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Nonlinear waves in a cylindrical Bose-Einstein condensate
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We present a calculation of solitary waves propagating in a steady state with constant velakityy a
cigar-shaped Bose-Einstein trap approximated as an infinitely elongated cylinder. For sufficiently weak cou-
plings (densitie$, the main features of the calculated solitons could be captured by effective one-dimensional
(1D) models. However, for stronger couplings of practical interest, the relevant solitary waves are found to be
hybrids of quasi-1D solitons and 3D vortex rings. An interesting hierarchy of vortex rings occurs as the
effective coupling constant is increased through a sequence of critical values. The energy-momentum disper-
sion of the above structures is shown to exhibit characteristics similar to a mode proposed sometime ago by
Lieb within a strictly 1D model, as well as some rotonlike features.
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[. INTRODUCTION of semitopological solitons in planar ferromagng2g)].
We have already described the main result of this work in

Solitary waves that may occur in a Bose-Einstein condena recent papdi21], but a substantial elaboration is necessary
sate(BEC) have been traditionally discussed in terms of thein order to appreciate its full significance. Thus the problem
classical Gross-PitaevskiGP) model which is appropriate is formulated in Sec. Il where we also present a brief recal-
for the description of weakly correlated systefig For in- ~ culation of the ground state and the corresponding linear
stance, a simple soliton was obtained by TsuZ@®iin a  (Bogoliuboy modes for comparison. A detailed calculation
homogeneous one-dimensioriaD) model, while Zakharov  Of nonlinear modes is given in Sec. Ill and the main conclu-
and Shabaf3] developed inverse-scattering techniques forsions are summarized in Sec. IV.
the study of multisolitons. Interestingly, the elementary soli-
ton proved to be relevant for an accurate semiclassical de- Il. FORMULATION AND LINEAR MODES
scription [4,5] of an intriguing mode proposed earlier by . . ] )
Lieb [6] in a full quantum treatment of a 1D Bose gas based Ve consider a cigar-shaped trap filled with atoms of mass
on the Bethe ansafZ]. m. The transverse confinement frequency is denoted py

The above developments had long remained purely the®nd the corresponding  oscillator  length  bya,
retical because of the absence of a physical realization of & (A/Mw, )" The longitudinal confinement frequenay is
strictly 1D Bose gas. Nevertheless, the picture has signifidssumed to be much smaller than , hence we make the
cantly changed with the recent observation of similar cohera@pproximation of an infinitely elongated cylindrical trap with
ent structures in confined BECs of alkali-metal atdi®®].  «@= 0. Accordingly, complete specification of the system re-
The very method of experimental production of solitary quires as input the average linear densitywhich is the
waves (phase |mpr|nt|ng was inspired by the ana|ytica| number of atoms per unit Iength of the Cylindrical trap. Fi-
structure of the 1D soliton, while various effective 1D mod- hally, we consider the two dimensionless combinations of
els have been developed for their theoretical investigatiofparameters:
[10-14. On the other hand, the actual stability of the theo-
retically predicted 1D solitary waves should be questioned y=va, vy, =va,, (1)
within the proper 3D environment of realistic traji,17).
An important step in that direction was the experimental obwherea is the scattering length related to the coupling con-
servation[18] that a dark soliton initially created in a finite Stant as usual by,=4mf%a/m.
trap eventually decays into vortex rings, as is also predicted Now, in the actual experiment of R¢B], the trap is filled
by a numerical solution of the corresponding initial-valuewith N=1.5x10° 8'Rb atoms, the transverse frequency is
problem in a 3D classical GP modl7]. chosen asw, =27 X425 Hz, the oscillator length is calcu-

Therefore, it is important to carry out a calculation of lated to bea, ~0.5um, and the scattering length ia
potential nonlinear modes without priori assumptions ~50 A. The total length of the trap is estimated hs
about their effective dimensionality. One could envisage a=120 um and is significantly larger than the confinement
picture in which the actual solitary waves are hybrids ofwidth. It might thus be reasonable to approximate the trap as
quasi-1D solitons and 3D vortex rings. It is the aim of theinfinite cylindrical with average linear density=N/L
present paper to make the above claim precise by calculating 0.125 atoms/A. The corresponding dimensionless param-
solitary waves that propagate along a cylindrical trap in aeters of Eq.(1) are then estimated ag~6 and y, ~6
steady state with constant velocity Our approach was mo- X 10%. In fact, our subsequent calculations will be carried out
tivated by the calculation of vortex rings in a homogeneoudor a much wider range of the above parameters. Therefore,
BEC due to Jones and Robefi®] and a similar calculation apart from the idealization of an infinite cylindrical trap, our

1050-2947/2003/62)/02361%11)/$20.00 67 023615-1 ©2003 The American Physical Society



S. KOMINEAS AND N. PAPANICOLAQOU

results are fairly realistic and could be applied to a number of 0.6 - . - . : .

cases of experimental interest.

It is useful to introduce rationalized units through the res-

calings

Vl/2

t—>z, r—ar, \P—)E\P (2

The energy functional extended to include a chemical poten-

tial is then given by
1
W= Ef [VU* . VW +p2W* P +g(W*P)2

—2u¥*W¥]dV, 3

whereg=4my andp?=x%+y2. Equation(3) yields energy
W in units of y, (hw,) whereas the chemical potentjalis

measured in units ok w, . The corresponding rationalized

equation of motion reads

A 1 1
i~ == SAV+ S PV g(TF )Y -, (4)
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FIG. 1. Radial dependence of the ground-state wave function for
four representative values of the dimensionless coupling constant

and depends only on the dimensionless coupling constant ¥=0, 1, 10, and 100. The corresponding values of the chemical

becauseg=4my and the chemical potentigh= w(7y) is

potential were calculated to he=1, 2.2571, 6.4324, and 20.0431,

fixed by the requirement that the system carry in its groundn units of Aw, . The inset compares the accurate humerical solu-

state a definite average linear density

An important first step is thus to obtain accurate informa-

tion about the ground-state wave functiérn="V¥,(p), which
is normalized according to

f 2mp dp|Wo|?=1, (5)
0

tion (solid line) with the TF approximatiori7) (dotted ling for the
strong couplingy=100. Distance is measured in unitsaf.

with the accurate numerical solution is shown in the inset of
Fig. 1 for y=100. In fact, as we shall see shortly, the TF
approximation provides a reasonable description of some
quantities of physical interest even for-1.

A separate but related question concerns the domain of

to conform with our choice of rationalized units. The wave Vvalidity of the description in terms of the classical GP equa-
function W (p) is numerically calculated as the minimum of tion (4) which is expected to hold for a sufficiently dilute

the energy functional, under the constraib} that fixes the

gas, namely, fona®<1 [1]. If we apply Eq.(7) at maximum

chemical potentiaju(y), by a variant of a relaxation algo- density and rtzest%re physical ulgits, we find tha%axas
rithm [22]. Explicit results are illustrated in Fig. 1 for some =(1/2m)(a/a,)?y"*~1.6x10 °y"2 Therefore, the valid-
typical values ofy where we also quote the correspondingity of the TF approximation sets in well before the diluteness

values of the chemical potential.

condition is violated. More importantly, the classical descrip-

The preceding numerical determination of the groundtion appears to be justified in the parameter range of our
state will provide the basis for all subsequent calculations¢alculations ¢<100), which covers most magnetic traps of
However, it is worth mentioning here some limiting casescurrent experimental interest.

where the ground state is known analytically. At 0,

1
Vo=——e #", (6)

N

and the chemical potential degeneratesute1. In the op-
posite limit, y>1, one may use the Thomas-FerfmF) ap-
proximation[23]

2\ 712

_r
R?

()

for 0<p=<R, =2yY4 and¥,=0 for p>R, . The chemical
potential is given accordingly by.~2 y*2. A comparison

We will also need some information from the ling&o-
goliubov modes that have already been calculated in the
literature to varying degree of completen¢24—26¢. Here
we employ a numerical algorithm of our own briefly de-
scribed as follows. Equatiof¥) is linearized by inserting
V=wv,+i(a+ib), whereW¥y(p) is the calculated ground-
state wave function whila=a(r,t) andb=>b(r,t) are real
amplitudes that account for small fluctuations around the
ground state. The resulting linear equations read

a
b

a
b

d
ot

M| |, M= ®)

0 D2>
_Dl 0 '

where
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FIG. 2. The lowest branch in the Bogoliubov spectrum for four  FIG. 3. Speed of soundin units ofa, w, as a function of the
representative values of the dimensionless coupling congtant dimensionless coupling constapt Open circles stand for our nu-
=0, 1, 10, and 100. The frequenay is measured in units ab, merical data, the solid line for the TF asymptote of Ed), and the
and the wave numbey in units of 1A, . The corresponding values dotted line for the weak-coupling asymptote of E&2).
of the speed of sound were calculated todse0, 0.95, 1.77, and
3.17, in units ofa, w, . frequencyw = w(q) for the same set of coupling constants as
in Fig. 1. At y=0, w(q) reduces to the free-particle
quadratic dispersiom =q?/2, as expected. At nonzeng the
dispersion becomes linear near the originy c|q|, wherec
is the speed of sound for which explicit values are also

D,=D;+2gW¥2. (99 quoted in Fig. 2. Finally, we note that our results are in

apparent agreement with the Bogoliubov dispersion calcu-

This linear system is identical to a somewhat unconventiondited earlier within the TF approximatid@4,25 as well as
form of the Bogoliubov—de Gennes equations employed eafumerically[26]—even though a different parametrization of
lier in Ref.[12]. Our task is then to calculate the spectrum ofthe spectrum was employed in the latter reference. A com-
the differential operatoM whose eigenvalues are purely plete discussion of linear modes in anisotropic traps may be
imaginary and come in pairsiw wherew is the sought found in Refs[27,2§.
after physical frequency. The speed of sound is a quantity of special physical inter-

We restrict attention to axially symmetric waves thatest and will also play an important role in the theoretical
propagate along theaxis with wave numbeq. The Laplace development of Sec. Ill. Hence, we have carried out a calcu-

1 1 2 2
D1:—§A+ Ep +g¥Po—u.

operator is then replaced by lation for a wider set of coupling constants and the results are
summarized in Fig. 3. It is interesting that our accurate nu-
P2 19 ) merical results are consistent with the TF approximation
A=—+——~ (10 [24,25,3
2 o p q [ Q
c~yH (11

and the amplitudea andb may be assumed to depend only

on the I’adia| diStanCﬁ. A finite-ma’[l’ix apprOXimatiOI’l Of the even for Va|ues ofy as IOW as 1' Where the error is about 5%,
operatorM is obtained by expanding bothandb in terms of  \yhereas the error is reduced to less than 1%yferL0. This

a basis set of nonorthogonal Gaussian wave packets Witfyct is especially important because Efjl) was employed
randomly chosen oscillator lengtf9]. It is also prudent to  for the analysis of experimental dgtl]. The relative accu-
enlarge the basis set by including the ground-state wavgacy of this approximation progressively deteriorates in the

function Wo(p) itself, in order to directly account for the regiony<1, but a new asymptote, namely,
zero (Goldstongé mode associated with the number symme-

try. The resulting algorithm is then quite efficient and pro- c~(2y)¥? (12)
vides stable approximations of the low-lying eigenvalues
even if we include a small number of basis elements. was predicted to be reached for sufficiently weak couplings

In Fig. 2, we present explicit results for the lowest eigen-[11]. The weak-coupling approximatidi?) is actually con-
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sistent with our numerical data far<1/4, as is shown in the Numerical solutions of Eq(13) are obtained by an itera-
inset of Fig. 3. However, we should add that the linear part otive Newton-Raphson algorithfii9,20 briefly described as
the Bogoliubov dispersion becomes very narrow in this refollows. Suppose tha¥ =W, is an initial rough guess for
gion of couplings. the solution at some velocity. We then insert in Eq(13)
the configuration? ,,=V¥;,+ X and keep terms that are at
I1l. NONLINEAR WAVES most linear in the amplitud¥. Thus we derive an inhomo-

) ) ) . geneous differential equation of the foloX=Y where the
We now turn to the calculation of axially symmetric Soli- |inear operatorl and the sourcer are both calculated in

tary waves traveling along theaxis in a steady state with {arms of ¥, . We solve this linear system fot=L"1Y to
constant velocity . These are described by a wave function obtain\lfouti W, +L Y which is used as input for the next

of the formW = (p, &), with {=z—vt, whichisinserted in  jteration until convergence is achieved at some specified

Eq. (4) to yield the stationary differential equation level of accuracy. The procedure is repeated by incrementing
the velocity to a different value, typically in steps 66 =
A 1 1 . . . : .
—iv—=— AV + = p? VU +g(V* V)V — p P, +0.01, using as input the converged configuration obtained
3 2 2 at the preceding value of the velocity. Therefore, the main
numerical burden consists of constructing a finite-matrix lat-
_ ? 19 & tice approximation of the linear operattr which is then
- &—’)2+ ;%’L a_gz' 13 jnverted by standard routines appropriate for sparse linear
systems.
The wave function must vanish in the limit—, thanks to The Newton-Raphson algorithm typically converges after
the transverse confinement, while the condition a few iterations and the final configuration is independent of
the specific choic&;,. But it is also clear that the algorithm
lim |¥(p,&)|=|¥o(p)| (14 will not converge to a solitary wave for most choiceslof, .
§oxe Hence it is important to invoke an educated guess for the

. . . . input configuration provided by the product ansatz
enforces the requirement that the local particle density coin- P g P y P

cides asymptotically with that of the ground state calculated W,,=[c,—ic,tanh(czé) 1¥o(p), (19
in Sec. Il. But the phase of the wave function is not fixed
priori at spatial infinity except for a mild restriction implied which capitalizes on the analytically known solitary wave in

by the von Neumann boundary condition the homogeneous 1D mod#l,3] and the ground-state con-
figurationW(p) numerically calculated in Sec. Il. The con-
lim £=0 (15 stantsc,,C,, andcs are definite functions of the velocity
oo 08 within the strictly 1D model, but such precise relations need

not be invoked for our current purposes except for the nor-

adopted in our numerical calculation. Our task is then to findmalization COI’]ditiOI."(_Ii'f' c5=1 that is necessary to enforce
concrete solutions of Eq13), which satisfy the boundary the boundary conditioil4). In other words, the above con-

conditions just described. stants are treated here as trial parameters until we achieve
An important check of the numerical calculation is pro- convergence for a specific velocity A corollary of the pre-
vided by the virial relation ceding discussion is that the converged configuration does

not depend on the precise choice of those parameters, and it
is certainly not in the form of a product ansatz often em-
ployed for the derivation of effective 1D modef41,16.
Finally, we note that the ansatz9) satisfies the parity rela-
tions

P—f LY, 2Pt S (P2
vP=]13 58 sE P 2 (V)

—,u,\If*\I’}dV, (16)
ReWV(p,§)=Re¥(p,—¢), Im¥(p,§)=—-ImW¥(p,—§),

obtained by standard scaling argume[r26]. Here P is the (20

linear momentum given by the usual definition which are compatible with Eq13) and are actually satisfied

ad by all solutions constructed in the present paper.

q’)deJ n—dvVv, (17 We begin with the special case of the relatively weak
Jz . .

coupling y=1 for which the speed of sound was calculated

and is measured in units dfv=1y, (/a,). In the second to bec=0.95 in Sec. Il. The simplest possibility is to first

step of Eq(17), we employ hydrodynamic variables defined attempt to derive a staticoE0) soliton starting with the
from input configuration(19) applied for, sayc;=0 andc,=1

=c;. Indeed, the algorithm quickly converges to a wave
V=\née?, (18)  function with a nontrivial imaginary part but vanishing real

part, in view of the specific overall phase convention adopted
wheren=|¥|? is the local particle density and the phage in Eq.(19). The velocity is then incremented to positive val-
may be used to construct the velocity fielek V ¢. ues in steps obv=0.01 and the corresponding wave func-

1 av  Iv*
P P

T2 0z oz
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04 It is now important to calculate the energy-momentum
dispersion of the solitary wave. The excitation energy is de-
fined as

E=W-W,, (22

where bothW andW,, are calculated from Ed3) applied for

the solitary waveV (p,£) and the ground stat®y(p), re-
spectively. The presence of the chemical potential in(8p.
accounts for the fact that the solitary wave carries a different
number of particles than the uniform ground state. Similarly,
the relevant physical momentum is not the linear momentum
P of Eq. (17) but the impulseQ defined in a manner analo-
gous to the case of a homogeneous [@g5],

FIG. 4. Solitary wave fory=1 and two representative values of
the velocity:v =c/2 (1) andv =0 (Il). We display the radial depen-
dence of the real and the imaginary parts of the wave function fo
various positive values af in steps 0f§¢=0.1. The corresponding i
results for negativé are obtained through the parity relatiof29). Q= f (n— no)EdVZ P— 69,

tions acquire also a nontrivial real part. The process may be

continued until the velocity approaches the speed of sound _[- ) __

¢ beyond which the solitary wave ceases to exist. An equiva- 09= 0 2mpdp No(p)l$lp.z=2)=d(p.z==2)],

lent sequence of solitary waves with velocities in the range (23
—c<v=0 is obtained either by starting again with the

—0 soliton and pushing it to negative velocities or, simply, whereny=|W(p)|? is the ground-state particle density and
by taking the complex conjugate of the wave function calcu-6¢ is now the weighted average of the phase difference be-

lated for O<v<c, since tween the two ends of the trap. The delicate distinction be-
tween linear momentum and impulse has been the subject of
vo—v, VoP* (21)  discussion in practically all treatments of classical fluid dy-

namics[32,33 and continues to play an important role in the
dynamics of superfluidgl9]. Here we simply postulate the
validity of the definition of impulse in Eq23) and note that
the corresponding group-velocity relation

is an obvious symmetry of E@13). A detailed illustration of
the calculated solitary wave function is given in Fig. 4 for
two representative values of the velocity=c/2 andv =0.

A partial but more transparent illustration is given in Fig. dE
5 which depicts the level contours of the local particle den- V= —
sity n=|W¥|? for the two special cases considered in Fig. 4. dQ

In words, the calculated solitary wave reduces to a soundlike

pulse that is a weakly nonlinear disturbance of the ground® Satisfied to an excellent accuracy in our numerical calcu-
state when|v| approaches the speed of sougdwhile it lation and thus provides a highly nontrivial check of consis-

becomes an increasingly dark soliton with decreakingnd tency. In turn, the virial relatior(16) is verified using the
reduces to a completely dafklack) soliton atv=0. standard deflnlfuon of the linear momentypin Eq._ (17), as

expected. We finally note that the same phase differéice
which is important for experimental production of solitary
waves through phase imprintiri§,9], is also crucial for the
calculation of the impulse.

Under normal circumstances, the group-velocity relation
(24) follows merely from the fact that the solitary wave func-
tion is a stationary point of the energy functionakE=W
—vQ in the comoving frame. However, such a statement is
complicated here because of the nonzero surface contribution
that arises from the nontrivial phase of the solitary wave and
roughly corresponds to a certain backflow that is caused by
the rearrangement of particles due to the depletion of density
in the central region. These facts have been analyzed by

FIG. 5. Contour levels of the local particle density:|¥|? for Ishikawa and Takayamgb] in Fhe context _Of the homoge-
y=1, on a[ —4,4] X[ — 4,4] portion of a plane that contains tze N€0Us 1D model. In the following, we explicitly demonstrate
axis and cuts across the cylindrical trap. The complete 3D picturéhat_5‘_5'mIlar structure arises within the 3D environment of
may be envisaged by simple revolution around zfexis. Regions ~ realistic magnetic traps.
with high particle density are bright while regions with zero density ~ The dispersiorE=E(Q) calculated for the complete se-
are black. The two special cases considered are the same as Guence of solitary waves with velocities in the range
Fig. 4. <wv<c is illustrated in Fig. 6. The apparent2periodicity

(24)

I II
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2 T mum local particle density in the ground state of the trap. If
we tentatively assume that the TF approximati@ncan be
=1 trusted at the anticipated critical coupling, the above critical-
ity condition reads 2*?=2.4 wherey is the dimensionless
effective coupling constant defined in Ed). Therefore,y

I =1v.=1.44 provides a critical coupling/. above which
quasi-1D solitons are predicted to be unstdB®. The main
conclusion is that stable quasi-1D solitons cannot occur in
the experimentally interesting regime> y., where the heal-
w1 I 1 ing length becomes comparable and eventually smaller than
the confinement width.

One should recall that the above estimate of the critical
coupling is derived from the analysis of azimuthah=< 1)
rather than radialrh=0) perturbations of the black soliton
[12,17. Our numerical calculation within the axially sym-
metric ansatz suggests that the solitary wave begins to lose
its quasi-1D nature at a higher critical coupling, namely, for

. v=17y,~3.9, probably because azimuthal perturbations are

0 0 x 2 not included. The emerging new picture is clearyat 10

Q which is the special case described in our recent pgigr
This case is reanalyzed and further extended in the continu-

FIG. 6. Energ)E in units of yL(ﬁwL) VS |mpU|SEQ in units of ation of the present paper.

v, (hla,) for y_:l. The soliq line corresponds to the Complete_ It is natural to begin again with the calculation of a static

sequence of sollta_ry waves dlscgssed |n_the text,_ and the dotted Ilr(% =0) soliton obtained by using the input configuratids)

to .the y=1 Bogoliubov dispersion of Fig. 2 adjust.ed to current With c.=0.c.=1 and practically an We then increment

units. Symbols | and Il correspond to the two special cases of the, 17— =2 P . y angs. . .

solitary wave illustrated in Figs. 4 and 5. the velocity to b.oth positive and negat!ve values in steps of
év==*0.01 to yield a sequence of solitary waves that now

. i . . display two surprising features. First, a ringlike structure de-
seems surprising but occurred also in the original calculat|or\1,e|OIOS fory=10 that was not present at=1. Second, the
of a similar mode by Lietj6] within a full quantum treat- 51,46 sequence exists only over the limited velocity range
ment of a 1D Bose gas interacting viasdunction potential. —v,<v<uv,, wherev,;=0.84=0.47c and c=1.77 is the

The Lieb mode was later rederived by a fairly accurate semi-Speed of sound calculated in Sec. Il fpr- 10. The existence

classical approximation based on the elementary SOl'ta%facriticaI velocityv; also becomes apparent in the energy-

wave of the 1D classical GP model,5]. momentum dispersion of the above sequence depicted by a
Lieb further argued that the corresponding BOQOIIUbO\;gﬂotted line in Fig. 7. This portion of the dispersion is sym-

mode is no more elementary and thus proposed an intriguin i = h it achi ) b
dual interpretation of the excitation spectrum. It should b etric aroundQ =, where it achieves a maximum, but re-

noted that the dispersions of the two modes exhibit the sam@&ins open ended at two critical points that correspond to
linear dependence at low momenka=c|Q|, wherecis the V= *V1. o .
speed of sound, but significant differences arise at finite mo- !t is thus not surprising that an independent sequence of
menta. The differences are especially pronounced in the cufolitary waves with lower energy exists for=10. Indeed,
rent calculation within a cylindrical trap. Specifically, let us we return to the input configuratiofi9) but now target a
assume an average linear density:0.02 atoms/A which solution with velocity in the range;<v<c. After some
leads toy=va=1 andy, =va, =10 If we then adjust the €xperimentation a solution is obtained for, say; 1.5, if we
y=1 Bogoliubov dispersion of Fig. 2 to the units employed choose the trial parametecs=0.2, c,=0.98, andc;=3.
in Fig. 6, the two dispersions are seen to diverge venHaving thus obtained a specific solution fo+ 1.5 the algo-
quickly at the scale of Fig. 6. In other words, Bogoliubov rithm is iterated forward and backward in steps &f=
and Lieb modes operate at rather different energy and max 0.01 to obtain an entirely new sequence of solitary waves
mentum scales in a realistic trap. in the velocity range-v;<v<c, and a corresponding se-
To summarize the preceding accurate calculationyfor quence for—c<uv<uw; through the symmetry relatiof21).
=1, the solitary wave is essentially quasi-1D in this weak-Herev, is the same critical velocity encountered in the pre-
coupling region and its main features are indeed captured bgeding paragraph, as is also apparent in the calculated
an effective 1D mod€]34]. However, magnetic traps of ac- energy-momentum dispersions which are depicted by solid
tual experimental interest are often characterized by signifiines in Fig. 7 and join the previously calculated dotted line
cantly larger values of the effective coupling where quasi-1Dthrough cusps that correspond de= =v4. Near each cusp
solitons are expected to be unstable,17. In particular, the wave function reaches the same terminal state irrespec-
Ref.[12] suggests that a critical coupling occurs in a cylin-tive of the specific branch followed. But the transition from
drical trap whem,,,Ug/fiw, =2.4, wheren, . IS the maxi-  one branch to the other is otherwise discontinuous.
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3 T 0.25
v
’Y= 10 9'
it o
2 / 1
I 0.00
w I
>
1¢ i E
-0.25
0 5
P
0 0 ;t 2 FIG. 8. Solitary wave fory=10 and a representative value of
Q the velocityv =c/2. We show the radial dependence of the real and

the imaginary parts of the wave function for various valueg of
FIG. 7. EnergyE in units of y, (Aw,) vs impulseQ in units of ~ steps of6é=0.1. The corresponding results for negativare ob-
v, (#ila,) for y=10. The solid line corresponds to the fundamentaltained through the parity relatiori20).
sequence of vortex rings discussed in the text, and the dotted line to
the auxiliary sequence that contains the black solfmint V). velocity —v, is encountered where the ring achieves its
minimum radiusR,;;=0.8 and ceases to exist for smaller
values ofv. The terminal state at=—wv, is illustrated in

Hence, we turn to a description of the detailed nature of il of Fia. 9. We h thus d ibed ¢
this new sequence of solitary waves. For values of the velocyame 1l ot Fig. =. We have thus described a sequence o

ity near the speed of sourai the calculated soliton appears solitary waves that consists of bonafide 3D vortex rings and

again as a weakly nonlinear disturbance of the ground state(aj.Oes not contain a black soliton. The corresponding branch

The dominant features of the solitary wave are pronouncqu the energy-momentum dispersion of Fig. 7 is labeled by
as the velocity is decreased to lower values and become reag,
sonably apparent far= c/2 that corresponds to point | in the
dispersion of Fig. 7. The wave function is completely illus-
trated through its real and imaginary parts in Fig. 8. An im-
portant new feature emerges by comparison with the corre:
sponding case ay=1 illustrated in frame | of Fig. 4. Both &
the real and the imaginary parts at the center of the solitor
(é=0) now vanish for a specific radil®=2.8, thus a vor-

tex ring is beginning to emerge. A partial but more transpar-
ent illustration is given in Fig. 9 where we depict the radial o.00
dependence of the local particle dengity |¥|? for various
values of¢. Again it is clear that the density near the center *%
of the soliton €=0) vanishes on a ring with a relatively
large radiusR=2.8. The features of the vortex ring become
completely apparent, and its radius is tightened, as we pro
ceed to smaller values of the velocity. A notable special case
is the static { =0) vortex ring with radiugk= 1.8 illustrated

in frame Il of Fig. 9, which is far from being a black soliton.

The corresponding point Il in Fig. 7 is thus a new local
maximum of the energy-momentum dispersion, which is ;.
clearly distinguished from the local maximum at point IV 0
that corresponds to the static black soliton discussed earlier

in the text. ' _ _ . FIG. 9. Radial dependence of the local particle density
One would think that pushing the velocity to negative  =|¥|2 for y= 10, using the same conventions for thdependence
values would somehow retrace the calculated sequence @ in Fig. 8. The four special cases considered correspond to the

vortex rings backwards. In fact, our algorithm continues tofour representative points I, Il, lll, and IV along the energy-
converge to vortex rings of smaller radii until the critical momentum dispersion of Fig. 7.
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FIG. 11. Energ)E in units of y, (Aw, ) vs impulseQ in units of
v, (fh/a,) for y=20. The solid lines correspond to the fundamental
single-ring sequence, the dashed lines to the double-ring sequence,
FIG. 10. Contour levels of the local particle density: | W |? for and the dotted line to the auxiliary sequence that contains a black
v=10, on a —5,5] X[ —5,5] portion of a plane that contains tke  soliton (point V).
axis and cuts across the cylindrical trap. The complete 3D picture
may be envisaged by simple revolution around #texis. Regions happens as one moves away from point Ill along the upper
with high particle density are bright while regions with zero density branch in Fig. 7, but this “roton” portion of the dispersion
are black. The four special cases considered are the same AW appears in a strange location by comparison to the usual

in Fig. 9. situation in liquid helium35]. On the other hand, the black
soliton at the stationary point IV is indeed the ghost of a
points I, Il, and Ill that stand for the special cases vanished vortex ring, as explained in the preceding para-

=c¢/2,0, and—v4. As mentioned already, an equivalent se-graph. Needless to say, the rotonlike behavior described
guence of solitary waves exists in the range<v<wv, and above is not directly connected with the Bogoliubov mode
leads to a dispersion curve in Fig. 7 that is mirror symmetricand thus should not be confused with the actual roton ob-
to the branchl,ILIII) aroundQ= 7. served in liquid helium.

To complete the description fop=10 we must briefly It is also interesting to question how the picture just de-
return to the auxiliary sequence of solitary waves associatescribed evolves with increasing values of the dimensionless
with the portion of the dispersion that is depicted by a dottectoupling constanty, which is the only parameter that enters
line in Fig. 7. As one moves from point Ill to point IV, the the rationalized GP equation. Our numerical calculations
ringlike structure is more or less preserved at constant radiusave revealed yet another critical coupling~12, in the
R=R,,»n=0.8. Nevertheless, the detailed features of the vorsense that new flavor arises fgr>y,. The structure of the
tex ring are tamed at small velocities and completely disapsolitary waves in this new regime becomes sufficiently clear
pear forv =0 to yield a black soliton at point IV. for y=20 and is best summarized by the calculated energy-

We thus essentially conclude our description of solitarymomentum dispersion shown in Fig. 11. Apart from mirror
waves fory=10 by schematically summarizing our main symmetry, the dispersion now exhibits two cusps that corre-
results in Fig. 10. Yet some of the elements of the precedingpond to two critical velocitiesy;=1.35=0.64 and v,
discussion are sulfficiently surprising to deserve closer atten=0.48=0.23%, wherec=2.1 is the speed of sound calcu-
tion. For example, simple inspection of Fig. 7 reveals that thdated for y=20 as in Sec. Il.
group velocity becomes negative in the regighlll ) or, The nature of the solitary waves associated with the vari-
equivalently, the impulse is opposite to the group velocity.ous branches in the dispersion of Fig. 11 is very briefly de-
This rotonlike behavior is consistent with the Onsager-scribed with the aid of Fig. 12. Thus we consider the se-
Feynman view of a roton as the ghost of a vanished vortexjuence of five characteristic points (1,11, . ,V) that roughly
ring [35] because the calculated radius of the vortex ring iscover half of the dispersion, the other half being obtained by
monotonically decreasing along the fundameritdllll ) se-  the mirror symmetry(21). The lowest brancKl,Il) corre-
quence. A full-scale roton would develop if the terminal sponds to single vortex rings with velocities in the ramge
point Ill were an inflection point beyond which the group >v>—uv,, as in the case=10. Again the ring achieves its
velocity begins to rise again. Actually, this is exactly what minimum radius at the critical velocity =—uv, (point II).
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0.04

the homogeneous GP model. As a result, the radius of the
vortex ring grows to infinity at low velocity. This picture is
completely rearranged in a cylindrical trap because the oc-
currence of slow vortex rings with large radius is restricted
by the boundaries of the trap. Instead, vortex rings are pre-
dicted to nucleate at the flanks of the trap as soundlike pulses
with high velocity approaching the speed of sourdand
their radius actually decreases with decreasing velocity. In
particular, it is now possible to obtain static=€0) vortex
rings of finite radius, which are no longer contradicted by the
virial relation (16). The structure of the energy-momentum
dispersions calculated throughout the present paper clearly
reflects the substantial restructuring of vortex rings within a
cylindrical trap.

It is then natural to question whether or not there exists a
limit in which the JR vortex ring is recovered. One should
expect that this may happen when the bulk healing length
(na) ~'2is significantly smaller than the transverse confine-
ment width. This limit is translated into large values pf
=va, which is the only dimensionless parameter that enters
the rationalized GP equation. Now, our discussion earlier in
this section suggests an increasingly complicated hierarchi-

FIG. 12. Radial dependence of the local particle density cal structure in the strong-coupling limit rather than a simple
=|W|? for y=20. The four special cases considered correspond tgR soliton. A logical conclusion is that a JR vortex ring
points I, II, lll, and IV along the energy-momentum dispersion of somehow created within the bulk will sooner or later sense
Fig. 11. Point V in the above dispersion in not illustrated herethe poundaries of the cylindrical trap. It will thus either di-
l_)ecguse it correspo_nds to a black soliton similar to that shown eafpctly dissipate into sound waves, or reorganize itself to con-
lier in frame 1V of Fig. 9. form with one or more of the presently calculated vortex

rings possibly after ejecting some amount of radiation in the
The new element fory=20 is the intermediate branch form of sound waves.
(ILNLIV ) that corresponds to double rings with velocities in ~ An indirect test of the above picture was carried out by
the rangey,>v > —v,. The second ring is first created at the initiating the Newton-Raphson algorithm with a configura-
flanks of the trap and comes closest to the original ring at th&on of the form
new critical velocityv =v, (point IV). This double-ring con-
figuration is more or less preserved along the upper branch
(IV,V), with velocities in the range,>v >0, but gradually
fades away to become a black solitorwat 0 (point V).

While the numerical calculation becomes increasingly
more difficult for larger values ofy, it is clear that a se-
quence of critical couplings,,vy,, ... exists and leads to a instead of the solitonlike configuratiofi9). Here the left
hierarchy of axisymmetric vortex rings. The single-ring so-factor models a JR ring of radilR in its main qualitative
lution associated with the lowest branch of the spectrum is &atures[20]. Convergence was then achieved for specific
robust feature for ally>vy,=3.9, but its actual existence values of radiusR and velocityv and led to an output con-
cannot be firmly established until a complete stability analyfiguration that is no longer a JR ring but is composed of two
sis is carried out in the presence of nonaxisymmetric perturvortex rings of the present type widely separated alongzthe
bations. Concerning the solitary waves that correspond to thaxis. A more convincing demonstration could be obtained by
higher branches in the calculated spectra, the work of Refsolving the corresponding initial-value problem, but this and
[12,17 already suggests that the black solitons that correrelated dynamical issues will not be discussed further in the
spond to point IV in the dispersion of Fig. 7 and point V in present paper.

Fig. 11 are unstable. In this respect, one should recall that the The preceding remarks indicate a certain mathematical
solitary wave that corresponds to the upper branch in th@onuniformity that is inherent in the approximation of the

original calculation of Jones and Robelr19] within the ho-  cigar-shaped trap by an infinite cylindrical trap. The same
mogeneous GP model was later argued to be unsfable phenomenon is also apparent in the calculation of linear

However, we should emphasize that the vortex rings conmodes in Sec. Il. For instance, neither one of the two asymp-
structed here differ significantly from the Jones-Rob&H® totes for the speed of sound quoted in E@kl) and (12)
vortex ring that provided the basic motivation for the presentapproaches the well-known Bogoliubov speed in a homoge-
work. As with ordinary smoke rings in fluid dynamics, the neous Bose galsl1]. But a nonuniformity of this type may
JR ring can never be static thanks to a virial relation of thenot be a reason to doubt that a sufficiently elongated trap can
type (16) that prevents finite-energy solutions with=0 in  be approximated by an infinite cylindrical trap.

p?+ E2—R%2-2iR¢&
Win= 2. 2. p2
pct+E&+R

Wo(p), (25
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V. CONCLUSION The main mathematical advantage of the approximation
gf a sufficiently elongated trap by an infinite cylindrical trap

in a cylindrical Bose-Einstein condensate. In all cases con® that vqrtex T‘”gs can then be c_alculgted in a stgady state
sidered, there exists a nontrivial phase differeAgethat is propagating W'th a constant VEIOC'W, Itis thu§ possible to,
reminiscent of strictly 1D solitonf2,3] and is important for ~C&Ty out a detailed study of the soliton profile as a function
their experimental production through phase imprinting®f the effective coupling constantand the velocity, as is
[8,9]. Nevertheless, the detailed structure of the solitarydone in the present paper.An interesting by-product of the
waves depends crucially on the strength of the dimensionleg&Pove idealization is that a soliton is characterized by a defi-
effective coupling constang. Quasi-1D solitons occur only hite energy-momentum dispersion. The calculated dispersion
in the weak-coupling region< y;=3.9 where some of our is found to be the direct analog of the Lieb mddg in the
accurate numerical results could be approximated througheak-coupling region and acquires interesting rotonlike fea-
effective 1D model§34]. But a sufficiently strong coupling tures for stronger couplings. Perhaps such a dispersion can
or density is necessary in order to pronounce the specidle measured by a combination of phase imprinfB§] with
features of a condensate. It is thus not surprising that thBragg spectroscopy recently employed for the detection of
effective coupling in most experiments performed so far lieshe usual Bogoliubov mod§37,38. In this respect, one
in the regiony>1y; where the nature of the theoretically should keep in mind that Bogoliubov and Lieb modes oper-
predicted solitary waves changes. ate at different energy and momentum scales in a realistic
For y>y,, solitary waves are still characterized by a non-trap. This fact becomes evident by the different sets of physi-
trivial phase differenc&¢ between the two ends of the trap cal units employed for the Bogoliubov mode in Fig. 2 and
but are otherwise 3D vortex rings. Hence, it is interesting tathe Lieb mode in, say, Fig. 6. The difference is accounted for
examine more closely the parameters employed in the eXy the second dimensionless couplipg=ra, in Eq. (1)

periment of Ref[8]. It is sufficient to consider the rough \which is much stronger thay=va becausey, /y=a, /a
estimatey~6 obtained in Sec. Il. Because this coupling is —~ 12,

only marginally greater than the critical coupling = 3.9,

the calculated ringlike structure is inconspicuous and the

solitary waves largely retain their quasi-1D shape. Therefore, ACKNOWLEDGMENTS

a higher density would be necessary in order to reveal the
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We have thus presented a 3D calculation of solitary wave
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