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Nonlinear waves in a cylindrical Bose-Einstein condensate
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We present a calculation of solitary waves propagating in a steady state with constant velocityv along a
cigar-shaped Bose-Einstein trap approximated as an infinitely elongated cylinder. For sufficiently weak cou-
plings ~densities!, the main features of the calculated solitons could be captured by effective one-dimensional
~1D! models. However, for stronger couplings of practical interest, the relevant solitary waves are found to be
hybrids of quasi-1D solitons and 3D vortex rings. An interesting hierarchy of vortex rings occurs as the
effective coupling constant is increased through a sequence of critical values. The energy-momentum disper-
sion of the above structures is shown to exhibit characteristics similar to a mode proposed sometime ago by
Lieb within a strictly 1D model, as well as some rotonlike features.
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I. INTRODUCTION

Solitary waves that may occur in a Bose-Einstein cond
sate~BEC! have been traditionally discussed in terms of t
classical Gross-Pitaevskii~GP! model which is appropriate
for the description of weakly correlated systems@1#. For in-
stance, a simple soliton was obtained by Tsuzuki@2# in a
homogeneous one-dimensional~1D! model, while Zakharov
and Shabat@3# developed inverse-scattering techniques
the study of multisolitons. Interestingly, the elementary so
ton proved to be relevant for an accurate semiclassical
scription @4,5# of an intriguing mode proposed earlier b
Lieb @6# in a full quantum treatment of a 1D Bose gas bas
on the Bethe ansatz@7#.

The above developments had long remained purely th
retical because of the absence of a physical realization
strictly 1D Bose gas. Nevertheless, the picture has sig
cantly changed with the recent observation of similar coh
ent structures in confined BECs of alkali-metal atoms@8,9#.
The very method of experimental production of solita
waves ~phase imprinting! was inspired by the analytica
structure of the 1D soliton, while various effective 1D mo
els have been developed for their theoretical investiga
@10–16#. On the other hand, the actual stability of the the
retically predicted 1D solitary waves should be question
within the proper 3D environment of realistic traps@12,17#.
An important step in that direction was the experimental
servation@18# that a dark soliton initially created in a finit
trap eventually decays into vortex rings, as is also predic
by a numerical solution of the corresponding initial-val
problem in a 3D classical GP model@17#.

Therefore, it is important to carry out a calculation
potential nonlinear modes withouta priori assumptions
about their effective dimensionality. One could envisage
picture in which the actual solitary waves are hybrids
quasi-1D solitons and 3D vortex rings. It is the aim of t
present paper to make the above claim precise by calcula
solitary waves that propagate along a cylindrical trap in
steady state with constant velocityv. Our approach was mo
tivated by the calculation of vortex rings in a homogeneo
BEC due to Jones and Roberts@19# and a similar calculation
1050-2947/2003/67~2!/023615~11!/$20.00 67 0236
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of semitopological solitons in planar ferromagnets@20#.
We have already described the main result of this work

a recent paper@21#, but a substantial elaboration is necessa
in order to appreciate its full significance. Thus the proble
is formulated in Sec. II where we also present a brief rec
culation of the ground state and the corresponding lin
~Bogoliubov! modes for comparison. A detailed calculatio
of nonlinear modes is given in Sec. III and the main conc
sions are summarized in Sec. IV.

II. FORMULATION AND LINEAR MODES

We consider a cigar-shaped trap filled with atoms of m
m. The transverse confinement frequency is denoted byv'

and the corresponding oscillator length bya'

5(\/mv')1/2. The longitudinal confinement frequencyv i is
assumed to be much smaller thanv' , hence we make the
approximation of an infinitely elongated cylindrical trap wi
v i50. Accordingly, complete specification of the system
quires as input the average linear densityn which is the
number of atoms per unit length of the cylindrical trap. F
nally, we consider the two dimensionless combinations
parameters:

g5na, g'5na' , ~1!

wherea is the scattering length related to the coupling co
stant as usual byU054p\2a/m.

Now, in the actual experiment of Ref.@8#, the trap is filled
with N51.53105 87Rb atoms, the transverse frequency
chosen asv'52p3425 Hz, the oscillator length is calcu
lated to bea''0.5 mm, and the scattering length isa
'50 Å. The total length of the trap is estimated asL
'120 mm and is significantly larger than the confineme
width. It might thus be reasonable to approximate the trap
infinite cylindrical with average linear densityn5N/L
50.125 atoms/Å. The corresponding dimensionless par
eters of Eq.~1! are then estimated asg;6 and g';6
3102. In fact, our subsequent calculations will be carried o
for a much wider range of the above parameters. Theref
apart from the idealization of an infinite cylindrical trap, o
©2003 The American Physical Society15-1
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results are fairly realistic and could be applied to a numbe
cases of experimental interest.

It is useful to introduce rationalized units through the re
calings

t→ t

v'

, r→a'r , C→ n1/2

a'

C. ~2!

The energy functional extended to include a chemical po
tial is then given by

W5
1

2E @“C* •“C1r2C* C1g~C* C!2

22mC* C#dV, ~3!

whereg54pg andr25x21y2. Equation~3! yields energy
W in units of g'(\v') whereas the chemical potentialm is
measured in units of\v' . The corresponding rationalize
equation of motion reads

i
]C

]t
52

1

2
DC1

1

2
r2C1g~C* C!C2mC, ~4!

and depends only on the dimensionless coupling constang,
becauseg54pg and the chemical potentialm5m(g) is
fixed by the requirement that the system carry in its grou
state a definite average linear densityn.

An important first step is thus to obtain accurate inform
tion about the ground-state wave functionC5C0(r), which
is normalized according to

E
0

`

2pr druC0u251, ~5!

to conform with our choice of rationalized units. The wa
functionC0(r) is numerically calculated as the minimum
the energy functional, under the constraint~5! that fixes the
chemical potentialm(g), by a variant of a relaxation algo
rithm @22#. Explicit results are illustrated in Fig. 1 for som
typical values ofg where we also quote the correspondi
values of the chemical potential.

The preceding numerical determination of the grou
state will provide the basis for all subsequent calculatio
However, it is worth mentioning here some limiting cas
where the ground state is known analytically. Atg50,

C05
1

Ap
e2r2/2, ~6!

and the chemical potential degenerates tom51. In the op-
posite limit,g@1, one may use the Thomas-Fermi~TF! ap-
proximation@23#

C05F 2

pR'
2 S 12

r2

R'
2 D G 1/2

~7!

for 0<r<R'52g1/4, andC050 for r.R' . The chemical
potential is given accordingly bym'2 g1/2. A comparison
02361
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with the accurate numerical solution is shown in the inset
Fig. 1 for g5100. In fact, as we shall see shortly, the T
approximation provides a reasonable description of so
quantities of physical interest even forg;1.

A separate but related question concerns the domain
validity of the description in terms of the classical GP equ
tion ~4! which is expected to hold for a sufficiently dilut
gas, namely, forna3!1 @1#. If we apply Eq.~7! at maximum
density and restore physical units, we find thatnmaxa

3

5(1/2p)(a/a')2g1/2;1.631025g1/2. Therefore, the valid-
ity of the TF approximation sets in well before the dilutene
condition is violated. More importantly, the classical descr
tion appears to be justified in the parameter range of
calculations (g,100), which covers most magnetic traps
current experimental interest.

We will also need some information from the linear~Bo-
goliubov! modes that have already been calculated in
literature to varying degree of completeness@24–26#. Here
we employ a numerical algorithm of our own briefly d
scribed as follows. Equation~4! is linearized by inserting
C5C01 i (a1 ib), whereC0(r) is the calculated ground
state wave function whilea5a(r ,t) andb5b(r ,t) are real
amplitudes that account for small fluctuations around
ground state. The resulting linear equations read

]

]t S a

bD 5M S a

bD , M[S 0 D2

2D1 0 D , ~8!

where

FIG. 1. Radial dependence of the ground-state wave function
four representative values of the dimensionless coupling cons
g50, 1, 10, and 100. The corresponding values of the chem
potential were calculated to bem51, 2.2571, 6.4324, and 20.0431
in units of \v' . The inset compares the accurate numerical so
tion ~solid line! with the TF approximation~7! ~dotted line! for the
strong couplingg5100. Distance is measured in units ofa' .
5-2
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D152
1

2
D1

1

2
r21g C0

22m.

D25D112gC0
2 . ~9!

This linear system is identical to a somewhat unconventio
form of the Bogoliubov–de Gennes equations employed
lier in Ref. @12#. Our task is then to calculate the spectrum
the differential operatorM whose eigenvalues are pure
imaginary and come in pairs6 iv where v is the sought
after physical frequency.

We restrict attention to axially symmetric waves th
propagate along thez axis with wave numberq. The Laplace
operator is then replaced by

D5
]2

]r2
1

1

r

]

]r
2q2 ~10!

and the amplitudesa andb may be assumed to depend on
on the radial distancer. A finite-matrix approximation of the
operatorM is obtained by expanding botha andb in terms of
a basis set of nonorthogonal Gaussian wave packets
randomly chosen oscillator lengths@29#. It is also prudent to
enlarge the basis set by including the ground-state w
function C0(r) itself, in order to directly account for the
zero ~Goldstone! mode associated with the number symm
try. The resulting algorithm is then quite efficient and pr
vides stable approximations of the low-lying eigenvalu
even if we include a small number of basis elements.

In Fig. 2, we present explicit results for the lowest eige

FIG. 2. The lowest branch in the Bogoliubov spectrum for fo
representative values of the dimensionless coupling constang
50, 1, 10, and 100. The frequencyv is measured in units ofv'

and the wave numberq in units of 1/a' . The corresponding value
of the speed of sound were calculated to bec50, 0.95, 1.77, and
3.17, in units ofa'v' .
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frequencyv5v(q) for the same set of coupling constants
in Fig. 1. At g50, v(q) reduces to the free-particl
quadratic dispersionv5q2/2, as expected. At nonzerog, the
dispersion becomes linear near the origin,v'cuqu, wherec
is the speed of sound for which explicit values are a
quoted in Fig. 2. Finally, we note that our results are
apparent agreement with the Bogoliubov dispersion ca
lated earlier within the TF approximation@24,25# as well as
numerically@26#—even though a different parametrization
the spectrum was employed in the latter reference. A co
plete discussion of linear modes in anisotropic traps may
found in Refs.@27,28#.

The speed of sound is a quantity of special physical in
est and will also play an important role in the theoretic
development of Sec. III. Hence, we have carried out a ca
lation for a wider set of coupling constants and the results
summarized in Fig. 3. It is interesting that our accurate
merical results are consistent with the TF approximat
@24,25,30#

c'g1/4 ~11!

even for values ofg as low as 1, where the error is about 5%
whereas the error is reduced to less than 1% forg.10. This
fact is especially important because Eq.~11! was employed
for the analysis of experimental data@31#. The relative accu-
racy of this approximation progressively deteriorates in
regiong,1, but a new asymptote, namely,

c'~2g!1/2, ~12!

was predicted to be reached for sufficiently weak couplin
@11#. The weak-coupling approximation~12! is actually con-

r FIG. 3. Speed of soundc in units of a'v' as a function of the
dimensionless coupling constantg. Open circles stand for our nu
merical data, the solid line for the TF asymptote of Eq.~11!, and the
dotted line for the weak-coupling asymptote of Eq.~12!.
5-3
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sistent with our numerical data forg,1/4, as is shown in the
inset of Fig. 3. However, we should add that the linear par
the Bogoliubov dispersion becomes very narrow in this
gion of couplings.

III. NONLINEAR WAVES

We now turn to the calculation of axially symmetric so
tary waves traveling along thez axis in a steady state with
constant velocityv. These are described by a wave functi
of the formC5C(r,j), with j5z2vt, which is inserted in
Eq. ~4! to yield the stationary differential equation

2 iv
]C

]j
52

1

2
DC1

1

2
r2C1g~C* C!C2mC,

D5
]2

]r2
1

1

r

]

]r
1

]2

]j2
. ~13!

The wave function must vanish in the limitr→`, thanks to
the transverse confinement, while the condition

lim
j→6`

uC~r,j!u5uC0~r!u ~14!

enforces the requirement that the local particle density c
cides asymptotically with that of the ground state calcula
in Sec. II. But the phase of the wave function is not fixeda
priori at spatial infinity except for a mild restriction implie
by the von Neumann boundary condition

lim
j→6`

]C

]j
50 ~15!

adopted in our numerical calculation. Our task is then to fi
concrete solutions of Eq.~13!, which satisfy the boundary
conditions just described.

An important check of the numerical calculation is pr
vided by the virial relation

v P5E F1

2

]C*

]j

]C

]j
1r2 C* C1

g

2
~C* C!2

2m C* CGdV, ~16!

obtained by standard scaling arguments@20#. HereP is the
linear momentum given by the usual definition

P5
1

2i E S C*
]C

]z
2

]C*

]z
C DdV5E n

]f

]z
dV, ~17!

and is measured in units of\n5g'(\/a'). In the second
step of Eq.~17!, we employ hydrodynamic variables define
from

C5An eif, ~18!

wheren5uCu2 is the local particle density and the phasef
may be used to construct the velocity fieldu5“f.
02361
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Numerical solutions of Eq.~13! are obtained by an itera
tive Newton-Raphson algorithm@19,20# briefly described as
follows. Suppose thatC5C in is an initial rough guess for
the solution at some velocityv. We then insert in Eq.~13!
the configurationCout5C in1X and keep terms that are a
most linear in the amplitudeX. Thus we derive an inhomo
geneous differential equation of the formLX5Y where the
linear operatorL and the sourceY are both calculated in
terms ofC in . We solve this linear system forX5L21Y to
obtainCout5C in1L21Y which is used as input for the nex
iteration until convergence is achieved at some speci
level of accuracy. The procedure is repeated by incremen
the velocity to a different value, typically in steps ofdv5
60.01, using as input the converged configuration obtai
at the preceding value of the velocity. Therefore, the m
numerical burden consists of constructing a finite-matrix l
tice approximation of the linear operatorL which is then
inverted by standard routines appropriate for sparse lin
systems.

The Newton-Raphson algorithm typically converges af
a few iterations and the final configuration is independen
the specific choiceC in . But it is also clear that the algorithm
will not converge to a solitary wave for most choices ofC in .
Hence it is important to invoke an educated guess for
input configuration provided by the product ansatz

C in5@c12 ic2 tanh~c3j!#C0~r!, ~19!

which capitalizes on the analytically known solitary wave
the homogeneous 1D model@2,3# and the ground-state con
figurationC0(r) numerically calculated in Sec. II. The con
stantsc1 ,c2, andc3 are definite functions of the velocityv
within the strictly 1D model, but such precise relations ne
not be invoked for our current purposes except for the n
malization conditionc1

21c2
251 that is necessary to enforc

the boundary condition~14!. In other words, the above con
stants are treated here as trial parameters until we ach
convergence for a specific velocityv.A corollary of the pre-
ceding discussion is that the converged configuration d
not depend on the precise choice of those parameters, a
is certainly not in the form of a product ansatz often e
ployed for the derivation of effective 1D models@11,16#.
Finally, we note that the ansatz~19! satisfies the parity rela
tions

ReC~r,j!5ReC~r,2j!, Im C~r,j!52Im C~r,2j!,

~20!

which are compatible with Eq.~13! and are actually satisfied
by all solutions constructed in the present paper.

We begin with the special case of the relatively we
couplingg51 for which the speed of sound was calculat
to be c50.95 in Sec. II. The simplest possibility is to firs
attempt to derive a static (v50) soliton starting with the
input configuration~19! applied for, say,c150 and c251
5c3. Indeed, the algorithm quickly converges to a wa
function with a nontrivial imaginary part but vanishing re
part, in view of the specific overall phase convention adop
in Eq. ~19!. The velocity is then incremented to positive va
ues in steps ofdv50.01 and the corresponding wave fun
5-4
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tions acquire also a nontrivial real part. The process may
continued until the velocityv approaches the speed of sou
c beyond which the solitary wave ceases to exist. An equ
lent sequence of solitary waves with velocities in the ran
2c,v<0 is obtained either by starting again with thev
50 soliton and pushing it to negative velocities or, simp
by taking the complex conjugate of the wave function cal
lated for 0<v,c, since

v→2v, C→C* , ~21!

is an obvious symmetry of Eq.~13!. A detailed illustration of
the calculated solitary wave function is given in Fig. 4 f
two representative values of the velocity:v5c/2 andv50.

A partial but more transparent illustration is given in Fi
5 which depicts the level contours of the local particle de
sity n5uCu2 for the two special cases considered in Fig.
In words, the calculated solitary wave reduces to a sound
pulse that is a weakly nonlinear disturbance of the grou
state whenuvu approaches the speed of soundc, while it
becomes an increasingly dark soliton with decreasinguvu and
reduces to a completely dark~black! soliton atv50.

FIG. 4. Solitary wave forg51 and two representative values
the velocity:v5c/2 ~I! andv50 ~II !. We display the radial depen
dence of the real and the imaginary parts of the wave function
various positive values ofj in steps ofdj50.1. The corresponding
results for negativej are obtained through the parity relations~20!.

FIG. 5. Contour levels of the local particle densityn5uCu2 for
g51, on a@24,4#3@24,4# portion of a plane that contains thez
axis and cuts across the cylindrical trap. The complete 3D pic
may be envisaged by simple revolution around thez axis. Regions
with high particle density are bright while regions with zero dens
are black. The two special cases considered are the same
Fig. 4.
02361
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It is now important to calculate the energy-momentu
dispersion of the solitary wave. The excitation energy is
fined as

E5W2W0 , ~22!

where bothW andW0 are calculated from Eq.~3! applied for
the solitary waveC(r,j) and the ground stateC0(r), re-
spectively. The presence of the chemical potential in Eq.~3!
accounts for the fact that the solitary wave carries a differ
number of particles than the uniform ground state. Simila
the relevant physical momentum is not the linear moment
P of Eq. ~17! but the impulseQ defined in a manner analo
gous to the case of a homogeneous gas@4,5#,

Q5E ~n2n0!
]f

]z
dV5P2df,

df[E
0

`

2pr dr n0~r!@f~r,z5`!2f~r,z52`!#,

~23!

wheren05uC0(r)u2 is the ground-state particle density an
df is now the weighted average of the phase difference
tween the two ends of the trap. The delicate distinction
tween linear momentum and impulse has been the subje
discussion in practically all treatments of classical fluid d
namics@32,33# and continues to play an important role in th
dynamics of superfluids@19#. Here we simply postulate the
validity of the definition of impulse in Eq.~23! and note that
the corresponding group-velocity relation

v5
dE

dQ
~24!

is satisfied to an excellent accuracy in our numerical cal
lation and thus provides a highly nontrivial check of cons
tency. In turn, the virial relation~16! is verified using the
standard definition of the linear momentumP in Eq. ~17!, as
expected. We finally note that the same phase differencedf,
which is important for experimental production of solita
waves through phase imprinting@8,9#, is also crucial for the
calculation of the impulse.

Under normal circumstances, the group-velocity relat
~24! follows merely from the fact that the solitary wave fun
tion is a stationary point of the energy functionalF5W
2vQ in the comoving frame. However, such a statemen
complicated here because of the nonzero surface contribu
that arises from the nontrivial phase of the solitary wave a
roughly corresponds to a certain backflow that is caused
the rearrangement of particles due to the depletion of den
in the central region. These facts have been analyzed
Ishikawa and Takayama@5# in the context of the homoge
neous 1D model. In the following, we explicitly demonstra
that a similar structure arises within the 3D environment
realistic magnetic traps.

The dispersionE5E(Q) calculated for the complete se
quence of solitary waves with velocities in the range2c
,v,c is illustrated in Fig. 6. The apparent 2p periodicity
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seems surprising but occurred also in the original calcula
of a similar mode by Lieb@6# within a full quantum treat-
ment of a 1D Bose gas interacting via ad-function potential.
The Lieb mode was later rederived by a fairly accurate se
classical approximation based on the elementary soli
wave of the 1D classical GP model@4,5#.

Lieb further argued that the corresponding Bogoliub
mode is no more elementary and thus proposed an intrig
dual interpretation of the excitation spectrum. It should
noted that the dispersions of the two modes exhibit the s
linear dependence at low momenta,E'cuQu, wherec is the
speed of sound, but significant differences arise at finite m
menta. The differences are especially pronounced in the
rent calculation within a cylindrical trap. Specifically, let u
assume an average linear densityn50.02 atoms/Å which
leads tog5na51 andg'5na'5102. If we then adjust the
g51 Bogoliubov dispersion of Fig. 2 to the units employ
in Fig. 6, the two dispersions are seen to diverge v
quickly at the scale of Fig. 6. In other words, Bogoliubo
and Lieb modes operate at rather different energy and
mentum scales in a realistic trap.

To summarize the preceding accurate calculation fog
51, the solitary wave is essentially quasi-1D in this wea
coupling region and its main features are indeed capture
an effective 1D model@34#. However, magnetic traps of ac
tual experimental interest are often characterized by sig
cantly larger values of the effective coupling where quasi-
solitons are expected to be unstable@12,17#. In particular,
Ref. @12# suggests that a critical coupling occurs in a cyl
drical trap whennmaxU0 /\v'52.4, wherenmax is the maxi-

FIG. 6. EnergyE in units ofg'(\v') vs impulseQ in units of
g'(\/a') for g51. The solid line corresponds to the comple
sequence of solitary waves discussed in the text, and the dotted
to the g51 Bogoliubov dispersion of Fig. 2 adjusted to curre
units. Symbols I and II correspond to the two special cases of
solitary wave illustrated in Figs. 4 and 5.
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mum local particle density in the ground state of the trap
we tentatively assume that the TF approximation~7! can be
trusted at the anticipated critical coupling, the above critic
ity condition reads 2g1/252.4 whereg is the dimensionless
effective coupling constant defined in Eq.~1!. Therefore,g
5gc51.44 provides a critical couplinggc above which
quasi-1D solitons are predicted to be unstable@34#. The main
conclusion is that stable quasi-1D solitons cannot occu
the experimentally interesting regimeg.gc where the heal-
ing length becomes comparable and eventually smaller t
the confinement width.

One should recall that the above estimate of the criti
coupling is derived from the analysis of azimuthal (m51)
rather than radial (m50) perturbations of the black solito
@12,17#. Our numerical calculation within the axially sym
metric ansatz suggests that the solitary wave begins to
its quasi-1D nature at a higher critical coupling, namely,
g5g1'3.9, probably because azimuthal perturbations
not included. The emerging new picture is clear atg510
which is the special case described in our recent paper@21#.
This case is reanalyzed and further extended in the cont
ation of the present paper.

It is natural to begin again with the calculation of a sta
(v50) soliton obtained by using the input configuration~19!
with c150,c251 and practically anyc3. We then increment
the velocity to both positive and negative values in steps
dv560.01 to yield a sequence of solitary waves that n
display two surprising features. First, a ringlike structure d
velops forg510 that was not present atg51. Second, the
above sequence exists only over the limited velocity ran
2v1,v,v1, where v150.8450.47c and c51.77 is the
speed of sound calculated in Sec. II forg510. The existence
of a critical velocityv1 also becomes apparent in the energ
momentum dispersion of the above sequence depicted
dotted line in Fig. 7. This portion of the dispersion is sym
metric aroundQ5p, where it achieves a maximum, but re
mains open ended at two critical points that correspond
v56v1.

It is thus not surprising that an independent sequence
solitary waves with lower energy exists forg510. Indeed,
we return to the input configuration~19! but now target a
solution with velocity in the rangev1,v,c. After some
experimentation a solution is obtained for, say,v51.5, if we
choose the trial parametersc150.2, c250.98, andc353.
Having thus obtained a specific solution forv51.5 the algo-
rithm is iterated forward and backward in steps ofdv5
60.01 to obtain an entirely new sequence of solitary wa
in the velocity range2v1,v,c, and a corresponding se
quence for2c,v,v1 through the symmetry relation~21!.
Herev1 is the same critical velocity encountered in the p
ceding paragraph, as is also apparent in the calcula
energy-momentum dispersions which are depicted by s
lines in Fig. 7 and join the previously calculated dotted li
through cusps that correspond tov56v1. Near each cusp
the wave function reaches the same terminal state irres
tive of the specific branch followed. But the transition fro
one branch to the other is otherwise discontinuous.

ine

e

5-6



o
lo
rs
ta
ce
re

e
s-
m
rr

ito

a
ia

te
y
e

pr
as

.
a
i

V
rl

e
to

al

its
er

of
nd

nch
by

ta
e

f
nd

the
y-

NONLINEAR WAVES IN A CYLINDRICAL BOSE- . . . PHYSICAL REVIEW A 67, 023615 ~2003!
Hence, we turn to a description of the detailed nature
this new sequence of solitary waves. For values of the ve
ity near the speed of soundc, the calculated soliton appea
again as a weakly nonlinear disturbance of the ground s
The dominant features of the solitary wave are pronoun
as the velocity is decreased to lower values and become
sonably apparent forv5c/2 that corresponds to point I in th
dispersion of Fig. 7. The wave function is completely illu
trated through its real and imaginary parts in Fig. 8. An i
portant new feature emerges by comparison with the co
sponding case atg51 illustrated in frame I of Fig. 4. Both
the real and the imaginary parts at the center of the sol
(j50) now vanish for a specific radiusR52.8, thus a vor-
tex ring is beginning to emerge. A partial but more transp
ent illustration is given in Fig. 9 where we depict the rad
dependence of the local particle densityn5uCu2 for various
values ofj. Again it is clear that the density near the cen
of the soliton (j50) vanishes on a ring with a relativel
large radiusR52.8. The features of the vortex ring becom
completely apparent, and its radius is tightened, as we
ceed to smaller values of the velocity. A notable special c
is the static (v50) vortex ring with radiusR51.8 illustrated
in frame II of Fig. 9, which is far from being a black soliton
The corresponding point II in Fig. 7 is thus a new loc
maximum of the energy-momentum dispersion, which
clearly distinguished from the local maximum at point I
that corresponds to the static black soliton discussed ea
in the text.

One would think that pushing the velocityv to negative
values would somehow retrace the calculated sequenc
vortex rings backwards. In fact, our algorithm continues
converge to vortex rings of smaller radii until the critic

FIG. 7. EnergyE in units ofg'(\v') vs impulseQ in units of
g'(\/a') for g510. The solid line corresponds to the fundamen
sequence of vortex rings discussed in the text, and the dotted lin
the auxiliary sequence that contains the black soliton~point IV!.
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velocity 2v1 is encountered where the ring achieves
minimum radiusRmin50.8 and ceases to exist for small
values ofv. The terminal state atv52v1 is illustrated in
frame III of Fig. 9. We have thus described a sequence
solitary waves that consists of bonafide 3D vortex rings a
does not contain a black soliton. The corresponding bra
in the energy-momentum dispersion of Fig. 7 is labeled

l
to

FIG. 8. Solitary wave forg510 and a representative value o
the velocityv5c/2. We show the radial dependence of the real a
the imaginary parts of the wave function for various values ofj in
steps ofdj50.1. The corresponding results for negativej are ob-
tained through the parity relations~20!.

FIG. 9. Radial dependence of the local particle densityn
5uCu2 for g510, using the same conventions for thej dependence
as in Fig. 8. The four special cases considered correspond to
four representative points I, II, III, and IV along the energ
momentum dispersion of Fig. 7.
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points I, II, and III that stand for the special casesv
5c/2,0, and2v1. As mentioned already, an equivalent s
quence of solitary waves exists in the range2c,v,v1 and
leads to a dispersion curve in Fig. 7 that is mirror symme
to the branch~I,II,III ! aroundQ5p.

To complete the description forg510 we must briefly
return to the auxiliary sequence of solitary waves associa
with the portion of the dispersion that is depicted by a dot
line in Fig. 7. As one moves from point III to point IV, th
ringlike structure is more or less preserved at constant ra
R5Rmin50.8. Nevertheless, the detailed features of the v
tex ring are tamed at small velocities and completely dis
pear forv50 to yield a black soliton at point IV.

We thus essentially conclude our description of solita
waves for g510 by schematically summarizing our ma
results in Fig. 10. Yet some of the elements of the preced
discussion are sufficiently surprising to deserve closer at
tion. For example, simple inspection of Fig. 7 reveals that
group velocity becomes negative in the region~II,III ! or,
equivalently, the impulse is opposite to the group veloc
This rotonlike behavior is consistent with the Onsag
Feynman view of a roton as the ghost of a vanished vo
ring @35# because the calculated radius of the vortex ring
monotonically decreasing along the fundamental~I,II,III ! se-
quence. A full-scale roton would develop if the termin
point III were an inflection point beyond which the grou
velocity begins to rise again. Actually, this is exactly wh

FIG. 10. Contour levels of the local particle densityn5uCu2 for
g510, on a@25,5#3@25,5# portion of a plane that contains thez
axis and cuts across the cylindrical trap. The complete 3D pic
may be envisaged by simple revolution around thez axis. Regions
with high particle density are bright while regions with zero dens
are black. The four special cases considered are the sam
in Fig. 9.
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happens as one moves away from point III along the up
branch in Fig. 7, but this ‘‘roton’’ portion of the dispersio
now appears in a strange location by comparison to the u
situation in liquid helium@35#. On the other hand, the blac
soliton at the stationary point IV is indeed the ghost of
vanished vortex ring, as explained in the preceding pa
graph. Needless to say, the rotonlike behavior descri
above is not directly connected with the Bogoliubov mo
and thus should not be confused with the actual roton
served in liquid helium.

It is also interesting to question how the picture just d
scribed evolves with increasing values of the dimensionl
coupling constantg, which is the only parameter that ente
the rationalized GP equation. Our numerical calculatio
have revealed yet another critical couplingg2'12, in the
sense that new flavor arises forg.g2. The structure of the
solitary waves in this new regime becomes sufficiently cl
for g520 and is best summarized by the calculated ener
momentum dispersion shown in Fig. 11. Apart from mirr
symmetry, the dispersion now exhibits two cusps that co
spond to two critical velocitiesv151.3550.64c and v2
50.4850.23c, wherec52.1 is the speed of sound calcu
lated forg520 as in Sec. II.

The nature of the solitary waves associated with the v
ous branches in the dispersion of Fig. 11 is very briefly d
scribed with the aid of Fig. 12. Thus we consider the
quence of five characteristic points (I,II,. . . ,V) that roughly
cover half of the dispersion, the other half being obtained
the mirror symmetry~21!. The lowest branch~I,II ! corre-
sponds to single vortex rings with velocities in the rangec
.v.2v1, as in the caseg510. Again the ring achieves its
minimum radius at the critical velocityv52v1 ~point II!.

re

as

FIG. 11. EnergyE in units ofg'(\v') vs impulseQ in units of
g'(\/a') for g520. The solid lines correspond to the fundamen
single-ring sequence, the dashed lines to the double-ring sequ
and the dotted line to the auxiliary sequence that contains a b
soliton ~point V!.
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The new element forg520 is the intermediate branc
~II,III,IV ! that corresponds to double rings with velocities
the rangev2.v.2v1. The second ring is first created at th
flanks of the trap and comes closest to the original ring at
new critical velocityv5v2 ~point IV!. This double-ring con-
figuration is more or less preserved along the upper bra
~IV,V !, with velocities in the rangev2.v.0, but gradually
fades away to become a black soliton atv50 ~point V!.

While the numerical calculation becomes increasin
more difficult for larger values ofg, it is clear that a se-
quence of critical couplingsg1 ,g2 , . . . exists and leads to
hierarchy of axisymmetric vortex rings. The single-ring s
lution associated with the lowest branch of the spectrum
robust feature for allg.g1.3.9, but its actual existenc
cannot be firmly established until a complete stability ana
sis is carried out in the presence of nonaxisymmetric per
bations. Concerning the solitary waves that correspond to
higher branches in the calculated spectra, the work of R
@12,17# already suggests that the black solitons that co
spond to point IV in the dispersion of Fig. 7 and point V
Fig. 11 are unstable. In this respect, one should recall tha
solitary wave that corresponds to the upper branch in
original calculation of Jones and Roberts@19# within the ho-
mogeneous GP model was later argued to be unstable@36#.

However, we should emphasize that the vortex rings c
structed here differ significantly from the Jones-Roberts~JR!
vortex ring that provided the basic motivation for the pres
work. As with ordinary smoke rings in fluid dynamics, th
JR ring can never be static thanks to a virial relation of
type ~16! that prevents finite-energy solutions withv50 in

FIG. 12. Radial dependence of the local particle densityn
5uCu2 for g520. The four special cases considered correspon
points I, II, III, and IV along the energy-momentum dispersion
Fig. 11. Point V in the above dispersion in not illustrated he
because it corresponds to a black soliton similar to that shown
lier in frame IV of Fig. 9.
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the homogeneous GP model. As a result, the radius of
vortex ring grows to infinity at low velocity. This picture i
completely rearranged in a cylindrical trap because the
currence of slow vortex rings with large radius is restrict
by the boundaries of the trap. Instead, vortex rings are p
dicted to nucleate at the flanks of the trap as soundlike pu
with high velocity approaching the speed of soundc, and
their radius actually decreases with decreasing velocity
particular, it is now possible to obtain static (v50) vortex
rings of finite radius, which are no longer contradicted by t
virial relation ~16!. The structure of the energy-momentu
dispersions calculated throughout the present paper cle
reflects the substantial restructuring of vortex rings within
cylindrical trap.

It is then natural to question whether or not there exist
limit in which the JR vortex ring is recovered. One shou
expect that this may happen when the bulk healing len
(na)21/2 is significantly smaller than the transverse confin
ment width. This limit is translated into large values ofg
5na, which is the only dimensionless parameter that ent
the rationalized GP equation. Now, our discussion earlie
this section suggests an increasingly complicated hierar
cal structure in the strong-coupling limit rather than a sim
JR soliton. A logical conclusion is that a JR vortex rin
somehow created within the bulk will sooner or later sen
the boundaries of the cylindrical trap. It will thus either d
rectly dissipate into sound waves, or reorganize itself to c
form with one or more of the presently calculated vort
rings possibly after ejecting some amount of radiation in
form of sound waves.

An indirect test of the above picture was carried out
initiating the Newton-Raphson algorithm with a configur
tion of the form

C in5
r21j22R222iRj

r21j21R2
C0~r!, ~25!

instead of the solitonlike configuration~19!. Here the left
factor models a JR ring of radiusR in its main qualitative
features@20#. Convergence was then achieved for spec
values of radiusR and velocityv and led to an output con
figuration that is no longer a JR ring but is composed of t
vortex rings of the present type widely separated along thz
axis. A more convincing demonstration could be obtained
solving the corresponding initial-value problem, but this a
related dynamical issues will not be discussed further in
present paper.

The preceding remarks indicate a certain mathemat
nonuniformity that is inherent in the approximation of th
cigar-shaped trap by an infinite cylindrical trap. The sa
phenomenon is also apparent in the calculation of lin
modes in Sec. II. For instance, neither one of the two asym
totes for the speed of sound quoted in Eqs.~11! and ~12!
approaches the well-known Bogoliubov speed in a homo
neous Bose gas@11#. But a nonuniformity of this type may
not be a reason to doubt that a sufficiently elongated trap
be approximated by an infinite cylindrical trap.

to
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IV. CONCLUSION

We have thus presented a 3D calculation of solitary wa
in a cylindrical Bose-Einstein condensate. In all cases c
sidered, there exists a nontrivial phase differencedf that is
reminiscent of strictly 1D solitons@2,3# and is important for
their experimental production through phase imprinti
@8,9#. Nevertheless, the detailed structure of the solit
waves depends crucially on the strength of the dimension
effective coupling constantg. Quasi-1D solitons occur only
in the weak-coupling regiong,g1.3.9 where some of ou
accurate numerical results could be approximated thro
effective 1D models@34#. But a sufficiently strong coupling
or density is necessary in order to pronounce the spe
features of a condensate. It is thus not surprising that
effective coupling in most experiments performed so far l
in the regiong.g1 where the nature of the theoretical
predicted solitary waves changes.

For g.g1, solitary waves are still characterized by a no
trivial phase differencedf between the two ends of the tra
but are otherwise 3D vortex rings. Hence, it is interesting
examine more closely the parameters employed in the
periment of Ref.@8#. It is sufficient to consider the roug
estimateg;6 obtained in Sec. II. Because this coupling
only marginally greater than the critical couplingg153.9,
the calculated ringlike structure is inconspicuous and
solitary waves largely retain their quasi-1D shape. Theref
a higher density would be necessary in order to reveal
existence of vortex rings. On the other hand, our findings
consistent with a recent experiment@18# and a corresponding
theoretical analysis@17# in finite traps.
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The main mathematical advantage of the approximat
of a sufficiently elongated trap by an infinite cylindrical tra
is that vortex rings can then be calculated in a steady s
propagating with a constant velocityv. It is thus possible to
carry out a detailed study of the soliton profile as a funct
of the effective coupling constantg and the velocityv, as is
done in the present paper.An interesting by-product of
above idealization is that a soliton is characterized by a d
nite energy-momentum dispersion. The calculated disper
is found to be the direct analog of the Lieb mode@6# in the
weak-coupling region and acquires interesting rotonlike f
tures for stronger couplings. Perhaps such a dispersion
be measured by a combination of phase imprinting@8,9# with
Bragg spectroscopy recently employed for the detection
the usual Bogoliubov mode@37,38#. In this respect, one
should keep in mind that Bogoliubov and Lieb modes op
ate at different energy and momentum scales in a real
trap. This fact becomes evident by the different sets of ph
cal units employed for the Bogoliubov mode in Fig. 2 a
the Lieb mode in, say, Fig. 6. The difference is accounted
by the second dimensionless couplingg'5na' in Eq. ~1!
which is much stronger thang5na becauseg' /g5a' /a
;102.
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