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Trapping and cooling single atoms with far-off-resonance intracavity doughnut modes
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We investigate cooling and trapping of single atoms inside an optical cavity using a quasiresonant field and
a far-off-resonant mode of the Laguerre-Gauss type. The far-off-resonant doughnut mode provides an efficient
trapping in the case when it shifts the atomic internal ground and excited state in the same way, which is
particularly useful for quantum information applications of cavity quantum electrodynamics systems. Long
trapping times can be achieved, as shown by full three-dimensional simulations of the quasiclassical motion
inside the resonator.
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I. INTRODUCTION via a classical laser field from the side, or even active feed-
back on atomic motion as in Ref14]. However, only the
Cavity quantum electrodynamicd€QED) is a powerful recent paper by van Erét al.[15] has discussed in detalil the
tool for the deterministic control of atom-photon interactionseffects of an additional FORT beam on the cooling and trap-
at the quantum level. In fact, the strong confinement allowgping dynamics and its interplay with the quasiresonant
to achieve the strong-coupling regime where single quantaavity-QED field. Here, we shall consider a situation analo-
can profoundly affect the atom-cavity dynamidg. Many  gous to that of Ref[15], even though we shall extend our
experiments have now reached this regime and interestingtudy to different FORT mode configurations. We have cho-
phenomena have been demonstrated as a quantum phase gae a parameter region corresponding to the weak-driving
[2], the Fock-state generation in a cavity fi€8], and quan- limit with an empty-cavity mean photon numbig=0.01.
tum nondemolition detection of a single cavity phofe}. =~ We have performed full three-dimension@D) numerical
Moreover, cavity QED offers unique advantages for quantunsimulations of the quasiclassical atomic motion, including
communication and quantum information processing applithe effects of spontaneous emission and dipole-force fluctua-
cations. In fact, atoms may act as quantum memories, whildons.
photons are flexible transporters of quantum information, In two-level systems, red-detuned FORT beams shift the
and quantum networks of multiple atom-cavity systemsatomic excited statfe) up and the ground statg) downby
linked by optical interconnects have been already discussetthe same quantity, and this is the most common situation,
in the literature[5]. The primary technical challenge on the studied in great detail in Ref15]. However, the most inter-
road toward these applications is to trap individual neutrakesting situation for quantum information processing applica-
atoms within a high-finesse cavity for a reasonably longtions is when both levels are shiftedbwn by the FORT
time. Recent experimen{$,7] have already succeeded in beam: in this case, excited- and ground-state atoms are
trapping single atoms inside an optical cavity driven at thetrapped in the same position, and this greatly simplifies the
few-photon level, just using the strong coupling with the guantum manipulation of the internal state. In fact, the most
cavity-QED mode for both cooling and trapping. However, flexible situation for quantum information processing is hav-
the scheme of Ref§6,7] is not entirely suitable for quantum ing a trapping mechanism independent of the atomic internal
communication purposes because it has limited operatiostate. This configuration can be realized by using a FORT
flexibility and provides short trapping timesrder of hun-  that is red detuned in such a way that the excited state is
dreds of microseconglsin fact, it employs a single cavity relatively closer to resonance with a higher-lying excited
mode, while it is preferable to have an additional trappingstate than with the ground state. We shall discuss in detail
mechanism that does not interfere with the cavity-QED in-both situationsequal or opposite optical Stark shiftsand
teractions able to provide the atom-photon entanglemente shall find the interesting result that in the case of equal
needed for the manipulation of quantum information. With Stark shifts for ground and excited states, the use of dough-
respect to these, another experiment has already demonut modes, that is, higher-order Gauss-Laguerre modes, as
strated significant trapping times-28 ms) of single Cs at- FORT mode, is able to increase significantly the trapping
oms within a cavity, employing an additional far-off- time within the cavity.
resonance trappinORT) mode[8]. Using the fact that in The paper is organized as follows. In Sec. Il, we describe
the strong-coupling regime, the trajectory of an individualthe physics of an atom trapped in an optical potential and
atom can be monitored in real time by the quasiresonanstrongly interacting with a cavity-QED field. We also discuss
cavity QED-field[9], the FORT beam can be turned on asthe changes introduced by the FORT doughnut mode. In Sec.
soon as the atom enters the cavity in order to increase itdl, applying the general approach developed in R&6] to
trapping time. a cavity mode configuration, we discuss the conditions under
Several mechanisms for cooling inside an optical resonawhich the center-of-mass motion of the atom can be adiabati-
tor have been already discussed in the litera{l@-13, cally separated from the internal and cavity mode dynamics,
involving either cavity mode driving, or direct atom driving and treated in a quasiclassical way. The corresponding 3D
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where P is the power,ks=2m/\g the wave number, and
W(x) the beam radius. The doughnut mode radius is given
by the position of the radial maximum, given bymax

=W(x)ym/2. We can simplify the description assuming a
nearly planar cavity, so thA¥/(x) ~Ws. The classical, red-
detuned FORT mode induces ac-Stark shif§, on the
ground statdg) and AE, on the excited statee) [18]. We

can distinguish two different situationsa) |g) is shifted
down and|e) is shifted up, which happens in the common
situation where only the«< g transition is close to the red-

detuned FORT mode. In this case, the two shifts are oppo-
site. (b) Both |g) and|e) are shifted down, which happens
when |e) is closer to resonance with a higher-lying excited
level than with the leve|g) [19-21. We shall study both

situations and, in cas@) we shall assume that the various
detunings can be chosen so that the two levels are shifted
down by the same quantity. Furthermore, to simplify the
comparison between the two cases, we shall assume that the
FIG. 1. Schematic description of the system. An atom fallingtyo situations occur with the same wavelength
from a magneto-optical trap is trapped within a cavity with a fun- Considering a frame rotating at the probe driving fre-

damental Gaussian quantized resonant mpdée gray and an in-  quencyaw,, the Hamiltonian of the system can be written as
tense classical doughnut FORT modeay).

Fokker-Planck equation for the phase-space atomic motion ||3|2 R
will be derived. In Sec. IV, the results of the numerical simu- H= m+ﬁwapaTa+ﬁwgpa*a+ V(R)+#(Ea'+E*a),
lations of the corresponding stochastic differential equations

will be presented in detail, and in Sec. V these results will be )
discussed for both equal and opposite energy shifts dfgthe . ) )
and|g) states. Section VI is for concluding remarks. Wherew,p=weq— wp is the detuning of the the atomic reso-
nance from the probe frequency,,=wy—w, is the de-
Il. THE PHYSICAL PROBLEM tuning of the cavity QED mode with annihilation operator

W der a twolevel at ed t iized cay® 9= |9)(el, E is the cavity driving rate, an®,P are the
. € consider a two-level alom coupied to a guantize Ca\fi;)osi'[ion and momentum vector operators of the atom, having
ity mode and to an additional classical red-detuned FOR . . - . .
beam, coinciding with another longitudinal mode of the cay-& MassM. The interaction potentiaV(R) describes the in-

ity, with a wavelength\ g longer than that of the quasireso- teraction between t_he internal atomic '?Ve's’ th_e . ca\_/ity
nant cavity mode)y. The common situation is to consider modes and t_he atomic center-_of—mass_motlon, and it IS given
lowest-order Gaussian modes for both fie[d$], having by the coupling with the qua.ntlzed cavity m_ode and with t_he
their maximum intensity along the cavity axis. Here, we shall"ORT doughnut mode. Making the usual dipole and rotating

consider a different situation, where the FORT mode is aVaVe approximations, this interaction term can be written

higher-order Gauss-Laguerre mode, the so-called doughnut

mode, having its maximum intensity at a nonzero radial dis- V(R)=fg(R)(aTo+oTa)+VSR), (3)
tance from the cavity axis. This means that the atoms are

trapped out of the cavity axissee Fig. 1 for a schematic
description of the systemAt first sight, this choice may
look not optimal because in this case, the coupling with the

fundamental Gaussian cavity-QED field responsible for cool- ) p?

ing is smaller. Nonetheless, we shall see that this choice is g(p,x)=gosm(kgx)exp{ - W] 4
convenient in the case when the classical FORT mode shifts g

down both excited and ground states, which is the most in-

teresting case for quantum information processing applicaiS the space-dependent Rabi frequency due to the coupling
tions. We recall that the Laguerre-Gauss modesl)Gare  with the quantized mode, and the second tarifR) de-

the solutions of the paraxial Helmoltz equation in cylindrical scribes the effect of the Stark shifts induced by the FORT
coordinates g,9,x) [17]. In this paper, we consider the mode, assuming the following form in the two cases,and
doughnut modes with radial indew= 0 and azimuthal index (b):

p=0, whose intensity is given by

pm+l p2m 5,2 case@d VS(R)=AS(R)(d'o—0a), (5)
p{ - } sirt(ksx),

mml W2(m+1) () ex

where

IOm(PaX):4P Wz(x) i i
) caseb) VI(R)=-#4S(R). (6)
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The frequency ac-Stark shift is generally given 8fp,x) made in a systematic way by adopting the general approach
=alon(p,X)/4h [22,23, wherea is the atomic polarizabil- developed for free space cooling situations in R&8] to the
ity and | o,(p,X) is the FORT intensity of Eqd), so that one  present cavity schemg@ee also Ref{13]). One starts from
can write the evolution equation of the Wigner operator obtained by
performing the Wigner transform only on the motional Hil-
o 2p? bert space, and writing this equation as a Taylor expansion in
S(p.,x) = Sop*"sir?(ksx)expi — W2l (7) " terms of two small parameters of the problem. Denoting with
S k=Kkgy=ks=k,=we4/C the typical wave number of the prob-
with Sy=2""Pa/7hW2™*2. We have generally consid- €M, we have that one small parameter is
ered different waist8V, andWs for the two modes, but they
practically coincide in typical situations.
The FORT mode provides the main trapping mechanism. E =ﬁ<l )
This means that the atom will be trapped around the antin- YAp 7
odes of the red-detuned FORT field, beca8ge g, and the
cavity-QED field is weakly driven. However, due to the dif-
ferent wavelengths, one does not have a periodic situatiorshowing that the motional state is characterized by a momen-
and the atom feels a different cavity-QED coupling in differ- tum spread\ p much larger than the momentum kicks felt by
ent wells. In the experiment of R¢B], the cavity lengtiLis  the atom during any photon emission or absorption. The sec-
such that 2 =104\,=102\s. To simplify our simulation, ond small parameter is
we have, however, chosdn=16\,=15\g as it has been
done also in Ref[15]. This is equivalent to choose a ficti-
tious larger value foi g which, however, does not modify kAp kAp
the essential physics of the problem because the FORT mode €= M—y”—‘ W<1’ (10
is in any case far-off resonance. With this choice, we con-
sider only 30 potential wells in the cavity, only eight of

which are quantitatively differerfsee Ref[15]). which instead shows that the Doppler shift associated with

Dissipation, diffusion, and all nonconservative effects apy,e momentum spread is small with respect to the atomic and

pear due to spontaneous emission and cavity losses. The i jinewidths. The two conditions set a lower and an
guantum evolution of the atom-cavity system is therefor

) ; . ,eupper bound for the momentum spread of the atom, which,
described by a master equation for the atom-cavity dens'tYhanks to the Heisenberg inequality, put also a lower and an
operatorp [16] upper bound for its position spread. These bounds allow to
dp i descri_be th(_a _atomic mqtion _in classical terms becau_se the
= plHel+ k(2apa’—a'ap—pa'a) atom is sufficiently localized in phase space to make it pos-
sible to describe its motion in terms of trajectories, while at
3y R the same time the phase-space spread always remains larger
—y(otop+poto)+ yp f d?k than# (see Refs[9,11]). The crucial point is that the two
m conditions(9) and (10) must be consistent and this happens

><D(R-)A()efnz'éap(frei 'FE, (8 when

=

where « is the cavity damping rate angl is spontaneous 0
emission decay rate. The last term describes the effects of ik

atomic recoil, withk giving the direction of emitted photon 2M
and D(k-%)=[1+ (k-%)?]/2 describing the angular pattern
of dipole radiation24].

<hy bk (11

This means supplementing the well-known necessary condi-
IIl. QUASICLASSICAL DESCRIPTION OF THE ATOMIC tion for laser cooling in free spac’k*/2M <fy (the atom
MOTION has to be still in resonance after spontaneously emijtting
[16], with an analogous condition for the exchange of cavity
The internal and cavity dynamics is governed by the dephotons.
tuningsw,, and wgy,, the spontaneous emission ratethe For small parameterg; and e,, the atomic motion is
driving rateE, the cavity damping rate, the FORT shiftS,, much slower than the internal one, and the adiabatic elimi-
and the coupling constamf,. In the parameter region rel- nation of the latter is obtained if the atomic kinetic-energy
evant for current experiments, this dynamics is much fasteterm is neglected in the equation for the Wigner operator,
than the atomic motional dynamics, especially for heavy atwhich then effectively factorizes into a product of a station-
oms as Cg8] or Rb[7]. Therefore, internal and cavity dy- ary staten(r) for the cavity and internal degrees of freedom
namics can be adiabatically eliminated in order to obtain @valuated at the fixed atomic positior (p, 8,x), and a real-
reduced effective evolution equation for the motional de-valued motional Wigner functiorf(r,p,t). The stationary
grees of freedom only. This adiabatic elimination can bestate(r) satisfies the steady-state Bloch equation
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Lgioch(F) 7(F) the FORT beam intensity fluctuations are negligible, see
(9) Refs.[22,23). Therefore, we can write
. r e
—i|wapolo+wgata+ (Ea'+E*a)+ ——(F) ) [FQQ(F)+I‘QS(r)+F SF) case(a) -
i(N=1 1og 1
+ k[2an(f)a’—a'ay(r)— (P a'al ) case(b),
+y[20np(No’—oon(i)—n(Na'a]=0, (12 . [Dgg(r)w 31 +D{YN)  case(a) 5
i(F 1
ij ag
whereLgocn(F) comes from a zeroth-order expansion of the Di(r) case(b),
master equatiof8) in the small parameters ande; of Eqs. where the quantized mode contributiogg), the FORT

(9) and (10).

of Fokker-Planck type and is given §$3,16|

a9 )———( )—(r)xgg(r)
d N J N N
S HTBO= B0 M ari

Zl'CM

D oz
E (rlp!t)__

ar
h 9S
P F%S(F):ME( g (f)XgS(r)JFME(T)
+hAGy(o o)1) 2 B~ f(F,p.1)
IO|
+2 (0 &p ) —t(rp r)—M i it )—( x>0,
92 d
+3 0Nz 1D o
DIY(F) = ﬁz—g(m—(r)ggg(r)
arj
+2 Lij(F) [pJ (F.p.0)]. (13)
S 2 g S, 2_
All the coefficients of this Fokker-Planck equation depend (r) f ﬁrl( ) (r)gg (F)+4 (r)

upon average values and correlation functions of the internal
and cavity degrees of freedom evaluated on the stationary
state at fixed atomic position(r) of Eq.(12). An example is

>\ 2_ >\ (P S >
provided by the average valugr'o)(F) appearing in Eq. DN =4 &r.(r)arj(r)g ),

|
(13 in the diffusion term due to spontaneous emission,

which also depends upon the diagonal mafix given by  where
Exx=2/5, E,,=E,,=3/10 [13,24. The other atom-cavity
guantities determining the Fokker-Planck equation coeffi-
cients areb=a'o+ o'a and¥=c'o— oo, whose expec-

tation value determines the mean dipole force acting on the

atom ¢ (). In fact,

—ﬁig(F)<¢>(F)—ﬁiaf)<w>(f) case(a)
ar or

S
—~
—

gD (F) +h = S(F) case(b),
ar ar

which is a sum of the quantized mode contribution and th
FORT mode contribution. This is no more true for the fric-
tion matrixI';; (F) and the diffusion matri;; (), which are w
bilinear functionals of the dipole-force operator and assume fgg(F)Zf dr
different forms in the two casds) and(b). In fact, in case 0
(b) of equal shifts, the FORT mode simply adds a conserva- .

tive potential, independent of the internal atomic state, giv- ggs(r»):j d
ing no contribution to friction and diffusioffprovided that 0
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) ) _ o mode contribution $9, and the cross contributiong®
The resulting equation for the Wigner functié(r,p,t) is  have been singled out. These terms can be then written as

17

(MX5YP),
(18)

(19

(20

(r)§sg(r)
(21)

(22

(23

(29)

(29

(26)

%<{<I><r>,<1>(0>}>—<<1>>2} (27)

r%<{¢<r>,\lf<0>}>—<d>><\v>}, 28)
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1 by numerically solving Eq(12) in the atom-cavity Hilbert
U (), @0}~ (F)NP)|, (29  space truncated at=4 photons(see Ref[27] for details.

We have also checked that these numerical solutions repro-
1 duce the results of the analytical approach of REL] in the
E({‘I’(r),‘l’(O)}}—(\If)Z} (30 weak-driving limit.

IV. NUMERICAL RESULTS

£5%r) = J:dr

gss(r):f:dr

The cross diffusion term proportional tg;;(r) is usually In the following sections, we present and discuss the re-
much smaller than the diffusion terms due to the dipole-force;,jis of the numerical simulations in both casasand (b).
fluctuationsD;;(F) and due to spontaneous emissi®;; e have chosen equivalent conditions for the two cases, so

[13,18, and we shall neglect it. Using this approximation ihat the corresponding numerical results are directly compa-
and the above expression for the diffusion matrix, the siXygpje.

dimensional phase-space diffusion matrix of the Fokker-

Planck equation(13) becomes semipositive definite. This A. Study of case(a)
means that it can be associated to a classical phase-space i | terred to th . ;
stochastic process describing the stochastic trajectories of th? We consider parameter va ues retferred 1o the experimen
atomic center of mass within the cavity. Consistently with© Ref. [8]. In fact, we consider the Cs transition af

the adiabatic and quasiclassical descriptions discussed above27/ka=852.4 nm between the ground stat¢g)

. . PP =16Sy,,F=4m:=4) and the excited state)=|6P,,F
the motloqal ngner_ functiori (7, p,t) become; lthergfore a =5me=5), and a cavity mode resonant with it, i.@vg,
non-negative, classical phase-space probability distribution

) e ! . .~ =wgp=—Ap,=2mXxX10 MHz (A, is the probe detuning
[16]. Our numerical analysis is based just on the S|mulat|or}rom resonance The spontaneous emission rate is

of th_ese StOChaStJC 3D traj_ectorles,_wh|ch are obtained 85 2% 2.6 MHz, while the other guantized mode parameters
solutions of the Itostochastic equations associated to the

Fokker-Planck equatiofil3). Moreover, as it can be eflzgily Z;ed %O:ESZ;T; I\?/)I(I)—;/zé g:?ﬁaf t:hzeWeXmAfptl\;—':;;/it\)//vgnTeza&MpmhE)ton
seen from Eas(4), (7). and (17)-(22), one haslucthg ™ mper s, = E2/(x?+A2)=0.01. Since it igo> y,x, We
~As®, nywrxzm)‘g W ~As V\_/S ' I1yy~1ﬁzz°‘W8_ » are therefore in the strong-coupling regime of cavity QED.
and the same is true for the diffusion matfy; . Since itis  Then we use a Lg doughnut mode as red-detuned FORT
alwayshq , As<Wy,Ws, it is evident that the only relevant fie|q,  with parameter values Wg=20 um, S,
term in the friction and diffusion matrices is thex compo- = /2 MHz/um?. These choices give pac14.1um for
nent along the cavity axis, where both th.e quant_ized field anghe doughnut radius, and the maximum Stark shift given by
the FORT mode show the largest spatial gradig¢t®. In  the FORT mode, achieved Blvax, IS Sma=27%50 MHz.

our numerical simulations, we have therefore considered Ag giscussed above and in REL5], we have chosen a
both the friction force and the dipole-force contribution 10 fictitious large value ofAg, so thatL=15\g= 16\g (\g

diffusion, only along the cavity axis, while we have kept ) ) in order to simplify the simulation, without however
the spontaneous emission—diffusion terms in all three d'recc':hanging the physics because the exact valuesds unim-
tions. _ portant as long as it is far-off resonance. The dominant po-
~ Taking into account Eq(13), and the above approxima- tential is the one due to the FORT and therefore the atomic
tions, we have therefore numerically solved the following 'toequilibrium positions will be situated at the FORT antinodes
equationd 25,26): x¢=(n—1/2)\g/2, n=1, . .. along the axial direction and at

- the nonzero radial distance from the cavity a¥$ax
~14.1um. Due to the sharp radial potential well of the

dr= Mdt’ doughnut mode, the atom will experience a sharp radial con-

finement around,,,, besides the axial confinement around

Iy(F) 0 0\ [/ py an antinode.

S PN The superposition of the two modes with different wave-
dp=¢(Ndt 0 O Off py|dt lengths determines a spatially aperiodic situation within the
0 0 0/ \p; cavity. The above choice gives eight nonequivalent potential

_ = wells in which the atom is subject to different couplings with
VD) dW, B W the quantized cavity mode. This aperiodic situation is shown

+ 0 +hkaVy(a o) (F)| VEy,dW, |, in Figs. 2 and 3, where the axial friction coefficidng,(r) of
0 \/E_de Egs. (15 and (17)—(19), and the dipole contribution to the
z z

axial diffusion coefficienD,,(F) of Egs.(16) and(20)—(22),
(31))  at fixed radial distance = p,y (bottom of the radial well
and as a function of the axial coordinateare plotted.
wheredW,; and d\TVE(dWX,dWy,dWZ) are four indepen-
dent, zero mean, Wiener increments with the property Simulation results
dWidW;=24;;dt, (i,j=1x,y,z). The quantities (5(?), To characterize the trapping and cooling dynamics, we
I'(F), Dy(F), (aTa)(F) in Eq.(31) have been determined have carried out a quantitative study inside a central well, the
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FIG. 4. Time evolution of the axial position in the case of an

FIG. 2. Axial friction coefficientl’,,(r), at a fixed radial dis- jsitia| velocity tangential with respect to the doughnut FORT mode.
tancep = ppax (bottom of the radial well versus the rescaled axial pgrameter values are in the text.

coordinatex/\ g, in the casda) of opposite Stark shifts induced by

the FORT mode. Parameter values are in the text. . . . . — . .
ries with slightly different initial conditions: one describes a

one centered ats=2.25\g and ranging from 25to 2.5\g.  tangential incidence of the atom along the doughnut perim-
In order to simulate the typical experimental condition, weeter ®o=2.125\g, Yo=pmax» Z20=0, vx0=0y0=0, vy
have chosen proper initial conditions, considering that, in the= 10 cm/s) (see Figs. 4-) the other instead describes an
experimental procedure, the FORT field is switched on onlyorthogonal incidence with respect to the doughnut mode
when the laser probe transmission exceeds a fixed thresholdo=2.125\s, Yo=0, Zy=pmaxs» Ux0=0Vy0=0, vy
indicating the presence of the atom inside the cavity. The=10 cm/s)(see Fig. 7. The trajectory is well confined, axi-
initial position has been taken axiallys/8 away from equi- ally around a FORT antinode, and radially around the maxi-
librium point x§ (then xo=2.125.¢), radially along the MUM py,: the 3D atomic motion occurs substantially on a
doughnut maximumpo=pmax, and uniformly distributed Plane orthogonal to the cavity axis, with the trajectory draw-
over the polar anglé. For what concerns the initial velocity, INg just the shape of the doughnut mode. From Figs. 4-7,
it is reasonable to choose a vertical velocity with component§ne can recognize that the atomic motion is characterized by
Uy0=0y0=0, v,=10 cm/s. the following three different time scales. _ o

In order to examine qualitatively the typical atomic mo- (1) The fastest time scale is given by the axial oscillations,
tion, we report some snapshots from two simulated trajectowhich have, for our parameter values, a time periodl us

(see Fig. 4.
2000
1800 y y y . . . . v v .
1600} 151 1
__ 1400f .
]
o 12001
N
£ 1000 14.5F
[a)
600 1 e
400 - 14 i
! L A |
0 A\ L l/\_j
)} 0.5 1 1.5 2 25 3 35 4
ms 13.5- 1 1 1 1 1 1 1 1 1 1 ]
FIG. 3. Dipole contribution to the axial velocity diffusion coef- 1500 1550 1600 1650 1730(,:37)50 1800 1850 1900 1950
ficient D,,(F)/M?, at fixed radial distance = p,, (bottom of the
radial wel), versus the rescaled axial coordinafa g, in the case FIG. 5. Time evolution of the radial coordinate in the case of an
(a) of opposite Stark shifts induced by the FORT mode. Parameteinitial velocity tangential with respect to the doughnut FORT mode.
values are in the text. Parameter values are in the text.
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FIG. 6. Radial trajectory in the case of an initial velocity tan-  FIG. 8. Root-mean-square velocity along the cavity a%i$’ as
gential with respect to the doughnut FORT mode. Parameter values function of the trapping timé&, for each simulated trajectory, in
are in the text. the casga) of opposite Stark shifts.

(2) A slower time scale is associated with the radial oscil-With respect to the radial diffusion, determined only by the
lations, characterized by a time periedLOO us (see Fig. 5, ~ Spontaneous emission.
these oscillations become wider in the case of orthogonal To determine the mean trapping times, we have defined as
incidence with respect to the doughnut mode, since, in thi§rapping timeT the time spent by the atom inside a single
case, the atom probes more the doughnut radial elasticitjotential well,\ /2 wide along the axial direction, and with
(compare, in fact, Fig. 6 where the oscillation amplitude isa radius equal to Ws. Sampling about 400 simulated tra-
~1 wm with Fig. 7, where the amplitude is4 um). jectories, we have found the results displayed in Figs. 8 and

(3) The third and slowest time scale is given by the atomic?- In Fig. 8, we have displayed the root-mean-square velocity
rotations around the cavity axis. For tangential incidence, th@long the cavity axi®;™* as a function of the trapping time
initial angular momentum is large and the rotation period isT for each simulated trajectory. We can see a clear separation
~1 ms while, for orthogonal incidence, the atom acquires &f simulated points. In fact, about 60% of atoms are not
nonzero angular momentum only because of radial diffusionrapped at all: they correspond to the upper set of points in
and the rotation period is larger; 10 ms. Fig. 8, having a velocity!"*>20 cm/s, and for which the

The final escape of the atom from the cavity is practicallytrapping time is below 2 ms. These are not cooled via the
always along the axial direction, and this is due to the heateavity-QED interaction, and the velocity, ">~ 28 cm/s is
ing provided by the strong axial diffusion, which prevails

0.4 : : : , :
20 : : : : : : :
0.35 1
15} 1
03 |
10} 1
5025 1
5¢ 1 £
= g 02 ]
EL ot _ [
~ Q
N 0.15 1
5t _
0.1 1
10} J
0.05 ]
—15} J
2 1 1 1 1 1 1 1 00 2 4 3 6 8 10
2o 5 10 = 5 10 15 20 time (us) x 10*

FIG. 9. Trapping time statistics for the subset of trapped atoms
FIG. 7. Radial trajectory in the case of an initial velocity or- in the casd€a) of opposite Stark shifts?(t) is the probability for an
thogonal with respect to the doughnut FORT mode. Parameter vahtom to be trapped for a time greater thamhe full line is a fitting
ues are in the text. decay curve yielding a mean trapping time (17+1) ms.
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mainly a result due to the initial conditions. These uncooled €000
atoms are those which are more influenced by the spatia
region where the axial friction is negatiysee Fig. 2, where
atoms can be accelerated. The remaining 40% of attimes
points below the threshold of 20 cm/s in Fig.de trapped:
their velocityv|"® of about 14 cm/s is a result of the cooling 4000}
provided by the exchange of cavity photons. These atoms—~
reach thermal equilibrium and have trapping times greater
than 2 ms. 5
Considering only the subset of trapped atoms, they have ¢~
probability P(t) to be trapped for a time greater thanThe 20001
trapping time statistics is shown in Fig. 9, where it is also
compared with a decaying fitting cun®&" (full line in Fig.
9). The best fitting mean trapping time is=[,t
(—dP"/dt)dt=(17=1) ms, which is comparable to the ex-
perimental value obtained using a fundamental Gaussiar % o5 1 15 2 25 3 35 4
FORT mode in Ref[8] and with the numerical simulations X/As
performed in Ref[15], again for a fundamental Gaussian o o . ) o
FORT mode. This is not surprising because, except for the FIG. 10. Axial friction coefflf:lentl“xx(r), at fixed radial dls_-
fact that the atom is now trapped at a nonzero distance frorffNc€p = Pmax (bottom of the radial well versus the rescaled axial
the cavity axis, the physics of cooling is similar to that oc- coordinatex/\ g, in the caséb) of equal Stark shifts induced by the
curring in a lowest-order Gaussian FORT mode, and thd ORT mode.
analysis of Ref[15] can be essentially repeated.

50001

230001

1000

same initial condition of cas@) (see Sec. IV A L By sam-
B. Study of case(b) pling about 400 simulated trajectories, we have found the

: results shown in Figs. 12 and 13.
We consider the same parameter values of G@sexcept In Fig. 12, we have displayed the root-mean-square veloc-

that we slightly adapt to the probe detuning and choose a I h . . rms ; . f ing time
value A,=—27X 35 MHz. As a consequence, we then set!ly @long the cavity axi, = as a function of trapping tim

E=22.13 MHz, in order to keep the same empty-cavityfor each simulated trajectory. At variance with c&ag now

mean photon numbe¥,=0.01 of casa). all atoms are trapped, with trapping times greater than 1 ms.

The situation is in many respects very similar to the Iore_Thls is due the fact that axial friction is always positive and

ceding one: the atomic equilibrium positions are again sitydtoms are cooled everywhere. In this case, the probability

ated at the FORT antinode€=(n—1/2\g/2, N=1, ... P(t) to be trapped for a time greater thaiishown in Fig.

along the axial direction and at the nonzero radial distancélg') is computed considering all simulated points. The data

from the cavity axisomax—14.1 um. There is still an aperi- are ggain ﬁtt?d b.y a decaying.fitti.ng funcg@rﬁh(t) (tLuII line
odic situation with eight notequivalent wells within the cav- in Fig. 13, yielding a mean lifetimer=Jot(—dP™/df)dt
ity. However, for equal atomic shifts, the FORT does not— (44%3) ms.

affect both friction and diffusionit does not affect the force
fluctuations, see Eq$15) and(16)] and therefore, for what 40
concerns friction and diffusion, an axially periodic situation
is restored in this case, with a spatial period set by the cavity-
QED mode. The periodic friction and diffusion spatial varia-
tions are shown in Figs. 10 and 11, where the axial friction
coefficientl’,,(F) of Egs.(15) and(17)—(19), and the dipole
contribution to the axial diffusion coefficiem,,(r) of Egs.
(16) and(20)—(22), at fixed radial distance= p.y, and as a
function of the axial coordinate, are plotted. If we compare
Figs. 2 and 3 with Figs. 10 and 11, we see that in ¢bsthe
maxima of the axial friction and diffusion coefficients are
lower, but one has the advantage that now the friction coef-
ficient is always positive, while in cas@) it may assume
very large negative values, yielding heating rather than cool-
ing. This always-positive friction implies that all atoms fall- ’ s ) ) ) . |
ing in the cavity are now cooled and trapped, while in case 0 05 1 15 2 25 3 35 4
(a), a fraction of the atoms can be heated and are not trappec. X/As

8 B

m2/s%)

xx
-
(24

T

DWW

-
(=]
T

(1)
T

FIG. 11. Dipole contribution to the axial velocity diffusion co-
efficientD,(F)/M?2, at fixed radial distancg= pp,x (bottom of the

In order to calculate the mean trapping time in cé3e  radial well, versus the rescaled axial coordinatd g, in the case
we have carried out a computer simulation considering théb) of equal Stark shifts induced by the FORT mode.

Simulation results
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' ' ' the ground and excited state, the two states are trapped at the
. . same positions within the cavity, and the internal state can be
0.3r + ] manipulated independently of its center-of-mass state. In
+* . quantum information applications, it is important to evaluate
0.25 N the variation of the cavity-QED couplingg. In our param-
eters’ regime, it isAg=16%, which is worse than that for a
g TEMpo FORT mode under the same conditiongd g(
= 021 ] =6%). However, the problem associated with such a varia-
§>x tion of coupling can be circumvented if one adopts an adia-
0155 batic transfer scheme such as the one suggested i Z2&f.
for quantum information processing with hot trapped atoms.
In such a case, the operation timg, for the adiabatic trans-
011 1 formations must satisfy the conditions (s~ V;xlia|<Top
<v,’aﬁia|~100 1S, Wherewv,yia radial are the axial or radial
0.05 . . . oscillation frequencies.
10° 10° 10° 10° An interesting alternative to the configuration studied here

trapping time (s) is to replace the TEl, cavity-QED mode with the higher-

FIG. 12. Root-mean-square velocity along the cavity affes ~ Oorder LG ; cavity-QED mode, having the same coupligngt
as a function of trapping timi€, for each simulated trajectory, in the Pmax- IN this way, we achieve a better overlap between the
case(b) of equal Stark shifts. FORT mode and cavity-QED one, which leads to a smaller

variation of couplingAg, and therefore also to a better cool-

This is the most relevant result of our investigation, show-Ng configuration. In fact, repeating the simulations with the
ing that using a doughnut mode as FORT mode allows us t6Go,1 cavity-QED mode we have seen a slight improvement
achieve significant trapping times in the cabsg when the  Of th? trapping time. - . o .
FORT induces equal Stark shifts on the atomic levels. In fact, It is clear that the additional practical difficulty of using
we get a mean trapping time larger than that obtained, in thanother LG mode makes the experimental realization even
same situation, with a red-detuned fundamental Gaussiadn@rder; however this should be very challenging since, ex-
mode [see the numerical analysis of R¢L5], Sec. IVF, tending the configuration f_rom one LG cavity-QED mode to
wherer=(28=2) ms]. This shows that in the case of equalMany degenerate LG cavity-QED modes, one has new pos-
Stark shifts, the radial confinement at a nonzero distancéibilities, as following atomic motion in detajB0], or in-
from the cavity axis provided by the doughnut FORT modecreasing the cooling effect as shown in Refl].
is preferable with respect to the radial trapping along the
cavity axis provided by the TEW) FORT mode. The im- V. DISCUSSION OF THE RESULTS
provement provided by doughnut mode is useful for quan- . ) . ) .
tum information processing applications in cavity-QED sys- Let us now discuss in detail which are the main features

tems because when the FORT mode induces equal shifts &} using red-detuned doughnut modes as FORT fields. The
atom-cavity dressed picture provides an intuitive way to un-

. . . . derstand the advantages brought by the use of the doughnut
mode. In the present case of very weak drivitg€0.01 in

our casg, the cooling mechanism is well described in terms
of the eigenstates of the atom-cavity systéifme dressed

i state$ containing at most one excitatiofsee also Ref.

0.8}

[11,15,28). The state with no excitation is the ground state
> |0), with energyEy=—#%S(r), while the first two dressed
%o.s- 1 states with one excitatioht ) have energies
°
Q

hwa+h\g?(F)+S*(F) case(a)

) E+:[hwa—ﬁS(F)thg(F) case(b), 7

I
S
T

0.2} ] so that the transition frequenciéelative to w,) from the

ground statg0) to excited states+) have the expressions

% 05 1 15 2 (E.—Eyp) S(F) = \g?(F)+S%(F) case(a)
time (us) x 10° Ai=——F——w,= R
h +g(r) case (b).
FIG. 13. ProbabilityP(t) for an atom to be trapped for a time (33

greater thart in the casgb) of equal Stark shifts. The full line is a
fitting decay curve, yielding a mean trapping time=(44  The spatial variation of these transition frequencies along the
+3) ms. axial direction(and at the radial positiop= p,4,) is shown
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120 - - y y - - y if the detuning becomes more red, the atom is still cooled,
but at a lower rate. In cage) (Fig. 14), it is better to tune the
probe to the lower dressed state because it has smaller spatial
variations(see the straight line in Fig. 14nd it is easier to
reach a compromise between having cavity regions with an
optimal cooling ratered detuning and not too large regions
with heating(blue detuningg However, as the atom moves
radially from the doughnut intensity maximum @t p pax.

the situation rapidly worsens, either if the atom moves to-
wards the centefthe FORT beam decreases while the quan-
tized field increase and the blue detuned region increases

0 | o . .
N AN AN AN AT AYAYA if it tends to Igave the cavitfthe detuning becomes more red
SOAVA and the cooling rate decreages
-20 i \/ \/ \/ \/ \

100

80f

601

401

20},

frequency (2x MHz)

In case(b), one tunes again to the lowest dressed state in

. order to have red detuning, and therefore cooling, throughout
2 25 3 35 4 the cavity, when the atom is at the radial equilibrium position
X/As Pmax (See the straight line in Fig. 15From Eq.(33), we see
that the probe detuning decreagescomes less reédvhen

the atom moves radially towards the center, while it becomes

axial direction at fixed radial distange= p,ax (bottom of the radial more red if the atom moves away radially. However, the

well), in the casda) of opposite Stark shifts. The straight line gives prpbe detuning can be chosen so to remaln.always red: in
the probe detuning, . this way the atom is cooled everywhere, and is never accel-

erated. For this reason, the doughnut FORT mode provides

in Fig. 14 for the caséa) of opposite Stark shifts, and in Fig. longer trapping times in cade) of equal Stark shifts rather
15 for the caséb) of equal Stark shifts. ’ than in casda) of opposite shifts. What is more important is

The patterns of spatial variation of the transition fre- that, in ca_se(b), the doughnut FORT mode prowdes longer
guency allow to understand the difference between ca@ses trapping times than a fundamgntal Gaussian FORT mode
and(b). The cooling mechanism provided by the cavity QED ((jsee Ref[15], Iiic' v F).dln fact, mrghe 'a“ef calse, trll.e probeh
interaction in the weak driving limit, can be understood in etL'mmglwouh etﬁne soas tﬁ bave optima cgo||_|ng on the
analogy with Doppler cooling. In fact, by tuning below reso- cavity aXIS,fW gz_rei tdf?f atoms will be now trapped. However,
nance, stimulated absorption of a probe photon followed b ecause of radia di u_3|0|(1due_ to spontaneous emissjon
spontaneous emission or cavity decay leads to a loss of e vhich also 'e?“?'s toan Increasing angu'?f momentum and the
ergy. The maximum cooling rate is achieved when the exciconsequentrising ofa centrn‘ugal_ poteptlal, the atom ten_ds to
tation rate times the detuning is maximum. If the detuning™©Ve radially away from the cavity axis, so that the optimal

turns from red to blue, cooling is replaced by heating, Wh”ecooling condition is rapidly lost. In fact, for increasipg the
g P y g axial pattern of Fig. 15 rapidly vanishes, the driving probe

0 , . . , , . becomes too far-off resonance, and the cooling efficiency is
lost.

The advantage of the doughnut FORT with respect to the
TEMg o FORT is that it imposes a much sharper radial well
around the equilibrium position corresponding to the opti-
mum cooling condition. The atom is less free to move radi-
ally, and moreover is subject to a smaller centrifugal force
because it is trapped by the doughnut at a larger radial dis-
tance from the cavity axis. In other words, the radial poten-
tial well provided by the doughnut FORT mode is more suit-
able to counteract the radial departure of the atom and so to
preserve the optimal cooling condition.

The importance of a strong radial confinement to optimize
cooling and trapping in the case of equal Stark shifts can be
illustrated by also checking that when the width of the radial
well is decreased, the trapping time increases. To this pur-
pose, we have carried out a simulation where a higher-order
Laguerre-Gauss FORT mode, &, is used instead of the

FIG. 15. Transition frequencie& . (relative tow,) from the ~ LGo1 FORT mode, keeping the other conditions unchanged.
ground statg0) to the first excited dressed states) along the 10 be more specific, we have considered the same experi-
axial direction at fixed radial distange= p., (bottom of the radial mental parameters of the case with the,LEORT mode in
well), in the caséb) of equal Stark shifts. The straight line gives the case(b), in such a way that the L&, mode gives the same
probe detuning . Stark shift S,,,,=27X50 MHz at the same radial distance

405 0.5 1 15

FIG. 14. Transition frequencieA. (relative to w,) from the
ground statg0) to the first excited dressed states) along the

30

frequency (21 MHz)
5 o 3 B

)
o

)
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50

Stark shift (20 MHz)

0 . . . h ; . I 10 10 10 10 10
0 5 10 15 20 25 30 35 40 45 trapping time (us)

P (um)
FIG. 17. Root-mean-square velocity along the cavity axs®
as a function of trapping time, for each simulated trajectory in the

case(b) and with the higher-order FORT mode 6.

FIG. 16. Stark shiftsS,; and S 1, (narrower curvgas a func-
tion of the radial coordinate, at the axial antinode. Parameter
values are in the text.

prac—14.1um. This means adopting both the incident radial confinement that makes it easier to optimize the cool-
max . . H

FORT power and the doughnut mode waist, so that the only9 coqd[tions. The more the atom is radially confined, the
difference with the case studied in the preceding section i nger it is trapped. . .

the smaller width of the radial welsee Fig. 16, where the Here, we have decreased the width of the radial vyell by
radial profile of the Stark shift induced by the b & FORT choosing a hlgher-order_ doughnut mode and by S|mult§1—
mode is compared with that of the L@mode. The chosen neously adjusting its waist, so to have an unchanged radial
parameters are the same as above except that now the spa@%
dependence of the Stark shi¢qual for both ground and :
excited statgis

ilibrium positionp,ax. This solution may be practically
icult to implement because one would need different cav-
ity mirrors for this high-order doughnut FORT mode. Any-
way, even though the implementation of the trapping scheme
52 with a higher-order doughnut mode is difficult, the latter nu-

e o —<p merical results clearly show the importance of the radial con-
S(p,X)=Sep s|n2(k5x)exp[ 2 J (34) finement, and the direction one has to follow in order to

S increase the trapping time of neutral atoms in cavities in the

case of equal Stark shifts induced by the FORT mode.

with  Wg=20A12~5.77 um and S,~1.2x10° %
MHz/um?*,

Considering again the initial conditions specified in Sec. 1
IV A1l and sampling about 400 simulated trajectories, we
have found the results shown in Figs. 17 and 18.

In Fig. 17, we have displayed the root-mean-square veloc- 08
ity along the cavity axis"* as a function of trapping tim& 07
for each simulated trajectory. All atoms are again trapped
with trapping times greater than 1 ms. The probabikit)
to be trapped for a time greater thafshown in Fig. 18 is
computed considering all simulated points. The data arez
again fitted by a decaying fitting functid®"(t) (full line in 4
Fig. 18, yielding a mean lifetimer= [5t(—dP"/dt)dt 0.3
=(64£5) ms.

This significant improvement in the mean trapping time,
provided by the LG 1, FORT mode with respect to the lg& 0.1
one, is due to the strongest radial confinement achi¢see 0 . . "
Fig. 16. The atom stays closer to the radial potential mini-  ° 05 ! ime ( 8)1-5 2 25
mum where cooling conditions are optimized and the prob- g x10
ability to leave the cavity decreases. This is a further argu- F|G. 18. ProbabilityP(t) for an atom to be trapped for a time
ment showing that the main advantage of using a doughnureater thar in the caseb) and with the higher-order FORT mode
FORT mode instead of a TE)M FORT mode for atom trap- LG, ;,. The full line is a fitting decay curve yielding a mean trap-
ping in the case of equal Stark shifts is just the strongeping time r=(64+5) ms.

0.9f

obability
=
»

Q
o
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A possible solution to overcome the practical difficultiesvia an additional transverse free-space coolisge Ref.
of a LGy, experimental setup can be the following one,[21]) or via an active feedback on radial motiptv].
provided that one has enough power and stability for the
laser driving the FORT mode. The same radial potential VI. CONCLUSIONS
aroundpmax @s that created by the lgG, FORT mode canbe  \we have investigated trapping of single atoms in high-
achieved using a very intense bGFORT mode. One can finesse optical cavities using both a quasiresonant cavity-
take Sy=4me MHz/um?, leading toSy,,=27x400 MHz,  QED field and an intense classical FORT mode. In particular,
and leave all the other parameters uncharlgee Sec. IVB  we have considered the case of doughnut FORT modes, and
for the parameters of the Lf3 FORT mode in casé)]. In  we have compared them to the most common case of a fun-
this new configuration, both the radial and the axial wells arejamental Gaussian FORT modsee, for example, the ex-
eight times deeper, and therefore, together with the desiregeriment of Ref[8]). Performing full 3D numerical simula-
strong radial confinemer(substantially the same as that of tjons of the quasiclassical center-of-mass motion of the atom,
LGp,12 FORT modg, we have a strong axial confinement. we have shown that a doughnut FORT mode is more suitable
Both these facts lead to a considerable increase of trappingan a fundamental Gaussian FORT mode to trap the atom,
time, up to 2 ga result of the same order as the one recentlyin the case when the FORT mode shifts both the excited and
reported in Ref[21]), as demonstrated by the numerical the ground state down. This happens when the FORT mode
simulation of some trajectories which we show in the follow- s red detuned in such a way that the excited state is rela-
ing table: tively closer to resonance with a higher-lying excited state
than with the ground state. This case, even though more dif-
ficult to realize than the standard two-level case where the

Trapping time rms Type of . e : .
pp(m%) T (zr);\/s) eysrz:ape two Stark shifts are opposite, is of particular interest for
quantum information applications of cavity-QED systems,
157 29.4 axial where it is important to trap the atom at a given position,
432 20.2 axial independent of its internal state, so that the quantum manipu-
. lation of the internal state can be easily performed. The ad-
556 16.1 axial . .
. vantage of using a doughnut FORT mode instead of a
684 13.7 radial . . .
} TEMpo one is due to the stronger radial confinement,
1107 10.5 radial - achieved at a nonzero distance from the cavity axis. In this
1108 11.4 radial  \yay, the FORT mode is more suitable to counteract the un-
1177 10.7 radial  avoidable radial departure caused by the centrifugal potential
2141 10.4 radial and by diffusion, by keeping the atom close to its equilib-

(39 rium position where the cooling provided by the quantized

According to the tabl€35), the atom is so strongly confined cavity mode is optimal.

a}xially .that in some cqse(ﬁho'se with the longer trapping ACKNOWLEDGMENT

times, it leaves the cavity radially due to the effect of spon-

taneous emission. In these cases, an additional radial cooling This work has been partially supported by the European
mechanism would be helpful as, for instance, that achievetnion through the IHP program “QUEST.”
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