PHYSICAL REVIEW A 67, 023402 (2003
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In a previous worPhys. Rev. A66, 013410(2002], we noted a partial disagreement between quarum
matrix and semiclassical calculations of photoabsorption spectra of molecules in a magnetic field. We show
that this disagreement is due to a nonvanishing contribution of processes, which are forbidden according to the
usual semiclassical formalism. Formulas to include these processes are obtained by using a refined stationary
phase approximation. The resulting higher orderiicontributions also account for previously unexplained
“recurrences without closed orbits.” Quantum and semiclassical photoabsorption spectra for Rydberg atoms
and molecules in a magnetic field are calculated and compared to assess the validity of the first-order forbidden
orbit contributions.
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[. INTRODUCTION higher-order(in #) effects such as bifurcations or ghost or-
bits, and specific formulas to account for these effects have
The photoabsorption spectrum of excited atoms or molbeen developefb,6]. The discrepancies we observed in Ref.
ecules placed in a magnetic field displays complex strucf4] are due to another type of effect, namely, the manifesta-
tures. Closed-orbit theory consists of a fully quantitative ap-tion of orbits that are forbidden to first order iy these
proach, in which the large-scale structures of the spectra a@bits are forbidden eithefi) because they should not be
explained in terms of classical trajectories closed at theexcited according to the usual semiclassical formalisrtii pr
nucleus, i.e., leaving and returning to the core. Each orbibecause they do not classically exist.
produces on its return an oscillation in the photoabsorption We investigate in this work the effects of such first-order
cross section; the Fourier transform of the spectrum, knowsuppressed orbits. We will derive formulas for including their
as therecurrence spectruntherefore, exhibits sharp peaks at contribution in the recurrence spectra by going beyond the
the period of the orbits. First developed for the hydrogenusual stationary phase approximation employed in the stan-
atom[1], closed-orbit theory was then extended to treat thedard form of closed-orbit theory. The formulas will be tested
case of nonhydrogenic Rydberg atoms: the additional specrersus exact quantum calculations for different model atomic
tral modulations appear as the result of successive quantuand molecular systems in an external magnetic field. The two
encounters of the Rydberg electron with the cf2¢ The  orbits that will be dealt with specifically are the orbit perpen-
wave function follows theéhydrogenicclassical orbits in the dicular to the field, which should not be excited when it lies
region, where the Coulomb and the external fields compet& the node of a wave function, and the orbit parallel to the
(“outer region”), but near the core, where the external fieldsfield, which does not exist classically when the electron’s
are negligible(“inner region”), the wave function is de- angular-momentum projection on the field akisis nonva-
scribed quantum mechanically. nishing (since the Hamiltonian remains divergent on the
More recently, we proposed a closed-orbit theory treataxis even after regularizatipriThe contribution of orbits ly-
ment of molecules in external fielfi3,4]: in addition to elas- ing in the node of a wave function was first observed by
tic scattering, inelastic scattering gives rise to novel spectrabhawet al. [7] when comparing quantum and semiclassical
modulations. The relative importance of elastic and inelasticalculations for the diamagnetic hydrogen atom in the near-
scattering was shown to depend on the short-range phasstegrable regiméscaled energiee=—0.7). They obtained
shifts, the molecular quantum defects. In the inelastic colli-a formula for including the first-order forbidden contribution
sion process, the molecular core undergoes a transition frowf the perpendicular orbit, which appeared as a small feature
its ground state to an excited state, and the dynamical regima the recurrence spectra. In nonhydrogenic systems, we can
of the Rydberg electron changes accordingly, say from a chaexpect the effects associated with “forbidden” orbits to be
otic to a near-integrable classical regime. Good quantitativéar more important than in hydrogen given that core scatter-
agreements between quantum calculations and closed-orliitg mixes the contributions of different orbits. Moreover, al-
theory in the case of an external magnetic field were obthough it may have been expected that at higher scaled en-
tained. However, we noted in Ré#i] a discrepancy between ergy, the contribution of on-node orbits would become
the quantum and the semiclassical results for certain peaks ofsignificant(as the classical amplitudes decreasee will
the recurrence spectrum. In general, disagreements betwesee that their inclusion is necessary to account for the correct
semiclassical and quantum recurrence spectra are due #mnplitude in the modulations produced by orbits that have
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bifurcated from them. The existence of recurrences producequantum-defect theoryMQDT) expansion. The superposi-

by “nonexisting” orbits on the field axis was reported for tion of these returning waves with the initially dipole-excited
Rydberg atoms in an electric field by Robicheaux and Shawave function produces sinusoidal modulations in the pho-
[8], who developed a heuristic formula which yielded a poortoabsoprtion spectrum, which appear as isolated peaks in the
agreement between semiclassical and quantum calculatiorfsourier-transformed (“recurrence”)  spectrum.  Further
We will derive a formula for appropriately taking into ac- modulations (i.e., peaks in the recurrence spectjuare
count such classically forbidden orbits and compare it tof@used by the core-scattering process; in a multichannel
quantum calculations in the case of an external magnetifroblem, the electron can exchange energy and angular mo-
field. In passing, we will also show that the contribution of menta Wlth. the core, so that after the qolhsmn, the (_alectron
the parallel orbit when it is allowed.e., forL,=0) can be Wave function propagates outward again and when it leaves
obtained by treating it as any other orbit, provided a higher{n® inner region, the wave function will follow once again
order refined stationary phase integration is uéetlereas classical trajectories. If the coII|S|on_ was perfectly elas_tlc, the
the parallel orbit has always been treated as a special caggéctron will follow one of the previously followed trajecto-
following the original derivation given by Gao and Delos ries; on the othe_r hand, m_elastlc coII|S|_ons WI|! result in tra-
[9)). jectories pertaining to a dlff_erent c_IassmaI regime.

The paper is organized as follows. We recall in Sec. Il the " Ref.[4], we described in detail photoabsorption from a
usual semiclassical formulas of closed-orbit thedwith ground-state Q|at9m|c molecule in a static magnetlc field.
provision for multichannel core scatteringSection 11l de- After photoexcitation, the molecular core could either be ro-
tails the derivation of the contribution to the photoabsorptionf@tionally excited or nonexcited The molecular core then
spectra of the first-order forbidden orbits. We report in SecPlays the role of an effective two-level scatterer, which com-
IV quantum and semiclassical calculations for different val-Pines classical trajectories belonging to two different dy-
ues of the quantum defects, scaled energies, or magnetif@mical regimed(typically, chaotic and near-integrable re-

field ranges, focusing on the contribution of those forbidder@iMmes, thereby producing additional modulations in the
orbits. We give our conclusions in Sec. V. photoabsorption spectrum. The way these combinations oc-

cur depends both on the classical characterigaosplitude
A, and actionS, of the kth trajectory, and on the properties
of the scatterefwhich is given by the scattering transition
matrix, T). Scaled energy spectroscopy consists of simulta-
Closed-orbit theory explains the dynamics underlying theneously varying the magnetic-field strengghand the laser
photoabsorption spectra of Rydberg atoms or molecules iexcitation frequency so as to keep=Ey~?® constant,
external fields in terms of closed orbits: following initial whereE is the energy of the Rydberg electranis the scaled
photo-excitation, the wave function of the excited electronenergy, which depends on the core sfatarough the energy
propagates first in a region near the ionic céfi@ner re-  partition between the core and the outer electron. Although
gion”), in which the external field can be neglected. Beyondscaling for molecules is only approximate, we have seen in
the inner region, the wave function is propagated semiclasRef.[4] how a molecular system can be scaled conveniently;
sically along classical trajectories. Some trajectories return té .« will stand for 3, since the field strength plays thdeo
the inner region, and the semiclassical wave function carriedf the Planck constantlO]. The absorption rate in the one
by those trajectories is matched to an exact wave function icore-scatter approximation is then given[bge Eq(3.30 in
the inner region given by a standdfild-free multichannel  Ref. [4]]

1. OVERVIEW OF STANDARD MULTICHANNEL
CLOSED-ORBIT THEORY

f(ﬁeﬁ)=219/4773/22 2 E |m{<a|j>CaCa,ei”(”a+”a')
T o

X

(ila’) 2 Rice+ o2t m*23 (j'la) Ty 2 Rl ()2 ng(q)“. @
J

The notation has been completely detailed in Sec. Il of Ref—1 M M+ 1, whereM\ is the projection oiN on the field

[4], but in short;j (andj’) is a compound index accounting axis andN the core angular momenturit, the projection of

for the core-electron couplings when the electron dynamicshe total angular momentum on the field axis, is the only
has uncoupled from the core. If we assumeds the proto- quantum number conserved throughout the entire physical
type molecule, the initial state has the quantum numbers processa gives the set of quantum numbers in the molecu-
=0, =0 (J is the total angular momentunh,the orbital  lar frame when the electron is coupled to the molecular axis;
momentum of the outer electrprthe sum ovej runs over the sum runs here oA=0 (X statg and A=1 (II state;

the core statesN=0, My=M, and N=2, My=M ps and wp are the corresponding short-range molecular
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guantum defects. £is a coefficient giving the relative N m:

strength of the electronic dipole transition amplitudes; from Do (T ’aik)zl_;m_‘ QY1 m (i) (4
the united dipole approximation, known to be valid fog,H Y
we have G=1 and G;=2. (j|a) are the transformation
coefficients between the molecular and the uncouple
frames. The elements of the scattering maffix depend
solely upon the quantum defects and ¢jer) elements. The Q = — il 3

quantitiesﬁf((ej) are the only ones that depend on the clas-
sical properties of the Rydberg electron trajectories. We
have, for the trajectork associated with the core in stgte
[Egs.(3.18 and(D1) of Ref.[4]]:

avith

(- 1)'jei<v’8_ri*3”’4>2“ e «(Njlim|a)D,, (5

where theD , are the dipole transition amplitudes in the mo-
lecular frame. The MQDT expansion reads in the uncoupled
basis

'ﬁ,{(( EJ) = |Sin eikSin Gfk|l/2

X2 (= D)Y (6 Y (670

(n

X'Ff—1/4AEjmj(rf,afk)ei(ZwéEjmj/ﬁeﬁ—ijmj77/2—377/4), ‘ﬂth(rf):; |J>Z Cj'[5jj'f|j(rf)+Tjj'9|J;(rf)], (6)
i

2
o wheref andg™ are the Coulomb functiond (s regular at the
wherel;,lI;,=|m;| andm;,=m;. 6, and 6y are the initial  origin, g* is an outgoing wave The expansion coefficients
and final angles of thkth trajectory relative to the magnetic- ¢;. are obtained by matching Eq®) and(6) on the bound-
field direction, which is taken to be along thEﬁXiS.AEjmi ary. The matching condition reads

N . . .
and S(lml are the scaled classical amplitude and action,

evaluated at the corresponding scaled ene[gyufimi is the B _ 77 _ . -

associated Maslov indeX;; n (6i) will be used throughout ¢jg,, (rof2i= —277[0 d 0 SinOrY{m (01) M (1, 0r);

as a shorthand notation fdhjmj(eik,O), since the conserved (7)
axial symmetry has been separated from the two-dimensional

semiclassical problem; we have accordingly used a differente integral is performed for each trajectdeyn the station-
notation for the quantized value of the Rydberg electron’sary phase approximatigrsince the phase is stationary along
angular-momentum projectianand its classical counterpart the final angle of the trajectoryy, [11]. The value of the
L, appearing in the two-dimensional diamagnetic Hamil-coefficientsc; are then inserted in the expression giving the
tonian. Equation(2) must be modified for orbits lying along dipole transition amplitudes, of the for|D| #/qq), Where
the magnetic-field axis €= 0y=0) as detailed below. |y) is the initial state prior to photoabsorption. The formu-
Note that Eq.(1) is also valid for ground-state hydrogen |as for the oscillator strength and the absorption rate are then
DhOtoe;](ClteC:] to odd-parity SLatgby Setﬂng,ufz and Mhn 50 obtained. Obviously when Eqg3) or (7) vanish, e.g.,
zero; then thel matrix vanishesas well as for nonhydro- v (s Y_0 or Y* (6.)=0. then Ri(e) vanishes. and
genic Rydberg atoms with a single quantum defect; (by 'imi( ) 'imi( =0, <)) ’

Settingus = sy =1, the T matrix is then diagonal these orbits should not produce modulations in the oscillator

Equations(1) and(2) are obtained by matching the semi- strength.
classical wave functionpgicmi associated with the core in
state|N;m;) which returns to the core region to a MQDT [ll. CONTRIBUTION OF FIRST-ORDER
expansion on a boundary circles(6;). The semiclassical FORBIDDEN ORBITS
wave function reads A General remarks
r2sin 6, 1/2 Althqugh Egs(1) and(2)_predict that ifﬁ{((ej) vanishes,
ngcmj(rf ,gf)zz wﬁd{‘”(ri ,0i) '2_' the orbitk should not contribute to the recurrence spectrum,
k r£sin 6 we had observed in Ref4] a mismatch between semiclas-
N e N sical and quantum calculations for molecules in fields in the
XA(re, O exp{i[S(r, 6f) amplitude of certain peaks in the recurrence spectrum. This
N:m; mismatch was interpreted as arising from the interference of
—w 2]}, () the orbit perpendicular to the fielavhich lies on the node of

Nom: o ) a spherical harmonic wheM =0 and is thus semiclassically
wherey | I(ri, 0i) represents the initially outgoing waves, forpidden with the R} orbit. As stated, the recurrences asso-
which were propagated semiclassically beyond the boundanyiated with classical orbits lying in the node of a wave func-
(r;,6,). We shall writezp:ﬂtmi(ri ,0) as tion were first observed by Shaet al. [7] when comparing
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guantum and semiclassical calculations for the diamagnetipared to the central orbit with angle®;(, 6;). However,
hydrogen atom at low scaled energigs=—0.7). They ob-  when the central orbit lies on a node of a spherical harmonic,
tained a formula for the contribution of the perpendicularthe semiclassical wave function can only be carried by the
orbit by matching the returning semiclassical wave to ameighboring orbits, and this contribution can be significant
ansatz(a rotated first-order Bessel functiorin this section, provided the classical density of trajectories is sufficiently
we shall derive simply the contribution to the oscillator large on return to the core.

strength of this type of first-order suppressed orbit by em- |t turns out that, to the first order i;— 6y, such a

ploying the same framework introduced in Sec. II, W'thOUtcontnbunon comes into play if we have bo‘lrh m (6,)=0
introducing additional assumptions; only the stationary phase m (6 =0. If k is such an orbit, its contrlbutlon to

integration needs to be performed differently. We will also®
derive a formula to account for the peaks in the=1 recur-  the outgomg wavey, " [Eq. (4)] vanishes. The contribution
rence spectra appearing at the scaled action ofntked  of the neighboring orbits are taken into account by inserting
parallel orbit, since the parallel orbit does not exist classi-Eqg. (8) in Eq. (4) and Eq.(9) in Eq. (7); the right-hand side
cally whenL,#0 and there is therefore no correspondingof Eq. (7) then takes the form

7~2L(ej) factor. Numerical results and examples will be given

in Sec. IV.
B. Contribution of on-node suppressed orbits —Zﬂfo dgf|5in§fsm 9ik|1/2
The rationale for including the contribution of orbits lying
on the node of a wave function was already given in R&f. Y1 m (i) 36, k‘ aYf m (Gf)’
strictly speaking, an orbk closed at the core with initial and X E Ql , (90
returning angle®;, and 6y is not isolated, but has neigh- yr ik fwf ‘ b (7‘9f ‘gfk
boring orbits that are not closed at the origin. We assume a
neighboring orbit returns with an angm and enwsage the xAEjmj(rf E)[ (E— 0r)?
initial anglee of this orbit to be a function o, i.e., 6,
=0(6;). To the first order ind;— 6y, we have Nimi . — s
(09 R, X eXp[I[SEJmJ(rf,0f)—wEJm'77/2]}}. (10)
_ Nym (i) oy |  — . . -
Y,jmj(ai)=Y|jmj(6ik)+ ST i~ 051, Following Hupperet al. [11], we express the action on the
ik 90 Otk boundary (;,6¢) in terms of the action of the orbit closed at
®  the origin, SUMi(re,67)= Sk(closed) Jri8(6;— 0r)%. The
integral can now be performed; a straightforward stationary
Yy (9f) phase integration would lead to zero, since the integrand

(0s—0n). (9  vanishes at the point of stationary phake= 6. However,
Oty we can assume the integrand to vary slowly around the angle
of stationary phase, and integrate exactly the term between
In the usual case, the contribution of the nelghborlng Orblt%quare bracket&ee Append|x A In the semiclassical limit,
with initial and final angles Q, ,0f) is negligible when com- Eq. (A4) is appropriate. Equatiofl0) then becomes

m(af) Yi m(efk)"_#

. a0
helw/Zzl/Z[r;l/4A j ‘(I‘f !afk ] Sgr( aelk)
fk

aY ) AYE (6
% —23/477(277ﬁ)1/2ei77/42 QI.’ |jrmj(alk) Ijmj( f)

; ; — /4, N;m;
: TN 0. |sin Biisin Oy r ¢ AT (1 e, 051
i’ i f

sk

X exXpl[i (S ateeqy 28— w M w21} ¢, (12)

where we have useA'k“imi(rf ,00) =06 190 Y2 For clarity we have singled out the factor specific to on-node ofbits
front of the curly brackejsrelative to the expression valid for “typical” allowed orbitmside the curly bracketsin particular,
it can be seen on-node orbits are suppressed by a faatelative to typical orbits.
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The relevant scaled factdi{(_node(ej) giving the contribution of an orbit lying on the node of a wave function in the
absorption rate is thus

= ik Y1 m (Bik) fwl*-m.(af)’

Rhnoad €)) =He2"s r(—' ) sin@,sin 6| Y2> (- 1)t — i
knode( j eff g (99“( | ik fk| |j|j’ aaik &_Gf ‘0
fk

X7 YAANMI(r ¢, 00 12ex i (2SN o— wp i M ar2— l4)]. (12)

This formula holds for nonvanishing angles. Specializing togemiclassical limitL. is small (since hge=y*3—-0), the
1=z 1

our atomlcland molecular mod.els descrlbed. above, we hav(‘?entrifugal term is infinite on the axis, and the parallel orbit
=1, so this formula only applies to the orbit perpendicular

: R = . no longer exist$12]. However, we may expect orbits neigh-
to the field @i = 6r=/2) for them=0 manifolds(e.g., for boring thez axis and not closed at the nucleus to contribute
a molecule, wherM =0, for an outer electron associated

. . e ; to the oscillator strength, in the same manner as for the on-
with core states having a projectioviy=0). Note that in

the ab f ffoct 0 b trictl _ node orbit(orbits near thez axis forL,#0 and their struc-
e absence of core effects, E#j0) becomes strictly equiva- tural stability asL,—0 were actually investigated in Ref.

lent to the correction obtained in Ré€f7] for the hydrogen [12]. Starting from Egs.(8) and (9 and setting

atom. |sin 6y /sin 6y |Y?—| 56, 1 96]Y? in Eq. (3) as in Sec. I B
leads, after matching the semiclassical returning wave to the
C. Contribution of the “classically nonexisting” parallel orbit MQDT expansion, to the integral

1. Contribution of the parallel orbit when L=0

We first recall that .the .orbit parallel to the.field9'i(' J dafsinafﬁfzexp(i‘/rf/sgfz/h)_ (15)
= 0;,=0) classically exists if. ,=0. Even then, this orbit is 0

treated as a special case, because the formulas valid for the

other orbits, Eqs(1) and (2), need to be modified. This To the lowest order ik, we have(see Appendix B
modification was originally obtained by matching the semi-

classical returning wave to a particular Bessel function on T

the z axis [9]. We show here that the reason this orbit is f dafsine@zexqi\/rf/862f/h)~
“special” is that the standard stationary phase approximation 0

vanishes. Indeed, settingin 6 /sin 6 |Y—|36; /965 in

the outgoing wavé3), the expression to be integrated arising The resulting scaled contribution to the oscillator strength is

2

(16)

from the matching conditiohEq. (7)] is given by
™ _ ) . a0,
fo do;sin ;exp(i \/rf/802f/h), (13 R{(—forbo(ej):hgéfzzwlﬂ'_l/zsgr((?0::(); (—1)ith
iy’
which is zero in the s_tandard stationary phase appro_ximation. Yy ,m (6i) ayl*_m_(gf)
However, an approximate closed form may be obtaifsesd X —1] L
Appendix B. To the first order ink, we have 90i s

Otk
. , ~_1/2,N;m; — M2
fdﬁfsinﬁfexp(i\/rf/—Sﬁfz/ﬁ)~ﬁe'”/2 oF. (14 X A 00=0)]

0 ~ . . . .

Xexdi (27 M eg— wp Mar2)]. (17)
This result is reduced by a factbt’%e' ™42~ Y47 =12 relative

to the standard stationary phase integration for nonzero depjithin our molecular model, this correction applies when
gree orbits, which is exactly the result obtained 9} The  |m|=1; this is of course the case whah=1, but even for

parallel orbit thus appears as a first-order suppressed orbiy — 0, the outer electron may be associated with core states

which is apparent from it4 dependence. having a projectiofMy|=1, i.e., N=2 My=1,—1. Note
o . that we have followed the standard notation used previously,
2. Contribution of the parallel orbit when L#0 whereby the zero-degree orbit amplitude is set as

When L, is nonvanishing, the diamagnetic Hamiltonian AEimi(rf ,00,=0)=106,/90| (althoughstricto sensuthis
contains the repulsive term proportionalltd/p?, whereL, s the square of the genuine two-dimensional semiclassical
—yY34_, is the scaled angular momentum amet Y23 the ~ amplitude, so that nowr; *?A1™(r, 6= 0) is indepen-
scaled distance from the axis [10]. Even though in the dent of the boundary radius .
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a+1 a+3 \

|Fourier Transform| (arb. units)

1 2 3 4 5
Scaled Action

FIG. 2. General view of the recurrence spectrum for a molecule
with the set of quantum defecigs=—-0.3, uy=0.1, M=0, at
I en—o=—0.3 andey_,=—0.8 in the rangey **=[60,120. The

|Fourier Transform| (arbitrary units)

| L | L
1.0 20 3.0 semiclassical resulbottom) has been calculated in the one core-
Scaled Action scatter approximation, but the first-order suppressed contributions
have been included.

FIG. 1. Recurrence spectrufRourier transform of the photoab-
sorption spectrumfor a nonhydrogenic atom witl,-,=0.5, M ) o
=0, ate=—0.7, in the rangey” ¥3=[60,120. Top: quantum cal- tion, whereas the solid line in the bottom part of the plot

culations. Bottom: standard semiclassical calculatiGudid line), results from the standard semiclassical treatment; this solid
semiclassical calculation including the higher-order contributionlineé only accounts for less than half of the peaks in the re-

from the on-node orbitbroken ling. currence spectrum. The missing peaks relative to the quan-
tum results arise from the orbR; perpendicular to the field
D. & dependence (and itsnth repetitionR,))—which lies on the node of the

wave function and is thus not excited according to the stan-
dard treatment—as well as from the combinations produced
by core scattering betwedR,, and the parallel orbit and be-
tween the on-node orbits. The broken line includes the con-
tribution of the on-node orbitEq. (12)] in the semiclassical
calculation.

At higher scaled energies, the contribution of the forbid-
. - o .. denR, orbit is visible through the mismatch observed in Ref.
the core-scattereddiffractive” ) orbits: each encounter with [4] between the height of the peaks in the quantum and semi-

the core brings m_for_a typical orbit a fa_lctdrl . Thus, classical recurrence spectra. Figure 2 displays a global view
single core scattering is expected to dominate the photoab-

- . . . L f the recurrence spectrum for a molecule with the set of
sorption spectrum in the semiclassical regime; however, thauantum defectsus = — 0.3 —01 M=0. aten =
f dependence is balanced by the amplitude factors, explain;0 3 ande :Si% 8in t.h(’a ’;Lala '_1/3:[60’12(] h'll':hoese
ing why for individual orbits the forbidden contribution may ! N=2 i 9& ’ :

be strong, as will be seen below. It may also be noted that thguantum defects yield a balanced contribution of the differ-
combination of orbits having different individu@l depen- nt type of orbits: the primitive geometric orbithat is, the

dence through core scatterifigst term in Eq(1)] will give orbits that appear in the recurrence spectrum of the hydrogen

. . . a¥om), the elastic scattered diffractive orbitthat appear in
rise to peaks in the recurrence spectra W'.th a dependence fiie recurrence spectra of nonhydrogenic atoms and in mol-
the form# "2, wherev is an integer depending on the type of

fimitive orbit nnected by th ; ttering br Iecules and the inelastic scattered diffractive orbithat
: rticulzrocors-(s:oatt(eafine b ytW . r(wj(:V\(/a Sfcilbi((allde(‘gl paorgﬁZIS. rr-gOIGIy appear in molecular systemn Figs. 3-5, we focus
pa , core-sc g betwee 0o P 9N some individual peaks in the recurrence spectra, choosing

ﬁ:‘:]sitls expected to be highly suppressed in the sem|cIaSS|ca fferent sets of quantum defects but keeping the other pa-
' rameters(scaled energiesy range constant, to observe the

presence of the on-node orbit and how its interplay with core

scattering affects the amplitude of the recurrence peaks.

We compare below quantum and semiclassical calcula- Figure 3 displays the recurrence spectra for nonhydro-
tions to assess the importance of the forbidden orbits in thgenic atoms withu,_,=0.5[a], -, =0.25[b], and u_;
recurrence spectra of atoms and molecules. The numerical0-1 [c], at e=—0.3, around the peaks labeled 3 and 1
examples given in this section correspond to nonhydrogenig 3 in Fig. 2. According to the standard treatmegblid
atoms and different molecules obtained by choosing differenline), peak 3 is produced by thBj “pac-man” orbit (the
sets of quantum defects, within the framework of the modeBhapes and characteristics of the orbits mentioned here are
described in Sec. Il. given in Table | and Fig. 6 of Ref4]; Ré has bifurcated

Figure 1 displays the recurrence spectrum of a nonhydrofrom R, at a slightly lower energy, and thus the two orbits
genic atom withw,—,=0.5, M =0, ate=—0.7, in the range have nearly the same scaled acjjoand 1+ 3 results from
vy~ ¥3=[60,12Q. The top figure gives the quantum calcula- the combination of the/i “balloon” orbit (peak 1) and%%

Unsurprisingly, the contribution of the forbidden orbits in
the recurrence spectra have a differéntlependence. The
on-node orbit is suppressed by a fackorelative to a typical
primitive orbit; the parallel orbit is suppressed by a factor
#7.Y2 relative to a typical orbit, and the forbidden parallel by a
factor# relative to the classically allowed parallel orbit and
#.%2 relative to a typical orbit. This is to be contrasted with

IV. RESULTS
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: FIG. 5. The peak labeled+ 3, due to inelastic core scattering
Scaled Action in Fig. 2 is shown for the choice of quantum defegts=0.5,

FIG. 3. Recurrence spectra for nonhydrogenic atoms withen="0. The inclusion of the higher-order contributiofisroken
wi—1=0.5[al, u_1=0.25[b], and w,_,=0.1[c]. The left panel  lin€) gives a better agreement with the quantum calculatico
represents the peak labeled 3 in Fig. 2, the right panel shows tH&an the standard semiclassical formaligsulid line upside-down
combination peak * 3 (the amplitude of the + 3 peak has been
multiplied by 3 relative to the amplitude of the peak on the left
pane). For each peak, the quantum res(ittp) is plotted versus
semiclassical calculation@ipside down without (solid line) and
with (broken ling the higher-order contributions.

|Fourier Transform| (arbitrary units)

| L L | " | L | )
0.95 1.001.89 1.90 191 1.92 1.93
Scaled Action Scaled Action

FIG. 6. Recurrence spectrum for the hydrogen atom at
e=—0.55,M=1, in the rangey”*=[30,24Q. The plot focuses
on the first and second repetitions of the first-order suppressed “par-
39 392 39 392 allel” orbit, which is clearly visible on the quantum calculations
(top). This feature is absent from the standard semiclassical calcu-
lations (bottom, solid ling, but the inclusion of the higher-order

FIG. 4. The peak labeled-33 in Fig. 2 is shown for a molecule ~contributions(bottom, broken lingresults in an excellent agree-
with quantum defectgy=0.5, uy=0 [a] and uy=0.5, uy=0.5 ment with the quantum calculations. Note that the peakSat

|Fourier Transform| 2 (arb. units)

Scaled Action

[b]. The inclusion of the higher-order contributiofisroken ling =0.95 sits on the right shoulder of the much stronBerorbit; the
gives a better agreement with the quantum calculatitoyy than  oscillations are due to the finite range of the Welch-windowed Fou-
the standard semiclassical formaligsolid line upside-down rier transform.
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through core scattering. The mismatch for the peak 3 arisesal formalism such as closed-orbit theory. Some processes
from interference between the contributions of ﬂ@ and are forbidden on purely classical groun@sg., the above-
the on-nodeR, orbit; indeed, including the on-node orbit in barrier reflection of excited lithium in an electric field which
the semiclassical calculations results in excellent agreemengsults in very broad resonances in the absorption spectrum
with the quantum result. The peak 3, thus, results from th¢13]), whereas other processes are semiclassically distorted
interference of primitive orbits and accordingly does not de<(e.g., diverging amplitudes at bifurcations

pend on the value of the quantum defect; however, the peak The role of the perpendicular on-node orbit was first ob-
1+ 3 does depend on the quantum defect and vanishes in tig&rved in calculations for the diamagnetic hydrogen atom at
limit wu,_;—0; the contribution of the on-node orbit in 1 low scaled energy ¢=—0.7) [7]. Subsequent high-
+3 is seen to be importar{tn absolute terms only pro- resolution experiments on helium in a magnetic field in the
vided the quantum defect is large. Note that, in principle, wesame dynamical regime did not clearly detect the on-node
should also have taken into account the first and third repetiorbits (they were within the experimental nojsgl4]. We
tions of the perpendicular orbit, but their corresponding am-ave given a simpler derivation of the contribution of these
plitudes are very small, so these orbits have a negligibléil’St-Ol’der suppressed orbits, and our numerical results indi-
contribution to the recurrence spectra. cate that on-node orbits are more likely to be detected in

The situation depicted in Fig. 4 is more involved: a closenonhydrogenic atomic or molecular systems with strong
up of the peak &&= 3.9 (labeled 3+ 3 in Fig. 2 is shown for quantum defects. At low scaled energies, _pee_lks resulting
a molecule with quantum defecgss =0.5, u;=0 [a] and from the core scattering of the pn-node orbit Wl_th a strong
us=0.5, uy=0.5 [b]; the peak 3-3 arises from recur- aIIode orbit could be more_easny dgtected; at higher scak_ad
rences produced by different orbits: the second returRlof E€N€rgies, the on-node orbit is most likely to affect the ampli-
and the fourth returi®, of the on-node perpendicular orbit, tude of peaks due to typpal gllowgd orbits.
the combinationsR%+R%, R%JFRZ, and R,+R, via core Th_e presence of_ contributions in the quantum photoab-
scattering. The resulting peak amplitude depends both on tHPTPtion spectra which were not correlated with any classical
quantum defectéwhich rule the core-scattering amplitugles or_blt was qbserved m_ca!culatlons fqr nonhydrogenic atoms
and on the inclusion of the two on-node orbits: in the firstWith m+0 in an electric field by Robicheaux and Shis,
case, the standard semiclassical resotierestimatethe ex-  these contributions were coined “recurrences without closed
act quantum calculation, whereas in Figb} the standard Orbits” because they appear at the scaled action of the paral-
semiclassical resulbverestimatesthe correct recurrence lel orbit, which only exists classically wheh,=0 and
strength. Adding the contribution of the on-node orbits in theshould, therefore, be absent in@¥ 0 recurrence spectrum.
semiclassical treatment results in both cases in a better agreBhese authors also gave ad hoc semiclassical formula
ment with the quantum calculations. akin to the on-node correction which resulted in a poor

Figure 5 displays the peak labeled @ in Fig. 2 but for  agreement with the quantum calculations. Mairb] later
the choice of quantum defects; =0.5, u=0. This peak pointed out that, for small but nonvanishing,, periodic
results from the inelastic scattering betwd%,}wat e=—0.3  orbits having nearly the same action as the=0 parallel
and the perpendicular orbit associated with the core $ate orbit do exist; it was unclear however, whether, the recur-
=2, m==1 at e=—0.8. Again, the standard closed-orbit rences without closed orbits could be attributed to such or-
result underestimates the recurrence strength and the inclyits, in particular, because the starting point of these orbits is
sion of the flr'_st-order suppressed on-node orbit improves thgeyeral atomic units away from the core. Our formiia.
agreement with the quantum results. (17)] correctly accounts for the peaks in the recurrence spec-

Finally, Fig. 6 shows a portion of the recurrence spectrumyym associated with these apparently nonexisting orbits: the
for the hydrogen atom até=—0.55, M=1, in the range  gdependence is different to that of the suppressed on-node
vy~ 13=[30,240. We have focused on the peaksSt0.95 orbits. The physical picture is similar in both cases: just as
andS=1.91, which are due to the first and second returns oFd. (12) accounts for close neighbors to the on-node orbit,
the classically “nonexisting” forbidden parallel orbit. Note Which are not closed at the origin but carry a portion of the
that the peak aB=0.95 sits on the right shoulder of the Wave function back to the core region, H4.7) takes into

account nonradial orbits close to thexis which also give
rise to recurrences by carrying the wave function from and
into the core region.

To conclude, we have seen that the first-order forbidden
processes can be included within the closed-orbit theory in a
simple and unified manner by elementary manipulations of
the stationary phase integral, which yield a higher-ortler

much strongerR, orbit, whereas the second return &t
=1.91 is sufficiently isolated. The quantum calculation for
M =1 thus displays peaks for orbits, which classically “do
not exist,” at the actions of the correspondily=0 parallel
orbit. The standard semiclassical treatmésdlid line) can-
not obviously account for those peaks, but including Eq

(17), which takes into account higher-order contrlbutlons,dependence_ In passing, we have shown that the zero-degree

ylelds an ‘?XCG”G”t "?‘greeme.”t with the_ quantum results, Sil’]C(?rbit, which has always required special treatment, is in fact
those forbidden orbits contribute, albeit modestly, to the pho—a case calling for a refined stationary phase integration.

toabsorption spectrum. Analogous manipulations of the stationary phase integral of

the Green’s function were performed in REL6] to obtain

an improved semiclassical long-range scattering matrix or
The feature developed in this paper is one of the manyRydberg atoms in fields. Our method provides a convenient

refinements that can be undertaken to improve a semiclassind effective way of including nonradial and nonclosed tra-

V. DISCUSSION AND CONCLUSION
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jectories that nevertheless contribute to the photoabsorptior,, . 1,312, 112031 ml4
spectra of Rydberg atoms and molecules in fields without theT dOs(0;— 00 2exd i r/8(6;— 0 ) %I h ]~ Y
need to calculate explicitly the involved classical dynamics”© S

of those trajectories. The validity of the method was assessed (A4)
by comparing our semiclassical results to quantum calcula-
tions for Rydberg atoms and molecules in an external maglNote that this result is independent of the valuedgf, pro-

netic field. vided 64, #0.
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APPENDIX A 1,(e)= fo d 6;sin ;exp(is 67) (B1)

We briefly work out the integral needed to determine the
contribution of an orbit lying on the node of a wave function and
in Sec. lll, .
. 2(8):f déssin O; Osexp(is 65), (B2)
fo d0:(6:— 010 "exeli T /8(6:— ) 1h]. (A1) °

with s real, are obtained in the limit, in which the standard
This integral can be integrated directly but for present purstationary phase approximation holds for the usual orbits by
poses, it is convenient to express it in terms of sine andgeplacing the upper bound by—o. Then Egs.(B1) and
cosine Fresnel integrals and take the limit for the range, ifB2) are given in terms of infinite serigd7], which are
which the standard stationary phase approximation holds fogctually representations of special functions. Choosing for
the usual orbits. For example, in the neighborhood@f,  simplicity a representation in terms of Fresnel integrals, Eq.

the real part of Eq(Al) can be expressed in the form (B1) becomes in this limit,
Oiten — T v . 1 1/
|(n):2J' dt9f Bfk) COE{\/rf/ 0fk)2/h] |1(OO): g expl __+ {C[(ZWS) 2]
Ok
(A2) +i8[(2ms) V21, (B3)

— —23/4ﬁ3/2 —3/4,__1/ 2 1+2n)—2J1+2
[ r 2 -2y nCOSW?g\é) whereas for Eq(B2), we have

where S is the sine Fresnel integral ande, 1 | 112 i

= V4 Va7 123 112 /14 2n with n a real numben> —1/2. lp(00)=— —1{1+|— (Zs—i)ex% - —)

For large half-integer values af, I1(n+1)—1(n)~0 and 48 2s 4s
S(J1+2n)~1/2. I(n) can then be approximated by the

term between square brackets in E43). This is consistent X{C[(Z’ZTS)_UZ]‘FiS[(Z’ITS)_llz]}}. (B4)

with having neglected terms of ordeE(— 0:0)% in Eq. (A1)
providedz—0. The imaginary part of EqA1) is treated in  When s—, to the first order, only C[(27s) ¥?]
the same way by writing the result in terms of the cosine~(2s) %2 contributes tol ;(«), whereas forl ,(«), the

Fresnel integral(x). Hence term between the braces simply gives 2.
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