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Two-dimensional solitons in Bose-Einstein condensates with a disk-shaped trap
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We consider, both analytically and numerically, the evolution of two-dimensional~2D! nonlinear matter-
wave pulses in a Bose-Einstein condensate with a disk-shaped trap and repulsive atom-atom interactions. Due
to the strong confinement in the axial direction the sound speed of the system isc5(1/21/4)c0, wherec0 is the
corresponding value without the trap. From the 3D order-parameter equation of the condensate, we derive a
soliton-bearing Kadomtsev-Petriashvili equation withpositivedispersion. When the trapping potential is weak
in two transverse directions, a low-depth planedark soliton can propagate in the condensate with a changing
profile but preserving its structure down to the boundary of the condensate. We show that high-depth plane
dark solitons are unstable to long-wavelength transverse disturbances. The instability appears as a longitudinal
modulation of the soliton amplitude decaying into vortices. We also show how a dark lumplike 2D nonlinear
excitation can be excited in the system. Furthermore, a dark lump decaying algebraically in two spatial
directions can propagate rather stable in the condensate, but disappears near the boundary of the condensate
where two vortices are nucleated. The vortices move in opposite directions along the boundary and when
meeting merge creating a new lump. Finally, we also provide results for head-on and oblique collisions of two
lumps in the system.

DOI: 10.1103/PhysRevA.67.023604 PACS number~s!: 03.75.Lm, 03.65.Ge, 42.65.Tg
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I. INTRODUCTION

The recent experimental evidence of Bose-Einstein c
densation in weakly interacting atomic gases@1,2# has lead
to great progress in atom optics. In particular, it has enab
its extension from the linear to the nonlinear regime, ve
much like the laser did to nonlinear optics in the 196
Macroscopically excited Bose-Einstein condensed sta
e.g., solitons and vortices, have been observed@3–8# and
four-wave mixing phenomena in a Bose-Einstein conden
~BEC! has also been realized@9#. These studies have, indee
stimulated research activities in nonlinear atom optics@10#.

To our knowledge, most of the works on soliton dynam
in BECs have been limited to one-dimensional~1D! solitons
moving in elongated cigar-shaped and quasi-1D perio
shaped traps@11–14#, or plane solitons~decaying only in one
spatial direction and hence essentially 1D! in a 3D trap
@4,6,14,15#. For the case of repulsive atom-atom interactio
as normally encountered in BEC experiments, the excitati
aredark solitons, that is, ‘‘dips’’ or depression waves in th
density profile of the condensate. Such 1D matter-wave d
solitons have been investigated both in theory and in exp
ment. For 1D dark solitons in the BECs, let us mention
Boussinesq–Korteweg-de Vries description and the study
dark soliton collisions using the Poincare´-Lighthill-Kuo
method@16–19#.

Although elongated cigar-shaped traps have been wid
used in BEC experiments, a flat disk-shaped trap has
been employed@20,21#. In fact, the JILA trap, which was
used by Andersonet al. @20# for the first experimental obser
vation of the Bose-Einstein condensation of weakly intera
ing Bose gases, is just of this type. Later on a disk-sha
1050-2947/2003/67~2!/023604~12!/$20.00 67 0236
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trap was also used by Jinet al. @21# to investigate the
phononlike linear excitations in the BECs. If the thickness
the disk is small enough, the condensate becomes quas
One expects that at sufficiently low temperature, the mot
of atoms in the direction perpendicular to the disk is froz
and governed by the ground-state wave function in that
rection @22#. Such quasi-2D BEC has recently been realiz
experimentally by Go¨rlitz et al. @23#. As indicated in Ref.
@23#, the quasi-low-dimensional condensates can prov
many opportunities to study the low-dimensional nonline
excitations in the BECs. Motivated by this important expe
mental achievement, in the present paper we address
problem of possible 2D soliton excitations in a quasi-2
BEC. We show that, with repulsive atom-atom interactio
weak nonlinear excitations in the condensate evolve acc
ing to a Kadomtsev-Petriashvili equation withpositivedis-
persion, which admits lump solutions, i.e., 2D solitons d
caying algebraically in all spatial directions. Thus we exp
that dark lumplike 2D nonlinear localized excitations a
possible in the BECs with disk-shaped traps.

The paper is organized as follows. In Sec. II, we carry
the asymptotic expansion for the Gross-Pitaevskii~GP! equa-
tion for the order parameter and derive a Kadomts
Petriashvili~KP! equation for long wavelength, weakly non
linear excitations. Soliton solutions and the properties of
corresponding excitations in the condensate are discusse
Sec. III, we cross-check the theoretical predictions by
merical experiments. The transverse stability of a plane~or
line! dark soliton and the evolution of a dark lump are tho
oughly investigated. Collisions between two lumps are a
considered. Finally, Sec. IV contains a discussion and a s
mary of the results obtained.
©2003 The American Physical Society04-1
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II. ASYMPTOTIC EXPANSION AND KP-I EQUATION

A. The model

The dynamic behavior of a weakly interacting Bose gas
low temperature is described by the time-dependent
equation@1#

i\
]C

]t
5F2

\2

2m
¹21Vext~r !1guCu2GC, ~1!

whereC is the order parameter,*dr uCu25N is the number
of atoms in the condensate,g54p\2as /m is the interaction
constant withas the s-wave scattering length (as.0 for re-
pulsive interactions!. We consider an anisotropic harmon
trap of the form

Vext~r !5
m

2
@v'

2 ~x21y2!1vz
2z2#, ~2!

wherev' andvz are frequencies of the trap in the transve
(x and y) directions and in the axial~z! direction, respec-
tively. The choice of an anisotropic trap has been used
only to provide evidence of Bose-Einstein condensation@1#,
but also for realizing the condensate transition from highe
lower dimensions@23#.

Expressing the order parameter in terms of its modu
and phase,C5An exp(if), we obtain a set of coupled equa
tions forn andf. By suitably changing scales and variable
(x,y,z)5az(x8,y8,z8), t5vz

21t8, n5n0n8 with az

5@\/(mvz)#1/2 and n05N/az
3 , we arrive at the following

dimensionless equations of motion:

]n

]t
1“•~n“f!50, ~3!

]f

]t
1

1

2
z21Vi~x,y!1Qn1

1

2 F ~“f!22
1

An
¹2AnG50,

~4!

with Q54pNas /az ~dimensionless interaction constant! and
*drn51. Vi(x,y)5(v' /vz)

2(x21y2)/2 is the dimension-
less trapping potential in thex andy directions. Expecting no
confusion in the reader we have omitted primes. The
term, i.e.,2(¹2An)/(2An), in Eq. ~4! is the quantum pres
sure providing the necessary dispersion for forming a sol
in the system, as will be seen below.

We are interested in the excitation created in the cond
sate with a thin disk-shaped trap. The thin disk-shaped
here implies that the conditionsaz! l 0 and \v'!n0g
!\vz can be fulfilled, wherel 05(4pn0as)

21/2 is the heal-
ing length. In this situation three consequences follow.

~i! The energy-level spacing in thez direction exceeds
largely the interaction energy between atoms, and hence
condensate is quasi-2D. Thus at sufficiently low tempera
the motion of atoms in thez direction is essentially frozen
and is governed by the ground-state wave function~zero-
point oscillation! of the corresponding harmonic oscillato
@22,23#.
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~ii ! Due to the strong confinement in thez direction, the
excitations can propagateonly within the disk plane~i.e., in
the x and y directions!, similar to a capillary-gravity wave
propagating in the surface of a liquid layer@24,25# or an
electromagnetic wave propagating along a planar waveg
@26#. Consequently, the superfluid velocityv(5“f) has
only x andy components, and hencef5f(x,y,t).

~iii ! As the dimensionless ratio of the trapping freque
cies,v' /vz , is small, the third term on the left-hand side
Eq. ~4! is also a small quantity.

Based on the above considerations, we set

An5A~x,y,t !G0~z!, f52mt1w~x,y,t !, ~5!

or equivalently

C~x,y,z,t !5G0~z!c~x,y,t !, ~6!

c~x,y,t !5A~x,y,t !exp@2 imt1 iw~x,y,t !#, ~7!

whereG0(z)5exp(2z2/2) is the ground-state wave functio
of the 1D harmonic oscillator with the potentialz2/2 in thez
direction,m is the chemical potential of the condensate a
w is a phase function contributed from the excitation, whi
is assumed to be a function ofx andy because as mentione
above the excitation can only propagate in thex andy direc-
tions.

Thus, Eqs.~3! and ~4! can be reduced to

]A

]t
1

]A

]x

]w

]x
1

]A

]y

]w

]y
1

A

2 S ]2w

]x2
1

]2w

]y2 D 50, ~8!

2
1

2 S ]2A

]x2
1

]2A

]y2 D 2S m2
1

2DA1F]w

]t
1Vi~x,y!1

1

2 S ]w

]x D 2

1
1

2 S ]w

]y D 2GA1Q8A350, ~9!

whereQ85I 0Q is an effective interaction constant withI 0

5*2`
` dzG0

4(z)/*2`
` dzG0

2(z)51/A2. To arrive at Eq.~9! we
have multiplied Eq.~4! by G0* and then integrated once wit
respect toz to eliminate the dependence onz. A similar ap-
proach has been widely used for quasi-1D~cigar-shaped!
BEC problems@11,27–32#. In principle, one can take into
account the contribution of the higher-order eigenmodes
the harmonic oscillator in thez direction, as done in Ref.@19#
for a cigar-shaped trap. However, as here we have assu
n0g!\vz , the contribution from these higher-order eige
modes is small and can be safely neglected. Furthermore
the thin disk-shaped trap (v' /vz!1) the trapping potentia
in the (x,y) plane is a slowly varying function ofx andy and
hence the size of the condensate in the radial directio
much larger than the size of the soliton excitations~with the
order of the healing length! considered below. In the propa
gation of the soliton at short times, the boundary of the c
densate does not come into play and we can therefore s
late the experimental situation by considering the conden
being uniform in the (x,y) plane. On the other hand, in orde
4-2
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TWO-DIMENSIONAL SOLITONS IN BOSE-EINSTEIN . . . PHYSICAL REVIEW A67, 023604 ~2003!
to get insight on the possible 2D soliton excitations as a fi
step we disregard the slowly varying radial trapping poten
for the analytical approach given below. However, when
ing numerics in Sec. III we shall include this term, th
cross-checking the validity of the approximation used in
present section. A treatment equivalent to the local-den
approximation when including the slowly varying trappin
potential in the (x,y) plane is described in the last part
Sec. II C.

B. Asymptotic expansion and KP-I equation

We now begin to study the possible weak nonlinear ex
tations in a disk-shaped condensate. Before doing this
useful to discuss linear excitations and, in particular, the
ear dispersion relation~excitation spectrum! of the system.
Taking A5u01a(x,y,t) (u0.0) with (a,w)
5(a0 ,w0)exp@i(k1x1k2y2vt)#1c.c. ~c.c. denotes complex
conjugate!, assuming thata0 andw0 are small constants, an
linearizing Eqs.~8! and ~9!, one obtainsm51/21Q8u0

2 and

v~k1 ,k2!5
1

2
k~4Q8u0

21k2!1/2, ~10!

wherek5(k1
21k2

2)1/2 is the wave number andv is the fre-
quency of the excitation. Equation~10! corresponds to a
Bogoliubov-type linear excitation spectrum in two
dimensions. We see that to obtain the Bogoliubov excitat
spectrum, the atom-atom interaction~represented byQ8) and
the quantum pressure@reflected by thek2 term in the bracket
of Eq. ~10!# are needed. Another notable feature of the ex
tation spectrum is that the system allows a long-wavelen
~i.e., sound! excitation. The sound speed of the system
given by

c5 lim
k→0

F S ]v

]k1
D 2

1S ]v

]k2
D 2G1/2

5AQ8u0 . ~11!

Note that for a homogeneous system@i.e., Vext(r )50] the
corresponding sound speed in our notation isc05AQu0.
Thus we have

c

c0
5AQ8

Q
5

1

21/4
. ~12!

The decrease of the sound speed relative to the homogen
system is due to the confinement of the system in thez di-
rection. This value of the sound speed in the disk-sha
BEC is higher than the corresponding value in a cigar-sha
trap, where the confinement occurs in two directions@18#.

Let us now investigate the onset of weakly nonlinear
citations in the system. For a long-wavelength excitation
set A5u01e2(a(0)1e2a(1)1•••) and w5e(w (0)1e2w (1)

1•••), wherea( j ) and w ( j ) ( j 50,1, . . . ) arefunctions of
the multiple-scale ~slow! variables j5e(c21x2t), h
5e2y, andt5e3t, with e a smallness and ordering param
eter characterizing the relative amplitude of the excitati
Substituting the expansion into Eqs.~8! and ~9! we obtain
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]a( j )

]j
2

1

2c2
u0

]2w ( j )

]j2
5a ( j ), ~13!

2Q8u0
2a( j )2u0

]w ( j )

]j
5b ( j ), ~14!

for j 50,1, . . . . Theexplicit expressions ofa ( j ) andb ( j ) are
omitted here@33#.

In the leading order (j 50), we obtain

w (0)5~2c2/u0!E dja(0), ~15!

with a(0) a function yet to be determined. The solvabili
condition in this order requiresc5AQ8u0, which is just the
sound speed of the system. At the next order (j 51), the
solvability condition results in a closed equation fora(0):

]

]j S ]a(0)

]t
1

3AQ8

c
a(0)

]a(0)

]j
2

1

8c2

]3a(0)

]j3 D 1
c2

2

]2a(0)

]h2
50.

~16!

Equation~16! is the soliton-bearing KP equation@25#. We
see that the dispersion term~i.e., the fourth-order derivative
term with respect toj) comes from the quantum pressure
the system. Note that Eq.~16! is a positive-dispersion KP
equation~also called the KP-I equation! since the dispersion
term and the diffractive term~i.e., the second-order deriva
tive term with respect toh) have opposite signs@34,35#. The
KP-I equation is a completely integrable system and can
solved by the inverse scattering transform@35#.

C. 2D soliton solutions

In this section, we give 2D soliton solutions of the KP
equation derived above in the form of dark 2D soliton ex
tations in the disk-shaped BEC. Changing variables o
more, e2a(0)52(u0/4c2)U, X852X52(x2ct), y8
5(A3/2c)y, andt85(1/8c)t, Eq. ~16! reads

]

]X8 S ]U

]t8
16U

]U

]X8
1

]3U

]X83
D 23

]2U

]y82
50, ~17!

which is one of the standard forms of the KP-I equation.
The KP-I Eq.~17! allows different types of soliton solu

tions. One of them is aplanesoliton given by

U52p2sech2$p@X81qy82~4p223q2!t82X0#%, ~18!

where p, q, and X0 are arbitrary constants. Note that th
plane-soliton solution~18! is localized only in its traveling
direction. From Eq.~15! one obtains

ew (0)52
p

c
tanh$p@X81qy82~4p223q2!t82X0#%.

~19!
4-3
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Thus, up to the first-order approximation, the order para
eter of the condensate corresponding to the plane-soliton
lution is

C5u0S 12
p2

2c2
sech2H pFx2

A3q

2c
y

2cS 12
p2

2c2
1

3q2

8c2D t2x0G J D expS 2z22 imt2 i
p

c

3tanhH pFx2
A3q

2c
y2cS 12

p2

2c2
1

3q2

8c2D t2x0G J D .

~20!

This is a dark plane soliton traveling in the direction defin
by the vector„i,2A3q/(2c) j ) with the velocity

vps5c

12
p2

2c2
1

3q2

8c2

A11
3q2

4c2

, ~21!

which is lower than the sound velocity,c, in the system. The
parameterp reflects the grayness of the soliton (0<p2

<2c2). As we shall see in the following section, highly de
enough dark plane solitons are unstable to long-wavelen
transverse disturbances.

The KP-I Eq.~17! also admits 2Dlumpsdecaying alge-
braically in all directions@35#. A single-lump solution of Eq.
~17! is given by

U5
4n@12n~X823nt8!21n2~y8!2#

@11n~X823nt8!21n2~y8!2#2
, ~22!

wheren is an arbitrary positive constant. In the leading-ord
approximation, the phase of the order parameter is

ew (0)52
2n

c

X823nt8

11n~X823nt8!21n2~y8!2
. ~23!

Returning to the original variables we obtain the order
rameter of the condensate when the lump is created:

C5u05 12
n

c2

12n~x8!21
3n2

4c2
y2

F11n~x8!21
3n2

4c2
y2G 26

3expH 2z22 int1 i
2n

c

x8

11n~x8!21
3n2

4c2
y2J ,

~24!
02360
-
o-

th

r

-

where x85x2c@123n/(8c2)#t and hence the velocity o
the lump is given by

v lump5cS 12
3n

8c2D . ~25!

Thus the lump, characterized by the background param
u0 and the grayness parametern, is also asubsonicexcita-
tion. Hence all solitons here are subsonic. This originate
the repulsive character of the atom-atom interaction.

From Eq. ~17! one can also get a 1D~periodic! lump
solution @36#

U52p2

11A12
p4

ky
2

cosh~pX82vt81d!cos~kyy!

F cosh~pX82vt81d!1A12
p4

ky
2
cos~kyy!G 2 ,

~26!

where v5p313ky
2/p with p, ky , and d being integration

constants. The order parameter in this case is given by

C5u0F 12
p2

2c2

11A12
p4

ky
2

coshx8cosS A3ky

2c
yD

F coshx81A12
p4

ky
2

cosS A3ky

2c
yD G 2G

3expF 2z22 imt1
ip

c

3
sinhx8

coshx81A12
p4

ky
2

cosS A3ky

2c
yD G , ~27!

wherex85px2c(p2v/8c2)t2d. The 1D dark lump repre-
sented by the solution~27! has the same subsonic veloci
c(12v/8c2p) along thex direction.

From the results presented above we can say that the
with disk-shaped trap and repulsive atom-atom interact
may be a realistic physical system for observing hig
dimensional nonlinear localized excitations. The formati
of the 2D solitons is due to the balance between the dis
sion provided by kinetic energy and the nonlinearity comi
from the atom-atom interaction.

To justify the approximation~5! we note that in thez
direction the trapping potential tends to compress the or
parameter competing against the nonlinear force as we
the linear dispersion effect provided by the kinetic ener
On the other hand, the trapping force in thex andy directions
is small ~sincev' /vz!1), so that along thex andy direc-
4-4
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tions effects come only from the nonlinear force and
dispersion. If the main force in thez direction is caused by
the trapping potential, the approximation given by Eqs.~5!
follows. Notice that the dimensionless energy functional
Eq. ~1! is given by

E5E dxdydz~Hkin1Htrap1Hint!, ~28!

with

Hkin5
1

2
u“Anu2, Htrap5F1

2
z21Vi~x,y!Gn,

~29!

Hint5
1

2
Qn2,

whereHkin , Htrap , andHint denote densities of kinetic en
ergy, trapping potential energy, and self-interaction ene
respectively. All energies have been scaled with the u
N\vz . To check the approximation~5! let us consider the
ratio between the trapping potential in thez direction ~i.e.,
Hz-trap5z2n/2) and the self-interaction energy,Hint , for the
above given solution. All solutions forA(x,y,t) have the
form A5u01e2a(0)1O(e4). Thus we get

R5
z2 exp~z2!

Qu0
2@11e2a(0)1•••#2

'
z2 exp~z2!

Qu0
2

. ~30!

As Qu0
2 is a constant we haveR@1, except for small values

of z. Thus the parabolic trapping potential in thez direction
dominates over the self-interaction energy and then the o
effect of the nonlinearity on the shape of the order param
in the z direction is to provide a small correction near t
center of the trap, which is the place where the parab
potential is the lowest and the nonlinear effect is more
evant. Consequently, when the conditionn0g!\vz is satis-
fied, the approximation~5! is justified.

If the effect of the slowly varying trapping potential in th
(x,y) plane is taken into account, Eq.~16! should be re-
placed by a modified Kadomtsev-Petriashvili~MKP! equa-
tion

]

]j S ]a(0)

]t
1

3AQ8

c
a(0)

]a(0)

]j
2

1

8c2

]3a(0)

]j3 D 1
c2

2

]2a(0)

]h2

52d i3

]

]j S 3

2

]c

]xi
a(0)1c

]a(0)

]xi
D , ~31!

where

c5AQ8u0~xi ,yi ! ~32!

is local sound speed, and

u05$@m21/22Vi~xi ,yi !#/Q8%1/2 ~33!

is the ground-state configuration of the condensate in thx
and y directions, with xi5e ix and yi5e i y ( i>3). Here
Vi(x,y) is basically an arbitrary~slowly varying! function.
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For a harmonic potential one hasVi5(v' /vz)
2(x21y2)/2

5V0
2(xi

21yi
2)/2 under the assumptionv' /vz5e iV0, with

V0 a constant of order unity. A detailed derivation of E
~31! is given in the Appendix.

If the trapping potential in the (x,y) plane varies very
slowly, i.e., if Vi(x,y)5Vi(xi ,yi) with i>4, the terms on
the right-hand side of Eq.~31! disappear and hence Eq.~31!
takes the same form of the KP Eq.~16!, but the quantityc is
now a local sound speed~32!. In this case the soliton solu
tions ~20!, ~24!, and ~27! are still valid, butc should be
replaced by the local sound speed. Such an approac
equivalent to the local-density approximation. Even in t
case ofi 53 the MKP Eq.~31! can be approximated as a K
equation in the region far from the boundary of the cond
sate. Indeed, far from the boundary the effect of the trapp
potential on the evolution of the soliton is negligible.

Because of the variable coefficients and the additio
terms, an analytical approach of the MKP Eq.~31! is not an
easy task. One expects that the 2D solitons~20!, ~24!, and
~27! will deform and even be unstable, and hence we turn
a numerical simulation in the following section.

III. NUMERICAL SIMULATIONS

In this section, we give numerical evidence for the ex
tence of the various solutions presented in the preceding
tion and cross-check their stability according to Eqs.~8! and
~9!. As earlier stated, in the computer experiments we s
take into account the trapping potential in bothx and y di-
rections. We assume that in Eq.~9!,

Vuu~x,y!5
1

2 S v'

vz
D 2

~x21y2!A.

For convenience we again change variables,

A5221/4A v'

vzQ
r, t5

2vz

v'

t,

~34!

x5Avz

v'

s1 , y5Avz

v'

s2 ,

wheres1 ands2 denote new Cartesian coordinates,t is the
new time, andr is a new quantity proportional to the ampl
tude of the order parameter. Then Eqs.~8! and ~9! become

]r

]t
522~“r!~“w!2r¹2w, ~35!

r
]w

]t
5¹2r2@s1

21s2
22 l 21r21~“w!2#r, ~36!

where the spatial derivatives are taken with respect
(s1 ,s2); l 25vz(2m21)/v' . The constantl in Eqs. ~35!
and ~36! defines the length scale in the problem~i.e., the
dimensionless radius of the condensate!. We assume that the
particle number in the condensate is large enough and h
4-5
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HUANG, MAKAROV, AND VELARDE PHYSICAL REVIEW A 67, 023604 ~2003!
on the boundary, wheres1
21s2

25 l 2, the order parameter ap
proximately vanishes. Accordingly, at the boundary we ha
r5w850.

Here, sincev' /vz!1, the chemical potentialm of the
system can be estimated using the Thomas-Fermi app
mation for the ground-state wave function in thex and y
directions. We get

m5
1

2
1

v'

vz
S I 0Q

p3/2D 1/2

, ~37!

measured in\vz units. The relationship~37! supports the
quasi-2D criterion that the additional energy due to the ato
atom interaction is much less than the characteristic ene
scale in thez direction, i.e.,m2\vz/2!\vz/2 ~with physi-
cal units! and hence justifies again the assumption unde
ing Eqs.~5!.

Now let us find the shape of the stationary backgrou
state, which has been taken to be approximately flat for
analytical study in the preceding section. Since in the gro
state, the phasew05constant, we get from Eqs.~35! and
~36! the time-independent, nonlinear equation forr0,

d2r0

dr2
5~r 22 l 21r0

2!r0 , ~38!

where r 5As1
21s2

2 denotes the radius in polar coordinate
Figure 1 shows the background pedestal profile, i.e., solu
of Eq. ~38! with l 58 used in all subsequent computer c
culations.

A. Propagation of dark plane solitons

Let us now search for the dark plane-soliton soluti
when including the slowly varying trapping potential in th
(x,y) plane. We use the soliton solution obtained in the p
ceding section as an initial condition. From Eq.~20! by put-
ting t50 we get the initial condition that will be used t
integrate Eqs.~35! and ~36!:

r5r0~12«1sech2u!, w52A2«1tanhu,
~39!

u5A«1r0* ~s12s1
02«2s2!.

FIG. 1. Stationary background profile of the condensatel
58). Note that all quantities appearing in this and the followi
figures are dimensionless.
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Herer0(s1 ,s2) is the stationary pedestal~i.e., the condensate
density in the ground state of the system!. However, to sat-
isfy the boundary conditions, we now use its real profi
obtained above~Fig. 1!. Hence, we have a dark planelik
soliton whose depth changes along the longitudinal directi
Besides, to have a plane phase far away from the sol
location we user0* 5r0(s1

0 ,s2). The constant«15p2/2c2

defines the grayness or soliton depth («151 corresponds to
the black soliton!. «2 corresponds to the slope in the long
tudinal direction of the soliton in the coordinates (s1 ,s2).
Due to symmetry we can set«250 ~it corresponds to a ver-
tically oriented soliton!. To check the stability to transvers
perturbations of the dark plane soliton instead of the ‘‘pe
fect’’ phase we use

u5A«1r0* @s12s1
01«3cos~k2s2!#, ~40!

where «3 is a smallness parameter accounting for t
strength of the perturbation. Experiments@6,14,15# have
shown that dark plane solitons in 3D BECs are unstable
long-wave transverse perturbations. Accordingly,k2 was
chosen small. In our numerical experiment we used
length, l, as a scale factor fork2.

Figure 2 shows the results of the numerical integration
Eqs. ~35! and ~36! with a dark plane soliton of low enough
initial depth ~around 20%!. Equations~39! and ~40! have
been used as initial conditions for the integration. In the fi
five snapshots we show the amplituder(s1 ,s2) which is pro-
portional to the density of the condensate, a quantity that
be directly observed in the experiment. The last snaps
shows the phase distribution att50.8. Soon after start, a

FIG. 2. Sequential snapshots of condensate with low-depth d
plane soliton „brightness corresponds to the amplitude val
r(s1 ,s2); the last snapshot shows the phasew(s1 ,s2) where the
interval @2p,p# corresponds to brightness going from black
black via white…. The soliton propagates from the left to the righ
and finally is destroyed due to interaction with the boundary («1

50.2, «350.05, andk252p/ l ). Note that the relation between th
dimensionless time,t, and the dimensional time,t, is t5v't/2
~which is the same for subsequent figures!. Thus for v' /(2p)
510 Hz the time sequence shown in the figure for the amplitu
evolution is 0.0 ms, 12.8 ms, 25.6 ms, 38.4 ms, and 64 ms, res
tively.
4-6
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TWO-DIMENSIONAL SOLITONS IN BOSE-EINSTEIN . . . PHYSICAL REVIEW A67, 023604 ~2003!
very low ~almost negligible! amplitude radiation wave
propagating to the left is emitted. The dark plane solit
propagates in the opposite direction with velocityvps
'8.95 ~measured when it passes over the center of the c
densate!. The theoretical estimate from Eq.~21! gives

v th5A2r0~12«1!'9.05, ~41!

which is significantly lower than the sound speedc
'11.3) and close to the value obtained in the numerical t
By definition ~34!, in physical units velocity of the plane
soliton isvps5(az/2)Avzv'v th . Using data from Ref.@23#,
i.e., vz /(2p)5790 Hz and v' /(2p)510 Hz „thus az
5@\/(mvz)#1/250.74mm…, one obtains that vps
51.87 mm s21 when passing over the center of the conde
sate, which is less than the sound speedc52.33 mm s21.
The soliton profile changes during propagation. The cur
ture of the front can be explained by the dependence of
velocity @Eq. ~41!# on the condensate density. The velocity
maximum at the center and decreases down to zero a
boundary, hence central soliton parts move faster and,
sequently, a curved front is formed. No transverse instabi
at least during the propagation time, occurs here~first four
snapshots in Fig. 2!. Small perturbations do not grow in time
However, the interaction with the boundary is destruct
leading to the appearance of complex wavy excitationst
52.0 in Fig. 2!.

The first stage of the soliton propagation~until interacting
with the boundary! is similar to that observed experimental
@4# in the BEC with a 3D trap by imprinting a phase st
~around 1.5p) at the center of the condensate. A dark pla
soliton moving from the center to the boundary with a su
sonic velocity has been observed in the experiment.
shape of the front changes as illustrated in Fig. 2.

Figure 3 shows the evolution of an initially excited hig
depth dark plane-soliton. Except the soliton depth@e150.8
in Eq. ~39!#, all parameter values are identical to those us
in the calculations leading to Fig. 2. However, the evoluti
of the soliton is clearly different from that shown in Fig. 2.
this case, we observed a snake instability leading to
nucleation of several vortices, while in the previous case
plane dark soliton has been shown to be stable to transv
perturbations at least for the time up to the contact with
boundary. The nucleation of vortices due to instability o
narrow density defect in a two-component BEC has b
reported in an experiment with a 3D trap@6#.

Vortices, as they appear in many physical systems,
characterized by phase singularities@37–39#, which in our
case can be clearly seen in Fig. 3~phase snapshot!. Gener-
ally, a vortex is a more stable evolving structure than a pl
soliton. The latter tends to collapse like we have observe
the second computer experiment. The instability can be
plained as follows. Initial transverse disturbances lead
modulation of the soliton amplitude along the longitudin
direction. Then due to the amplitude dependence of
propagation velocity, those parts of the soliton with relative
lower depth overcome the ‘‘normal’’ propagation proce
while parts with higher depth slow down~see Fig. 3,t
50.8), hence amplifying the transverse perturbations
02360
n

n-

t.

-

-
e

he
n-
y,

e

e
-
e

d

e
e

rse
e

n

re

e
in
x-
o
l
e

d

increasing the local curvature. In turn this leads to a hig
amplitude modulation and finally the plane soliton tears in
pieces. At the initial stage of the instability we have observ
the formation of nine pieces, hence a wavelength arounl
58/9. However, in the first run~Fig. 2! the plane dark soli-
ton ~it becomes curved due to the inhomogeneity of the s
tem and strictly speaking it is not exactly a plane solito!
propagates up to the boundary keeping its shape. Such
ference in the behavior of low-depth solitons may be e
plained by their relatively higher velocity and limited propa
gation length~due to boundaries of the condensate!, and
hence, by insufficient observation time.

B. Propagation and collision of lumps

Let us now consider the propagation of dark lumps in t
system when including the inhomogeneity inx andy direc-
tions. From Eq.~24! we get the initial condition for a lump
solution,

r5r0H 12«

11
«

2
r0

2F3

4
«s2

22~s12s1
0!2G

H 11
«

2
r0

2F3

4
«s2

21~s12s1
0!2G J 2J , ~42!

w5
A2«r0~s12s1

0!

11
«

2
r0

2S 3

4
«s2

21~s12s1
0!2D .

FIG. 3. Sequential snapshots of the condensate with a h
depth dark plane soliton initially excited~initial conditions are simi-
lar to those used for Fig. 2!. The brightness in the first five snap
shots corresponds to the amplitude valuer(s1 ,s2). The soliton
propagates from the left to the right with a developing snake ins
bility ~snapshot att50.4) eventually decaying into vortices~snap-
shots att50.8, 1.2, and 1.6!. The last snapshot shows the pha
w(s1 ,s2) in the square region marked on the corresponding am
tude snapshot fort51.6 ~the interval @2p,p# corresponds to
brightness going from black to black via white!. It includes six
vortices with phase singularities. The phase changes by 2p along a
closed path around each vortex («150.8, «350.05, and k2

52p/ l ).
4-7
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HUANG, MAKAROV, AND VELARDE PHYSICAL REVIEW A 67, 023604 ~2003!
Figure 4 shows the time evolution of an initially excite
high-depth lump. It represents a localized~in both directions!
excitation elongated ins2. The initial depth of the lump@«
50.8 in Eqs.~42!# is the same as the depth of the solito
shown in Fig. 3. However, during the first propagation sta
(0,t<0.15), the lump emits sound waves and reduces
depth to«effec'0.45 thus becoming brighter and wider~see
the snapshots fort50.0 and 0.5 in Fig. 4!. When the lump
passes through the center of the condensate, its veloci
v lump'9.44, which is very close to the theoretical value E
~25!:

FIG. 4. Propagation of a lump solution and the nucleation n
the edge of two moving, clockwise and counterclockwise, vortic
@«50.8 in Eq. ~42!#. ~a! Sequential snapshots of the condens
with a high-depth lump initially excited„in the first row brightness
corresponds to amplitude valuer(s1 ,s2), in the second row bright-
ness going from black to black via white reflects the phasew(s1 ,s2)
in the interval@2p,p# ~enlarged square regions are shown!…. The
lump propagates from the left to the right. Then, near the bound
its depth approaches 100%, the lump becomes practically black
it breaks into two vortices.~b! The vortices move along the bound
ary of the condensate in opposite directions~arrows show motion
directions!. ~c! Section of the condensate along the ‘‘horizonta
axis s1 crossing the lump fort50.5 and the vortex fort51.9.
Solid and dashed lines correspond to the phase and the ampli
respectively.
02360
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v th5A2r0S 12
3

8
« D'9.4, ~43!

calculated for the real lump depth («5«effec). Note that due
to the factor 3/8 the lump moves faster than the plane sol
with the same depth. Besides, our calculations show
lumps are overall more stable structures than plane soli
and do not collapse during propagation even if depths
high.

Except for the background parameter,r0, the dark lump is
also characterized by another parameter«5n/c2, which is
actually its grayness. The bigger the«, the darker the lump
is. The propagating velocity of the lump is described by bo
r0 and « @Eq. ~43!#. Using the parameter values given b
Görlitz et al. @23# @i.e., vz /(2p)5790 Hz, v' /(2p)
510 Hz], the velocity of the lump when passing over t
center of the condensate isv lump51.94 mm s21, larger than
the velocity of the plane soliton (vps51.87 mm s21) but still
lower than the sound speed of the systemc
52.33 mm s21) for the same trap parameters and grayn
~depth!.

Near the boundary where the depth approaches its m
mum value and the lump becomes black, its velocity d
creases down to zero. Such configuration is unstable and
have observed nucleation of two vortices that move along
border, clockwise and counterclockwise, respectively~snap-
shots att51.1 and 1.9 in Fig. 4!. For the lump we have a
local decrease of condensate density and a phase offse
low p @Fig. 4~b!#, while for a vortex the depth is almos
100% and the phase jump is equal top. Then we observed a
slow rotation~with angular velocity about 0.8 rad equivale
to v lump'6.4) of the vortices along the border of the conde
sate. Approaching each other at the opposite side of the
densate the vortices merge and then form a new lump so
~Fig. 5!. Accordingly, thedynamical merging of two vortice
yields a lump. This follows from the stability of the dark
lump in the BECs and its interaction with the boundary
the condensate.

Let us now consider collisions between dark lumps. In
previous work@18#, we have shown that dark solitons in 1
BECs exhibit positive phase~or position! shifts along their
paths during a head-on collision. The collisions of two da
lumps is a 2D problem but it can be approximated by a
case for the head-on collisions. Thus we may compare
results of two-lump collision with those obtained for two
soliton collisions in one dimension.

We initially excite two lumps@Fig. 4~a!#, but moving in
opposite directions along thes1 axis ~horizontal!. Figure 6
shows the paths of two head-on colliding lumps@~a! and~b!#
and, for reference, the pathway of the single lump~a! from a
parallel experiment without the lump~b! being excited. In
numerical experiments we cannot find a reliable phase s
However, a slight mismatch between the paths of lump~a!,
with and without collision, can be seen. It corresponds
negativephase shift, opposite to what we have seen for
dark solitons, where as earlier mentioned the phase shift
head-on collision was found to be positive@18#. The absence
of phase shift for colliding lumps has been pointed out fo
homogeneous system@40#; further details about collisions
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TWO-DIMENSIONAL SOLITONS IN BOSE-EINSTEIN . . . PHYSICAL REVIEW A67, 023604 ~2003!
between algebraic and other solitons are given in, e.g., R
@41#.

Figure 7 shows the snapshots illustrating an oblique c
lision of two lumps. We start with two spatially separate
lumps moving from the periphery to the center of the co
densate at an angle of 30°. Att'0.2 the lumps collide, get
together, and then reappear as post-collision lumps. As
head-on collisions we do not observe a significant phase s
and hence there is no deviation of trajectories after collisi

FIG. 5. Formation of a new lump by the merging of two vortic
~continuation of Fig. 4!. ~a! Sequential snapshots of the condens
before, during, and after the merging of the vortices. The lu
formed in the process propagates from the left to the right v
much like the initial one~Fig. 4!. ~b! Section of the condensat
along the horizontal axiss1 crossing the lump fort59.5. ~solid and
dashed lines correspond to the phase and the amplitude, re
tively!.

FIG. 6. Lump pathways for a head-on collision. The positions
minima of the amplituder(s1 ,s2) on the s1 axis for s250 are
displayed.
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Matsuno@41# has reported positive and negative phase sh
depending on amplitude ratios.

When both lumps~simultaneously! reach the boundary,
each of them breaks down into two vortices moving cloc
wise and counterclockwise as in the case depicted in Fig
Hence, we can say that vortices have opposite ‘‘angular m
menta,’’ while their other characteristics are identical. Then
pair of vortices moving ‘‘up’’ originated from different lumps
collide and form a new lump that propagates to the cente
the condensate. This is again similar to the process show
Fig. 5. After some time the other pair of vortices movin
‘‘down’’ collide and again we get a lump. The time differ
ence between the collisions of vortex pairs is due to
initially unequal distances between vortices~the angular dif-
ference is 2330°). Thus we get a complex sequence
events, lumps-vortices-lumps, where energy is exchan
between different lumps via vortices.

We have also tested the stability of the 1D dark lum
solution corresponding to Eq.~27! when the weak trapping
potential in the transverse directions is taken into accou
We found that, like a dark plane soliton, a high-depth 1
dark lump is also unstable to long-wavelength transverse p
turbation and decays into vortices.

IV. DISCUSSION AND SUMMARY

We have investigated the evolution of 2D weakly nonli
ear matter-wave pulses excited in a BEC with a disk-sha
trap. With repulsive atomic interaction and strong confin
ment in the axial direction, a Kadomtsev-Petriashvili equ
tion with positive dispersion~KP-I! has been derived from
the order-parameter equation, i.e., from the Gross-Pitaev
equation, using a suitable asymptotic. Our results show
it is possible to excite nonlinear 2D localized excitations, i.
dark lumps, in the system. The dynamics of dark plane s
tons and 2D lumps have been thoroughly studied when
cluding weak trapping potential in two transverse directio

In order to explore the effect of the slowly varying trap
ping potentialVuu(x,y) in the radial direction, we have mad
a series of numerical simulations. Numerical experime
provide evidence that a low-depth dark plane soliton c
propagate in the condensate with a changing profile alb
preserving its structure until it reaches the boundary of
condensate.The interaction with the boundary is destruc
and the dark plane soliton decays into a complex spatiote
poral structure including emission of sound waves and c
ation of vortices. Hence there is no true reflection from t

e
p
y

ec-

f

FIG. 7. Oblique collision of two lumps. Arrows show the propa
gation directions. Snapshots showing the amplitude,r, correspond
to initial position, collision event and post-collision trajectories
the lumps.
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HUANG, MAKAROV, AND VELARDE PHYSICAL REVIEW A 67, 023604 ~2003!
boundary, at variance with the 1D case where oscillation
dark soliton between the boundaries has been observed@18#.
We have also shown that dark plane solitons of high de
are unstable to long-wavelength transverse perturbation
result similar to that reported in Refs.@14,15# for a 3D trap.
The instability appears as a longitudinal modulation of
soliton amplitude that rapidly develops into vortices. T
deeper initial soliton, the slower it moves and the faste
tears into pieces, finally decays into several vortices. An
timate of the instability wavelength givesl'1 for l 58.

We have shown that dark lump excitations are relativ
more stable than dark plane solitons and even quite d
lumps are able to run through the condensate without de
ing into vortices. When a lump approaches the boundar
splits into two vortices that slowly move in opposite dire
tions along the boundary at a constant distance from it. T
the vortices meet together after making a circle~or a part of
a circle in the multiple lumps’ case!, merge and then form a
new dark lump, which starts propagating through the c
densate towards the center. Such process of vortices n
ation from lumps and in turn their merging into new lum
seems to be rather robust, although in computer experim
we observed non-negligible radiation of sound waves
energy losses. The geometry of the problem and propertie
lumps and vortices allow vortices to form new lumps. Hen
in a sense we can speak about lump-vortex similarities.
have also shown that during head-on and oblique collisi
between two dark lumps, no~reliably measured! phase shift
appears, at variance with the case for 1D dark solitons in
BECs where a positive phase shift was observed@18#.

Recently, quasi-2D BECs have been obtained@23#, con-
sidering that the energy-level spacing in the axial direction
larger than the atom-atom interaction energy and hence
projection approximation used in Eqs.~8! and ~9! can be
easily satisfied. To experimentally observe the 2D solito
and their properties here predicted, one needs a disk-sh
condensate with a large enough disk radius. The quas
BEC realized by Go¨rlitz et al. @23# can satisfy this require
ment. Indeed, according to Eq.~37!, the expression of the
dimensionless lengthl introduced in Eq.~36! is

l 5S 4I 0Q

p3/2 D 1/4

. ~44!

For the 2D disk-shaped BEC of23Na realized in Ref.@23#,
one has as52.75 nm, vz /(2p)5790 Hz, v' /(2p)
510 Hz, N52.93105. Thus we haveaz50.74mm and l
59.1, which corresponds to the radial size of the conden
L'52(vz /v')1/2azl'120 mm. In the numerical simula-
tions for plane solitons and lumps we have required
length of the condensate to bel 58, which is about the sam
as the length of the condensate obtained in Ref.@23#. Thus
the quasi-2D BEC realized in Ref.@23# can be used to tes
check our theoretical predictions. To excite a dark lump o
may use two appropriately formed vortices that move alo
the boundary of the condensate and merge into a lump
shown in Fig. 5. Using the data of Ref.@23#, we obtain that
the period of a lump decaying into two vortices and th
merging into a new lump is about 0.12 s. The higher-or
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eigenmodes in the transverse directions will contribute to
soliton dynamics if the quasi-2D approximation cannot
fulfilled and the existence of thermal clouds at finite te
perature will dissipate the solitons. Furthermore, an anal
cal approach for the soliton dynamics based on the MKP
~31! remains to be formulated. These are interesting pr
lems to be investigated in future works.
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APPENDIX A: DERIVATION OF THE MKP EQUATION

If a slowly varying trapping potentialVi(x,y) in x andy
directions is taken into account, the asymptotic expans
presented in Sec. II B must be modified. For simplicity, w
first assumeVi(x,y)5Vi(x3 ,y3) with x35e3x and y3
5e3y. In the case of a harmonic potential, i.e.,Vi
5(v' /vz)

2(x21y2)/2, one hasVi5V0
2(x3

21y3
2)/2 under

the assumptionv' /vz5e3V0 with V0 a dimensionless con
stant of order unity. Accordingly, we make the asympto
expansion

A5u01e2~a(0)1e2a(1)1e4a(2)1••• !, ~A1!

w5e~w (0)1e2w (1)1e4w (2)1••• !, ~A2!

whereu05u0(x3 ,y3) anda( j ) andw ( j ) are the functions of
the slow variablesj5e@*xc21(e3x8,y3)dx82t#, h5e2y,
t5e3t, x3, andy3. Hence, one has the following derivativ
expansion:

]

]x
5ec21~x3 ,y3!

]

]j
1e3

]

]x3
, ~A3!

]

]y
5e2

]

]h
1e4G~x3 ,y3!

]

]j
, ~A4!

]

]t
52e

]

]j
1e3

]

]t
, ~A5!

where G(x3 ,y3)5(]/]y3)*xc21(e3x8,y3)dx8. Using Eqs.
~A1!–~A5!, Eqs. ~8! and ~9! with Vi(x,y)5Vi(x3 ,y3) are
transferred into

]a( j )

]j
2

1

2
u0c22

]2w ( j )

]j2
5a ( j ), ~A6!
4-10
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Q8u0
25m2

1

2
2Vi~x3 ,y3!, ~A7!

2Q8u0
2a( j )2u0
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The explicit expressions ofa ( j ) and b ( j ) with j >2 are not
needed and hence are omitted here.

From Eq. ~A7! one obtains u05„@m21/2
2Vi(x3 ,y3)#/Q8…1/2. It is the ground configuration of the
condensate in thex andy directions. We see that for a slowl
varying trapping potential the ground state has a Thom
Fermi wave-function shape. Equations~A6! and ~A8! with
j 50 have the solution
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wherea(0) is a function yet to be determined. The solvabili
condition requires that

c5AQ8u05$@m21/22Vi~x3 ,y3!#/Q8%1/2, ~A14!

i.e., the system has a local sound speed, varying slowly w
x andy. The expression of the chemical potential (m) of the
system has been given in Eq.~37!.

In the next order (j 51), Eqs.~A6! and~A8! result in the
equation fora(0):
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It is a variable-coefficient KP equation with additional term
coming from the slowly varying trapping potential in th
(x,y) plane. A similar KP equation~we have called it the
modified KP equation! has been obtained in weakly nonlin
ear water wave theory when considering a solitary wa
propagating in a water channel with varying depth and wi
@42#.

When Vi(x,y)5Vi(xi ,yi) with i>4, a similar approach
yields the local sound speedc5AQ8u05„@m21/2
2Vi(xi ,yi)#/Q8…1/2. In this case the controlling equation fo
a(0) is the same as Eq.~A15! but the terms on the right-han
side disappear. Thus whenVi(x,y)5Vi(xi ,yi) ( i>3) we
have the general equation controllinga(0) in the form
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whered i j is Kronecker delta.
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