays(with short period. There is no  The derivation can be easily extended to any regular poly-
“transversal mode index” which would be expected if the gon. Cavities with integrable internal dynamics, like the
paraxial approximation were applicable. Higher transversgquilateral triangle and the square, halg=0. That means
modes correspond to rays with angle of incidence considethe neighborhood of the long-lived family of periodic rays
ably different from 60°. They are much shorter lived, which has roughly the same lifetime as the periodic rays. In such a
becomes clear in the following section when we discuss thease, we expect a multimode spectrum in the mesoscopic

(22)

emission mechanisms. regime. Indeed, this has been found in scattering experiments
on the dielectric square in RgR29].
C. Emission mechanisms Remarkably, both contributions in Eq&1) and(22) have

Having derived a semiclassical quantization condition forthe same dependence on Re(In either case, the contribu-

the real part okR, we now compute its imaginary part. The 23&;’5”5;&65 'lg?he (!LT]LtriELi?o:sm, reflecting their wave
temporal behavior of the intensity of a resonant modeé is ' 9 '

o;ex;{Zlm(w)t]. The outgoing relative intensity per unit Al=Aly,+Alp, (23
time is

1dl gives the central result

Al=———=-2] =—2cIm(k). 2

I dt M(w)=~2cim(k) 20 Im(kR)Re(kR) = f(n) (24)
What are the mechanisms for this decay of intensity? Obviwith
ously, there is no classical mechanism. In the framework of
ray optics, the periodic rays in Fig. 12 remain forever in the f(n)=fpu(n)+fy(n), (29
cavity. Hence, we have to include explicitly wave effects. We
identify three candidates of such wave effects, all of which fm) 3nd 26)
are related to the corners. The first onalifraction at cor- bl =~ S ) 26
ners Corner diffraction may be an emission mechanism 8v3ni/a-1(n"-1)
since a wave with finite wavelength coming close to a corner, nd
is diffracted partly to the exterior and partly back into the
interior with another spectrum of directions for which the 2m B(N)

5 (27)

condition of total internal reflection may not be fulfilled at fo(n)=——4
3

the next reflection. We will argue that corner diffraction is n

023807-9
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-07 ' e The emission is at corners in agreement with the experi-
ments.(iv) The emission is directed. The high-intensity di-
-12 rections are not parallel to the facefs) The lifetimes and
T the emission directionality are sensitive to rounding of the
;E% -7y corners.
T The numerical analysis does not cover the full experimen-
g 22 tal regime. To overcome this limitation, we have introduced a
- semiclassical approximation which can be easily extended to
27 . any cavity of regular polygonal geometry. Our semiclassical
a2 % ‘ . ray model contains two emission mechanisms: leakage due
14 16 1.8 2 to boundary waves and due to the pseudointegrable ray dy-

n namics. Explicit expressions for the resonance positions can
be given even though the system is not integrable. The semi-

FIG. 16. ImkR)Re(kR) vs n for several resonances witm . . . . . e
kR)RekR) classical approximation explains all numerical findings-

=50 (solid curve$. The contribution of the boundary waves, Eq. . o . . . ?
(26), is shown as dotted curve. The entire contribution, i.e., with(v) in an intuitive way, except the emission directionality. To

pseudointegrable leakage, H&7), is shown as dashed curve. The describe_the d_irecfcionality properly it is necessary to consider
vertical line marksn=1.466. corner diffraction in the future.

Our results are not only relevant for microcrystal lasers
For n=1.466, we find ImkR)Re(kR)~ — 2.837 in reason- but also for other kinds of pongonaI—sh_aped microlasers.. To
able agreement with the numerical data in Figs. 5 afi. 6 "ame a few; hexagonal lasers with attached optical
Figure 16 compares the semiclassical result in Egg—  Waveguides based on semiconductor heterostrucl@@s
(27) to the numerical data as function of While some nexagonally shaped solid polymer dye microcavitié],

resonances are very well described by the semiclassical aﬁguilateral—triangular laser cavities fabricated from semicon-
proximation, some are only roughly described. The latteiductor heterostructureg32], and square laser micropillar
cases correspond to the strong fluctuations around the senfidVities based on dye-doped polymgss].
classical hyperbolé24) already visible in Fig. 5.
Our ray model also explains some aspects of the mode ACKNOWLEDGMENTS
structure in Figs. 8 and 9. The whispering-gallery-like struc- . . i
ture is related to the geometry of long-lived rays; see Fig. 12er|,:swcl)\>ljldl—|||:r?t;cc):rt12?nli§ SL'::'“KZ?]HT:JHar.ag{k?err?(’)ergggg_m
The envelopes of the emission direction are described by the "' " ‘o . L
. sions. The work was supported by the Volkswagen founda-

boundary-wave leakage and the pseudointegrable Ieakagte . “ ; .

. S, L =fion - (project Molekularsieblaser-Konglomerate  im
cf. Figs. 8, 9, and 12. The distribution within the envelopes IS, ”

‘ X .= Fnfraroten”).

not predicted by our model. Here, corner diffraction is im-
portant because both the boundary waves and the pseudoin-

tegrable ray dynamics lead to escape arbitrarily close to the APPENDIX A: ANGULAR SHIFT

corner. _ _ _In this section, we discuss the semiclassical deviation of
Our ray model gives a natural explanation for the sensiyhe angle of incidence from 60°. Let us first investigate

tivity to rounding of corners. Let us assume that a suffi-_ _ ;144 4+ modes. Along the boundary, these modes are
ciently small rounding only slightly weakens the loss due to, .. qic with period R, i.e., ¢(s+3R) = lﬂ,(S) where the
boundary waves, whereas it reduces corner d'ﬁraCt'orgrclengthSE[0,6R) parametrizes the boundary. Hence, the

strongly. Numerical simulations of ray dynamics in roundedwawe function along the boundary can be expanded as the
hexagons show that the periodic rays, see Fig. 12, are Sta%llowing Fourier series:

lized. This statement is independent on the particular chosen
boundary parametrization. Hence, there is no pseudointe- % 2
grable leakage. This leads to considerably larger lifetimes y(s)= E AMexp(i—Ms). (A1)
and emission parallel to the facets; compare Figs. 8—11. M=—c 3R

From this, we see that the conjugate momentuns @ in
V. CONCLUSION other words, the momentum component parallel to the

We have discussed the properties of long-lived resonancd¥undary is “quantized” according to
in hexagonally shaped dielectric microcavities. These micro-
ca}vities play an important role for experiments on a class of nRe(k)sin 6= Z_WM, (A2)
microcrystal laser§l,2]. 3R

The numerical analysis revealed the following fadis:
The resonance positions in the complex plane are approxWith integer M. Inserting the quantization conditiofi7)
mated by a hyperbola. This fact is relevant for future experileads to
ments on microcrystal lasers because it implies that the laser
threshold is lower for larger crystal§i) The near-field in- sino=13 M (A3)
tensity pattern show a whispering-gallery-like structiii) m+8’

023807-10
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Linearizing this equation around~ 6;,=60°= 7/3 yield in
the semiclassical regima> g

M 1 M B
AQ_Z\E(H_E)_Z\EEE' (A4)
The smallestA 6 is realized forM =m/2 (m is an even inte-
ger for —— and + + modes, see Table,|
_ B _ 27p
A0==\3 = FRakR) (AS)

Analogous arguments concernirg+ and + — modes give
the same result as in EGAS).

APPENDIX B: BOUNDARY-WAVE LEAKAGE

PHYSICAL REVIEW A7, 023807 (2003

R

01
RC 60! '

R,

FIG. 17. Regionlempty hexagonnot accessible by the family
of long-lived rays. The region is bounded by a hexagonal “caustic”
with side lengthR.=R//3.

In this section, we compute the leakage due to boundary

waves. To estimate the loss, we consider the total internal C
reflection (6,> 6.) of a plane wave at an infinitely extended

dielectric interface. This consideration is justified if R&)

N sin 6; X

Alp=— ,
"YUA knZsire,—1 1+ a?

(B4)

>1 andg; not to close to the critical angle for total internal \yhere y is the number of cornerévhere the light is emit-

reflectiond.. Sinceéd, is a complex number in Eq11), the

ted), A is the area of the resonator covered by the family of

wave in the lower-index region is evanescent, i.e., it decayfong_”\,ed rays. Formuld@B4) is valid for any regular poly-
exponentially with increasing distance from the boundarygon, For the hexagory=6 andA is given by the area of the
Along the boundary the evanescent wave propagates Withexagon minus the region not accessible by the family of

constant velocity. The corresponding total enefgy better

long-lived rays as depicted in Fig. 17. Elementary geometry

intensity flux at a given point at the boundary can be com-yje|ds

puted by means of

o= fo Sy, (B1)

whereS, is thex component of the Poynting vectfit3]

c c . %
SZS_WRQEXH )Z—QRdllﬂVlﬂ ). (B2)

Integration of Eq.(B1) using Egs.(B2) and(11) yields

c N sin 6; 1
= 57— ’
4T k\n%sirf,—1 1+ a?

with @ from Eg. (15).

(B3)

3V3

AzT(RZ—R§)=\/§R2. (B5)

The final result for the hexagon is then given in E2{).

APPENDIX C: PSEUDOINTEGRABLE LEAKAGE

Here, we compute the pseudointegrable leakage. We put
the angular shift\ 6 from Eg.(A5) into the initial conditions
for the ray dynamics. Elementary geometry, see Fig. 12,
shows that after one round trip, i.e., six bounces, the angular
deviation gives rise to the spatial deviatids=|2IA6|. The
time for each round trip iat=In/c.

From Fig. 12, it is clear that points on the boundary
within the distanceAs from a corner leave the cavity after

Now we relate the total flux to the intensity inside the the next round trip. Hence, the relative outgoing intensity can

resonator. The intensity of the wave functignt ¢, per unit

area can be easily calculated to be7/Assuming that the
boundary waves fully leave the cavity at corners, the outgo-

ing relative intensity per unit time is given by

be computed as

Al ~1As  4mc  B(n)
P"RAt 3RqK)RZ n?
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