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Macroscopic quantum coherence in a repulsive Bose-Einstein condensate

A. Montina and F. T. Arecchi
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~Received 5 November 2002; published 28 February 2003!

We consider a Bose-Einstein bicondensate of87Rb, trapped in two different internal levels, in a situation
where the density undergoes a symmetry breaking in momentum space. This occurs for a suitable number of
condensed atoms within a double-well dispersion curve, obtained by Raman coupling two internal states with
two tilted and detuned light fields. Evidence of bistability results from the Gross-Pitaevskii equation. By
second quantization, we evaluate the tunneling rate between the two asymmetric states; the effects of losses on
coherence are negligible.
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The transition from a superfluid to a Mott insulator h
been recently demonstrated for a Bose-Einstein conden
~BEC!, made of atoms with repulsive mutual interactions
a lattice potential@1#. Such a phenomenon goes beyond
mean-field approximation and its explanation requires to t
into account the quantum fluctuations of the matter fie
When the quantum tunneling between adjacent sites do
nates the interaction energy, the probability distribution
the atomic occupation of a single site is Poissonian. In
opposite case, the minimum energy is obtained by reduc
the quantum fluctuation of the local occupation number.

In a previous paper, we have studied a similar proble
but with only two wells and an attractive interaction@2#; in
this case, the opposite effect occurs, that is, raising the a
number, i.e., the interaction energy, the minimum-ene
state is obtained by increasing the atomic fluctuation in e
site. This is indirectly demonstrated by the numerical obs
vation of the symmetry breaking at a critical number of
oms. Approaching the threshold value, the quantum fluc
tions increase, whereas above that value they blow up a
new minimum quantum state appears. The associated p
ability distribution of the condensate barycenter displays t
peaks, which can be considered as the dead and alive s
of a Schro¨dinger cat~SC!, whose coherent superposition
called macroscopic quantum coherence~MQC!. This term
was introduced to describe the coherent superposition of
macroscopically distinct quantum states that differ for
value of a collective variable@3#. The phenomenon is observ
able only for attractive interactions that tend to cluster
atoms in one of the two wells. By contrast, a repulsive int
action tends to reduce the quantum fluctuations and to
tribute the same number of atoms in each well, as obse
in Ref. @1#. MQC has been observed with trapped ions@4#
and microwave fields in high-Q cavity @5#.

In this work, we discuss the feasibility of MQC in a BE
of mutually repulsive atoms. A repulsive interaction acts
the momentum space as an attractive interaction, there
we expect that for a double-well dispersion curve the sy
metry breaking occurs in the reciprocal space. Such a dis
sion curve can be obtained by two detuned and tilted li
fields, which transfer a net momentum to atoms as they ju
from an internal state to another. We study the problem
finding the stationary solutions of two coupled Gros
Pitaevskii ~GP! equations discretized over a space latti
The system undergoes symmetry breaking in momen
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space for a suitable number of atoms and two new station
states are created. We then introduce a quantum two-m
model, with the two modes chosen in such a way as to
produce the stationary solutions of GP, and evaluate
quantum fluctuation-mediated tunneling rate between
two asymmetrical states. If the coupling with the enviro
ment is negligible, MQC occurs between these states. A
man scheme for creating a superposition state with two
condensates in different internal quantum levels has alre
been discussed in Refs.@6,7#; however, both proposals hav
applicability problems, as discussed in Ref.@2#. We evaluate
the decoherence rate due to the atomic losses and show
it is negligible, at variance with the previous schemes. Lo
et al. @8# include a model of dissipation for the system stu
ied in Ref. @7#. They claim that the main contribution t
dissipation is due to the thermal cloud of noncondensed
oms. Instead, the dominant source of decoherence is
three-body loss rate, which is very large for atoms in diff
ent hyperfine levels@10#. In their case, it is necessary to us
different hyperfine levels since the mutual scattering len
has to be much larger than the single-species scatte
length @7#.

Here we refer to87Rb atoms, but our numerical resul
apply also to 23Na, if some parameters are rescaled. In
previous work@9#, we considered atoms in two different hy
perfine levels (F51, mF521 and F52, mF51), how-
ever, the associated depletion rate@10# is too high for our
purposes, as it occurs in Refs.@7,8#. We consider condensat
atoms that are optically trapped in the two Zeeman lev
F51, mF521 andF51, mF51. An all optical condensa-
tion has been reported in Ref.@11#, alternatively, the conden
sate can be created with a magnetic confinement and tr
ferred into an optical trap@12#. A homogeneous magneti
field has to be applied to remove the energy degener
These levels are quasiresonantly coupled by means of
Raman fieldsL andR. We call c0 andc1 the fields associ-
ated with themF521 andmF51 levels, respectively. Fur
thermore, we callc2 the upper state of theD1 transition.

The starting equations are

i\ċ0,15~H0,12\v0,1!c0,11\EL,R~ t !e2 i (kWL,R•xW2vL,Rt)c2 ,
~1!

i\ċ25\v2c21@\EL* ~ t !ei (kWL•xW2vLt)c01~L↔R!c1#,
~2!
©2003 The American Physical Society16-1
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where H05Hl1g00uc0u21g01uc1u2, H15Hl1g11uc1u2
1g10uc0u2, andgi j 54p\2ai j /m. ai j ;5.5 nm @13# are the
s-wave scattering lengths between atoms ini andj levels. We
have calledHl52(\2/2m)¹21V the one-atom term of the
Hamiltonian, whereV is the trapping potential. The field am
plitudes EL,R are rescaled in order to be expressed in f
quency units. They are thus the Rabi frequencies of the o
photon transition.\v2 is the energy of the upper state of th
one-photon transition;\v0,1 are the energies of themF
521,1 levels, respectively. We setv050. In the adiabatic
approximation,c2 can be expressed in terms ofc1 andc0 as
c252@EL* ei (kWL•xW2vLt)c01ER* ei (kWR•xW2vRt)c1#/D, where D
5v22vL . Thus, we have two closed equations forc0 and
c1.

We introduce the gauge transformation

c̃0,15expS 2 i E uELu21uERu2

D
dtD

3expF6 i S kWd

2
•xW2

vd

2
t6

\kWd
2

8m
t D Gc0,1, ~3!

wherekd5kWL2kWR andvd5vL2vR . As a result, the equa
tions of motions become

i\ċ̃0,15S H0,17
\d

2 D c̃0,12\Vc̃1,06
i\2kWd•¹W

2m
c̃0,1. ~4!

Here,V[ELER* /D is the two-photon Rabi frequency, take
for simplicity as time independent and real, and the f
quencyd is given by d5v12vd1(uELu22uERu2)/D. We
assumeuELu25uERu2 andvd5v1, henced50.

If the number of atoms is sufficiently small, we can n
glect the nonlinear terms. Furthermore, let us initially co
sider a spatially homogeneous condensate~no trap potential!.
As a consequence, Eqs.~4! reduce to two linear equation
with constant coefficients, and the eigenvalue problem in
reciprocal space is ruled by two linear algebraic equati
for the transformed fieldsf0(kW ) andf1(kW ). The momenta of
the atoms in the two levelsmF521 andmF51, are respec-
tively, \(kW2kWd/2) and\(kW1kWd/2).

Solving the eigenvalue problem, we find the two disp
sion curves\v(kW )5\2kW2/(2m)6$@\2kWd•kW /(2m)1\d/2#2

1\2uVu2%1/2, plotted in Fig. 1~a! for V5200 s21 and ukWdu
52p34.53105 m21. As shown in the figure, the electro
magnetic coupling modifies the parabolic dispersion cur
associated with the two hyperfine levels, lifting the dege
eracy at their intersection point. The energy gap ford50 is
2\uVu. By varyingd, one can rise or lower the energy sep
ration between the two minima. Ford50, the two minima
have the same energy. Introducing the harmonic trap po
tial, the ground state has no longer a definite moment
Furthermore, the two wells of the dispersion curve a
equally populated by quantum tunneling@Fig. 1~b!, solid
line!#. In this state, the atoms in the Zeeman levels have
opposite nonzero average momentum. When the numbe
atoms is sufficiently high, a symmetry breaking occurs
02361
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cause of the atomic interactions and the population of
two levels becomes unbalanced. We report in Fig. 1~b! the
distributionsuf0u2 anduf1u2 for d50 and for three different
values of the number of atomsN. f0,1 are the Fourier trans
forms of the ground-state solution (c̃0 ,c̃1) of Eq. ~4! for a
spherical trap potentialV corresponding to equal longitudina
(v') and radial (v i) trap frequencies. As it results, this in
teraction clusters the majority of atoms within a single we
thus contrasting the quantum tunneling across the bar
Due to the geometry of the problem, and taking into acco
that the scattering lengthsai j are practically equal, there i
another ground state which is obtained from that of Fig. 1~b!
by inverting the horizontal axis and interchangingf0 and
f1. Thus we have two stable stationary states with eq
energy. The numerical evidence of Fig. 1~b! is also supported
by a synthetic variational argument, already exploited in R
@2# for Li, and based upon a suitable two-mode approxim
tion.

The matter field fluctuations allow the passage from o
stae to the other. If the decoherence is negligible, cohe
oscillations between such states can be observed, dem
strating MQC. To evaluate the oscillation frequency, w
quantize the two-mode system, as done in Ref.@2#. First of
all, we write the classical Hamiltonian corresponding to t
equations of motions~4!, takingg005g115g01[g,

H5E Fc0* Hlc01c1* Hlc11
g

2
~ uc0u21uc1u2!2

1
i\2kWd

2m
~c0* ¹W c02c1* ¹W c1!2\V~c1* c01c0* c1!Gd3x

~5!

@from now on we omit the tilde on thec ’s, even though we
are always in the gauge Eq.~3!#. We then introduce the
spinorial ground states

FIG. 1. ~a! Dispersion curves of a free atom forukWdu52p
34.53105 m21 andV5200 s21. ~b! Density distributionsuf0,1u2

for kd52p34.53105 m21, V51100 s21, v i5v'52p
3100 s21 and three different boson numbers:N51390 ~solid!,
1420 ~dashed!, 1460~dot dashed!.
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cW g,1~xW ![S c0g~xW !

c1g~xW !
D , cW g,2~xW ![S c1g~2xW !

c0g~2xW !
D , ~6!

wherec0g andc1g are the ground-state wave functions a
sociated with the two internal states.cW g,2 is obtained from
cW g,1 by interchanging the spinorial components and invert
the axes.

It is convenient to use the basis vectorscW a5cW g,11cW g,2

and cW b5cW g,12cW g,2 . We write the quantized spinorial fiel
of the bicondensate ascW (xW )5âcW a(xW )1b̂cW b(xW ), and substi-
tute this expression in the operator version of Eq.~5!. â and
b̂ are annihilation operators. Thus, we obtain a redu
HamiltonianHred of the same form found in the attractiv
case of Ref.@2#. By Hred , we evaluate the difference be
tween the lowest eigenvalues, which provides the tunne
rate. In Fig. 2, we plot the first and second energy levels a
function of the number of atoms and for some values ofv' .
The energy of the ground state is set to zero, so the energ
the first level gives the tunneling frequency. The entang
ment between the condensate and the lost at
induces a decoherence of the superposition. Using
approach of Ref.@2#, we find that the coherence is given b
C̃5e2eM, whereM is the number of lost atoms ande51
22*d3xc0* (xW )c1(2xW )/N. The quantity Nd51/e is the
number of atoms which must be lost in order to reduce
coherence by 1/e. The inset of Fig. 2 shows howNd scales
with N. The relevant loss processes are two-body inela
and three-body collisional decays. In Fig. 3 we report
average three-body and two-body~inset! loss rates, the latte
one refers to atoms in them521 level. We have used th
upper limit of 1.6310216 cm3/s for the two-body loss rate
coefficient and 5.8310230 cm6/s for the three-body pro
cesses, both of them measured in Ref.@14# for the trapped
Zeeman levelF51,m521. Two-body decay can occur als
by means of collisions between atoms in different Zeem

FIG. 2. First and second excited energy levels of the rubidi
BEC versusN2Ni ~the excess of atoms above the breakup va
Ni) for v i52p3100 s21 and some values ofv' . In the inset, we
plot Nd for the same values of the trap frequencies.
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levels. We assume that the corresponding loss rate is of
same order of magnitude as the measured value. From F
2 and 3 we find that the decoherence effects are neglig
during a MQC oscillation period. For highv' , the threshold
Ni and the loss rates are lower. Forv'52p
3200–400 s21, the overall loss rate is much smaller tha
the corresponding tunneling frequencies. Therefore, we
observe many oscillations before a single atom is lost.
v'52p3100 s21 the loss rate is.5 s21. With a tunneling
frequency of 8 Hz also in this case we can observe an os
lation before a single atom is lost. If the loss of atoms do
not transfer energy to the trapped atoms, the escape of a
atoms does not reduce the superposition coherence~inset of
Fig. 2!, but modifies slightly the tunneling rate. In Ref.@15#,
it is shown that inelastic collisional processes induce lo
variations of the mean-field interparticle interaction and
accompanied by the creation or annihilation of element
excitations. This phenomenon depends on the density an
completely negligible in our case. Notice that Eqs.~4! are
invariant if N is varied by a factora and the lengths and th
energies are multiplied bya and a22, respectively. So for
v5v'52p370 s21 the threshold isNi51980. By the
two-mode model, we find that the tunneling frequencies
reduced by nearly a factor of 0.5. However, the two-bo
and three-body decay rates are reduced by the factors
and 0.125, respectively.

As we have shown in Ref.@2#, the probability distribution
P(m) associated with the observableM̂5â†b̂1âb̂† displays
two peaks for the ground state, which are the alive and d
states of the Schro¨dinger cat. They have an unbalanced a
erage number of atoms in the two levels. This observabl
associated with the population measurement in one of
two Zeeman levels. To observe the coherence, we have to
the system in one of the two states, that corresponds to
ing a superposition of the ground and first excited states
the condensate. This can be obtained by measuring wi
nondemolition technique~e.g., a phase contrast techniqu!
the population in a Zeeman level when only the ground s

e
FIG. 3. Three-body and two-body~inset! loss rates. The latter

one refers to atoms trapped in theF51,m521 level and repre-
sents an upper limit@14#.
6-3
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is populated. This observation collapses theP(m) distribu-
tion to one peak, as discussed in Ref.@2#. If the energy trans-
fer is not too large, we expect that only the first two ene
states are populated. With this initial preparation, the sys
begins to oscillate at the frequencies of Fig. 2 between
two Schrödinger cat states, as reported in Fig. 4. At the init
time, only one peak is present~solid line!. At a quarter of
period corresponding to the frequency separation betw
ground and first excited states, theP(m) displays two peaks
~dashed line!. At half a period, the only peak is that absent
the initial time, thus there is a coherent oscillation betwe
the two states. Detecting such an oscillation would prov
evidence of a SC at an intermediate time when both pe
are present. It is important to point out that distributions w
two oscillating peaks can be obtained also classically.
example, in a classical harmonic oscillator, a solution of
Liouville equation is the phase-space probability distribut

@p(11a2)#21e2(x21p2)@(x1a cosvt)21(x1asinvt)2#. In-
tegrating overp, this gives the distribution inx as p21/2(1
1a2)21exp(2x2)(x211/21a212ax cosvt), which displays
two oscillating peaks similar to the ones reported in of Fig
However, in our case, the oscillation effect is more p
nounced, since the distributions at the initial time and at h

FIG. 4. Distribution P(m) for some parameters. The solid
dashed, and dashed-dot lines correspond toP(m) at the initial time,
at a quarter of period and half a period, respectively.v' is ~a!, ~b!
2p3100 s21, ~c!, ~d! 2p3200 s21, and~e!, ~f! 2p3400 s21.
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a period display nearly a single peak, in contrast with
classical behavior. A sufficiently precise measurement om
andN and a sufficiently strong control of noise and tempe
ture are necessary to extract distributions that produce
dence of quantum coherence. A precise measurementN
could be obtained by a phase contrast imaging techniqu
method that may help to distinguish a quantum oscillat
from a classical one consists in studying the effect of de
herence, since the quantum coherence is very sensitive to
environment coupling. Decoherence can be obtained b
phase contrast imaging of the condensate during its osc
tions. The decoherence rate grows increasing the intensit
the probing beam.

In conclusion, we have shown that a double-well disp
sion curve can be obtained by a suitable Raman coupling
this situation, a symmetry breaking in momentum space
demonstrated solving two coupled Gross-Pitaevskii eq
tions. The condensate can oscillate between the two em
ing asymmetrical steady solutions~SC states! by means of
the field quantum fluctuations~MQC!. We have found that it
is possible to obtain an oscillation frequency between the
states around 50–100 s21 and that the decoherence due
the atomic losses is negligible, at variance with the previo
schemes. In order to neglect the thermal activation, the
ond excited level energy (E2) has to be higher than the the
mal energy. From Fig. 2 we can see thatE2 ranges between
100 and 300 s21, which correspond to a temperature of 0.7
2.3 nK. If the cooling is performed below the threshol
when the symmetry breaking does not occur, the requ
temperature can be;5 nK. However, it may not be neces
sary to cool at very low temperatures the whole condens
but just the involved degrees of freedom, provided that th
latter ones are weakly coupled with the other modes, wh
act as a thermal bath. We remark that for low densities,
evaporative cooling allows to reach much lower tempe
tures, because of a smaller three-body decay rate. To be
that no excitation is present, one could tailor the trapp
potential in such a way that only the first two levels a
bound. In this work, we have chosen the parameters
which the tunneling frequency is much larger than the de
herence rate, however, the symmetry breaking and the su
Poissonian atom fluctuations below threshold can be
served with a much higher number of atoms, thus th
phenomena are observable with the present technology.
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