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Two-dimensional solitons in Bose-Einstein condensates with a disk-shaped trap
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We consider, both analytically and numerically, the evolution of two-dimensi&idl nonlinear matter-
wave pulses in a Bose-Einstein condensate with a disk-shaped trap and repulsive atom-atom interactions. Due
to the strong confinement in the axial direction the sound speed of the systen{1622) c,, wherec, is the
corresponding value without the trap. From the 3D order-parameter equation of the condensate, we derive a
soliton-bearing Kadomtsev-Petriashvili equation witsitivedispersion. When the trapping potential is weak
in two transverse directions, a low-depth platak soliton can propagate in the condensate with a changing
profile but preserving its structure down to the boundary of the condensate. We show that high-depth plane
dark solitons are unstable to long-wavelength transverse disturbances. The instability appears as a longitudinal
modulation of the soliton amplitude decaying into vortices. We also show how a dark lumplike 2D nonlinear
excitation can be excited in the system. Furthermore, a dark lump decaying algebraically in two spatial
directions can propagate rather stable in the condensate, but disappears near the boundary of the condensate
where two vortices are nucleated. The vortices move in opposite directions along the boundary and when
meeting merge creating a new lump. Finally, we also provide results for head-on and oblique collisions of two
lumps in the system.
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[. INTRODUCTION trap was also used by Jiet al. [21] to investigate the
phononlike linear excitations in the BECs. If the thickness of
The recent experimental evidence of Bose-Einstein conthe disk is small enough, the condensate becomes quasi-2D.
densation in weakly interacting atomic ga$és?] has lead One expects that at sufficiently low temperature, the motion
to great progress in atom optics. In particular, it has enabledf atoms in the direction perpendicular to the disk is frozen
its extension from the linear to the nonlinear regime, veryand governed by the ground-state wave function in that di-
much like the laser did to nonlinear optics in the 1960s.rection[22]. Such quasi-2D BEC has recently been realized
Macroscopically excited Bose-Einstein condensed stategxperimentally by Guitz et al. [23]. As indicated in Ref.
e.g., solitons and vortices, have been obsef&d8| and [23], the quasi-low-dimensional condensates can provide
four-wave mixing phenomena in a Bose-Einstein condensatmany opportunities to study the low-dimensional nonlinear
(BEC) has also been realiz¢€l]. These studies have, indeed, excitations in the BECs. Mativated by this important experi-
stimulated research activities in nonlinear atom opftid3. mental achievement, in the present paper we address the
To our knowledge, most of the works on soliton dynamicsproblem of possible 2D soliton excitations in a quasi-2D
in BECs have been limited to one-dimensiofHD) solitons BEC. We show that, with repulsive atom-atom interaction,
moving in elongated cigar-shaped and quasi-1D periodicweak nonlinear excitations in the condensate evolve accord-
shaped trapgl1-14, or plane solitongdecaying only in one ing to a Kadomtsev-Petriashvili equation wiglositive dis-
spatial direction and hence essentially))1lD a 3D trap persion, which admits lump solutions, i.e., 2D solitons de-
[4,6,14,15. For the case of repulsive atom-atom interaction,caying algebraically in all spatial directions. Thus we expect
as normally encountered in BEC experiments, the excitationthat dark lumplike 2D nonlinear localized excitations are
aredark solitons, that is, “dips” or depression waves in the possible in the BECs with disk-shaped traps.
density profile of the condensate. Such 1D matter-wave dark The paper is organized as follows. In Sec. Il, we carry on
solitons have been investigated both in theory and in experithe asymptotic expansion for the Gross-PitaevskR) equa-
ment. For 1D dark solitons in the BECs, let us mention thetion for the order parameter and derive a Kadomtsev-
Boussinesq—Korteweg-de Vries description and the study oRetriashvili(KP) equation for long wavelength, weakly non-
dark soliton collisions using the Poincareghthill-Kuo linear excitations. Soliton solutions and the properties of the
method[16-19. corresponding excitations in the condensate are discussed. In
Although elongated cigar-shaped traps have been widelgec. 1ll, we cross-check the theoretical predictions by nu-
used in BEC experiments, a flat disk-shaped trap has alsmerical experiments. The transverse stability of a plere
been employed20,21]. In fact, the JILA trap, which was line) dark soliton and the evolution of a dark lump are thor-
used by Andersost al.[20] for the first experimental obser- oughly investigated. Collisions between two lumps are also
vation of the Bose-Einstein condensation of weakly interactconsidered. Finally, Sec. IV contains a discussion and a sum-
ing Bose gases, is just of this type. Later on a disk-shapethary of the results obtained.
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II. ASYMPTOTIC EXPANSION AND KP-I EQUATION (i) Due to the strong confinement in tlzedirection, the
excitations can propagatmly within the disk plan€i.e., in
A. The model - ) - . .
_ _ _ _ the x andy directiong, similar to a capillary-gravity wave
The dynamic behavior of a weakly interacting Bose gas apropagating in the surface of a liquid layE24,25 or an
low temperature is described by the time-dependent GRlectromagnetic wave propagating along a planar waveguide

equation[1] [26]. Consequently, the superfluid velocity =V ¢) has
v 52 only x andy components, and henek= ¢(X,y,t).
iha_: — V24 V(1) +g| V|2 P, (1) _ (iii) As the_ dimensionles_s ratio of the trapping freguen-
at 2m cies,w, lw,, is small, the third term on the left-hand side of

. 5 . Eq. (4) is also a small quantity.
whereV is the order parametefdr|¥|“=N is the number

of atoms in the condensatg=47#2as/m is the interaction Based on the above considerations, we set
constant withag the sswave scattering lengtha¢>0 for re-
pulsive interactions We consider an anisotropic harmonic VN=A(XY,0Go(2), $==pt+e(xy.1), Q)

trap of the form )
or equivalently

Ve 1) = 5 102 (C+y2) + 0222], @ W (x,y,2,0)=Co(2) #(X,y.0), ®

wherew, andw, are frequencies of the trap in the transverse PGy D =AY Dexd ~iutHie(y.Dl, ™

(x andy) directions and in the axialz) direction, respec- \hereG(z) = exp(—242) is the ground-state wave function
tively. The choice of an anisotropic trap has been used noff the 1D harmonic oscillator with the potentzd/2 in thez
only to provide evidence of Bose-Einstein condensatidn gjrection, 11 is the chemical potential of the condensate and
but also for realizing the condensate transition from higher 19, is a phase function contributed from the excitation, which

lower dimensiong$23]. is assumed to be a function rfandy because as mentioned

Expressing the order parameter in terms of its modulug,pve the excitation can only propagate in trendy direc-
and phase¥ = \n exp(¢), we obtain a set of coupled equa- tions.

tions forn and ¢. By suitably changing scales and variables, Thys, Eqgs(3) and(4) can be reduced to
(x,y,2)=a,x",y".z'"), t=w,t’, n=ngn’ with a,

=[#/(mw,)]*? and no=N/a3, we arrive at the following A A de A de Al e Po
dimensionless equations of motion: it o o oy T2\ o2 07_y2 =0, (8
an
S TV (n"V¢)=0, ©) 1 02A+&2A AP L L1 z
2\ a2 gy 2) At TV 3] 5
i 1, 1 , 1, 2
T z - = 1/de
ot 2L VI TQNt 5| (V)78 Jn|=o0, +3| 5] |area-o, ©)
4

whereQ’ =1,Q is an effective interaction constant with
=[7,.dzG(2)/[* .dzG3(2)=1/y2. To arrive at Eq(9) we
have multiplied Eq(4) by G§ and then integrated once with
Eespect taz to eliminate the dependence anA similar ap-

with Q=4m7Nas/a, (dimensionless interaction constaahd
Jdrn=1. V|(X,y) = (o, l0,)*(x*+y?)/2 is the dimension-
less trapping potential in theandy directions. Expecting no

confusion in the reader we have omitted primes. The Iasproach has been widely used for quasi-iBgar-shaped
. _ 2 . . _ - -
i ooty Seaon o ot I PEC problens{11.27-33 In picipe, ne can take i
. P 9 . y disp 9 account the contribution of the higher-order eigenmodes of
in the system, as will be seen below. : . . s ;
. . o . the harmonic oscillator in thedirection, as done in Ref19]
We are interested in the excitation created in the conder*- .
. L S or a cigar-shaped trap. However, as here we have assumed
sate with a thin disk-shaped trap. The thin disk-shaped traH N ) ;
L . 09<fiw,, the contribution from these higher-order eigen-
here implies that the conditions,<ly and Aw, <nyg des i I and b el | d Eurth f
<#w, can be fulfilled, wheré,= (4mnoa) 2 is the heal- MoUes IS smalland can be safely neglected. Furthermore, for
. z L 0 0%s the thin disk-shaped trapy( /w,<1) the trapping potential
ing length. In this situation three consequences follow. . . i .
in the (x,y) plane is a slowly varying function ofandy and
(i) The energy-level spacing in the direction exceeds hence the size of the condensate in the radial direction is
largely the interaction energy between atoms, and hence thauch larger than the size of the soliton excitatiowith the
condensate is quasi-2D. Thus at sufficiently low temperaturerder of the healing lengifconsidered below. In the propa-
the motion of atoms in the direction is essentially frozen gation of the soliton at short times, the boundary of the con-
and is governed by the ground-state wave functipero- densate does not come into play and we can therefore simu-
point oscillation) of the corresponding harmonic oscillator late the experimental situation by considering the condensate
[22,23. being uniform in the X,y) plane. On the other hand, in order
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to get insight on the possible 2D soliton excitations as a first ga) 1 ﬁz(P(j) _
step we disregard the slowly varying radial trapping potential — = —uy———=0al), (13
for the analytical approach given below. However, when do- J€  2c? 9&
ing numerics in Sec. Il we shall include this term, thus
cross-checking the validity of the approximation used in the 200) )
present section. A treatment equivalent to the local-density 2Q"upa _uoﬁ_g_ﬁ , (14
approximation when including the slowly varying trapping
potential in the k,y) plane is described in the last part of t5r j—0,1, . ... Theexplicit expressions of") and g1 are
Sec. II1C. omitted herd 33].
In the leading orderj(=0), we obtain
B. Asymptotic expansion and KP-I equation

We now begin to study the possible weak nonlinear exci- 0= (Zczluo)f déa®, (15)

tations in a disk-shaped condensate. Before doing this it is

useful to discuss linear excitations and, in particular, the lin-

ear dispersion relatiofexcitation spectruinof the system. With a® a function yet to be determined. The solvability
Taking  A=ug+a(x,y,t) (up>0) with (a,¢) condition in this order requires= \Q'u,, which is just the
=(ay, ¢o)exdi(kx+ky—wt)]+c.c. (c.c. denotes complex sound speed of the system. At the next order 1), the
conjugate, assuming tha, and ¢, are small constants, and solvability condition results in a closed equation &F:
linearizing Eqs(8) and(9), one obtainsu= 1/2+Q’u§ and

=0.
(16)

9 [0a® 3yQ' _9a® 1 4%&@| c?g%a®
7 n a0 "
c

1 [
w(kl,k2)=Ek(4Q’u§+k2)1’2, (100 9¢\ 97 9§ 8c? g8 an?

Whefek:(kafkg)l/Z_ is the wave number ang is the fre-  Equation(16) is the soliton-bearing KP equatidi25]. We
quency of the excitation. Equatiofi0) corresponds to a see that the dispersion tertie., the fourth-order derivative
Bogoliubov-type linear excitation spectrum in  tWo- term with respect t&) comes from the quantum pressure of
dimensions. We see that to obtain the Bogoliubov excitatiofe system. Note that Eq16) is a positive-dispersion KP
spectrum, the atom-atom interactioepresented bQ’) and  equation(also called the KP-I equatiorsince the dispersion
the quantum pressufeeflected by thé® term in the bracket term and the diffractive terni.e., the second-order deriva-
of Eq. (10)] are needed. Another notable feature of the excitjye term with respect toy) have opposite sigr84,35. The
tation spectrum is that the system allows a long-wavelengtixp-| equation is a completely integrable system and can be
(i.e., soungl excitation. The sound speed of the system isgglyed by the inverse scattering transfois).
given by

Jw ) 2

gk,

1/2 C. 2D soliton solutions

=Q"uo. (11) In this section, we give 2D soliton solutions of the KP-I
equation derived above in the form of dark 2D soliton exci-
tations in the disk-shaped BEC. Changing variables once
more, e?a(®=—(uy/d4c?)U, X'=—-X=—(x—ct), vy’
=(/3/c)y, andt’=(1/&)t, Eq.(16) reads

2

c=lim +

k—0

Jw
Ky

Note that for a homogeneous systéne., V,(r)=0] the
corresponding sound speed in our notationcis= \/Qu.
Thus we have

5 1 P (au+6u oU a3u> 3a2U o an
C / _ — R —3——=0,
I axX'\ at’ axX’

== Ng (12) P

&X,3 "2
lgich is one of the standard forms of the KP-I equation.

ay

The decrease of the sound speed relative to the homogeneo\ﬁf . .
system is due to the confinement of the system inztie The KP-I Eq.(17) allows different types of soliton solu-

rection. This value of the sound speed in the disk-shapefons: One of them is alane soliton given by

BEC is higher than the corresponding value in a cigar-shaped 5 , , ) o,

trap, where the confinement occurs in two directiph@). U=2p?seck{p[X’ +qy’ - (4p*—30g*)t’' —X,]}, (18)
Let us now investigate the onset of weakly nonlinear ex- )

citations in the system. For a long-wavelength excitation wevherep, g, and X, are arbitrary constants. Note that the

set A=ug+eX(@®@+e?aM+...) and o=¢€(o@+ 2o p!ane.-sollton solution(18) is Ioca!|zed only in its traveling

+---), wherea® and ¢ (j=0,1,...) arefunctions of direction. From Eq(15) one obtains

the2 muItipIe-scg)aIe (slow) variables é=e(c™x—t), 7

=€y, and 7= €°t, with € a smallness and ordering param- 0. P , , 2 P

eter characterizing the relative amplitude of the excitation. eg®=- c tanRp[X’ +ay’ = (4p"=3q7)t" = Xo]}-

Substituting the expansion into EdS8) and (9) we obtain (19
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Thus, up to the first-order approximation, the order paramwhere x’ =x—c[1—3»/(8c?)]t and hence the velocity of
eter of the condensate corresponding to the plane-soliton s¢he lump is given by
lution is

3
3 — c( 1- 8—;> . (25

Thus the lump, characterized by the background parameter

p? 3q° 5 p Ug and the grayness parameteris also asubsonicexcita-
—Cll-— ot S|t Xo|( |&XQ —Z—iput—ig tion. Hence all solitons here are subsonic. This originates in
2cc 8c . : .
the repulsive character of the atom-atom interaction.
" V39 . p? N 302 SOIE:%r:[?I)Eé}.(ﬂ) one can also get a l@periodig lump
anhy p| x— — c o2 ge Xo
(20 p*
1+ 1——2cosk(px’—wt’+5)cos(kyy)
This is a dark plane soliton traveling in the direction defined op? ky
by the vector(i, — \/3q/(2c)j) with the velocity <P 0 2°
coshipX' —wt'+ 6)+ \ [ 1— —cogkyy)
p2 3q2 |: k§ y
PRI (26)
2c 8¢
Vps=C P 2Y) where w=p3+3k?/p with p, k,, and & being integration
3 y y
1+ i constants. The order parameter in this case is given by
4c? _ _
. o p* V3k,
which is lower than the sound velocity, in the system. The 1+ 1— — coshx'cog ——vy
parameterp reflects the grayness of the soliton <@? p? kf, 2c
<2c?). As we shall see in the following section, highly deep ¥ =Uo[ 1-— S 2
enough dark plane solitons are unstable to long-wavelength 2c ) p* \/gky
transverse disturbances. coshx’+ \/ 1— @ co§ - Y
The KP-I Eq.(17) also admits 2Dlumpsdecaying alge- - y

braically in all directiong35]. A single-lump solution of Eq. ip
(17) is given by xexp —Z2—iut+—
c

4u[1— (X' —3wt")%+12(y")?]
U= , 22
[1+ p(X' =3wt")2+12(y")?]? (22

1 ’
wherev is an arbitrary positive constant. In the leading-order sinhx

approximation, the phase of the order parameter is 4 \/—k '
! p 3 y
coshx’ + 1-—co y
2v X' —3wt’ k§ 2c

o= _ 2" . (3
¢ C T st Ay

X

(27)

wherex’ =px—c(p— w/8c?)t— 8. The 1D dark lump repre-
Returning to the original variables we obtain the order paSented by the solutiof27) has the same subsonic velocity

rameter of the condensate when the lump is created: ¢(1 - w/8c?p) along thex direction.

From the results presented above we can say that the BEC

3,2 with disk-shaped trap and repulsive atom-atom interaction

1—w(x')%+ —2y2 may be a realistic physical system for observing high-

W=yl 1- v 4c dimensional nonlinear localized excitations. The formation

0 c2 2 ]2 of the 2D solitons is due to the balance between the disper-

1+ v(x')2+ —2y2] sion provided by kinetic energy and the nonlinearity coming

c from the atom-atom interaction.
2y N To justify the approximation5) we note that in thez

direction the trapping potential tends to compress the order

o ) parameter competing against the nonlinear force as well as

1+w(x")+ 202 the linear dispersion effect provided by the kinetic energy.
¢ On the other hand, the trapping force in thendy directions

(29 is small(sincew, /w,<1), so that along th& andy direc-

X exp —zz—ivt+i?
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tions effects come only from the nonlinear force and theFor a harmonic potential one haq:(wl/wz)z(xhryz)/z
dispersion. If the main force in thedirection is caused by =Q3(x?+y?)/2 under the assumption, /w,= €' Qq, with

the trapping potential, the approximation given by E@s.

0, a constant of order unity. A detailed derivation of Eg.

follows. Notice that the dimensionless energy functional of(31) is given in the Appendix.

Eq. (1) is given by

E:J dXdydszin+Htrap+Hint)v (28)
with
1 2 1 2
Hkm=§|V\/ﬁ| o Muap=|5Z°FV)(x.y)|n,
(29)
1.2
HlntIEQn ’

whereH,in, Hirap, andH;,, denote densities of kinetic en-
ergy, trapping potential energy, and self-interaction energ
respectively. All energies have been scaled with the uni
N7 w,. To check the approximatio(b) let us consider the

ratio between the trapping potential in thalirection (i.e.,
Hz_trap=22n/2) and the self-interaction enerdh;,, for the
above given solution. All solutions foA(x,y,t) have the
form A=uy+ e?a®+0(e*). Thus we get

7? exp(Z%) 7% exp(Z%)

- Qui1+e%a®@+...72 Qu3

(30

If the trapping potential in thex(y) plane varies very
slowly, i.e., if V|(x,y)=V|(x;,y;) with i=4, the terms on
the right-hand side of Eq31) disappear and hence E@1)
takes the same form of the KP E{d.6), but the quantityc is
now a local sound sped@®2). In this case the soliton solu-
tions (20), (24), and (27) are still valid, butc should be
replaced by the local sound speed. Such an approach is
equivalent to the local-density approximation. Even in the
case ofi =3 the MKP Eq.(31) can be approximated as a KP
equation in the region far from the boundary of the conden-
sate. Indeed, far from the boundary the effect of the trapping
potential on the evolution of the soliton is negligible.

Because of the variable coefficients and the additional
terms, an analytical approach of the MKP E81) is not an

Y asy task. One expects that the 2D solit¢®®), (24), and

27) will deform and even be unstable, and hence we turn to
a numerical simulation in the following section.

IIl. NUMERICAL SIMULATIONS

In this section, we give numerical evidence for the exis-
tence of the various solutions presented in the preceding sec-
tion and cross-check their stability according to E@s.and
(9). As earlier stated, in the computer experiments we shall
take into account the trapping potential in botlandy di-

As Qu(z) is a constant we havye>1, except for small values rections. We assume that in E@),

of z. Thus the parabolic trapping potential in thelirection

dominates over the self-interaction energy and then the only
effect of the nonlinearity on the shape of the order parameter
in the z direction is to provide a small correction near the
center of the trap, which is the place where the paraboli
potential is the lowest and the nonlinear effect is more rel

evant. Consequently, when the conditiogg<<# w, is satis-
fied, the approximationis) is justified.

If the effect of the slowly varying trapping potential in the
(x,y) plane is taken into account, E¢L6) should be re-

placed by a modified Kadomtsev-PetriashyMKP) equa-
tion

(0) 7 (0) 3,(0) 2 12.(0)
(o +3\/Q_a(0)(9a 1 ¢
dE\ ot o 9§ 8c? g¢° 2 oy?
a3 ac o dal® a1
Bgel2ax & o, | (3Y)
where
c=Q"uo(x;,¥1) (32
is local sound speed, and
Uo={[ w—1/2-V|(x;,y)1/Q'} (33

2
(X2+y?)A.

llw
V||(X,Y)=§(

1
Wz

For convenience we again change variables,

w 2w
A=2_1/4\/—l 0, t=—ZT,

0,Q W)

N R
w, 1 y w, 21

wheres; ands, denote new Cartesian coordinatess the
new time, anc is a new quantity proportional to the ampli-
tude of the order parameter. Then E@3. and (9) become

(34)

dap 5

5=—2(Vp)(V¢>)—pV @, (35
O V2 [+ 2124 p2+ (V)2 36
pP-=Vp [sits; p=+(Ve)lp, (36)

where the spatial derivatives are taken with respect to
(s1,S5); 1?=w,(2u—1)lw, . The constant in Egs. (35

is the ground-state configuration of the condensate inxthe and (36) defines the length scale in the probldie., the

and y directions, withx;=€'x and y;=€'y (i=3). Here
V|(x,y) is basically an arbitraryslowly varying function.

dimensionless radius of the condensat@e assume that the
particle number in the condensate is large enough and hence
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FIG. 1. Stationary background profile of the condensdte (
=8). Note that all quantities appearing in this and the following
figures are dimensionless.

C =

FIG. 2. Sequential snapshots of condensate with low-depth dark
on the boundary, Whereersg:IZ, the order parameter ap- plane soliton (brightness corresponds to the amplitude value
proximately vanishes. Accordingly, at the boundary we have(s;,s,); the last snapshot shows the phases,,s,) where the
p=¢'=0. interval [ —ar, 7] corresponds to brightness going from black to

Here, sincew, /w,<1, the chemical potentigh of the black via whitg. The soliton propagates from the left to the right
system can be estimated using the Thomas-Fermi approx@nd finally is destroyed due to interaction with the boundary (

mation for the ground-state wave function in tkeandy =0.2,e3=0.05, ank,=27/l). Note that the relation between the
directions. We get dimensionless timey, and the dimensional timd, is 7=, t/2

(which is the same for subsequent figureShus for w, /(27)

1 w, [1,Q 12 =10 Hz the time sequence shown in the figure for the amplitude
mu==+—— , (37) evolution is 0.0 ms, 12.8 ms, 25.6 ms, 38.4 ms, and 64 ms, respec-
2 g\ g2 tively.

e e e erep(, ) i th saonary pecesiae, e condensae
q . o gy - density in the ground state of the sysjeridowever, to sat-
atom interaction is much less than the characteristic ener

. L X . . g%fy the boundary conditions, we now use its real profile
SC?IG |_?S)thezddr|]rect|on, "t?f'.’“ _ﬁw.zlztﬁﬁwzlz (W'tth phys:j— ,obtained aboveFig. 1). Hence, we have a dark planelike
cal unity and hence Justiies again the assumption Underlys;jion whose depth changes along the longitudinal direction.

ing Egs.(5). : .
, . esides, to have a plane phase far away from the soliton
Now let us find the shape of the stationary backgrounq%cation we usep? =po(S(1),Sz)- The constants, = p2/2c?

state, which has been taken to be approximately flat for th i th liton d 1 ds t
analytical study in the preceding section. Since in the groun%e ines the grayness or soliton depth £1 corresponds to

_ black soliton &, corresponds to the slope in the longi-
state, the phase,=constant, we get from Eq$35) and € O 2 ) . :
(36) the time-independent, nonlinear equation fgr tudinal direction of the soliton in the coordinates, (s,).

Due to symmetry we can set=0 (it corresponds to a ver-

d2p tically oriented solitoh To check the stability to transverse
—20:(r2—I2+ p3)po, (38)  perturbations of the dark plane soliton instead of the “per-
dr fect” phase we use
wherer =/s?+s2 denotes the radius in polar coordinates.
L 52 b 6=1Js1p5[s1— 2+ e5c08koSy) ], (40)

Figure 1 shows the background pedestal profile, i.e., solution
of Eq. (38) with =8 used in all subsequent computer cal-

culations. where g5 is a smallness parameter accounting for the

strength of the perturbation. Experimer|t§,14,13 have
shown that dark plane solitons in 3D BECs are unstable to
long-wave transverse perturbations. Accordingly, was
Let us now search for the dark plane-soliton solutionchosen small. In our numerical experiment we used the
when including the slowly varying trapping potential in the |ength, |, as a scale factor fdt,.
(x,y) plane. We use the soliton solution obtained in the pre- Figure 2 shows the results of the numerical integration of
ceding section as an initial condition. From ER0) by put-  Egs.(35) and (36) with a dark plane soliton of low enough
ting t=0 we get the initial condition that will be used to initial depth (around 20% Equations(39) and (40) have

A. Propagation of dark plane solitons

integrate Eqs(35) and (36): been used as initial conditions for the integration. In the first
five snapshots we show the amplityales, ,s,) which is pro-
p=po(1—sisectf), @=—2s;tanho, portional to the density of the condensate, a quantity that can
. 0 (39 be directly observed in the experiment. The last snapshot
0= \/8—100(51—51—8232)- shows the phase distribution at=0.8. Soon after start, a
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very low (almost negligible amplitude radiation wave (=09
propagating to the left is emitted. The dark plane solito
propagates in the opposite direction with velocity,g
~8.95(measured when it passes over the center of the co
densatg The theoretical estimate from E@1) gives

vin=12po(1—&1)~9.05, (41)

which is significantly lower than the sound speed (
~11.3) and close to the value obtained in the numerical tes
By definition (34), in physical units velocity of the plane
soliton isv ps= (a,/2)Vw,w, vy,. Using data from Refl23],
i.e., w,/(27m)=790 Hz and w, /(27)=10 Hz (thus a,
=[#/(Mw,)]¥?>=0.74um), one obtains that v
=1.87 mms! when passing over the center of the conden-
sate, which is less than the sound speed2.33 mms?. FIG. 3. Sequential snapshots of the condensate with a high-
The soliton profile changes during propagation. The curvadepth dark plane soliton initially excitehitial conditions are simi-
ture of the front can be explained by the dependence of thiar to those used for Fig.)2The brightness in the first five snap-
velocity [Eq. (41)] on the condensate density. The velocity is Shots corresponds to the amplitude vajs, ,s;). The soliton
maximum at the center and decreases down to zero at tHgopagates from the left to the right with a developing snake insta-
boundary, hence central soliton parts move faster and, corfility (snapshot ar=0.4) eventually decaying into vorticésnap-
sequently, a curved front is formed. No transverse instabilityS"°ts at7=0.8, 1.2, and 1.6 The last snapshot shows the phase
at least during the propagation time, occurs h@irst four ¢(s1,S) in the square region marked on the corresponding ampli-
snapshots in Fig.)2Small perturbations do not grow in time. tuqe SnapShO.t forr=1.6 (the interval [_.”’”]. Cor.reSponds o
However, the interaction with the boundary is destructiveb“ghmess. going fror.n blac!(. fo black via whitdt includes six
. o vortices with phase singularities. The phase changesbwlang a

Ieadm_g to. the appearance of complex wavy excitations (closed path around each vortes,E0.8, £5=0.05, and k,
=2.0in Fig. 2. =2m/1).

The first stage of the soliton propagati@mtil interacting
with the boundaryis similar to that observed experimentally . . .
[4] in the BEC with a 3D trap by imprinting a phase step Ncreasing the Ioca_ll curvatu_re. In turn this Ieads to a hlgher
(around 1.5) at the center of the condensate. A dark p|<.jmea_mplltude mo;lu_lgtlon and fmally_ the p_Iz_ine soliton tears into
soliton moving from the center to the boundary with a sub-Pieces. At fche |n|t|a_l stage of the instability we have observed
sonic velocity has been observed in the experiment. Thé1€ formation of nine pieces, hence a wavelength around
shape of the front changes as illustrated in Fig. 2. =8/S_). However, in the first ru(lF|g..2) the plane. dark soli-

Figure 3 shows the evolution of an initially excited high- N (it becomes curved due to the inhomogeneity of the sys-
depth dark plane-soliton. Except the soliton depth=0.8 tem and strictly speaking it is not exactly a plane sohton'
in Eq. (39)], all parameter values are identical to those used"oPagates up to the boundary keeping its shape. Such dif-
in the calculations leading to Fig. 2. However, the evolution'€r€nce in the behavior of low-depth solitons may be ex-
of the soliton is clearly different from that shown in Fig. 2. In Plained by their relatively higher velocity and limited propa-
this case, we observed a snake instability leading to thg@tion length(due to boundaries of the condensatand
nucleation of several vortices, while in the previous case th&€nce, by insufficient observation time.
plane dark soliton has been shown to be stable to transverse
perturbations at least for the time up to the contact with the
boundary. The nucleation of vortices due to instability of a
narrow density defect in a two-component BEC has been Letus now consider the propagation of dark lumps in the
reported in an experiment with a 3D tri@). system when including the inhomogeneityxrandy direc-

Vortices, as they appear in many physical systems, ardons. From Eq(24) we get the initial condition for a lump
characterized by phase singularitigg7—39, which in our  solution,
case can be clearly seen in Fig(fthase snapshotGener-
ally, a vortex is a more stable evolving structure than a plane 1+ fpg
soliton. The latter tends to collapse like we have observed in _ 2
the second computer experiment. The instability can be ex- p=poy 1~ g ,
plained as follows. Initial transverse disturbances lead to {1+ 2P0
modulation of the soliton amplitude along the longitudinal
direction. Then due to the amplitude dependence of the
propagation velocity, those parts of the soliton with relatively \/Esp )
lower depth overcome the “normal” propagation process o= 0P ™
while parts with higher depth slow dowfsee Fig. 3,7 l+ip2(3

S 2 _ 02
=0.8), hence amplifying the transverse perturbations and 270 4852+(Sl S1) )

B. Propagation and collision of lumps

3
7655~ (51-5)°

. (42)

3
Zas§+(sl—s(1))2

:
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V= ﬁpo(1—28)~9.4, (43)
calculated for the real lump deptls € 9 - NOte that due

to the factor 3/8 the lump moves faster than the plane soliton

with the same depth. Besides, our calculations show that

lumps are overall more stable structures than plane solitons

and do not collapse during propagation even if depths are

high.

Except for the background parametey, the dark lump is
also characterized by another parameterv/c?, which is
actually its grayness. The bigger the the darker the lump
is. The propagating velocity of the lump is described by both
po and e [Eq. (43)]. Using the parameter values given by
Golitz etal. [23] [i.e., w,/(27m)=790 Hz, o, /(2m)
=10 Hz], the velocity of the lump when passing over the
center of the condensate ug,y,,=1.94 mm s1, larger than
the velocity of the plane solitorvge=1.87 mm s1) but still
lower than the sound speed of the systent (
=2.33 mms?) for the same trap parameters and grayness
(depth.

Near the boundary where the depth approaches its maxi-
mum value and the lump becomes black, its velocity de-
creases down to zero. Such configuration is unstable and we
have observed nucleation of two vortices that move along the
border, clockwise and counterclockwise, respectivslyap-
shots atr=1.1 and 1.9 in Fig. # For the lump we have a
local decrease of condensate density and a phase offset be-
low 7 [Fig. 4(b)], while for a vortex the depth is almost
100% and the phase jump is equakto Then we observed a
slow rotation(with angular velocity about 0.8 rad equivalent
to vymp=6.4) of the vortices along the border of the conden-
sate. Approaching each other at the opposite side of the con-

FIG. 4. Propagation of a lump solution and the nucleation nead te th i d then f | it
the edge of two moving, clockwise and counterclockwise, vortices ensate the vortices merge an en form a new lump soliton

[¢=0.8 in EQ.(42)]. (a) Sequential snapshots of the condensate(',:ig' 5. ACCOfdi”g'y' thedynamical mefginQ,Of two vortices
with a high-depth lump initially excitedin the first row brightness  Yi€lds @ lump This follows from the stability of the dark
corresponds to amplitude valgés, ,s,), in the second row bright- lump in the BECs and its interaction with the boundary of

ness going from black to black via white reflects the pha&s ,s,) the condensate. _ o
in the interva”:—/n-’ﬂ-] (en|arged square regions are Shal)NlThe Let us now consider collisions between dark |umpS. Ina

lump propagates from the left to the right. Then, near the boundaryprevious work{18], we have shown that dark solitons in 1D
its depth approaches 100%, the lump becomes practically black aBECs exhibit positive phasgor position shifts along their
it breaks into two vorticesb) The vortices move along the bound- paths during a head-on collision. The collisions of two dark
ary of the condensate in opposite directigasrows show motion lumps is a 2D problem but it can be approximated by a 1D
directions. (c) Section of the condensate along the “horizontal” case for the head-on collisions. Thus we may compare the
axis s; crossing the lump forr=0.5 and the vortex for=1.9.  results of two-lump collision with those obtained for two-
Solid and dashed lines correspond to the phase and the amplitudspliton collisions in one dimension.
respectively. We initially excite two lumpgFig. 4(a)], but moving in
opposite directions along thg axis (horizonta). Figure 6
Figure 4 shows the time evolution of an initially excited shows the paths of two head-on colliding lunjfs and(b)]
high-depth lump. It represents a localiz@a both directions  and, for reference, the pathway of the single lu@pfrom a
excitation elongated iis,. The initial depth of the lumpe  parallel experiment without the lumfb) being excited. In
=0.8 in Egs.(42)] is the same as the depth of the soliton numerical experiments we cannot find a reliable phase shift.
shown in Fig. 3. However, during the first propagation stageHowever, a slight mismatch between the paths of Iu@p
(0<7=0.15), the lump emits sound waves and reduces itgith and without collision, can be seen. It corresponds to
depth toserec~0.45 thus becoming brighter and widesee  negativephase shift, opposite to what we have seen for 1D
the snapshots for=0.0 and 0.5 in Fig. # When the lump  dark solitons, where as earlier mentioned the phase shift of a
passes through the center of the condensate, its velocity Isead-on collision was found to be positiMe]. The absence
viump™ 9.44, which is very close to the theoretical value Eq.of phase shift for colliding lumps has been pointed out for a
(25): homogeneous systefid0]; further details about collisions
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FIG. 7. Oblique collision of two lumps. Arrows show the propa-
gation directions. Snapshots showing the amplitydecorrespond
to initial position, collision event and post-collision trajectories of
the lumps.

Matsuno[41] has reported positive and negative phase shifts
depending on amplitude ratios.

When both lumps(simultaneously reach the boundary,
each of them breaks down into two vortices moving clock-
wise and counterclockwise as in the case depicted in Fig. 4.
Hence, we can say that vortices have opposite “angular mo-
menta,” while their other characteristics are identical. Then a
pair of vortices moving “up” originated from different lumps
collide and form a new lump that propagates to the center of
the condensate. This is again similar to the process shown in
Fig. 5. After some time the other pair of vortices moving

FIG. 5. Formation of a new lump by the merging of two vortices “down” collide and again we get a lump. The time differ-
(continuation of Fig. 4 (a) Sequential snapshots of the condensateence between the collisions of vortex pairs is due to the
before, during, and after the merging of the vortices. The lumpinitially unequal distances between vortigéise angular dif-
formed in the process propagates from the left to the right veryference is % 30°). Thus we get a complex sequence of
much like the initial One(Flg 4) (b) Section of the condensate eventsl Iumps_vortlces_lumpsl Where energy |S exchanged
along the_ horizontal axis, crossing the lump for=9.5. (s_olid and  petween different lumps via vortices.
g\zjeslr;d lines correspond to the phase and the amplitude, respec- W'e have also te_sted the stability of the 1D dark ]ump

solution corresponding to E¢27) when the weak trapping

potential in the transverse directions is taken into account.
between algebraic and other solitons are given in, e.g., Refive found that, like a dark plane soliton, a high-depth 1D
[41]. dark lump is also unstable to long-wavelength transverse per-

Figure 7 shows the snapshots illustrating an oblique colturbation and decays into vortices.
lision of two lumps. We start with two spatially separated
lumps moving from the periphery to the center of the con- IV. DISCUSSION AND SUMMARY
densate at an angle of 30°. At=0.2 the lumps collide, get
together, and then reappear as post-collision lumps. As in We have investigated the evolution of 2D weakly nonlin-
head-on collisions we do not observe a significant phase shitar matter-wave pulses excited in a BEC with a disk-shaped
and hence there is no deviation of trajectories after collisiontrap. With repulsive atomic interaction and strong confine-
ment in the axial direction, a Kadomtsev-Petriashvili equa-

0.5 tion with positive dispersiontKP-l) has been derived from
—a— path of lump A the order-parameter equation, i.e., from the Gross-Pitaevskii
0.4 et / equation, using a suitable asymptotic. Our results show that
it is possible to excite nonlinear 2D localized excitations, i.e.,
0.3, dark lumps, in the system. The dynamics of dark plane soli-
. ’ tons and 2D lumps have been thoroughly studied when in-
0.2 cluding weak trapping potential in two transverse directions.
’ In order to explore the effect of the slowly varying trap-
01 ping potentialV||(x,y) in the radial direction, we have made
) a series of numerical simulations. Numerical experiments
00 provide evidence that a low-depth dark plane soliton can
w3 _'1 0 1 5 propagate in the condensate with a changing profile albeit

s, preserving its structure until it reaches the boundary of the

condensate.The interaction with the boundary is destructive

FIG. 6. Lump pathways for a head-on collision. The positions ofand the dark plane soliton decays into a complex spatiotem-
minima of the amplitudep(s;,s,) on thes; axis fors,=0 are  poral structure including emission of sound waves and cre-
displayed. ation of vortices. Hence there is no true reflection from the
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boundary, at variance with the 1D case where oscillation of &igenmodes in the transverse directions will contribute to the
dark soliton between the boundaries has been obséidd soliton dynamics if the quasi-2D approximation cannot be
We have also shown that dark plane solitons of high deptfulfilled and the existence of thermal clouds at finite tem-
are unstable to long-wavelength transverse perturbations, gerature will dissipate the solitons. Furthermore, an analyti-
result similar to that reported in Refdl4,15 for a 3D trap.  cal approach for the soliton dynamics based on the MKP Eq.
The instability appears as a longitudinal modulation of the(31) remains to be formulated. These are interesting prob-
soliton amplitude that rapidly develops into vortices. Thelems to be investigated in future works.

deeper initial soliton, the slower it moves and the faster it

tears into pieces, finally decays into several vortices. An es- ACKNOWLEDGMENTS
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energy losses. The geometry of the problem and properties of
lumps and vortices allow vortices to form new lumps. Hence APPENDIX A: DERIVATION OF THE MKP EQUATION
in a sense we can speak about lump-vortex similarities. We
have also shown that during head-on and oblique collisiongﬁr
between two dark lumps, n@eliably measuredphase shift
appears, at variance with the case for 1D dark solitons in th
BECs where a positive phase shift was obseifis].
Recently, quasi-2D BECs have been obtaif28], con-
sidering that the energy-level spacing in the axial direction ist
larger than the atom-atom interaction energy and hence th%
projection approximation used in EgE) and (9) can be >
easily satisfied. To experimentally observe the 2D soliton

If a slowly varying trapping potentia¥/(x,y) in x andy
ections is taken into account, the asymptotic expansion
Eresented in Sec. Il B must be modified. For simplicity, we
rst assumeV|(x,y)=V|(x3,ys) Wwith x3=€’x and y;
=€%. In the case of a harmonic potential, i.eV
=(w, lw,)%(x*+y?)/2, one hasV =Q§(x5+y3)/2 under
e assumptiom, /w,= €>Q, with (4 a dimensionless con-
ant of order unity. Accordingly, we make the asymptotic
Sexpansion

and their properties here predicted, one needs a disk-shaped A=uy+ eX(a@+ e2aW+ efa@+ . . ), (A1)

condensate with a large enough disk radius. The quasi-2D

BEC realized by Guitz et al. [23] can satisfy this require- o= e(O+2pM+ Ap@ 4 ..., (A2)

ment. Indeed, according to E¢R7), the expression of the _ _

dimensionless lengthintroduced in Eq(36) is whereup=ug(x3,y3) andal) and ¢ are the functions of
" the slow variablest= €[ [*c™1(€3x’,y5)dx' —t], 7= €2y,

41,Q =€, X3, andy;. Hence, one has the following derivative
:< 7Ts/z) (44 expansion:
. . . J J J

For the 2D disk-shaped BEC &fNa realized in Ref[23], — —ec X(X3,Y3)— + €8—, (A3)

one has a;=2.75nm, w,/(27)=790 Hz, w, /(2m) Ix 9&  IXs

=10 Hz, N=2.9x10°. Thus we havea,=0.74 um and| P ) 5

=9.1, which corresponds to the radial size of the condensate — = —+ €*G(X3,Y3)—, (A4)

L, =2(w,/w,)"%a,l~120 um. In the numerical simula- ay Z3

tions for plane solitons and lumps we have required the

length of the condensate to be 8, which is about the same ﬁz _ EiJrfsi (A5)

as the length of the condensate obtained in R23]. Thus ot g€ ar’

the quasi-2D BEC realized in Rdf23] can be used to test _ 1 3, , i
check our theoretical predictions. To excite a dark lump ondVnere G(xs,ys)=(d/dys)J*c™"(e°x’,yz)dx’. Using Egs.
may use two appropriately formed vortices that move alongﬁal)‘(/'\&' Egs. (8) and (9) with V|(x,y)=V|(x3,y5) are
the boundary of the condensate and merge into a lump g&ansferred into
shown in Fig. 5. Using the data of R¢R23], we obtain that i) 2 ()
the period of a lump decaying into two vortices and then Ja 1 0%

eriof : ; — =UeC =al), (A6)
merging into a new lump is about 0.12 s. The higher-order 9& 2 9E?
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1
Q'ug=p— 5= V|(Xa.ya), (A7)
_ PO
2Q’uZal)—ug gg 0} (A8)
with
a©=0, (A9)
0 (0) ©)
a(l):aa + Cflaa % C710790
T 9E | 9Xg 9¢
1 92 d d
“ud et IS W PN
3 “0( C 9Eaxs | oxa” ag) ¢
1 &Zqo(o) 1 &2(,0(0)
~ 402 “ulr
+2a C Py +2u0 Py , (A10)
B9=0, (A11)
24(0) ) (0)\ 2
P LA A
27 2 % ar 2°° €
PO
+a© —3Q’up(a®)2. (A12)

The explicit expressions ot and 80 with j=2 are not
needed and hence are omitted here.

From Eq. (A7) one obtains uy=(u—1/2
—V|(X3,y3)1/Q")"2 It is the ground configuration of the
condensate in theandy directions. We see that for a slowly

varying trapping potential the ground state has a Thomas- a_g

Fermi wave-function shape. Equatio®6) and (A8) with
j=0 have the solution

2
©0_2¢ (¢

u a(O)(§,1n1X31y317—)d§,1
0

® (A13)
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wherea(® is a function yet to be determined. The solvability
condition requires that

c=Q up={[n—1/2-V|(x3,y3)1/Q"}*2  (A14)

i.e., the system has a local sound speed, varying slowly with
x andy. The expression of the chemical potential)(of the
system has been given in EQ7).

In the next order (=1), Egs.(A6) and(A8) result in the
equation fora(®):

9 [9a® 3JQ" , 9a® 1 4@\ 2 2@
_ + al® _ 4+ —
d&E\ It C 9§ 8c? 9¢8 2 gn?
(3 ac o 9al® ALS
dE\ 2 &x3a ¢ X3 (AL5)

It is a variable-coefficient KP equation with additional terms
coming from the slowly varying trapping potential in the
(x,y) plane. A similar KP equatioriwe have called it the
modified KP equationhas been obtained in weakly nonlin-
ear water wave theory when considering a solitary wave
propagating in a water channel with varying depth and width
[42].

WhenV(x,y) =V|(X;,y;) with i=4, a similar approach
yields the local sound speedc=+Q'u,=(u—1/2
—V)(x;,yi)1/Q")"2 In this case the controlling equation for
a(®'is the same as E@A15) but the terms on the right-hand
side disappear. Thus whev(x,y)=V(x;,y;) (i=3) we
have the general equation controllin§” in the form

| |

: (A16)

c? 9%a®
+ —
2 gg?

1 %@
82 93
9a®
X

ga(®
23

ga(®
aT

d

L3Q o
C

|

3 Jc
RN (V)

2 &Xi

d
:_5i3a_§

+C

where g;; is Kronecker delta.
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