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Macroscopic quantum coherence in a repulsive Bose-Einstein condensate
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We consider a Bose-Einstein bicondensaté &b, trapped in two different internal levels, in a situation
where the density undergoes a symmetry breaking in momentum space. This occurs for a suitable number of
condensed atoms within a double-well dispersion curve, obtained by Raman coupling two internal states with
two tilted and detuned light fields. Evidence of bistability results from the Gross-Pitaevskii equation. By
second quantization, we evaluate the tunneling rate between the two asymmetric states; the effects of losses on
coherence are negligible.

DOI: 10.1103/PhysRevA.67.023616 PACS nuntder03.75.Lm, 03.75.Kk, 03.65.Yz, 03.65.Ta

The transition from a superfluid to a Mott insulator hasspace for a suitable number of atoms and two new stationary
been recently demonstrated for a Bose-Einstein condensastates are created. We then introduce a quantum two-mode
(BEC), made of atoms with repulsive mutual interactions inmodel, with the two modes chosen in such a way as to re-
a lattice potentia[1]. Such a phenomenon goes beyond theproduce the stationary solutions of GP, and evaluate the
mean-field approximation and its explanation requires to takguantum fluctuation-mediated tunneling rate between the
into account the quantum fluctuations of the matter fieldtwo asymmetrical states. If the coupling with the environ-
When the quantum tunneling between adjacent sites domment is negligible, MQC occurs between these states. A Ra-
nates the interaction energy, the probability distribution forman scheme for creating a superposition state with two Rb
the atomic occupation of a single site is Poissonian. In théondensates in different internal quantum levels has already
opposite case, the minimum energy is obtained by reducin§een discussed in Refi6,7]; however, both proposals have
the quantum fluctuation of the local occupation number. ~ applicability problems, as discussed in Re]. We evaluate

In a previous paper, we have studied a similar problem',fhe decoherence rate due to the atomic losses and show that
but with only two wells and an attractive interactif®|; in it is negligible, at variance with the previous schemes. Louis
this case, the opposite effect occurs, that is, raising the ato@f al.[8] include a model of dissipation for the system stud-
number, i.e., the interaction energy, the minimum-energyed in Ref.[7]. They claim that the main contribution to
state is obtained by increasing the atomic fluctuation in eacHissipation is due to the thermal cloud of noncondensed at-
site. This is indirectly demonstrated by the numerical obseroms. Instead, the dominant source of decoherence is the
vation of the symmetry breaking at a critical number of at-three-body loss rate, which is very large for atoms in differ-
oms. Approaching the threshold value, the quantum fluctua€nt hyperfine level§10]. In their case, it is necessary to use
tions increase, whereas above that value they blow up anddfferent hyperfine levels since the mutual scattering length
new minimum quantum state appears. The associated propas to be much larger than the single-species scattering
ability distribution of the condensate barycenter displays twdength[7].
peaks, which can be considered as the dead and alive statesHere we refer to®’Rb atoms, but our numerical results
of a Schralinger cat(SC), whose coherent superposition is apply also to*Na, if some parameters are rescaled. In a
called macroscopic quantum coherené®!QC). This term  Previous work[9], we considered atoms in two different hy-
was introduced to describe the coherent superposition of twgerfine levels E=1, mg=-1 andF=2, m=1), how-
macroscopically distinct quantum states that differ for theever, the associated depletion r@té)] is too high for our
value of a collective variablg]. The phenomenon is observ- purposes, as it occurs in Ref3,8]. We consider condensate
able only for attractive interactions that tend to cluster theatoms that are optically trapped in the two Zeeman levels
atoms in one of the two wells. By contrast, a repulsive interF=1, mg=—1 andF=1, me=1. An all optical condensa-
action tends to reduce the quantum fluctuations and to digion has been reported in R¢L1], alternatively, the conden-
tribute the same number of atoms in each well, as observeghte can be created with a magnetic confinement and trans-
in Ref. [1]. MQC has been observed with trapped iga$  ferred into an optical trapl2]. A homogeneous magnetic
and microwave fields in higl® cavity [5]. field has to be applied to remove the energy degeneracy.

In this work, we discuss the feasibility of MQC in a BEC These levels are quasiresonantly coupled by means of two
of mutually repulsive atoms. A repulsive interaction acts inRaman fieldd. andR. We call o and ¢, the fields associ-
the momentum space as an attractive interaction, therefoi@ed with themg=—1 andmg=1 levels, respectively. Fur-
we expect that for a double-well dispersion curve the symthermore, we callj, the upper state of thB, transition.
metry breaking occurs in the reciprocal space. Such a disper- The starting equations are
sion curve can be obtained by two detuned and tilted light PR
fields, which transfer a net momentum to atoms as they jump i%i 1= (Ho1—fiwg ) o1+ AE g(t)e LR XLy,
from an internal state to another. We study the problem by (1)
finding the stationary solutions of two coupled Gross- _ L
Pitaevskii (GP) equations discretized over a space lattice. i ,=hw, g+ [RE] (1)e'* X"y + (L-R) ¢y ],

The system undergoes symmetry breaking in momentum (2
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where  Ho=H;+dod #o|*+ godl 1]*>,  Hi=H+gul¢]? ' ' ' /T =00
+01d ¥ol?, andgj=4mh?a;;/m. a;~5.5 nm[13] are the
s-wave scattering lengths between atomsamdj levels. We
have calledH,= — (%#2/2m)V?+V the one-atom term of the
Hamiltonian, wheré/ is the trapping potential. The field am-
plitudesE | are rescaled in order to be expressed in fre-
guency units. They are thus the Rabi frequencies of the one
photon transitiont w, is the energy of the upper state of the
one-photon transitionfiwy; are the energies of theng
=—1,1 levels, respectively. We sei,=0. In the adiabatic
approximationy/, can be expressed in termsif andy, as
po=—[Efelkx—ey 4 ExelkRX-ory 1/A, where A
=w,— w_ . Thus, we have two closed equations fy and
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We introduce the gauge transformation K (10°m™)
~ [ |ELIP+|ER[? FIG. 1. (a) Dispersion curves of a free atom foky|=2
Yoa=exp ~l A dt X4.5x10° m~! and Q=200 s'*. (b) Density distributiond ¢ 4

for kg=27x45x10°m !,  Q=1100s!, o=, =27
X100 s and three different boson numbens:= 1390 (solid),
Y01, (3 1420(dashed 1460 (dot dashep

cause of the atomic interactions and the population of the
two levels becomes unbalanced. We report in Fidp) the
distributions| ¢|2 and| ¢,|? for 5=0 and for three different
values of the number of atonM ¢, , are the Fourier trans-

(4 forms of the ground-state solution§, 4,) of Eq. (4) for a
spherical trap potential corresponding to equal longitudinal
e ) (w,) and radial @) trap frequencies. As it results, this in-
Here, (0=E ER/A is the two-photon Rabi frequency, taken teraction clusters the majority of atoms within a single well,
for simplicity as time independent and real, and the frethys contrasting the quantum tunneling across the barrier.
quency 6 is given by 6=w;—wq+ (|EL|*~|Erl?)/A. We  Due to the geometry of the problem, and taking into account
assumgE|*=|Eg|* and wy=w;, hences=0. that the scattering lengtre; are practically equal, there is
If the number of atoms is sufficiently small, we can ne-another ground state which is obtained from that of Fig) 1
glect the nonlinear terms. Furthermore, let us initially con-py inverting the horizontal axis and interchangigg and
sider a spatially homogeneous condensatetrap potential 4, Thus we have two stable stationary states with equal
As a consequence, Eqel) reduce to two linear equations energy. The numerical evidence of Figbllis also supported
with constant coefficients, and the eigenvalue problem in thgyy 3 synthetic variational argument, already exploited in Ref.
reciprocal space is ruled b}/ two Iineflr algebraic equationfz] for Li, and based upon a suitable two-mode approxima-
for the transformed fieldéy(k) and¢(K). The momenta of tion.
the atoms in the two levels=—1 andmg=1, are respec- The matter field fluctuations allow the passage from one
tively, 7 (K—ky/2) and?(K+ky/2). stae to the other. If the decoherence is negligible, coherent
Solving the eigenvalue problem, we find the two disper_oscil_lations between such states can b_e observed, demon-
sion cuweshw(E):ﬁzlzzl(Zm)i{[hZIZd.IZ/(Zm)+ﬁ5/2]2 stratmg MQC. To evaluate the oscnlathn frequency, we
21 121 1/2 - - 1 = quantize the two-mode system, as done in R2f. First of
AT QP pIott_eld in Fig. 1a) for Q_,ZOO s and|kq all, we write the classical Hamiltonian corresponding to the
=2mX4.5X 10° m-~. As _shown in the fl_gure_z, the_electro- equations of motioné4), taking goo=911=9o1=0,
magnetic coupling modifies the parabolic dispersion curves
associated with the two hyperfine levels, lifting the degen-
eracy at their intersection point. The energy gapdet0 is H:f
2#|Q|. By varying 8, one can rise or lower the energy sepa-
ration between the two minima. F@=0, the two minima L oe
. . ih kd > >
have the same energy. Introducing the harmonic trap poten- (GEV ho— PV ihy) — QY o+ 5 y) | d3x
tial, the ground state has no longer a definite momentum. 2m
Furthermore, the two wells of the dispersion curve are (5)
equally populated by quantum tunnelinig. 1(b), solid
line)]. In this state, the atoms in the Zeeman levels have affrom now on we omit the tilde on thé’s, even though we
opposite nonzero average momentum. When the number afre always in the gauge E@3)]. We then introduce the
atoms is sufficiently high, a symmetry breaking occurs bespinorial ground states

Wherekd=I2,_—IZR and wy= w — wg. As a result, the equa-
tions of motions become
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FIG. 2. First and second excited energy levels of the rubidium F|G. 3. Three-body and two-bodjnse loss rates. The latter
BEC versusN—N; (the excess of atoms above the breakup valuepne refers to atoms trapped in the=1m=—1 level and repre-
N;) for w=27x100 s ! and some values ab, . In the inset, we  sents an upper limit14].
plot Ny for the same values of the trap frequencies.

_ N levels. We assume that the corresponding loss rate is of the

I Pog(X) .. 1g(—X%) same order of magnitude as the measured value. From Figs.

Pga(X)= - | PgaX)= o (6) 2 and 3 we find that the decoherence effects are negligible
Yog( —X) during a MQC oscillation period. For high, , the threshold

where o4 and ¢4 are the ground-state wave functions as-Nizog”doothfl |E35 ratﬁsl are lower. ;OWLFZWh
sociated with the two internal state:;§g , is obtained from x —400 s , the overall loss rate is much smaller than
- . ) o : . . the corresponding tunneling frequencies. Therefore, we can
g1 Dy interchanging the spinorial components and invertingyhserve many oscillations before a single atom is lost. For
the axes. _ _ o w, =2mwX100 s ! the loss rate is>5 s~ 1. With a tunneling

It is convenient to use the basis vectabg= i1+ ¥y,  frequency of 8 Hz also in this case we can observe an oscil-
and ¢, = ¢q1— 4. We write the quantized spinorial field lation before a single atom is lost. If the loss of atoms does

of the bicondensate aB(x)=ag,(X)+biy(X), and substi- ot transfer energy to the trapped atoms, the escape of a few

tute this expression in the operator version of &) 3 and atoms does not reduce the superposition coherénset of
) Fig. 2), but modifies slightly the tunneling rate. In Rgt5],

b are annihilation operators. Thus, we obtain a reduceg s shown that inelastic collisional processes induce local
Hamiltonian,¢q of the same form found in the attractive \griations of the mean-field interparticle interaction and are
case of Ref[2]. By M,cq, We evaluate the difference be- 4ccompanied by the creation or annihilation of elementary
tween the lowest eigenvalues, which provides the tunnelingycitations. This phenomenon depends on the density and is
rate. .In Fig. 2, we plot the first and second energy levels as 8ompletely negligible in our case. Notice that E@8). are
function of the number of atoms and for some value®ot  jnyariant if N is varied by a factor and the lengths and the
The energy of the ground state is set to zero, so the energy %ergies are multiplied by and a2, respectively. So for

the first level gives the tunneling frequency. The entangle-w:wlzzwxm s'! the threshold isN,=1980. By the
ment between the condensate and the lost atoMg,o mode model, we find that the tunneling frequencies are
induces a decoherence of the superposition. Using thgsquced by nearly a factor of 0.5. However, the two-body
approach of Refl2], we find that the coherence is given by 4nq three-body decay rates are reduced by the factors 0.25
C=e M whereM is the number of lost atoms and=1 and 0.125, respectively.

— 2 A% (X) 1 (—X)IN. The quantity Ng=1/e is the As we have shown in Ref2], the probability distribution
number of atoms which must be lost in order to reduce the?(m) associated with the observabie=a'b+ab" displays
coherence by &/ The inset of Fig. 2 shows hoWy scales two peaks for the ground state, which are the alive and dead
with N. The relevant loss processes are two-body inelastistates of the Schainger cat. They have an unbalanced av-
and three-body collisional decays. In Fig. 3 we report theerage number of atoms in the two levels. This observable is
average three-body and two-botigse loss rates, the latter associated with the population measurement in one of the
one refers to atoms in the=—1 level. We have used the two Zeeman levels. To observe the coherence, we have to put
upper limit of 1.6<x 107 ¢ cm?/s for the two-body loss rate the system in one of the two states, that corresponds to tak-
coefficient and 5.810 3° cm®/s for the three-body pro- ing a superposition of the ground and first excited states of
cesses, both of them measured in Ré&#] for the trapped the condensate. This can be obtained by measuring with a
Zeeman leveF=1m= —1. Two-body decay can occur also nondemolition techniquée.g., a phase contrast technigjue
by means of collisions between atoms in different Zeemarthe population in a Zeeman level when only the ground state

1g X)
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a period display nearly a single peak, in contrast with the
classical behavior. A sufficiently precise measurementnof
andN and a sufficiently strong control of noise and tempera-
ture are necessary to extract distributions that produce evi-
dence of quantum coherence. A precise measuremehnt of
could be obtained by a phase contrast imaging technique. A
method that may help to distinguish a quantum oscillation
from a classical one consists in studying the effect of deco-
herence, since the quantum coherence is very sensitive to the
environment coupling. Decoherence can be obtained by a
phase contrast imaging of the condensate during its oscilla-

2, N=185 & © 1IN, X X . . )
ol foA T tions. The decoherence rate grows increasing the intensity of
52 1
o1t ANV the probing beam.
ol A NN, . | In conclusion, we have shown that a double-well disper-
200 -100 0 100 200 -200 200

sion curve can be obtained by a suitable Raman coupling. In
this situation, a symmetry breaking in momentum space is

FIG. 4. Distribution P(m) for some parameters. The solid, demonstrated solving two coupled Gross-Pitaevskii equa-
dashed, and dashed-dot lines corresporf|(to) at the initial time,  tions. The condensate can oscillate between the two emerg-
at a quarter of period and half a period, respectively.is (a), (b))  ing asymmetrical steady solutioSC statesby means of
27x100 %, (c), (d) 27X200 s*, and(e), (f) 27X 400 s *. the field quantum fluctuation®1QC). We have found that it

is possible to obtain an oscillation frequency between the SC

is populated. This observation collapses fhem) distribu-  states around 50-100'% and that the decoherence due to
tion to one peak, as discussed in Refl. If the energy trans-  the atomic losses is negligible, at variance with the previous
fer is not too large, we expect that only the first two energyschemes. In order to neglect the thermal activation, the sec-
states are populated. With this initial preparation, the systergngd excited level energy,) has to be higher than the ther-
begins to oscillate at the frequencies of Fig. 2 between thena| energy. From Fig. 2 we can see tistranges between
two Schralinger cat states, as reported in Fig. 4. At the initial 100 and 300 s, which correspond to a temperature of 0.7—
time, only one peak is presefgolid line). At a quarter of 2 3 nk. If the cooling is performed below the threshold,
period corresponding to the frequency separation betweefjhen the symmetry breaking does not occur, the required
ground and first excited states, tRém) displays two peaks temperature can be 5 nK. However, it may not be neces-
(dashed ling At half a period, the only peak is that absent atsary to cool at very low temperatures the whole condensate,
the initial time, thus there is a coherent oscillation betweer,yt just the involved degrees of freedom, provided that these
the two states. Detecting such an oscillation would provid@atter ones are weakly coupled with the other modes, which
evidence of a SC at an intermediate time when both peakget as a thermal bath. We remark that for low densities, the
are present. It is important to point out that distributions witheyaporative cooling allows to reach much lower tempera-
two oscillating peaks can be obtained also classically. Fofyres, because of a smaller three-body decay rate. To be sure
example, in a classical harmonic oscillator, a solution of thenat no excitation is present, one could tailor the trapping
Liouville equation is the phase-space probability distributionpotential in such a way that only the first two levels are
[7(1+a%)] te” *PI[(x+acoswt)®+(x+asinwt)?]. In-  bound. In this work, we have chosen the parameters for
tegrating overp, this gives the distribution ix as 7 Y1 which the tunneling frequency is much larger than the deco-
+a%) “lexp(—x?)(x*+1/2+ a®+ 2ax coswt), which displays herence rate, however, the symmetry breaking and the super-
two oscillating peaks similar to the ones reported in of Fig. 4 Poissonian atom fluctuations below threshold can be ob-
However, in our case, the oscillation effect is more pro-served with a much higher number of atoms, thus these
nounced, since the distributions at the initial time and at halphenomena are observable with the present technology.

m

[1] M. Greineret al, Nature(London 415, 39 (2002.

[2] A. Montina and F.T. Arecchi, Phys. Rev.@6, 013605(2002);
e-print cond-mat/0202234.

[3] A.J. Leggett, Prog. Theor. Phy&9, 1 (1980; A.J. Leggett, A.
Garg, Phys. Rev. Letb4, 857 (1985.

[4] C. Monroeet al, Science272, 1131(1996.

[5] M. Bruneet al, Phys. Rev. Lett77, 4887(1996.

[6] J.I. Ciracet al, Phys. Rev. A67, 1208(1998.

[7] D. Gordon and C.M. Savage, Phys. Re\69, 4623(1999.

[8] P.J.Y. Louiset al, Phys. Rev. 264, 053613(2002).

[9] A. Montina and F.T. Arecchi, J. Mod. Op49, 319(2002.

[10] C.J. Myattet al, Phys. Rev. Lett78, 586 (1997.

[11] M. Barrett, J. Sauer, and M.S. Chapman, Phys. Rev. B&it.
010404(2001).

[12] B.P. Anderson and M.A. Kasevich, Scienz@2, 1686(1998;
D.M. Stamper-Kurnet al, Phys. Rev. Lett80, 2027 (1998
H.-J. Miesneret al, ibid. 82, 2228 (1999; D.M. Stamper-
Kurn et al, ibid. 83, 661 (1999.

[13] D. Gordon and C.M. Savage, Phys. Re\58 1440(1998.

[14] E.A. Burtet al, Phys. Rev. Lett79, 337(1997).

[15] D. Gueay-Odelin and G.V. Shlyapnikov, Phys. Rev. &,
013605(2000.

023616-4



