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Helium in superstrong magnetic fields
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We investigate the helium atom embedded in a superstrong magnetiey ficl@0—10000 a.u. All effects
due to the finite nuclear mass for vanishing pseudomomentum are taken into account. The influence and the
magnitude of the different finite mass effects are analyzed and discussed. Full configuration interaction calcu-
lations are performed for singlet and triplet states for the magnetic quantum nukhbeds — 1, —2, —3, as
well as positive and negativeparities. Up to six excited states for each symmetry are studied. With increasing
field strength the number of bound states decreases rapidly and we remain with a comparatively small number
of bound states foy=10* a.u. within the symmetries investigated here.

DOI: 10.1103/PhysRevA.67.023403 PACS nuntber32.60+i, 32.30—r, 32.10—f

[. INTRODUCTION 1975 Muelleret al. [11] calculated the few lowest levels of
He for y up to 20000 a.u. using a variational approach.
The term “strong” field characterizes a situation for Virtamo [12] presented Hartree-Fock calculations on the
which an interacting particle system exposed to a field is irground statéwhich is a triplet state with magnetic quantum
the nonperturbative regime, i.e., where the magnetic forceBumber equal to-1). The same state has been considered
are of the same order of magnitude or greater than the Coy Preschl[13] in 1982 in the range 21-21000 a.u. Vincke
lomb binding force. For the ground state of the hydrogenand Baye[14] provide correlated calculationsy&4.2, 42,
atom this corresponds to field strengths1 a.u. (1 a.u. and 420 a.y.for the lowest singlet and triplet states with
corresponds to 2.3510° T). We refer to the term “super- positive z parity and magnetic quantum numbeks=0,
strong” to indicate a field strength of 100 a.u. and more. —1, —2. In the work of Thurnef15], several triplet states
The motivation to study atoms and molecules in strongare considered in the very broad range=8x10 “-8
magnetic fields originates from several sources. Certainly thex 10° a.u. We mention also the important work by Becken
properties of these systems are interesting from a pure theand Schmelchef16—19, which covers many symmetries
retical point of view. Due to the competition of the spheri- and a large number of excited states for the range8
cally symmetric Coulomb potential and the cylindrically X 10 4-100 a.u.
symmetric magnetic-field interaction we encounter a non- The properties of matter in superstrong magnetic fields
separable, nonintegrable problem already for a one-electrosre especially interesting for the physics of cooling neutron
system, i.e., the hydrogen atom. Therefore, it is necessary ttars[20—22. In this field regime, finite nuclear mass effects
develop new techniques to solve the Sclinger equation in  become increasingly important. This is due to the fact, that
strong magnetic fields. The discovery of strong magnetidhe corresponding energy shifts are of the orderytfi,
fields on the surface of magnetic white dwarfs {200 T) whereM is the mass of the nucleus. IndegtM ; becomes
and neutron stars (£61 T) is a further major motivation. for superstrong magnetic fields of the same order of magni-
The spectra of these astrophysical objects are mainly influtude as the ionization energies. Of course, the conceptual
enced by the presence of magnetic fields. For the analysis @ind, in particular, the computational situation becomes more
atmospheres of magnetic white dwarfs and neutron stars, it isomplex when the full Hamiltonian, i.e., the Hamiltonian for
very important to have reliable data on the behavior of matfinite nuclear mass, is addressed. For both ne{2&P4] as
ter in strong magnetic fields. As an example, we mention thevell as charged systen{23-32, we encounter additional
white dwarf GrWA70°8247. The interpretation of its spec- couplings among the different electrons as well as couplings
trum was a key to our understanding of the properties obetween the collective and electronic motion.
spectra of magnetic white dwarfs, in genelgke Refs. Some approximations to account for finite nuclear mass
[1-5]). effects in the case of ions are available: An approximate
Highly accurate data are available for hydrogen in strongseparation of the collective and relative motion of the
magnetic fields since many yedisee, e.9.[6,7]). This sys- charged system has been introduced in Z5] and applied
tem is now understood to a very high degree. Beyond hydroto calculate the finite nuclear mass corrections for low-lying
gen there is significant interest in accurate data on heavidevels of hydrogenic ions in a magnetic fi¢Rb]. Elaborated
elements such as He, Na, Fe, and even molecules. Especiaftyulti configuration Hartree-Fock computations as well as
helium plays an important role in the atmosphere of certairadiabatic approximations were given in RE32] for He".
magnetic white dwarfgsee, e.g.[8—10]). There were sev- The behavior and properties of the Héon are crucial to
eral attempts to calculate accurate energies for bound stateetermine the one-particle ionization energi€¥)ifor he-
of helium, the requirements for astrophysical applicationdium. However, the results of Ref32] are due to the adia-
being a relative accuracy ef 10~ “ for the two-particle bind-  batic approximation, not accurate enough to reliably evalu-
ing energies for a large number of states. We will concentratate, together with the corresponding results of He, the
here on investigations that address the high-field regime. Iquantities {"® (see below.
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In the present paper, we provide a full configuration inter- 2 1 1 1 2
action (Cl) calculation for helium in superstrong magnetic Hrm:E . pZ+ —Bli+ 8—(B><ri)2——+B-si
fields. All finite mass effects at zero pseudomomentum are =1\ cp 2 M Iri

taken into account and are analyzed. In Sec. II, we will de- (2.2)
scribe the Hamiltonian, and some technical details concern-

ing our calculation. Furthermore, we provide some remarks + 1 2.3
on the problem of the threshold energies. In Sec. lll, we [ry—r|

analyze the differences of the Hamiltonian in the infinite

nuclear mass frame from the exact Hamiltonian. lonizatiord

energies and transition wavelengths are provided in Sec. IV. 1 (BXr)-(BXr))
| J
= -D—D-(BXr))+ —~.
Hmp ZMO iij pI p] pl (B r]) 4
Il. FORMULATION OF THE PROBLEM 2.4
A. Hamiltonian and symmetries The reduced masses ape=1/(1+1/Mgy) and p'=1/(1

To investigate the He atom, we apply a nonrelativistic — 1/Mo) - The Hamiltonian .consists of three parts. The first
approach. This is well justified by the fact that relativistic Part contains the one-particle operators (g, the Zee-
corrections have been shown to be very small in strong anffan_terms (1/2°)B-l;, the diamagnetic terms (14g(B
even superstrong magnetic fielfi33,34. For the sake of Xr;)2, the attractive Coulomb interaction with the nucleus
simplicity, we take the electronic-spin factor to be 2, but —2/ri|, and the spin Zeeman ternBs 5. The second part
our results can be easily adapted to grfactor by multiply- ~ contains the two-particle operat(®.3), which describes the
ing the spin operators and their eigenvaluesg®. On the repulsive Coulomb interaction between the two electrons.
other hand, the ionization energies and transition wavelhe third operator is the so-called mass polarization operator
lengths, which are presented in this paper are not affected By mp- It arises due to the transformation from the laboratory

this choice. The magnetic-field vector, which is chosen tdrame to the internal coordinates, which are taken relative to
point in thez direction, will be denoted by, whereas its the nucleus. The reader should note that the Hamiltonian

magnitude isy=|B|. (2.1 has the same good quantum numbers as the Hamil-

The first step in our approach is the pseudoseparation d¢Pnian for infinite nuclear mass: the total si8#, the com-
the collective and relative motion for the Hamiltonian in the Ponents, of the total spin, the magnetic quantum number
laboratory frame, which exploits the conservation of the so-and the total spatia parity I1, (parity is not an independent
called pseudomomentunk [23,24,35,36 The resulting Symmetry, it can be deduced from the mentioned symmetry
transformed Hamiltonian is divided into three parts, whichoperations In the following, we will denote the states by
are denoted byH,, H, and Hs. The operatorH, »*>"'M'z where B+1 is the spin multiplicity andv

=K?/(2M ) involves only center-of-masg.m) degrees of =1,2,3 ... denotes the degree of excitation within a given
freedom, whereM, is the mass of the atonH; contains ~Symmetry subspace. _ _
exclusively electronic degrees of freedom. The operkitor If we compareH(My,y) in Eq. (2.1) to the electronic

=—(1M,)(BXK)-3;r; represents the coupling between Hamiltonian of helium in the infinite nuclear mass frame
H, andHj, i.e., between the c.m. and electronic degrees of16] H(=,7), we observe two different kinds of corrections
freedom. It involves the motional electric field (44)(B due to the finite nuclear mass. First, we encounter reduced
X K), which arises due to the motion of theeutra) atom in ~ Masseg andu’ in H,, which provide the so-called normal
the magnetic field and is oriented perpendicular to the maghass corrections. The spectrum of the Hamiltonlap,
netic field. This coupling is proportional to the pseudomo-Wthh contains exclusively these normal mass corrections
X - o ;
mentum, and therefore, vanishes for vanishing pseudomd:an be related to the spectrum of the Hamiltorkéf,y’)
mentum. The pseudoseparation is possible for neutradta different field strengtly’, via a unitarian transformation
systems only, since only then all components of the pseuddand an additional trivial energy shifsee Sec. Ill and also
momentum commute. Refs.[6,16,37). The second type of finite nuclear mass ef-
Within the present work, we assume a vanishing pseudd€cts is due to the mass polarization operatéys,. We will
momentum. This assumption is, in general, justified, i.e., £all these specific finite mass corrections. They are by no
good approximation for an atom at rest or small velocity. Asmeans trivial and are related to the correlation of the elec-
a result, we have no additional motional electric field andtrons (the corresponding operators contain one-particle op-
and we are left with the electronic Hamiltoniahy, which in  erators of both electropsif the electrons behave in a corre-
the following will be denoted abl(Mg,y), whereM is the lated way, the specific nuclear mass effects can be enhanced.
mass of the nucleus. In atomic units it takes the following
form (internal coordinates are taken with respect to the B. Technical remarks

nucleus: Some comments concerning our computational approach

Ha=H(Mgo.v)=H. +H . 21 are in order. Its basic ingredient is an anisotropic Gaussian
3=H(Mo,7)=Hum*Hmp @ basis set, which was put forward by Schmelcher and Ceder-

baum[38]. This one-particle basis is sufficiently flexible to
where describe finite electronic systems for any field strength and
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was successfully applied to several atoms and molecules it 5[ =~ """ e ®-06 0 o o o0cececem
magnetic field§16—19,39—42 C et et

In the case of atoms, all matrix element can be calculatec p gjg
analytically and evaluated efficientlf16,17. The price, 7 10| |« R e T
which has to be paid, is that for each field strength and eacl2 | F—7°2 A | |
symmetry, the basis set has to beonlinearly optimized: 2 ol Aat T leeeesesoce:
We search for a set of basis functions, which provides within® s - %~/ [ Jises |
a finite computational strategy the lowest possible energiess " / ST .
for the corresponding one-particle probleitk$, He', etd. % L /:/ /}rﬁ» vy 98£
This is a standard procedure in atomic and molecular physg © j}"” //’// R
ics, since the direct nonlinear optimization of many patrticle & - /// / i
wave functions, using many configurations, is not feasible. InE i /{/’7 26 BN
order to ensure convergence of the one-particle problem, wi -5 |- </ L/ R E <]
compare the obtained binding energies to the accuratel Y 955 L L T —

. . . L/ 500 1500 2500 3500

known data for the one-particle problem in a strong magnetic L/

field [6,7]. To investigate the helium atom, we select sets of ~ -10 -~ 000 l

anisotropic Gaussian basis functions, which yield relative ac- Number of two particle configurations
curacies for the binding energies of the one-particle problems o o o )
of the order of 107 to 102 for the ground states, and 10 FIG. 1. Two-particle binding energies in atomic units for helium

to 1076 for the higher excited states of each symmetry. Thefmbedded in a magnetic fielg=100 a.u. for the states with0*
relative accuracies of the binding energies do not depend ofyMMetry as a function of the number of two-particle configura-
the magnetic-field strength, although the total-energy inlOS: The inset shows an enlargement for large numbers of
creases approximately linearly. This is due to the anisotropieonf'gurat'ons'

(Gaussian-likg form of the one-particle basis functions,
which describes the free electrons in the magnetic fiedoh-
dau statesexactly and, therefore, also the linear rise of the
kinetic energy. Or]e .inte_lligent guess for the starting points 0 ultiple sums of hypergeometric functiofs6,17). For the
the nonlinear optimization are parameter sets that optlmall\é

ve th me problem at a nearby maanetic-field stren thvaluation of the hypergeometric function all possible ana-
Solve the same problem at a nearby magnetl 9 Iytical continuation formulas have been worked (ee Ref.
Particularly, we developed optimization algorithms and cor-,

. . . i i ibl r he time for th
responding tools, which allow an almost automatic construc£43]) and this made it possible to reduce the time for the

) ) : . ) . calculation of the matrix elements by a factor of 50 com-
tion of a basis set. A one-particle basis set typically ConS'Stf’)ared to a straightforward implementation. We emphasize

of 2.00_400. basis_ functions that yield 3000 to 5(.)00 tWo'that the present investigation would have been impossible
particle configurations. Many aspects for the selection of ba-

; X co e . - without these efforts.
sis functions for helium in intermediate and strong magnetic
fields have been extensively discussed in RE6). The full
Cl approach leads then to a generalized eigenvalue problem. C. Threshold
Numerical problems arise in this generalized eigenvalue Solving the generalized eigenvalue problem yields the to-
problem if near linear dependencies exist in the basis setal energies of the atom. These energies are, however, not of
These dependencies cannot fully be avoided, but the resulprimary interest: they increase almost linearly with the field
ing numerical instabilities can be removed by a cutoff of thestrength due to the rise of the kinetic energy in the presence
small eigenvalues of the corresponding overlap matrix. Thi®f the field. The relevant energies are, e.g., the transition and
approach is a standard one in the literature for the generalenization energies which are, in the high-field regime ad-
ized eigenvalue problem and has shown its applicability eseressed here, by several orders of magnitude smaller than the
pecially for helium at zero and nonzero magnetic-fieldtotal energies and, therefore, the common linear increase of
strength[16—19. A comparison to previously published data energy has to be subtracted. Similar to the one-electron prob-
(in particular, for the field-free casdemonstrates the degree lem (see arguments aboyéehe relative accuracy of the two-
of convergence, which can be obtained within this methodparticle binding energies is not affected by the rise of the
Convergence of the full problem is checked by observing theotal energies. To obtain the one-particle ionization energies,
two-particle binding energies as a function of the number ofwe need, however, to know the ground-state energy of the
orthogonal configurations. As an example, we demonstratele* ion in the magnetic fieldaking into account the finite
convergence for the two-particle binding energies of the henuclear massBut unlike the case of infinite nuclear mass,
lium atom in the'0* symmetry subspace at=100 a.u. in  where the appropriate levels can be calculated from the cor-
Fig. 1. responding energies of the hydrogen at@ee, e.g., Ref7])

The procedure, consuming the most part of CPU time invia scaling relationgsee, for example, Ref6]), these ener-
the above approach, is the evaluation of the electron-electrogies are unknown: Accurate investigations on"Hecluding
matrix elements. Although analytical formulas for all matrix the unique coupling between the collective and electronic
elements are available, it is important to have efficient algomotion have not been performed. This coupling inherently
rithms for their evaluation, since the matrix elements for themixes the collective and electronic motion and the exact

electron-electron Coulomb interaction are by no means
trivial. A detailed and sophisticated analysis of their analyti-
al representation is crucial. In the simplest form, it contains
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ground state, therefore, includes both. Only qualitative rebelow 2000 a.u., however, this approximation is not reliable.

sults[32] for the energies of the moving Heon in a super-

It can be observed, that the threshold en&é}{approaches

strong magnetic field are known. As a result our uncertaintythe threshold energg™ in the limit of high fields.
for the one-particle binding energies of He are much larger

than for the two-particle binding energies. The reader should

note that using just the threshold energy of 'Hee™ for

fixed nucleusE?ﬂ provides a wrong description for the ion-

ization energies of helium in superstrong fields.

The Hamiltonian for the He ion reads in atomic units as

IIl. FINITE NUCLEAR MASS EFFECTS

There is a transformation, which connects the spectrum of
the infinite nuclear mass Hamiltoni&i(, y) with the spec-
trum of the HamiltoniarH,,, [16]. This transformation reads

follows: as follows:
Hpet =H,+Hp+Hg, (2.5
UHmU 2= pH| 2, 2| = 223 (1, +s,). 3D
1 1 2 p?) Mo T %
Ho=5——+-|P— > BXR] , (2.6)
2(Mo+1) 2 Here,U denotes a unitarian transformation, which transforms
r—r/u andp—pu. The second term on the right-hand side
_ Mo+2 P E BXR|-(Bxr) 2.7) of Eq. (3.1) represents a field dependent trivial energy shift,
" (Mg +1)2 2 ’ ' since the totalz component of the spin and of the orbital
angular momentum are conserved quantities, respectively.
1 ) 1 w5 1, w% ) From Eq.(3.1) it can be seen, that the leading mass cor-
HC:Z_ p +§( ©17 M- B-I+ 8 wit M- (BXr)“. rection to the energy is of the order fM,. For the states
H 0 0 (2.9 with magnetic quantum numbevl <O, this correction is

positive, which means that the corresponding energies are

Here,H, describes the collective motion of the ion as a freeshifted linearly withy and eventually pass the ionization
particle with charge 1 and ma$8,+ 1 moving in a mag- threshold. The corresponding bound electronic states are
netic field R and P are the center-of-mass coordinate andtherefore ionized. This energetical shift depends exclusively
momentum, respectivelyThe operatoH,, couples the elec- onM, S,, vy, and the nuclear masd .
tronic and collective motion. The operatbt, is the elec- The energy difference\E,,=En(y) —E(e,y), where
tronic part of the Hé Hamiltonian with w,=1+1/(M, E;, denote the eigenvalues &f,, and E(x,y) those of
+1)?2 andw,=1+(2Mo+1)/(Mg+1)2. H(,7y), can be related to the energy differentES, of the

Although the exact energy threshold for Héle™ +e~ is  lowest eigenvalues of the Hamiltoniatf andH;,, (see be-
not available, some approximations to it can be concludedow) of a specific symmetry. The operatdif describes two
One of these approximations, nameEE%mC (the index zpmc  free noninteracting electrons
stands for zero-point mass-corregtegnores the coupling
H, between the collective and electronic motion. The corre-
sponding values of the energy threshold consist of the sum of
the eigenenergies of the electronic Hamiltontp and the
Zero-point energy be_Ionging i, . This zero-point energy whereasH:, refers to the corresponding “artificial” Hamil-
for the collective motion is the energy for the lowest Landau, _ . L

tho . . L L ._tonian with reduced masses

state.E,pncis typically too high, i.e., the ionization energies
are overestimated, since the couplidg, which is neglected 2 4 .
in this approximation, tends to reduce the threshold energy. Hfmzz — PPt ——I|,+=—p2. (3.3
All ionization energies shown in the present work are calcu- i=12p 2u’ 7 8
lated by applyingEy, .

A second approximation to the energy threshold ignorefOf the energetically lowest Landau level with negative mag-
both the zero-point energy of the ion and the coupling termnetic quantum numbevl and vanishing momentum indi-
i.e., H, and H,. Therefore, only the eigenenergies of the rection, we have
mass-corrected electronic Hamiltonibip are taken into ac-
count. This threshold is denoted BS... It is motivated by
the fact, that for an infinitely strong magnetic field the ener-
getic contributions due to the zero-point energyHf and
the couplingH,, exactly cancel. A third alternative threshold It cannot be expected, that the normal mass corrections of the
energyE", is obtained by employing the adiabatic expansionhelium atomAE, follow exactly Eg.(3.4), because the
approach presented in RdB2]. Since this approximation HamiltonianH,,, contains the interaction between the two
only takes into account the lowest Landau energy for theelectrons and of the electrons with the nucleus. However, it
c.m. motion, it becomes increasingly accurate for increasings suggestive to introduce a paramedgty) such that

energetic separation between the Landau leteatsl, there- .
fore, increasing magnetic-field strengtifor field strengths AEm=Em(y) —E(%,7)=AE(y){1+ 8(»)}.

2 2
1 Y, Y
H$:;l§ pr+ 51+ g ol 3.2

AEfmzlo(1+|M|). (3.4)
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Y ™ 2yE' (%, )
E| »,—~|=E R = -
% 'MZ) m( )+ Mg [ (%,7)+ Mo
1
0
w E o, E’ o,
~E(,y)~ (MOY)+27 ?\AOY)' 3.6

Here, the prime indicates the derivative with respect to the
field strength. NowAE,,, and consequentlyy can be ex-
pressed in terms of the eigenenergiedigfe, y)

100 1000 10000 s ZE( ) +29E (2, 5)+4IM| 37
Y[au] y(1+|M|) . .

FIG. 2. Th t functi f the field st th f
_FIG € parametes as a function of the leld strength for The state dependence éf can now be understood as the
singlet states of various symmetries. It accounts for the state depen-

dent normal finite mass corrections due to the Coulomb interaction: (_apendence on the Qerlvatlve of the elgenener_ﬁ(@s, 7)
with respect to the field strength. We emphasize that the

quantitiesE(«,y) and yE'(%,y) in Eq. (3.7) are almost

For the states and field strengths investigated in the preseBfual and, therefore, approximately cancel in the superstrong
work, we will see thatd(y)<1. Therefore,s represents a field regime. Thus,5(y) can be approximated by(y)
small correction. Since this correction is due to the Coulomb<{[E’(«,y)+|M|]/(1+|M])}—1.
interaction it is state dependent. In Fig. 2 the quanditis Figure 3a) illustrates the mass polarization energies
shown as a function of the magnetic-field strengttior a  |E,=|E(Mg,y) —E/m(7)| for the energetically lowest sin-
few selected singlet states belonging to different symmetrieglet states and Fig.(B) for the corresponding triplet states.
It can be seen thai(y), for all states considered, follows a Here, E(Mg,y) denotes the eigenenergies B Mg, ).
power lawd(y)=Cy* with a nearly state independent ex- First, we observe that the absolute valuesEgf, are very
ponent\ ~0.62. The corresponding proportionality constantsmall: Fory= 10" they are at least eight orders of magnitude
C varies over nearly one order of magnitude for the differentsmaller than the corresponding total energies. They are also
states. small compared to the normal finite mass correctiafis,, .

To understand more of the behavior of the quanditywe ~ FO ¥=10" a.u.En, is typically at least four orders of mag-
expand the first term on the right-hand side of E&1) in nitude smaller than the corresponding normal finite mass cor-

powers of 1M ,. Omitting the spin part, we obtain rections. Opposite to the quantiyE,, the behavior ofE |
depends strongly on the state. For the staté®*71!

(—1)*,1%(—2)*,1(—3)" the quantityE,,| increases with
increasing field strength. These states contain so-called mag-

10

“Tle—e ey [TTTTTTTT -O-“O

- A
= -
o 3
= S
g — _5
10 1
d of )

100 1000 10000
ylau.] -

FIG. 3. The absolute values of the mass polarization enefig$=|E(M,,y) — Exm(7)| for selected singleta) and triplet(b) states as
a function of the magnetic-field strength
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netically tightly bound orbitals (4,2p_4,3d_5, ...), 10", but remains approximately constant for all other states
which are defined in the infinite nuclear mass frameas a function of the magnetic-field strength. Furthermore, we
[6.44,43 and possess a logarithmically diverging binding en-observe that all states'0" with »>1 as well as the corre-
ergy for y—o. An increase OfEm[%l can TSO be observid in sponding triplet states pass the ionization threshold energies
Fig. 3b) for the states 3(—1)",1%(=2)", and P(~3)*,  peing eitherE™, or E"_ with increasing field strength. The
which contain also magnetically tightly bound orbitals. Foronly remaining bound state for=10" a.u. is the 10" state

S+1n— 25+1 - 30+ U :
the_statels o1 (_1)f as well f(f)rr]{O |Empl re—f_ ” We present in Figure (8) Ej,(y) for states withM 'z
n:alnstﬁ rf'r?].St cf(?nsttant abs a u'rllctlondo tt ed.mlggnter;uc— I€I% 0. For these stateE,,(7) varies only to a very minor
Strength. This efiect can be eastly understood: For the€ Mags, ot which is due to the fact, that none of these states is a
netically tightly bound states the electrons are close to eacj :

ightly bound one, and none of these states remains bound

other in a relatively narrow region of space and therefore hen~ approaches T0a.u. For the triplet states with neaa-
electron correlation is important. On the other hand, the masg €Ny app " P ) 9
tive z parity the quantityE;,, decreases slightly fory

polarization operator is sensitive to electronic correlation, o =~
due to the fact that it contains products of operators of bott” 100 @.u. This is not due to the finite mass effect, but can be

. th .
electrons. The sign c&,, is not shown in Fig. 3. It is posi- /S0 observed for the quantiff,—E(=,y), whereas this
tive for states containing tightly bound orbitals and negativeduantity increases monotonically for all other states investi-
otherwise. The only exception is the staf®©1, which does gated in the present work. The reason is the complicated

not belong to the tightly bound states, but neverthelggs interplay between correlation, which tends to increase ion-
has a positive sign. ization energies and Coulomb repulsion, which tends to de-

crease it. For the states with=0 the electrons are confined
in a very small domain of space, which increases correlation
IV. RESULTS as well as the Coulomb repulsion. On the other hand, for the
In the following, we present our results for the ionization triplet states the electrons are separated, because the wave

energies and transition wavelengths of the helium atom fofunction is antisymmetric, which reduces both effects. For
magnetic fields ranging from 100 a.u. to 10000 a.u. Thesd€ »°0 states the increase of the correlation energy is
investigations have been performed for the magnetic quarsmaller than the increase of the Coulomb repuIS|on2§+n1ergy.
tum numbersvi =0,— 1,—2,— 3, singlet and triplet states as " Fig. 4c) Eion(y) is shown for the states

well as positive and negativeparity. Only forM = —3 ex- (_1)+- For 3the Tagne'gca_lly tightly bound states' 1
clusively states with a positive-positieparity have been (—1)" and I'(=1)" the ionization energy remains posi-

studied. Typically six excited states of each symmetry ardVe, I.€., these states are bound in the complete regmme
investigated. <10* a.u. For higher excited states, i.e?S"*(—1)" with

v>1 the energye(Mg,y) becomes even larger thaﬁf‘pmC
and, thereforeE;,, decreases strongly on the logarithmic
scale. To understand this, we review E81.1): The dominant
According to the above, the reader should keep in minderm on the right-hand side is of the formMy/M, (the
that the exact values for the ionization threshold-Hee* spin part does not affect the ionization enerpi@herefore,
+e" as a function ofy are unknown. As a consequence, we E(Mg,y) for states withM <O raises by approximately this
cannot evaluate the ionization energies accurately. Howeveamount and will pass the threshold at lower-field strength
the ionization energies calculated by using different approxithan their counterparts withl =0.
mate threshold energieBy, Ef., En . Egy introduced Figure 4d) shows our result&,(y) for Mz=—1". A
above show the same trend: the number of bound states similar behavior as for the energies of the stai€s*!
the helium atom becomes finite for superstrong magneti¢—1)", with »>1 in Fig. 4c) is observed: The ionization
fields in contrast to the situation without a magnetic field, orenergy as a function of the field strength decreases rapidly
in the limit of an infinitely heavy nucleus, where the helium for all states This is due to the fact, as mentioned above, that
atom posses an infinite number of bound states. Only ththe finite mass corrections force these states to pass even the
so-called magnetically tightly bound states remain bound foEtZh mc threshold and consequently, they become unbound.
the complete regime of field strengths investigated in the In Fig. 5a), we present our results fd;,, for the ener-
present work. We consider in the following the quantity getically lowest singlet and triplet states wikh=—2 and
Eion= E%mc— E(Mg,y) as a function of the field strength positive z parity. Similar to Fig. 4c) the quantityE,,, rises
together with the above mentioned approximations for thdor the two energetically lowest singlet and triplet states from
threshold energy. 1.8 a.u. to~10 a.u. These two states belong to the magneti-
Figure 4a) showsEj, for the six energetically lowest cally tightly bound ones. In contrast to the2l(—1)"
states of zero magnetic quantum number and positivar-  states in Fig. @), E;y, for the state 2(—2)*, which is the
ity. The 110" state is the most tightly bound state. In strongfirst-excited singlet state of this symmetry, does also rise and
magnetic fields it represents, however, not the ground state stays bound within the complete regime of field strength con-
the atom, because energetically low-lying states are fullysidered here. This is a remarkable feature since the influence
spin polarized in the high-field regime. The ground state if the finite mass effects for this state is even more pro-
given by the £(—1)" state, which is also a tightly bound nounced than for the states with= — 1. The reason for this
state. Figure @) shows, thatE,,, increases for the state behavior is the presence of an avoided crossing which occurs

A. lonization energies
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FIG. 4. lonization energieE;o,=Egyn—E(Mg,y) of the helium atom for the/*S**M"z states ¢=1,2, ..., nurbered from top to

bottom. Note that the thresholﬂtzr;,mc overestimates the ionization energies. Different approximations to the exact threshold &}h as
Ejs. and the fixed nucleus ionization thresh@l}j are given as a difference &, .. (&) Ein for M"z=0", (b) Ejs, for M"2=07, (c) Ejoy
for MUz=—1% (d) E;,p, for Mz=—1",

at y~100 a.u. It can be seen that,, for the higher excited =-2%, whereE;,, for the first excitedsingletstate is raised,

singlet states are raised as well and approach the correspongkreE,,, for thetriplet state 2(—3)" is raised and remains,

ing values for the next energetically higher triplet states.  therefore, bound for relatively high-field strengths. Neverthe-
The ionization energies for the negativ@arity states for |egs, the energy of the staté(2-3)* passes the ionization

M=—2in Fig. 3b) look similar to those foM=—1in Fig.  {hreshold fory approaching 10a.u. and, therefore, becomes
A(d). A" states of this symmetry become “”bOU’?d with in-  nhound due to the influence of the finite nuclear mass
creasing field strength. As mentioned above the influence g ects.
the finite nuclear mass increases with increasing magnetic
quantum numbefM|, therefore, the stateg’>"1(—2)~ be-
come unbound at lower-field strengths than the correspond-
ing states withM = —1. In contrast to the ionization energies the transition wave-
In Fig. 5(c), we observe thdE,,, of the energetically low- lengths can be calculated from our total energies without the
est singlet and triplet states witfl''z= — 3" is positive for ~ knowledge of accurate energy thresholds. The property
all field strengths, considered in the present work. These twahich remains undetermined for the transition wavelengths
states belong to the magnetically tightly bound states ané the exact field strength, for which the particular bound-
they remain bound within the complete regime of field bound transition disappears, i.e., the field strength for which
strengths considered here. Similar to Fi¢p)®voided cross- one of the involved bound states enters the continuum.
ings take place aroungl=200 a.u. This can hardly be seen Therefore, we refer the total energy of a state to the threshold
in Fig. 5(c) but becomes much more evident by inspectingE™ __in order to decide upon its bound character as a func-

zpmc
the quantityEl"— E(e,y). But unlike the spectrum a1’z tion of the field strength. According to the discussion pro-

B. Transition wavelengths
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FIG. 5. lonization energiek;,, of the helium atom for the electronic state®" Mz with M=—2 andM=—3 as a function of the
magnetic-field strength. (a) E;o, for Mlz= —27 (b) E;y, for Mz=—27 (¢) Ej,, for MTz= —37,

vided in Sec. Il C the true field strength for which the state As discussed in Sec. IV A the state$(—2)* with v
becomes unbound is lower than the value obtained by refer>1 undergo an avoided crossing which severely changes its
ing the total energies tEtZT,mC. energy as a function of the field strength, compared to the
Figures §a)—6(c) show the spectra of the linearly polar- statesu'(—2)~. Therefore, the singlet transitions shown in
ized transitionsy®> M *— x25 M~ for M=0,—1,—2,  Fig. 6c), which involve v}(—2)" and »>1 show a more
respectively.r and u range from 1 to 5 for each part. Lin- prominent field dependence, compared to the other excited
early polarized transitions show the general feature of twdinear polarized transitions. Particularly, we draw the atten-
well-separated parts of their spectrum. One part consists dfon of the reader to the wavelengths of the transitiohs 2
small transition wavelengtha(y) below 400 A that de- (—2)"—w»'(—2)~, which are shown as dotted curves, and
crease with a power law for increasing field strength. Thethose of 3(—2)" —»1(—2)*, which are shown as dashed
corresponding transitions generically involve magneticallycurves. The reader should also note the different scales of
tightly bound states. In case of Figgap-6(c) these are the field strengths in Fig. @ compared to Figs.(6) and Gc).
1'0", 12571(—1)", and PST1(—2)" states, respectively. The latter are due to finite nuclear mass effects, which causes
Above 1000 A, we encounter the long wavelength part of thehe corresponding bound states to enter the continuum.
spectrum, which involves transitions among higher excited Figures. Ta)—7(e) show the wavelengths for the circularly
states ¢,u>1). These transitions are rather insensitive topolarized transitions »*S**Mlz— 425 {(M—1)1z  for
the field, i.e., the transition wavelengths remain approxi{M=0, II,=*1), (M=-1, II,=*=1), and M=-2,
mately constant with increasing field strength. These generdll,= + 1), respectively. The quantum numbets and v
feature for the linearly polarized transitions can be clearlycover the range 1-5 for each part.
seen in Figs. @ and Gb). Figure c) shows, to some ex- For the circularly polarized transitions only those spectra
tent, deviations from this behavior. possess a part with short wavelengths<(300 A) [see Figs.
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FIG. 6. Wavelengths of lin-
early polarized transitions of the
singlet and triplet states from
PSHIM 1o 1257 IM ™ in Ang-
strom as a function of the
magnetic-field strength in atomic
units. » and u range typically
from 1 to 5. Only bound-bound
transitions(in the sense defined in

the tex} with a wavelength below
10* A are shown. White circles
indicate singlet transitions, black
triangles triplet transitions. For a
detailed desciption of paxt) see
text. (@ M=0, (b) M=-1, (c)
M=-2.
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7(a), 7(c), and Te)] that involve states with positiveparity  creasing field strength, due to the above mentioned avoided
I1,. This is again due to the tightly bound character of thecrossing of the (—2)* state. The singlet transitions' 2
1'0%, 12571 (—1)*, 125*1(-2)*, and P5*}(—3)" states. (—2)* —»1(—3)* (v>1) shown in Fig. Te) as dotted
The long wavelengths part of the spect’a>1000 A) are, curves behave similar. Particularly, we want to mention the
in contrast to the corresponding linearly polarized spectragransition (—2)*—2%(—3)" [dashed dotted line in Fig.
strongly dependent on the field strength. This effect is cause|g)], because the avoided crossing results in a wavelength

by the normal finite mass corrections, which are more proyich is almost constant as a function of the magnetic-field
nounced for the states with the higher absolute value of theyrength.

magnetic quantum numbésee Eq.(3.4) and discussion in
Sec. Il

Deviations from the general pattern, described above can
be found in Figs. &) and 7e). In Fig. 7(c) the singlet and We have presented the first systematic full Cl calculations
triplet transition, drawn with dashed lines show a particularfor helium in superstrong magnetic fields, taking into ac-
behavior. These curves correspond to transitiohs-1)* count the effects of finite nuclear mass. These effects are
—1Y(—2)" and B(—1)"—13(—2)", respectively. They extremely important in the superstrong field regime, because
follow approximately a power law, similar to the transition the relevant parameter for the finite nuclear mass effects is
wavelengths in the short wavelength part. However, the aby/M,. We analyzed the influence of the normal and the spe-
solute value of their wavelengths is larger by a factor of 2 forcific finite nuclear mass effects. It has been shown that the
the triplet transition, and a factor 4 for the singlet transition.leading finite nuclear mass effect does not depend on the
This is due to the less pronounced energetical separation gpecific state, but only on the magnetic quantum number.
the tightly bound state$St(—1)" and ?5*'(—2)". A The state dependent part of the normal finite mass effects is
similar feature can be found in Fig(¢f belonging to the related to the derivative of the total energy of the correspond-
transitions £571(—2)"—125"1(—3)" (dashed ling But  ing state with respect to the magnetic-field strength in the
here singlet and triplet transition wavelengths are almosinfinite nuclear mass frame. Furthermore, it has been shown
equal. that the specific mass effects, which are caused by the mass

The curves drawn with dotted lines in Fig(cy corre-  polarization operators, are very small compared to the total
spond to transitionsyl(—1)"—2%(—2)" (»>1). The energies and small compared to the leading normal mass
wavelengths for these transitions decrease strongly with ineffectsAE;,.

V. BRIEF SUMMARY
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In the superstrong magnetic-field regime, the spectrum of An accurate calculation of the critical-field strengths.,
helium is terminated by the effects of the finite nuclear massthe field strengths where the individual states become un-
We found that only a comparatively small number of states idbound, as well as the ionization energies, requires a detailed
bound in the complete regime of magnetic-field strengthsnvestigation of the ground state of the moving helium posi-
investigated in the present work. Although the exact ionizative ion in a magnetic field.
tion threshold for helium is unknown, all available approxi-
mations to the exact threshold confirm this trend. Transition
wavelengths for many linear and circularly polarized transi-
tions were provided. Their typical behavior has been identi- The Deutsche Forschungsgemeinsck@fiA.A.) is grate-
fied and the effects of the finite mass on the transition wavefully acknowledged for financial support. We thank D. Wick-
lengths has been analyzed. ramasinghe for valuable discussions.
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