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Trapping and cooling single atoms with far-off-resonance intracavity doughnut modes

Stefano Pirandola, David Vitali, and Paolo Tombesi
Dipartimento di Fisica and Unita` INFM, Universitàdi Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy

~Received 31 July 2002; published 28 February 2003!

We investigate cooling and trapping of single atoms inside an optical cavity using a quasiresonant field and
a far-off-resonant mode of the Laguerre-Gauss type. The far-off-resonant doughnut mode provides an efficient
trapping in the case when it shifts the atomic internal ground and excited state in the same way, which is
particularly useful for quantum information applications of cavity quantum electrodynamics systems. Long
trapping times can be achieved, as shown by full three-dimensional simulations of the quasiclassical motion
inside the resonator.
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I. INTRODUCTION

Cavity quantum electrodynamics~QED! is a powerful
tool for the deterministic control of atom-photon interactio
at the quantum level. In fact, the strong confinement allo
to achieve the strong-coupling regime where single qua
can profoundly affect the atom-cavity dynamics@1#. Many
experiments have now reached this regime and interes
phenomena have been demonstrated as a quantum phas
@2#, the Fock-state generation in a cavity field@3#, and quan-
tum nondemolition detection of a single cavity photon@4#.
Moreover, cavity QED offers unique advantages for quant
communication and quantum information processing ap
cations. In fact, atoms may act as quantum memories, w
photons are flexible transporters of quantum informati
and quantum networks of multiple atom-cavity syste
linked by optical interconnects have been already discus
in the literature@5#. The primary technical challenge on th
road toward these applications is to trap individual neu
atoms within a high-finesse cavity for a reasonably lo
time. Recent experiments@6,7# have already succeeded
trapping single atoms inside an optical cavity driven at
few-photon level, just using the strong coupling with t
cavity-QED mode for both cooling and trapping. Howev
the scheme of Refs.@6,7# is not entirely suitable for quantum
communication purposes because it has limited opera
flexibility and provides short trapping times~order of hun-
dreds of microseconds!. In fact, it employs a single cavity
mode, while it is preferable to have an additional trapp
mechanism that does not interfere with the cavity-QED
teractions able to provide the atom-photon entanglem
needed for the manipulation of quantum information. W
respect to these, another experiment has already dem
strated significant trapping times (;28 ms) of single Cs at-
oms within a cavity, employing an additional far-of
resonance trapping~FORT! mode@8#. Using the fact that in
the strong-coupling regime, the trajectory of an individu
atom can be monitored in real time by the quasireson
cavity QED-field @9#, the FORT beam can be turned on
soon as the atom enters the cavity in order to increase
trapping time.

Several mechanisms for cooling inside an optical reso
tor have been already discussed in the literature@10–13#,
involving either cavity mode driving, or direct atom drivin
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via a classical laser field from the side, or even active fe
back on atomic motion as in Ref.@14#. However, only the
recent paper by van Enket al. @15# has discussed in detail th
effects of an additional FORT beam on the cooling and tr
ping dynamics and its interplay with the quasireson
cavity-QED field. Here, we shall consider a situation ana
gous to that of Ref.@15#, even though we shall extend ou
study to different FORT mode configurations. We have ch
sen a parameter region corresponding to the weak-driv
limit with an empty-cavity mean photon numberNe.0.01.
We have performed full three-dimensional~3D! numerical
simulations of the quasiclassical atomic motion, includi
the effects of spontaneous emission and dipole-force fluc
tions.

In two-level systems, red-detuned FORT beams shift
atomic excited stateue& up and the ground stateug& downby
the same quantity, and this is the most common situat
studied in great detail in Ref.@15#. However, the most inter-
esting situation for quantum information processing appli
tions is when both levels are shifteddown by the FORT
beam: in this case, excited- and ground-state atoms
trapped in the same position, and this greatly simplifies
quantum manipulation of the internal state. In fact, the m
flexible situation for quantum information processing is ha
ing a trapping mechanism independent of the atomic inte
state. This configuration can be realized by using a FO
that is red detuned in such a way that the excited stat
relatively closer to resonance with a higher-lying excit
state than with the ground state. We shall discuss in de
both situations~equal or opposite optical Stark shifts!, and
we shall find the interesting result that in the case of eq
Stark shifts for ground and excited states, the use of dou
nut modes, that is, higher-order Gauss-Laguerre modes
FORT mode, is able to increase significantly the trapp
time within the cavity.

The paper is organized as follows. In Sec. II, we descr
the physics of an atom trapped in an optical potential a
strongly interacting with a cavity-QED field. We also discu
the changes introduced by the FORT doughnut mode. In S
III, applying the general approach developed in Ref.@16# to
a cavity mode configuration, we discuss the conditions un
which the center-of-mass motion of the atom can be adiab
cally separated from the internal and cavity mode dynam
and treated in a quasiclassical way. The corresponding
©2003 The American Physical Society04-1
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Fokker-Planck equation for the phase-space atomic mo
will be derived. In Sec. IV, the results of the numerical sim
lations of the corresponding stochastic differential equati
will be presented in detail, and in Sec. V these results will
discussed for both equal and opposite energy shifts of theue&
and ug& states. Section VI is for concluding remarks.

II. THE PHYSICAL PROBLEM

We consider a two-level atom coupled to a quantized c
ity mode and to an additional classical red-detuned FO
beam, coinciding with another longitudinal mode of the ca
ity, with a wavelengthlS longer than that of the quasireso
nant cavity mode,lg . The common situation is to conside
lowest-order Gaussian modes for both fields@15#, having
their maximum intensity along the cavity axis. Here, we sh
consider a different situation, where the FORT mode i
higher-order Gauss-Laguerre mode, the so-called doug
mode, having its maximum intensity at a nonzero radial d
tance from the cavity axis. This means that the atoms
trapped out of the cavity axis~see Fig. 1 for a schemati
description of the system!. At first sight, this choice may
look not optimal because in this case, the coupling with
fundamental Gaussian cavity-QED field responsible for co
ing is smaller. Nonetheless, we shall see that this choic
convenient in the case when the classical FORT mode s
down both excited and ground states, which is the most
teresting case for quantum information processing appl
tions. We recall that the Laguerre-Gauss modes (LGpm) are
the solutions of the paraxial Helmoltz equation in cylindric
coordinates (r,q,x) @17#. In this paper, we consider th
doughnut modes with radial indexmÞ0 and azimuthal index
p50, whose intensity is given by

I 0m~r,x!54P
2m11

pm!

r2m

W2(m11)~x!
expH 2

2r2

W2~x!
J sin2~kSx!,

~1!

FIG. 1. Schematic description of the system. An atom falli
from a magneto-optical trap is trapped within a cavity with a fu
damental Gaussian quantized resonant mode~pale gray! and an in-
tense classical doughnut FORT mode~gray!.
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where P is the power,kS52p/lS the wave number, and
W(x) the beam radius. The doughnut mode radius is giv
by the position of the radial maximum, given byrmax

5W(x)Am/2. We can simplify the description assuming
nearly planar cavity, so thatW(x);WS . The classical, red-
detuned FORT mode induces ac-Stark shiftsDEg on the
ground stateug& and DEe on the excited stateue& @18#. We
can distinguish two different situations:~a! ug& is shifted
down andue& is shifted up, which happens in the commo
situation where only thee↔g transition is close to the red
detuned FORT mode. In this case, the two shifts are op
site. ~b! Both ug& and ue& are shifted down, which happen
when ue& is closer to resonance with a higher-lying excit
level than with the levelug& @19–21#. We shall study both
situations and, in case~b! we shall assume that the variou
detunings can be chosen so that the two levels are sh
down by the same quantity. Furthermore, to simplify t
comparison between the two cases, we shall assume tha
two situations occur with the same wavelengthlS .

Considering a frame rotating at the probe driving fr
quencyvp , the Hamiltonian of the system can be written

H5
uPW u2

2M
1\vaps

†s1\vgpa
†a1V~RW !1\~Ea†1E* a!,

~2!

wherevap5veg2vp is the detuning of the the atomic reso
nance from the probe frequency,vgp5vg2vp is the de-
tuning of the cavity QED mode with annihilation operat
a, s5ug&^eu, E is the cavity driving rate, andRW ,PW are the
position and momentum vector operators of the atom, hav
a massM. The interaction potentialV(RW ) describes the in-
teraction between the internal atomic levels, the cav
modes and the atomic center-of-mass motion, and it is gi
by the coupling with the quantized cavity mode and with t
FORT doughnut mode. Making the usual dipole and rotat
wave approximations, this interaction term can be written

V~RW !5\g~RW !~a†s1s†a!1VS~RW !, ~3!

where

g~r,x!5g0sin~kgx!expH 2
r2

Wg
2J ~4!

is the space-dependent Rabi frequency due to the coup
with the quantized mode, and the second termVS(RW ) de-
scribes the effect of the Stark shifts induced by the FO
mode, assuming the following form in the two cases,~a! and
~b!:

case~a! VS~RW !5\S~RW !~s†s2ss†!, ~5!

case~b! VS~RW !52\S~RW !. ~6!

-

4-2
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The frequency ac-Stark shift is generally given byS(r,x)
5aI 0m(r,x)/4\ @22,23#, wherea is the atomic polarizabil-
ity and I 0m(r,x) is the FORT intensity of Eq.~1!, so that one
can write

S~r,x!5S0r2msin2~kSx!expH 2
2r2

WS
2 J , ~7!

with S052m11Pa/p\WS
2m12 . We have generally consid

ered different waistsWg andWS for the two modes, but they
practically coincide in typical situations.

The FORT mode provides the main trapping mechani
This means that the atom will be trapped around the an
odes of the red-detuned FORT field, becauseS0.g0 and the
cavity-QED field is weakly driven. However, due to the d
ferent wavelengths, one does not have a periodic situa
and the atom feels a different cavity-QED coupling in diffe
ent wells. In the experiment of Ref.@8#, the cavity lengthL is
such that 2L5104lg5102lS . To simplify our simulation,
we have, however, chosenL516lg515lS as it has been
done also in Ref.@15#. This is equivalent to choose a fict
tious larger value forlS which, however, does not modif
the essential physics of the problem because the FORT m
is in any case far-off resonance. With this choice, we c
sider only 30 potential wells in the cavity, only eight o
which are quantitatively different~see Ref.@15#!.

Dissipation, diffusion, and all nonconservative effects a
pear due to spontaneous emission and cavity losses.
quantum evolution of the atom-cavity system is theref
described by a master equation for the atom-cavity den
operatorr @16#

dr

dt
52

i

\
@H,r#1k~2ara†2a†ar2ra†a!

2g~s†sr1rs†s!1
3g

4p E d2k̂

3D~ k̂• x̂!e2 ikW•RW srs†eikW•RW , ~8!

where k is the cavity damping rate andg is spontaneous
emission decay rate. The last term describes the effect
atomic recoil, withk̂ giving the direction of emitted photon
and D( k̂• x̂)5@11( k̂• x̂)2#/2 describing the angular patter
of dipole radiation@24#.

III. QUASICLASSICAL DESCRIPTION OF THE ATOMIC
MOTION

The internal and cavity dynamics is governed by the
tuningsvap andvgp , the spontaneous emission rateg, the
driving rateE, the cavity damping ratek, the FORT shiftS0,
and the coupling constantg0. In the parameter region rel
evant for current experiments, this dynamics is much fa
than the atomic motional dynamics, especially for heavy
oms as Cs@8# or Rb @7#. Therefore, internal and cavity dy
namics can be adiabatically eliminated in order to obtai
reduced effective evolution equation for the motional d
grees of freedom only. This adiabatic elimination can
02340
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made in a systematic way by adopting the general appro
developed for free space cooling situations in Ref.@16# to the
present cavity scheme~see also Ref.@13#!. One starts from
the evolution equation of the Wigner operator obtained
performing the Wigner transform only on the motional H
bert space, and writing this equation as a Taylor expansio
terms of two small parameters of the problem. Denoting w
k.kg.kS.ka5veg /c the typical wave number of the prob
lem, we have that one small parameter is

e15
\k

Dp
!1, ~9!

showing that the motional state is characterized by a mom
tum spreadDp much larger than the momentum kicks felt b
the atom during any photon emission or absorption. The s
ond small parameter is

e2.
kDp

Mg
.

kDp

Mk
!1, ~10!

which instead shows that the Doppler shift associated w
the momentum spread is small with respect to the atomic
cavity linewidths. The two conditions set a lower and
upper bound for the momentum spread of the atom, wh
thanks to the Heisenberg inequality, put also a lower and
upper bound for its position spread. These bounds allow
describe the atomic motion in classical terms because
atom is sufficiently localized in phase space to make it p
sible to describe its motion in terms of trajectories, while
the same time the phase-space spread always remains l
than \ ~see Refs.@9,11#!. The crucial point is that the two
conditions~9! and ~10! must be consistent and this happe
when

\2k2

2M
!\g,\k. ~11!

This means supplementing the well-known necessary co
tion for laser cooling in free space,\2k2/2M!\g ~the atom
has to be still in resonance after spontaneously emitti!
@16#, with an analogous condition for the exchange of cav
photons.

For small parameterse1 and e2, the atomic motion is
much slower than the internal one, and the adiabatic eli
nation of the latter is obtained if the atomic kinetic-ener
term is neglected in the equation for the Wigner opera
which then effectively factorizes into a product of a statio
ary stateh(rW) for the cavity and internal degrees of freedo
evaluated at the fixed atomic positionrW5(r,u,x), and a real-
valued motional Wigner functionf (rW,pW ,t). The stationary
stateh(rW) satisfies the steady-state Bloch equation
4-3
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LBloch~rW !h~rW !

[2 i Fvaps
†s1vgpa

†a1~Ea†1E* a!1
V~rW !

\
,h~rW !G

1k@2ah~rW !a†2a†ah~rW !2h~rW !a†a#

1g@2sh~rW !s†2s†sh~rW !2h~rW !s†s#50, ~12!

whereLBloch(rW) comes from a zeroth-order expansion of t
master equation~8! in the small parameterse1 ande2 of Eqs.
~9! and ~10!.

The resulting equation for the Wigner functionf (rW,pW ,t) is
of Fokker-Planck type and is given by@13,16#

]

]t
f ~rW,pW ,t !52

pW

M
•

]

]rW
f ~rW,pW ,t !2

]

]pW
f ~rW,pW ,t !•fW ~rW !

1\2ka
2g^s†s&~rW !(

i
Eii

]2

]pi
2

f ~rW,pW ,t !

1(
i j

h i j ~rW !
]2

]pi]r j
f ~rW,pW ,t !

1(
i j

Di j ~rW !
]2

]pi]pj
f ~rW,pW ,t !

1(
i j

G i j ~rW !
]

]pi
@pj f ~rW,pW ,t !#. ~13!

All the coefficients of this Fokker-Planck equation depe
upon average values and correlation functions of the inte
and cavity degrees of freedom evaluated on the station
state at fixed atomic positionh(rW) of Eq. ~12!. An example is
provided by the average valuês†s&(rW) appearing in Eq.
~13! in the diffusion term due to spontaneous emissi
which also depends upon the diagonal matrixEii given by
Exx52/5, Eyy5Ezz53/10 @13,24#. The other atom-cavity
quantities determining the Fokker-Planck equation coe
cients areF[a†s1s†a andC[s†s2ss†, whose expec-
tation value determines the mean dipole force acting on
atomfW (rW). In fact,

fW ~rW !55 2\
]

]rW
g~rW !^F&~rW !2\

]

]rW
S~rW !^C&~rW ! case~a!

2\
]

]rW
g~rW !^F&~rW !1\

]

]rW
S~rW ! case~b!,

~14!

which is a sum of the quantized mode contribution and
FORT mode contribution. This is no more true for the fri
tion matrixG i j (rW) and the diffusion matrixDi j (rW), which are
bilinear functionals of the dipole-force operator and assu
different forms in the two cases~a! and ~b!. In fact, in case
~b! of equal shifts, the FORT mode simply adds a conser
tive potential, independent of the internal atomic state, g
ing no contribution to friction and diffusion~provided that
02340
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the FORT beam intensity fluctuations are negligible, s
Refs.@22,23#!. Therefore, we can write

G i j ~rW !5H G i j
gg~rW !1G i j

gS~rW !1G i j
SS~rW ! case~a!

G i j
gg~rW ! case~b!,

~15!

Di j ~rW !5H Di j
gg~rW !1Di j

gS~rW !1Di j
SS~rW ! case~a!

Di j
gg~rW ! case~b!,

~16!

where the quantized mode contribution (gg), the FORT
mode contribution (SS), and the cross contribution (gS)
have been singled out. These terms can be then written

G i j
gg~rW !5

\

M

]g

]r i
~rW !

]g

]r j
~rW !xgg~rW !, ~17!

G i j
gS~rW !5

\

M

]g

]r i
~rW !

]S

]r j
~rW !xgS~rW !1

\

M

]S

]r i
~rW !

]g

]r j
~rW !xSg~rW !,

~18!

G i j
SS~rW !5

\

M

]S

]r i
~rW !

]S

]r j
~rW !xSS~rW !, ~19!

and

Di j
gg~rW !5\2

]g

]r i
~rW !

]g

]r j
~rW !jgg~rW !, ~20!

Di j
gS~rW !5\2

]g

]r i
~rW !

]S

]r j
~rW !jgS~rW !1\2

]S

]r i
~rW !

]g

]r j
~rW !jSg~rW !,

~21!

Di j
SS~rW !5\2

]S

]r i
~rW !

]S

]r j
~rW !jSS~rW !, ~22!

where

xgg~rW !5 i E
0

`

dtt^@F~t!,F~0!#&, ~23!

xgS~rW !5 i E
0

`

dtt^@F~t!,C~0!#&, ~24!

xSg~rW !5 i E
0

`

dtt^@C~t!,F~0!#&, ~25!

xSS~rW !5 i E
0

`

dtt^@C~t!,C~0!#&, ~26!

and

jgg~rW !5E
0

`

dtF1

2
^$F~t!,F~0!%&2^F&2G ~27!

jgS~rW !5E
0

`

dtF1

2
^$F~t!,C~0!%&2^F&^C&G , ~28!
4-4
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jSg~rW !5E
0

`

dtF1

2
^$C~t!,F~0!%&2^C&^F&G , ~29!

jSS~rW !5E
0

`

dtF1

2
^$C~t!,C~0!%&2^C&2G . ~30!

The cross diffusion term proportional toh i j (rW) is usually
much smaller than the diffusion terms due to the dipole-fo
fluctuationsDi j (rW) and due to spontaneous emission}Ei j
@13,16#, and we shall neglect it. Using this approximatio
and the above expression for the diffusion matrix, the s
dimensional phase-space diffusion matrix of the Fokk
Planck equation~13! becomes semipositive definite. Th
means that it can be associated to a classical phase-s
stochastic process describing the stochastic trajectories o
atomic center of mass within the cavity. Consistently w
the adiabatic and quasiclassical descriptions discussed ab
the motional Wigner functionf (rW,pW ,t) becomes therefore
non-negative, classical phase-space probability distribu
@16#. Our numerical analysis is based just on the simulat
of these stochastic 3D trajectories, which are obtained
solutions of the Itoˆ stochastic equations associated to
Fokker-Planck equation~13!. Moreover, as it can be easil
seen from Eqs.~4!, ~7!, and ~17!–~22!, one hasGxx}lg

22

;lS
22 , Gxy;Gxz}lg

21Wg
21;lS

21WS
21 , Gyy;Gzz}WS

22 ,
and the same is true for the diffusion matrixDi j . Since it is
alwayslg ,lS!Wg ,WS , it is evident that the only relevan
term in the friction and diffusion matrices is thexx compo-
nent along the cavity axis, where both the quantized field
the FORT mode show the largest spatial gradients@15#. In
our numerical simulations, we have therefore conside
both the friction force and the dipole-force contribution
diffusion, only along the cavity axisx, while we have kept
the spontaneous emission–diffusion terms in all three di
tions.

Taking into account Eq.~13!, and the above approxima
tions, we have therefore numerically solved the followinĝ
equations@25,26#:

drW5
pW

M
dt,

dpW 5fW ~rW !dt2S Gxx~rW ! 0 0

0 0 0

0 0 0
D S px

py

pz

D dt

1S ADxx~rW !dW1

0

0
D 1\kaAg^s†s&~rW !S AExxdWx

AEyydWy

AEzzdWz

D ,

~31!

where dW1 and dWW [(dWx ,dWy ,dWz) are four indepen-
dent, zero mean, Wiener increments with the prope
dWidWj52d i j dt, (i , j 51,x,y,z). The quantities fW (rW),
Gxx(rW), Dxx(rW), ^s†s&(rW) in Eq. ~31! have been determine
02340
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by numerically solving Eq.~12! in the atom-cavity Hilbert
space truncated atn54 photons~see Ref.@27# for details!.
We have also checked that these numerical solutions re
duce the results of the analytical approach of Ref.@11# in the
weak-driving limit.

IV. NUMERICAL RESULTS

In the following sections, we present and discuss the
sults of the numerical simulations in both cases~a! and ~b!.
We have chosen equivalent conditions for the two cases
that the corresponding numerical results are directly com
rable.

A. Study of case„a…

We consider parameter values referred to the experim
of Ref. @8#. In fact, we consider the Cs transition atla
52p/ka5852.4 nm between the ground stateug&
5u6S1/2,F54,mF54& and the excited stateue&5u6P3/2,F
55,mF55&, and a cavity mode resonant with it, i.e.,vap
5vgp52Dp52p310 MHz (Dp is the probe detuning
from resonance!. The spontaneous emission rate isg
52p32.6 MHz, while the other quantized mode paramet
are g052p330Ae MHz, k52p34 MHz, Wg520 mm,
and E56.77 MHz, so that the empty-cavity mean phot
number isNe5E2/(k21Dp

2)50.01. Since it isg0.g,k, we
are therefore in the strong-coupling regime of cavity QE
Then we use a LG01 doughnut mode as red-detuned FOR
field, with parameter values WS520 mm, S0
5pe/2 MHz/mm2. These choices givermax;14.1mm for
the doughnut radius, and the maximum Stark shift given
the FORT mode, achieved atrmax, is Smax52p350 MHz.

As discussed above and in Ref.@15#, we have chosen a
fictitious large value oflS , so that L515lS516lg (lg
5la) in order to simplify the simulation, without howeve
changing the physics because the exact value oflS is unim-
portant as long as it is far-off resonance. The dominant
tential is the one due to the FORT and therefore the ato
equilibrium positions will be situated at the FORT antinod
xn

e5(n21/2)lS/2, n51, . . . along the axial direction and a
the nonzero radial distance from the cavity axisrmax
;14.1mm. Due to the sharp radial potential well of th
doughnut mode, the atom will experience a sharp radial c
finement aroundrmax besides the axial confinement aroun
an antinode.

The superposition of the two modes with different wav
lengths determines a spatially aperiodic situation within
cavity. The above choice gives eight nonequivalent poten
wells in which the atom is subject to different couplings wi
the quantized cavity mode. This aperiodic situation is sho
in Figs. 2 and 3, where the axial friction coefficientGxx(rW) of
Eqs. ~15! and ~17!–~19!, and the dipole contribution to the
axial diffusion coefficientDxx(rW) of Eqs.~16! and~20!–~22!,
at fixed radial distancer5rmax ~bottom of the radial well!,
and as a function of the axial coordinatex, are plotted.

Simulation results

To characterize the trapping and cooling dynamics,
have carried out a quantitative study inside a central well,
4-5
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PIRANDOLA, VITALI, AND TOMBESI PHYSICAL REVIEW A 67, 023404 ~2003!
one centered atx5
e52.25lS and ranging from 2lS to 2.5lS .

In order to simulate the typical experimental condition, w
have chosen proper initial conditions, considering that, in
experimental procedure, the FORT field is switched on o
when the laser probe transmission exceeds a fixed thres
indicating the presence of the atom inside the cavity. T
initial position has been taken axiallylS/8 away from equi-
librium point x5

e ~then x052.125lS), radially along the
doughnut maximumr05rmax, and uniformly distributed
over the polar angleu. For what concerns the initial velocity
it is reasonable to choose a vertical velocity with compone
vx05vy050, vz0510 cm/s.

In order to examine qualitatively the typical atomic m
tion, we report some snapshots from two simulated traje

FIG. 2. Axial friction coefficientGxx(rW), at a fixed radial dis-
tancer5rmax ~bottom of the radial well!, versus the rescaled axia
coordinatex/lS , in the case~a! of opposite Stark shifts induced b
the FORT mode. Parameter values are in the text.

FIG. 3. Dipole contribution to the axial velocity diffusion coe
ficient Dxx(rW)/M2, at fixed radial distancer5rmax ~bottom of the
radial well!, versus the rescaled axial coordinatex/lS , in the case
~a! of opposite Stark shifts induced by the FORT mode. Param
values are in the text.
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ries with slightly different initial conditions: one describes
tangential incidence of the atom along the doughnut per
eter (x052.125lS , y05rmax, z050, vx05vy050, vz0
510 cm/s) ~see Figs. 4–6!; the other instead describes a
orthogonal incidence with respect to the doughnut mo
(x052.125lS , y050, z05rmax, vx05vy050, vz0
510 cm/s)~see Fig. 7!. The trajectory is well confined, axi
ally around a FORT antinode, and radially around the ma
mum rmax: the 3D atomic motion occurs substantially on
plane orthogonal to the cavity axis, with the trajectory dra
ing just the shape of the doughnut mode. From Figs. 4
one can recognize that the atomic motion is characterized
the following three different time scales.

~1! The fastest time scale is given by the axial oscillatio
which have, for our parameter values, a time period;2 ms
~see Fig. 4!.

er

FIG. 4. Time evolution of the axial position in the case of
initial velocity tangential with respect to the doughnut FORT mod
Parameter values are in the text.

FIG. 5. Time evolution of the radial coordinate in the case of
initial velocity tangential with respect to the doughnut FORT mod
Parameter values are in the text.
4-6
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TRAPPING AND COOLING SINGLE ATOMS WITH FAR- . . . PHYSICAL REVIEW A 67, 023404 ~2003!
~2! A slower time scale is associated with the radial os
lations, characterized by a time period;100 ms ~see Fig. 5!;
these oscillations become wider in the case of orthogo
incidence with respect to the doughnut mode, since, in
case, the atom probes more the doughnut radial elast
~compare, in fact, Fig. 6 where the oscillation amplitude
;1 mm with Fig. 7, where the amplitude is;4 mm).

~3! The third and slowest time scale is given by the atom
rotations around the cavity axis. For tangential incidence,
initial angular momentum is large and the rotation period
;1 ms while, for orthogonal incidence, the atom acquire
nonzero angular momentum only because of radial diffus
and the rotation period is larger,;10 ms.

The final escape of the atom from the cavity is practica
always along the axial direction, and this is due to the he
ing provided by the strong axial diffusion, which preva

FIG. 6. Radial trajectory in the case of an initial velocity ta
gential with respect to the doughnut FORT mode. Parameter va
are in the text.

FIG. 7. Radial trajectory in the case of an initial velocity o
thogonal with respect to the doughnut FORT mode. Parameter
ues are in the text.
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with respect to the radial diffusion, determined only by t
spontaneous emission.

To determine the mean trapping times, we have define
trapping timeT the time spent by the atom inside a sing
potential well,lS/2 wide along the axial direction, and wit
a radius equal to 2WS . Sampling about 400 simulated tra
jectories, we have found the results displayed in Figs. 8
9. In Fig. 8, we have displayed the root-mean-square velo
along the cavity axisvx

rms as a function of the trapping time
T for each simulated trajectory. We can see a clear separa
of simulated points. In fact, about 60% of atoms are n
trapped at all: they correspond to the upper set of points
Fig. 8, having a velocityvx

rms.20 cm/s, and for which the
trapping time is below 2 ms. These are not cooled via
cavity-QED interaction, and the velocityvx

rms;28 cm/s is

es

l-

FIG. 8. Root-mean-square velocity along the cavity axisvx
rms as

a function of the trapping timeT, for each simulated trajectory, in
the case~a! of opposite Stark shifts.

FIG. 9. Trapping time statistics for the subset of trapped ato
in the case~a! of opposite Stark shifts.P(t) is the probability for an
atom to be trapped for a time greater thant. The full line is a fitting
decay curve yielding a mean trapping timet5(1761) ms.
4-7
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PIRANDOLA, VITALI, AND TOMBESI PHYSICAL REVIEW A 67, 023404 ~2003!
mainly a result due to the initial conditions. These uncoo
atoms are those which are more influenced by the sp
region where the axial friction is negative~see Fig. 2!, where
atoms can be accelerated. The remaining 40% of atoms~the
points below the threshold of 20 cm/s in Fig. 8! are trapped:
their velocityvx

rms of about 14 cm/s is a result of the coolin
provided by the exchange of cavity photons. These ato
reach thermal equilibrium and have trapping times grea
than 2 ms.

Considering only the subset of trapped atoms, they ha
probability P(t) to be trapped for a time greater thant. The
trapping time statistics is shown in Fig. 9, where it is a
compared with a decaying fitting curvePth ~full line in Fig.
9!. The best fitting mean trapping time ist5*0

`t
(2dPth/dt)dt5(1761) ms, which is comparable to the ex
perimental value obtained using a fundamental Gaus
FORT mode in Ref.@8# and with the numerical simulation
performed in Ref.@15#, again for a fundamental Gaussia
FORT mode. This is not surprising because, except for
fact that the atom is now trapped at a nonzero distance f
the cavity axis, the physics of cooling is similar to that o
curring in a lowest-order Gaussian FORT mode, and
analysis of Ref.@15# can be essentially repeated.

B. Study of case„b…

We consider the same parameter values of case~a!, except
that we slightly adapt to the probe detuning and choos
value Dp522p335 MHz. As a consequence, we then s
E522.13 MHz, in order to keep the same empty-cav
mean photon numberNe50.01 of case~a!.

The situation is in many respects very similar to the p
ceding one: the atomic equilibrium positions are again s
ated at the FORT antinodesxn

e5(n21/2)lS/2, n51, . . .
along the axial direction and at the nonzero radial dista
from the cavity axisrmax;14.1mm. There is still an aperi-
odic situation with eight notequivalent wells within the ca
ity. However, for equal atomic shifts, the FORT does n
affect both friction and diffusion@it does not affect the force
fluctuations, see Eqs.~15! and ~16!# and therefore, for wha
concerns friction and diffusion, an axially periodic situatio
is restored in this case, with a spatial period set by the cav
QED mode. The periodic friction and diffusion spatial vari
tions are shown in Figs. 10 and 11, where the axial frict
coefficientGxx(rW) of Eqs.~15! and~17!–~19!, and the dipole
contribution to the axial diffusion coefficientDxx(rW) of Eqs.
~16! and~20!–~22!, at fixed radial distancer5rmax, and as a
function of the axial coordinatex, are plotted. If we compare
Figs. 2 and 3 with Figs. 10 and 11, we see that in case~b! the
maxima of the axial friction and diffusion coefficients a
lower, but one has the advantage that now the friction co
ficient is always positive, while in case~a! it may assume
very large negative values, yielding heating rather than co
ing. This always-positive friction implies that all atoms fa
ing in the cavity are now cooled and trapped, while in ca
~a!, a fraction of the atoms can be heated and are not trap

Simulation results

In order to calculate the mean trapping time in case~b!,
we have carried out a computer simulation considering
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same initial condition of case~a! ~see Sec. IV A 1!. By sam-
pling about 400 simulated trajectories, we have found
results shown in Figs. 12 and 13.

In Fig. 12, we have displayed the root-mean-square ve
ity along the cavity axisvx

rms as a function of trapping timeT
for each simulated trajectory. At variance with case~a!, now
all atoms are trapped, with trapping times greater than 1
This is due the fact that axial friction is always positive a
atoms are cooled everywhere. In this case, the probab
P(t) to be trapped for a time greater thant ~shown in Fig.
13! is computed considering all simulated points. The d
are again fitted by a decaying fitting functionPth(t) ~full line
in Fig. 13!, yielding a mean lifetimet5*0

`t(2dPth/dt)dt
5(4463) ms.

FIG. 10. Axial friction coefficientGxx(rW), at fixed radial dis-
tancer5rmax ~bottom of the radial well!, versus the rescaled axia
coordinatex/lS , in the case~b! of equal Stark shifts induced by th
FORT mode.

FIG. 11. Dipole contribution to the axial velocity diffusion co
efficientDxx(rW)/M2, at fixed radial distancer5rmax ~bottom of the
radial well!, versus the rescaled axial coordinatex/lS , in the case
~b! of equal Stark shifts induced by the FORT mode.
4-8
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TRAPPING AND COOLING SINGLE ATOMS WITH FAR- . . . PHYSICAL REVIEW A 67, 023404 ~2003!
This is the most relevant result of our investigation, sho
ing that using a doughnut mode as FORT mode allows u
achieve significant trapping times in the case~b!, when the
FORT induces equal Stark shifts on the atomic levels. In f
we get a mean trapping time larger than that obtained, in
same situation, with a red-detuned fundamental Gaus
mode @see the numerical analysis of Ref.@15#, Sec. IV F,
wheret5(2862) ms]. This shows that in the case of equ
Stark shifts, the radial confinement at a nonzero dista
from the cavity axis provided by the doughnut FORT mo
is preferable with respect to the radial trapping along
cavity axis provided by the TEM0,0 FORT mode. The im-
provement provided by doughnut mode is useful for qu
tum information processing applications in cavity-QED sy
tems because when the FORT mode induces equal shift

FIG. 12. Root-mean-square velocity along the cavity axisvx
rms

as a function of trapping timeT, for each simulated trajectory, in th
case~b! of equal Stark shifts.

FIG. 13. ProbabilityP(t) for an atom to be trapped for a tim
greater thant in the case~b! of equal Stark shifts. The full line is a
fitting decay curve, yielding a mean trapping timet5(44
63) ms.
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the ground and excited state, the two states are trapped a
same positions within the cavity, and the internal state can
manipulated independently of its center-of-mass state.
quantum information applications, it is important to evalua
the variation of the cavity-QED couplingDg. In our param-
eters’ regime, it isDg*16%, which is worse than that for
TEM0,0 FORT mode under the same conditions (Dg
*6%). However, the problem associated with such a var
tion of coupling can be circumvented if one adopts an ad
batic transfer scheme such as the one suggested in Ref.@29#
for quantum information processing with hot trapped atom
In such a case, the operation timeTop for the adiabatic trans-
formations must satisfy the conditions 2ms;naxial

21 ,Top

!n radial
21 ;100 ms, wherenaxial,radial are the axial or radial

oscillation frequencies.
An interesting alternative to the configuration studied h

is to replace the TEM0,0 cavity-QED mode with the higher
order LG0,1 cavity-QED mode, having the same couplingg at
rmax. In this way, we achieve a better overlap between
FORT mode and cavity-QED one, which leads to a sma
variation of couplingDg , and therefore also to a better coo
ing configuration. In fact, repeating the simulations with t
LG0,1 cavity-QED mode we have seen a slight improvem
of the trapping time.

It is clear that the additional practical difficulty of usin
another LG mode makes the experimental realization e
harder; however this should be very challenging since,
tending the configuration from one LG cavity-QED mode
many degenerate LG cavity-QED modes, one has new p
sibilities, as following atomic motion in detail@30#, or in-
creasing the cooling effect as shown in Ref.@31#.

V. DISCUSSION OF THE RESULTS

Let us now discuss in detail which are the main featu
of using red-detuned doughnut modes as FORT fields.
atom-cavity dressed picture provides an intuitive way to u
derstand the advantages brought by the use of the doug
mode. In the present case of very weak driving (Ne50.01 in
our case!, the cooling mechanism is well described in term
of the eigenstates of the atom-cavity system~the dressed
states! containing at most one excitation~see also Ref.
@11,15,28#!. The state with no excitation is the ground sta
u0&, with energyE052\S(rW), while the first two dressed
states with one excitationu6& have energies

E65H \va6\Ag2~rW !1S2~rW ! case ~a!

\va2\S~rW !6\g~rW ! case ~b!,
~32!

so that the transition frequencies~relative tova) from the
ground stateu0& to excited statesu6& have the expressions

D6[
~E62E0!

\
2va5H S~rW !6Ag2~rW !1S2~rW ! case ~a!

6g~rW ! case ~b!.
~33!

The spatial variation of these transition frequencies along
axial direction~and at the radial positionr5rmax) is shown
4-9
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PIRANDOLA, VITALI, AND TOMBESI PHYSICAL REVIEW A 67, 023404 ~2003!
in Fig. 14 for the case~a! of opposite Stark shifts, and in Fig
15 for the case~b! of equal Stark shifts.

The patterns of spatial variation of the transition fr
quency allow to understand the difference between case~a!
and~b!. The cooling mechanism provided by the cavity QE
interaction in the weak driving limit, can be understood
analogy with Doppler cooling. In fact, by tuning below res
nance, stimulated absorption of a probe photon followed
spontaneous emission or cavity decay leads to a loss of
ergy. The maximum cooling rate is achieved when the ex
tation rate times the detuning is maximum. If the detun
turns from red to blue, cooling is replaced by heating, wh

FIG. 14. Transition frequenciesD6 ~relative to va) from the
ground stateu0& to the first excited dressed statesu6& along the
axial direction at fixed radial distancer5rmax ~bottom of the radial
well!, in the case~a! of opposite Stark shifts. The straight line give
the probe detuningDp .

FIG. 15. Transition frequenciesD6 ~relative to va) from the
ground stateu0& to the first excited dressed statesu6& along the
axial direction at fixed radial distancer5rmax ~bottom of the radial
well!, in the case~b! of equal Stark shifts. The straight line gives th
probe detuningDp .
02340
y
n-
i-
g

if the detuning becomes more red, the atom is still cool
but at a lower rate. In case~a! ~Fig. 14!, it is better to tune the
probe to the lower dressed state because it has smaller sp
variations~see the straight line in Fig. 14! and it is easier to
reach a compromise between having cavity regions with
optimal cooling rate~red detuning! and not too large regions
with heating~blue detuning!. However, as the atom move
radially from the doughnut intensity maximum atr5rmax,
the situation rapidly worsens, either if the atom moves
wards the center~the FORT beam decreases while the qua
tized field increase and the blue detuned region increase! or
if it tends to leave the cavity~the detuning becomes more re
and the cooling rate decreases!.

In case~b!, one tunes again to the lowest dressed stat
order to have red detuning, and therefore cooling, through
the cavity, when the atom is at the radial equilibrium positi
rmax ~see the straight line in Fig. 15!. From Eq.~33!, we see
that the probe detuning decreases~becomes less red! when
the atom moves radially towards the center, while it becom
more red if the atom moves away radially. However, t
probe detuning can be chosen so to remain always red
this way the atom is cooled everywhere, and is never ac
erated. For this reason, the doughnut FORT mode prov
longer trapping times in case~b! of equal Stark shifts rathe
than in case~a! of opposite shifts. What is more important
that, in case~b!, the doughnut FORT mode provides long
trapping times than a fundamental Gaussian FORT m
~see Ref.@15#, Sec. IV F!. In fact, in the latter case, the prob
detuning would be tuned so as to have optimal cooling on
cavity axis, where the atoms will be now trapped. Howev
because of radial diffusion~due to spontaneous emission!,
which also leads to an increasing angular momentum and
consequent rising of a centrifugal potential, the atom tend
move radially away from the cavity axis, so that the optim
cooling condition is rapidly lost. In fact, for increasingr, the
axial pattern of Fig. 15 rapidly vanishes, the driving pro
becomes too far-off resonance, and the cooling efficienc
lost.

The advantage of the doughnut FORT with respect to
TEM0,0 FORT is that it imposes a much sharper radial w
around the equilibrium position corresponding to the op
mum cooling condition. The atom is less free to move ra
ally, and moreover is subject to a smaller centrifugal for
because it is trapped by the doughnut at a larger radial
tance from the cavity axis. In other words, the radial pote
tial well provided by the doughnut FORT mode is more su
able to counteract the radial departure of the atom and s
preserve the optimal cooling condition.

The importance of a strong radial confinement to optim
cooling and trapping in the case of equal Stark shifts can
illustrated by also checking that when the width of the rad
well is decreased, the trapping time increases. To this p
pose, we have carried out a simulation where a higher-o
Laguerre-Gauss FORT mode, LG0,12, is used instead of the
LG0,1 FORT mode, keeping the other conditions unchang
To be more specific, we have considered the same exp
mental parameters of the case with the LG0,1 FORT mode in
case~b!, in such a way that the LG0,12 mode gives the same
Stark shift Smax52p350 MHz at the same radial distanc
4-10
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TRAPPING AND COOLING SINGLE ATOMS WITH FAR- . . . PHYSICAL REVIEW A 67, 023404 ~2003!
rmax;14.1mm. This means adopting both the incide
FORT power and the doughnut mode waist, so that the o
difference with the case studied in the preceding sectio
the smaller width of the radial well~see Fig. 16, where the
radial profile of the Stark shift induced by the LG0,12 FORT
mode is compared with that of the LG0,1 mode!. The chosen
parameters are the same as above except that now the s
dependence of the Stark shift~equal for both ground and
excited state! is

S~r,x!5S0r24sin2~kSx!expH 22r2

WS
2 J , ~34!

with WS520/A12;5.77 mm and S0;1.2310220

MHz/mm24.
Considering again the initial conditions specified in S

IV A 1 and sampling about 400 simulated trajectories,
have found the results shown in Figs. 17 and 18.

In Fig. 17, we have displayed the root-mean-square ve
ity along the cavity axisvx

rms as a function of trapping timeT
for each simulated trajectory. All atoms are again trapp
with trapping times greater than 1 ms. The probabilityP(t)
to be trapped for a time greater thant ~shown in Fig. 18! is
computed considering all simulated points. The data
again fitted by a decaying fitting functionPth(t) ~full line in
Fig. 18!, yielding a mean lifetimet5*0

`t(2dPth/dt)dt
5(6465) ms.

This significant improvement in the mean trapping tim
provided by the LG0,12 FORT mode with respect to the LG0,1
one, is due to the strongest radial confinement achieved~see
Fig. 16!. The atom stays closer to the radial potential mi
mum where cooling conditions are optimized and the pr
ability to leave the cavity decreases. This is a further ar
ment showing that the main advantage of using a dough
FORT mode instead of a TEM0,0 FORT mode for atom trap
ping in the case of equal Stark shifts is just the stron

FIG. 16. Stark shiftsS0,1 andS0,12 ~narrower curve! as a func-
tion of the radial coordinater, at the axial antinode. Paramet
values are in the text.
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radial confinement that makes it easier to optimize the co
ing conditions. The more the atom is radially confined, t
longer it is trapped.

Here, we have decreased the width of the radial well
choosing a higher-order doughnut mode and by simu
neously adjusting its waist, so to have an unchanged ra
equilibrium positionrmax. This solution may be practically
difficult to implement because one would need different c
ity mirrors for this high-order doughnut FORT mode. An
way, even though the implementation of the trapping sche
with a higher-order doughnut mode is difficult, the latter n
merical results clearly show the importance of the radial c
finement, and the direction one has to follow in order
increase the trapping time of neutral atoms in cavities in
case of equal Stark shifts induced by the FORT mode.

FIG. 17. Root-mean-square velocity along the cavity axisvx
rms

as a function of trapping timeT, for each simulated trajectory in th
case~b! and with the higher-order FORT mode LG0,12.

FIG. 18. ProbabilityP(t) for an atom to be trapped for a tim
greater thant in the case~b! and with the higher-order FORT mod
LG0,12. The full line is a fitting decay curve yielding a mean tra
ping timet5(6465) ms.
4-11
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PIRANDOLA, VITALI, AND TOMBESI PHYSICAL REVIEW A 67, 023404 ~2003!
A possible solution to overcome the practical difficulti
of a LG0,12 experimental setup can be the following on
provided that one has enough power and stability for
laser driving the FORT mode. The same radial poten
aroundrmax as that created by the LG0,12 FORT mode can be
achieved using a very intense LG0,1 FORT mode. One can
takeS054pe MHz/mm2, leading toSmax52p3400 MHz,
and leave all the other parameters unchanged@see Sec. IV B
for the parameters of the LG0,1 FORT mode in case~b!#. In
this new configuration, both the radial and the axial wells
eight times deeper, and therefore, together with the des
strong radial confinement~substantially the same as that
LG0,12 FORT mode!, we have a strong axial confinemen
Both these facts lead to a considerable increase of trap
time, up to 2 s~a result of the same order as the one recen
reported in Ref.@21#!, as demonstrated by the numeric
simulation of some trajectories which we show in the follo
ing table:

Trapping timet
~ms!

vx
rms

~cm/s!
Type of
escape

157 29.4 axial
432 20.2 axial
556 16.1 axial
684 13.7 radial
1107 10.5 radial
1108 11.4 radial
1177 10.7 radial
2141 10.4 radial

~35!

According to the table~35!, the atom is so strongly confine
axially that in some cases~those with the longer trapping
times!, it leaves the cavity radially due to the effect of spo
taneous emission. In these cases, an additional radial co
mechanism would be helpful as, for instance, that achie
2
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via an additional transverse free-space cooling~see Ref.
@21#! or via an active feedback on radial motion@14#.

VI. CONCLUSIONS

We have investigated trapping of single atoms in hig
finesse optical cavities using both a quasiresonant cav
QED field and an intense classical FORT mode. In particu
we have considered the case of doughnut FORT modes,
we have compared them to the most common case of a
damental Gaussian FORT mode~see, for example, the ex
periment of Ref.@8#!. Performing full 3D numerical simula-
tions of the quasiclassical center-of-mass motion of the at
we have shown that a doughnut FORT mode is more suita
than a fundamental Gaussian FORT mode to trap the at
in the case when the FORT mode shifts both the excited
the ground state down. This happens when the FORT m
is red detuned in such a way that the excited state is r
tively closer to resonance with a higher-lying excited st
than with the ground state. This case, even though more
ficult to realize than the standard two-level case where
two Stark shifts are opposite, is of particular interest
quantum information applications of cavity-QED system
where it is important to trap the atom at a given positio
independent of its internal state, so that the quantum man
lation of the internal state can be easily performed. The
vantage of using a doughnut FORT mode instead o
TEM0,0 one is due to the stronger radial confineme
achieved at a nonzero distance from the cavity axis. In
way, the FORT mode is more suitable to counteract the
avoidable radial departure caused by the centrifugal poten
and by diffusion, by keeping the atom close to its equil
rium position where the cooling provided by the quantiz
cavity mode is optimal.
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@12# V. Vuletić and S. Chu, Phys. Rev. Lett.84, 3787 ~1999!; V.
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