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Spectroscopic measurement of an atomic wave function
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We present a simple spectroscopic method based on Autler-Townes spectroscopy to determine the center-
of-mass atomic wave function. The detection of spontaneously emitted photons from a three-level atom, in
which two upper levels are driven by a classical standing light, yields information about the position and
momentum distribution of the atom@A. M. Herkommer, W. P. Schleich, and M. S. Zubairy, J. Mod. Opt.44,
2507 ~1997!#. In this paper, we show that both the amplitude and phase information of the center-of-mass
atomic wave function can be obtained from these distributions after a series of conditional measurements on
the atom and the emitted photon.
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I. INTRODUCTION

Preparation and measurement of a quantum state
been an avenue of great interest ever since the adven
quantum mechanics@1#. There has been an upsurge of act
ity in the field in recent years@2#. Preparing a quantum stat
is probably the easier task of the two; once the observa
property required is chosen, a measurement of this obs
able delivers the required quantum state, through so-ca
‘‘collapse’’ of the wave function. However, to determine th
complete quantum state of a system one has to perfor
whole set of measurements, as a single measurement re
only a particular aspect of the state. Thus, in general, qu
tum state measurement is an immensely complicated
deavor.

Various interesting proposals have been made to mea
the quantum states of light as well as matter. Majority of
methods for both kinds of wave functions are based on
measurement of Wigner function that bears a close con
tion with the density operator of the system@3#, thus charac-
terizing the quantum state completely. There are also sev
other techniques outside this tomographic@4,5# arena for
measurement of the quantum state of the radiation fi
These include methods based on absorption and emis
spectroscopy@6#, conditional measurement of atoms in a m
cromaser cavity@7#, and more@8#. Similar study of the mat-
ter wave field includes probing the quantum motion of t
trapped atoms@9# or ions@10#, or measurement of center-o
mass motion of an atomic beam in transverse as wel
longitudinal direction, with the techniques used to probe
atoms being either tomographic or interferometric@11#. Ex-
perimentally, tomographic method has been applied to
vibrational state of a diatomic molecule@12# and interfero-
metric method for the holographic reconstruction of mole
lar wave packets@13# and electronic Rydberg wave packe
@14#. In essence, measurement of a quantum state of ligh
matter is possible by utilizing the interaction between
two and measuring the effect of it on one to predict t
quantum state of the other.

Measuring the center-of-mass quantum state of an ato
beam is particularly of interest due to its possible appli
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tions in the field of atom interferometry@15# and atom optics
@16#. In this paper, we propose a possible experimental s
ation to measure both the amplitude and phase propertie
the quantum character of the center-of-mass motion of
atomic beam. Our method is very different from either t
interferometric or the tomographic method. It is primari
based on three interesting and well-known phenomena.
first one is Autler-Townes spectroscopy@17#, which implies
that the spontaneous emission spectrum of a driven th
level atom shows splitting of the emission line. The seco
one is Autler-Townes microscopy@18#, which suggests tha
this splitting depends on the position of the atom in t
standing light field. The third one is that the detection o
spontaneously emitted photon from an atom passing thro
a standing light field localizes the atom@19#. Each atom from
the beam is coupled to the cavity field through its intern
degrees of freedom. Thus, the modified spontaneous e
sion spectrum has complete information about the center
mass wave function of the atomic beam. We determine
position and momentum distribution of this atomic bea
conditioned on the detection of a spontaneously emitted p
ton. Thus, the atom is left in its internal ground state after
detection of the photon. We show that the amplitude a
phase information of the center-of-mass wave function
contained in the measured position and momentum distr
tions, respectively.

II. THE SCHEME

The proposed experimental situation is illustrated in F
1. A three-level atom interacts with a classical standing lig
field of wave vectork52p/l5vac /c aligned along thex
direction. Here, we assume the transitionuc&-ua& of the
three-level atom to be in resonance with the driving field a
the transition ua&-ub& to be coupled to the reservoir o
vacuum modes$k%, thus giving rise to spontaneous emissi
on that transition.

We assume that the atom is moving with a sufficien
high velocity such that its interaction with the driving fie
does not affect its motion along thez direction, which can
therefore, be treated classically. We also assume that th
©2003 The American Physical Society05-1



is
as
re
e

at

e

-
-
o-

m

ed
n

-

-
th
s-

.

mo-

te

r

for
ut
it-
are

ong-

of-
for

g

tem
ion

s to
nd

e

a

in

-

-

KAPALE, QAMAR, AND ZUBAIRY PHYSICAL REVIEW A 67, 023805 ~2003!
teraction time of the atom with the standing light field
sufficiently small. As a result, the transverse center-of-m
position of the atom does not change significantly compa
to the wavelength of the field during the interaction tim
Thus, we can neglect the kinetic energyp̂x

2/(2M ) of the
atom in the interaction Hamiltonian under the Raman-N
approximation.

The interaction Hamiltonian, in the dipole, rotating wav
and the Raman-Nath approximations is given by

Ĥ5\g~x!@ uc&^au1ua&^cu#1\(
k

@gk~x!ei (vab2nk)tua&

3^bu b̂k1gk* ~x!e2 i (vab2nk)tub&^aub̂k
†#. ~1!

Here g(x)5G sin(kx) is the position-dependent Rabi fre
quency, associated with theua&-uc& transition and the opera
tors b̂k andb̂k

† describe the annihilation and creation of ph
tons in the reservoir modes with wave vectork and
frequencynk5ck. The parametergk(x)5Gkexp(ikxcosu) is
the coupling strength associated with the spontaneous e
sion of a photon at an angleu with respect to thex axis and
vab is the transition frequency between the levelsua& and
ub&.

We would like to show that the spontaneously emitt
radiation yields information about the atomic wave functio
For this purpose, we solve the Schro¨dinger equation corre
sponding to the Hamiltonian given by Eq.~1!. To start with
we express the atom-field wave vectoruc(t)& of the com-
plete system as

uc~ t !&5E dx f~x!ux&@Ca,0~x,t !ua&u0&1Cc,0~x,t !uc&u0&

1(
k

Cb,1k
~x,t !ub&u1k&. ~2!

Here, Ca,0(x,t) and Cc,0(x,t) represent the position
dependent probability amplitudes for the atom to be in
levels ua& and uc&, respectively, with no photons in the re
ervoir modes andCb,1k

(x,t) is the probability amplitude for

the atom to be in levelub& with one photon in modek. Note
that f (x) is the center-of-mass wave function of the atom

FIG. 1. Three-level atom interacting with a classical stand
light field of wave vectork52p/l5vac /c aligned along thex
direction. The transitionuc&-ua& of the three-level atom is in reso
nance with the driving field and the transitionua&-ub& is coupled to
the reservoir of vacuum modes$k%, thus giving rise to spontane
ously emitted photons that can be detected thereafter.
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Constructing the usual Schro¨dinger equation of motion
for uc(t)& using the Hamiltonian~1! and splitting different
internal state components, we arrive at the equations of
tion for the probability amplitudes:

Ċa,052gCa,02 igCc,0 , ~3!

Ċc,052 igCa,0 , ~4!

Ċb,1k
52 igk* e2 idktCa,0 , ~5!

wheredk5vab2nk and 2g is the spontaneous emission ra
from level ua& to level ub&.

Two of the above Eqs.~3! and~4! can be coupled togethe
and solved easily to determineCa,0 . With the assumption
that the atom is initially in levelua&, the solution for the
amplitudeCa,0 takes the form

Ca,0~x,t !5e2gt/2Fcosh~ 1
2 Ag224g2~x!t !

2
g

Ag224g2~x!
sinh~ 1

2 Ag224g2~x!t !G . ~6!

This expression can in turn be substituted in Eq.~5!,
which after integration yields the desired expression
Cb,1k

(x,t). Our aim is to obtain complete information abo
the wave function of the atom from the spontaneously em
ted photon, therefore, we need to consider times which
large compared to the atomic decay time, i.e.,t@g21. This
ensures that the photon has indeed been emitted. In this l
time limit, we arrive at the following steady-state value:

Cb,1k
~x,`!5

Gk* e2 ikx cosudk

G2sin2~kx!2dk
21 idkg

. ~7!

All the information required to regenerate the center-
mass atomic wave function is contained in the expression
the probability amplitude given by Eq.~7!. We elaborate the
details of how to extract this information in the followin
section.

III. EXTRACTING THE AMPLITUDE AND PHASE
INFORMATION OF THE CENTER-OF-MASS

WAVE FUNCTION

We now discuss how the conditional states of the sys
provide information about the center-of-mass wave funct
of the atomf (x). The wave functionf (x) is in general com-
plex and has both the amplitude and phase. One need
deal with the amplitude and phase parts individually a
extract one after the other.

In the first step, to extract the amplitude information, w
calculate the probabilityW(x;tub,1k) of finding the atom at
positionx in the standing wavegiventhat we have detected
spontaneously emitted photon at timet in the reservoir mode
of wave vectork and that the atom is in its internal stateub&.
We find this probability from the reduced state

g

5-2
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ucb,1k

(atom)&5N^1ku^buC~ t !&5NE dx f~x!Cb,1k
~x;t !ux&

~8!

of the atom, whereN is a normalization factor. We note tha
the reduced state depends, via the coefficientsCb,1k

(x,t), on
the outcome of the measurement. Hence, the conditional
sition probability, fort@g21, is given by

W~x;`ub,1k!5u^xucb,1k

(atom)&u25F~x,dk!u f ~x!u2, ~9!

where the filter function has the form

F~x,dk!5uN u2uCb,1k
~x,`!u2

5uN u2
uGk0

u2dk
2

@G2sin2~kx!2dk
2#21dk

2g2
. ~10!

Note that we have replacedGk in the expression forF(x,dk)
by its valueGk0

at k05vab /c, which is a reasonable ap
proximation in the region of interest. As a consequence,
conditioned position distribution depends only on the f
quencydk of the spontaneously emitted photon. It is cle
from Eq.~10! that forg!G, the functionF(x,dk) is sharply
peaked at those values ofx that satisfy

sin~kx!56dk /G, ~11!

and is zero everywhere else. The most general solution
this equation are given by

xn
151

1

k
sin21~dk /G!1

pn

k
, ~12!

xn
252

1

k
sin21~dk /G!1

pn

k
, ~13!

wheren ranges over the set of integers 0,61,62, . . . . The
superscripts6 in Eqs. ~12! and ~13! correspond to the6
signs in the transcendental Eq.~11!. Thus, there are two se
ries of points where the filter function is sharply peaked. T
points in a given series are spaced byp/k from each other.
The distance between the two nearest points from diffe
series~for example,x0

2 andx0
1) is 2k21sin21(dk /G). A point

worth mentioning is that both the series represented byxn
6

range over both positive and negative values on thex axis.
Therefore, the6 signs in the superscripts are not to be tak
to mean the sign ofx, rather it is the sign of the offset from
the origin forn50.

It is instructive to note that the height of the peaks for t
filter function at the values ofx5xn

6 are independent ofx.
The filter functionF(x,dk) can therefore be approximate
apart from a trivial factor, byd functions at these points. A
a result, we can simplify Eq.~9! as
02380
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W~x;`ub,1k!.uN 8u2~•••1u f ~x21
2 !u2dx,x

21
2 1u f ~x0

2!u2dx,x
0
2

1u f ~x1
2!u2dx,x

1
21•••1•••

1u f ~x21
1 !u2dx,x

21
1 1u f ~x0

1!u2dx,x
0
1

1u f ~x1
1!u2dx,x

1
11••• !. ~14!

Thus, determination ofW(x;`ub,1k) enables us to find
u f (x)u at the pointsx5xn

6 . Note that the normalization fac
tor is modified toN 8 to incorporate the trivial multiplicative
factors arising after the introduction of the Kronecker de
symbols for the filter function.

In the next set of measurements, we shift the stand
wave with respect to the incoming atomic wave by a sm
amounte and then calculateW(x;`ub,1k). This yields the
values ofu f (x)u at x5xn

61e. Repeating the process a num
ber of times allows us to obtainu f (x)u at spatial intervals of
e. One only needs to repeat the process a small numbe
times to cover the range in between the mesh pointsxn

6 .
Thus the resolution of the method is governed by the sm
est of the three entities—the spatial shifte, distance between
the close-by points within a seriesp/k, and the distance
between the close-by points of the two seri
2k21sin21(dk /G). These parameters depend on various
perimental factors and is outside the scope of this paper.
detailed account will be given elsewhere.

We have seen how the conditional probability distributi
W(x;`ub,1k) can be used to determine the amplitude of t
center-of-mass wave functionf (x). However, complete de
termination off (x) requires information about both the am
plitude and the phase. In order to determine the phasw
@with f (x)5u f (x)uexp(iw)], we consider the conditional mo
mentum distribution

W̃~p;tub,1k!5u^pucb,1k

(atom)&u2

5
uN u2

2p\
U E dx f~x!Cb,1k

~x;t !e2 ipx/\U2

~15!

of the atom. To note, this relation~15! is obtained from the
reduced atomic state of Eq.~8! via a projection onto momen
tum eigenstates up& through the relation ^pux&
5(2p\)21/2exp(2ipx/\). In the steady state (t@g21), Eq.
~15! can be rewritten as

W̃~p;`ub,1k!5
uN u2

2p\
U E dx u f ~x!uuCb,1k

~x;`!u

3e2 i [ px/\2w(x)1m(x)1kx cosu)U2

, ~16!

where

m~x!5tan21S dkg

G2 sin2~kx!2dk
2D . ~17!
5-3
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Here, for the sake of simplicity, we have assumedGk to be
real. For g!G, the steady-state probability amplitud
uCb,1k

(x,`)u is a sharply peaked function atxn
6 , as discussed

earlier. Thus, the expression for the momentum distribut
W̃(p;`ub,1k) can be simplified considerably to obtain

W̃(p;`ub,1k)5
uN 8u2

2p\ U(
n

u f ~xn
1!ue2 i [x(p,xn

1)2w(xn
1)]

1u f ~xn
2!ue2 i [x(p,xn

2)2w(xn
2)]U2

, ~18!

where

x~p,x!5px/\1m~x!1kx cosu. ~19!

Here we note thatm(x) only takes values1p/2 or 2p/2 at
xn

6 depending on the sign ofdk and the gradient of sin(x).
Also note the modified normalization factor which incorp
rates the multiplicative factors arising after the introducti
of the Kronecker delta symbols. It is clear from Eq.~18! that
amplitudes corresponding to the wave function at differ
positions,xn

6 , interfere. We know, in principle, all the quan
tities in Eq. ~18! except the phasesw(xn

6). The question is
how to recover the phase information from these interfere
terms. From the amplitude measurement exercise, we alr
know the position interval, say@xmin ,xmax#, in which the
wave function differs substantially from zero. Outside th
region, wave-function amplitude is negligible and there is
need to recover the corresponding phase information.
extent of this significant region determines the limiting val
of n and the number of terms to be considered under
summation sign in Eq.~18!. A careful look at Eq.~18! also
shows that after expanding the terms under the summa
sign, the resulting expression not only contains the ph
differences at the nearest-neighboring points, i.e.,xn

6 and
xn21

6 , but it also includes all possible combinations of pha
differences over the whole range ofxn

6 . However, we only
need the phase differences for the nearest-neighbo
points. To determine the unknown phase differences from
interference terms, we need to measure corresponding s
values of the momentum distribution for different momen
p. These values should be chosen randomly such that
coefficient matrix of the resulting set of nonlinear equatio
has a nonsingular determinant. In order to recover the in
vidual phases from the measured phase differences, we
assume some arbitrary initial phase. Thus it is possible
reconstruct the original wave function up to an arbitra
phase factor. To obtain the phases at another set of posi
xn

61e, we shift the standing wave bye with respect to the
n-
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incoming wave and repeat the process again. Thus, by m
ing a number of measurements for the momentum distri
tion and solving the resulting set of algebraic equations,
can recover the phase information of the atomic wave fu
tion in the full interval@xmin ,xmax#.

Note that we have discussed a method to measure
atomic wave function at discrete grid points separated by
resolution limit of the given experimental setup. Thus, re
lution of the reconstructed wave function will depend up
the precision with which the various parameters can be c
trolled experimentally. The relevant experimental and n
merical issues will be discussed elsewhere. We would a
like to point out that measurement of the wave function
conditioned on the detection of the frequency and the dir
tion of the spontaneously emitted photon. Moreover, due
the isotropic nature of the spontaneously emitted radia
one needs 4p detectors for efficient reconstruction. How
ever, it is not necessary to measure all the atoms from
given atomic beam. In real experimental situation, only
oms whose spontaneously emitted photons have indeed
detected can be considered while ignoring the others.

IV. CONCLUSION

To summarize, we have shown that Autler-Townes sp
troscopy comes in as a handy tool while measuring
center-of-mass wave function of an atomic beam. We h
further shown that manipulating the internal degrees of fr
dom of an atom through the cavity field allows us to char
terize its center-of-mass motion. The scheme is based on
fact that the spontaneously emitted photons carry the in
mation about the position and momentum distribution of
atom that is interacting in a position-dependent manner w
a classical standing light field. The information about t
amplitude of the wave function can be obtained from t
position distribution by a series of measurements. The m
essential information, i.e., the phase of the wave function
encoded in the interference term in the momentum distri
tion and can be extracted by repeated measurements o
momentum distribution of the atom.
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