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Contribution of forbidden orbits in the photoabsorption spectra of atoms and molecules
in a magnetic field
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In a previous work@Phys. Rev. A66, 013410~2002!#, we noted a partial disagreement between quantumR
matrix and semiclassical calculations of photoabsorption spectra of molecules in a magnetic field. We show
that this disagreement is due to a nonvanishing contribution of processes, which are forbidden according to the
usual semiclassical formalism. Formulas to include these processes are obtained by using a refined stationary
phase approximation. The resulting higher order in\ contributions also account for previously unexplained
‘‘recurrences without closed orbits.’’ Quantum and semiclassical photoabsorption spectra for Rydberg atoms
and molecules in a magnetic field are calculated and compared to assess the validity of the first-order forbidden
orbit contributions.
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I. INTRODUCTION

The photoabsorption spectrum of excited atoms or m
ecules placed in a magnetic field displays complex str
tures. Closed-orbit theory consists of a fully quantitative a
proach, in which the large-scale structures of the spectra
explained in terms of classical trajectories closed at
nucleus, i.e., leaving and returning to the core. Each o
produces on its return an oscillation in the photoabsorp
cross section; the Fourier transform of the spectrum, kno
as therecurrence spectrum, therefore, exhibits sharp peaks
the period of the orbits. First developed for the hydrog
atom @1#, closed-orbit theory was then extended to treat
case of nonhydrogenic Rydberg atoms: the additional sp
tral modulations appear as the result of successive quan
encounters of the Rydberg electron with the core@2#. The
wave function follows thehydrogenicclassical orbits in the
region, where the Coulomb and the external fields comp
~‘‘outer region’’!, but near the core, where the external fie
are negligible~‘‘inner region’’!, the wave function is de-
scribed quantum mechanically.

More recently, we proposed a closed-orbit theory tre
ment of molecules in external fields@3,4#: in addition to elas-
tic scattering, inelastic scattering gives rise to novel spec
modulations. The relative importance of elastic and inela
scattering was shown to depend on the short-range p
shifts, the molecular quantum defects. In the inelastic co
sion process, the molecular core undergoes a transition f
its ground state to an excited state, and the dynamical reg
of the Rydberg electron changes accordingly, say from a c
otic to a near-integrable classical regime. Good quantita
agreements between quantum calculations and closed-
theory in the case of an external magnetic field were
tained. However, we noted in Ref.@4# a discrepancy betwee
the quantum and the semiclassical results for certain peak
the recurrence spectrum. In general, disagreements bet
semiclassical and quantum recurrence spectra are du
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higher-order~in \) effects such as bifurcations or ghost o
bits, and specific formulas to account for these effects h
been developed@5,6#. The discrepancies we observed in R
@4# are due to another type of effect, namely, the manifes
tion of orbits that are forbidden to first order in\; these
orbits are forbidden either~i! because they should not b
excited according to the usual semiclassical formalism or~ii !
because they do not classically exist.

We investigate in this work the effects of such first-ord
suppressed orbits. We will derive formulas for including th
contribution in the recurrence spectra by going beyond
usual stationary phase approximation employed in the s
dard form of closed-orbit theory. The formulas will be test
versus exact quantum calculations for different model ato
and molecular systems in an external magnetic field. The
orbits that will be dealt with specifically are the orbit perpe
dicular to the field, which should not be excited when it li
in the node of a wave function, and the orbit parallel to t
field, which does not exist classically when the electro
angular-momentum projection on the field axisLz is nonva-
nishing ~since the Hamiltonian remains divergent on thez
axis even after regularization!. The contribution of orbits ly-
ing in the node of a wave function was first observed
Shawet al. @7# when comparing quantum and semiclassi
calculations for the diamagnetic hydrogen atom in the ne
integrable regime~scaled energiese.20.7). They obtained
a formula for including the first-order forbidden contributio
of the perpendicular orbit, which appeared as a small fea
in the recurrence spectra. In nonhydrogenic systems, we
expect the effects associated with ‘‘forbidden’’ orbits to
far more important than in hydrogen given that core scat
ing mixes the contributions of different orbits. Moreover, a
though it may have been expected that at higher scaled
ergy, the contribution of on-node orbits would becom
insignificant ~as the classical amplitudes decrease!, we will
see that their inclusion is necessary to account for the cor
amplitude in the modulations produced by orbits that ha
©2003 The American Physical Society02-1
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bifurcated from them. The existence of recurrences produ
by ‘‘nonexisting’’ orbits on the field axis was reported fo
Rydberg atoms in an electric field by Robicheaux and Sh
@8#, who developed a heuristic formula which yielded a po
agreement between semiclassical and quantum calculat
We will derive a formula for appropriately taking into ac
count such classically forbidden orbits and compare it
quantum calculations in the case of an external magn
field. In passing, we will also show that the contribution
the parallel orbit when it is allowed~i.e., for Lz50) can be
obtained by treating it as any other orbit, provided a high
order refined stationary phase integration is used~whereas
the parallel orbit has always been treated as a special c
following the original derivation given by Gao and Delo
@9#!.

The paper is organized as follows. We recall in Sec. II
usual semiclassical formulas of closed-orbit theory~with
provision for multichannel core scattering!. Section III de-
tails the derivation of the contribution to the photoabsorpt
spectra of the first-order forbidden orbits. We report in S
IV quantum and semiclassical calculations for different v
ues of the quantum defects, scaled energies, or magn
field ranges, focusing on the contribution of those forbidd
orbits. We give our conclusions in Sec. V.

II. OVERVIEW OF STANDARD MULTICHANNEL
CLOSED-ORBIT THEORY

Closed-orbit theory explains the dynamics underlying
photoabsorption spectra of Rydberg atoms or molecule
external fields in terms of closed orbits: following initia
photo-excitation, the wave function of the excited electr
propagates first in a region near the ionic core~‘‘inner re-
gion’’ !, in which the external field can be neglected. Beyo
the inner region, the wave function is propagated semic
sically along classical trajectories. Some trajectories retur
the inner region, and the semiclassical wave function car
by those trajectories is matched to an exact wave functio
the inner region given by a standard~field-free! multichannel
e
g
ic

rs
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quantum-defect theory~MQDT! expansion. The superpos
tion of these returning waves with the initially dipole-excite
wave function produces sinusoidal modulations in the p
toabsoprtion spectrum, which appear as isolated peaks in
Fourier-transformed ~‘‘recurrence’’! spectrum. Further
modulations ~i.e., peaks in the recurrence spectrum! are
caused by the core-scattering process; in a multichan
problem, the electron can exchange energy and angular
menta with the core, so that after the collision, the elect
wave function propagates outward again and when it lea
the inner region, the wave function will follow once aga
classical trajectories. If the collision was perfectly elastic,
electron will follow one of the previously followed trajecto
ries; on the other hand, inelastic collisions will result in tr
jectories pertaining to a different classical regime.

In Ref. @4#, we described in detail photoabsorption from
ground-state diatomic molecule in a static magnetic fie
After photoexcitation, the molecular core could either be
tationally excited or nonexcited The molecular core th
plays the role of an effective two-level scatterer, which co
bines classical trajectories belonging to two different d
namical regimes~typically, chaotic and near-integrable re
gimes!, thereby producing additional modulations in th
photoabsorption spectrum. The way these combinations
cur depends both on the classical characteristics~amplitude
Ak and actionSk of thekth trajectory!, and on the properties
of the scatterer~which is given by the scattering transitio
matrix, T). Scaled energy spectroscopy consists of simu
neously varying the magnetic-field strengthg and the laser
excitation frequency so as to keepe5Eg22/3 constant,
whereE is the energy of the Rydberg electron;e is the scaled
energy, which depends on the core statej through the energy
partition between the core and the outer electron. Althou
scaling for molecules is only approximate, we have seen
Ref. @4# how a molecular system can be scaled convenien
\eff will stand forg1/3, since the field strength plays the roˆle
of the Planck constant@10#. The absorption rate in the on
core-scatter approximation is then given by@see Eq.~3.30! in
Ref. @4##
F~\eff!5219/4p3/2(
j

(
a

(
a8

ImH ^au j &CaCa8e
ip(ma1ma8)

3F ^ j ua8&(
k

R̃k
j ~e j !1\eff

1/2211/4p3/2(
j 8

^ j 8ua8&Tj j 8(
k

R̃k
j 8~e j 8!(

q
R̃q

j ~e j !G J . ~1!
nly
ical
u-

xis;

lar
The notation has been completely detailed in Sec. III of R
@4#, but in short:j ~and j 8) is a compound index accountin
for the core-electron couplings when the electron dynam
has uncoupled from the core. If we assume H2 as the proto-
type molecule, the initial state has the quantum numbeJ
50, l 50 (J is the total angular momentum,l the orbital
momentum of the outer electron!, the sum overj runs over
the core statesN50, MN5M , and N52, MN5M
f.

s

21,M ,M11, whereMN is the projection ofN on the field
axis andN the core angular momentum;M, the projection of
the total angular momentum on the field axis, is the o
quantum number conserved throughout the entire phys
process.a gives the set of quantum numbers in the molec
lar frame when the electron is coupled to the molecular a
the sum runs here onL50 (S state! and L51 (P state!;
mS and mP are the corresponding short-range molecu
2-2
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quantum defects. Ca is a coefficient giving the relative
strength of the electronic dipole transition amplitudes; fro
the united dipole approximation, known to be valid for H2,
we have CS51 and CP5A2. ^ j ua& are the transformation
coefficients between the molecular and the uncoup
frames. The elements of the scattering matrixTj j 8 depend
solely upon the quantum defects and the^ j ua& elements. The
quantitiesR̃k

j (e j ) are the only ones that depend on the cl
sical properties of the Rydberg electron trajectories.
have, for the trajectoryk associated with the core in statej
@Eqs.~3.18! and ~D1! of Ref. @4##:

R̃k
j ~e j !5usinu iksinu f ku1/2

3(
l j l j 8

~21! l j 1 l j 8Yl j 8mj 8
~u ik!Yl jmj

* ~u f k!

3 r̃ f
21/4Ak

Njmj~r f ,u f k!e
i (2pS̃

k

Njmj /\eff2v
k

Njmjp/223p/4),

~2!

where l j ,l j 8>umj u and mj 85mj . u ik and u f k are the initial
and final angles of thekth trajectory relative to the magnetic
field direction, which is taken to be along thez axis. Ak

Njmj

and S̃k
Njmj are the scaled classical amplitude and acti

evaluated at the corresponding scaled energye j ; vk
Njmj is the

associated Maslov index.Yl jmj
(u ik) will be used throughout

as a shorthand notation forYl jmj
(u ik,0), since the conserve

axial symmetry has been separated from the two-dimensi
semiclassical problem; we have accordingly used a diffe
notation for the quantized value of the Rydberg electro
angular-momentum projectionm and its classical counterpa
Lz appearing in the two-dimensional diamagnetic Ham
tonian. Equation~2! must be modified for orbits lying along
the magnetic-field axis (u ik5u f k50) as detailed below
Note that Eq.~1! is also valid for ground-state hydroge
photoexcited to odd-parity states~by settingmS and mP to
zero; then theT matrix vanishes! as well as for nonhydro-
genic Rydberg atoms with a single quantum defectm l 51 ~by
settingmS5mP5m l 51; the T matrix is then diagonal!.

Equations~1! and~2! are obtained by matching the sem
classical wave functioncSC

Njmj associated with the core i
state uNjmj& which returns to the core region to a MQD
expansion on a boundary circle (r f ,u f). The semiclassica
wave function reads

cSC
Njmj~r f ,u f !5(

k
cout

Njmj~r i ,u ik!Ur i
2sinu ik

r f
2sinu f

U1/2

3Ak
Njmj~r f ,u f !exp$ i @Sk

Njmj~r f ,u f !

2vk
Njmjp/2#%, ~3!

wherecout
Njmj(r i ,u ik) represents the initially outgoing wave

which were propagated semiclassically beyond the bound
(r i ,u i). We shall writecout

Njmj(r i ,u ik) as
02340
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cout
Njmj~r i ,u ik!5 (

l j>umj u
Ql j

Yl jmj
~u ik!, ~4!

with

Ql j
52 ip1/223/4r i

23/4

~21! l jei (A8r i23p/4)(
a

eipma^Nj l jmj ua&Da , ~5!

where theDa are the dipole transition amplitudes in the m
lecular frame. The MQDT expansion reads in the uncoup
basis

cqdt~r f !5(
j

u j &(
j 8

cj 8@d j j 8 f l j
~r f !1Tj j 8gl j

1~r f !#, ~6!

wheref andg1 are the Coulomb functions (f is regular at the
origin, g1 is an outgoing wave!. The expansion coefficient
cj 8 are obtained by matching Eqs.~3! and~6! on the bound-
ary. The matching condition reads

cjgl j

2~r f !/2i 522pE
0

p

du f sinu fYl jmj
* ~u f !c

Njmj~r f ,u f !;

~7!

the integral is performed for each trajectoryk in the station-
ary phase approximation, since the phase is stationary alon
the final angle of the trajectoryu f k @11#. The value of the
coefficientscj are then inserted in the expression giving t
dipole transition amplitudes, of the form̂c0uDucqdt&, where
uc0& is the initial state prior to photoabsorption. The form
las for the oscillator strength and the absorption rate are t
obtained. Obviously when Eqs.~3! or ~7! vanish, e.g.,
Yl jmj

(u ik)50 or Yl jmj
* (u f)50, then R̃k

j (e j ) vanishes, and

these orbits should not produce modulations in the oscilla
strength.

III. CONTRIBUTION OF FIRST-ORDER
FORBIDDEN ORBITS

A. General remarks

Although Eqs.~1! and~2! predict that ifR̃k
j (e j ) vanishes,

the orbitk should not contribute to the recurrence spectru
we had observed in Ref.@4# a mismatch between semicla
sical and quantum calculations for molecules in fields in
amplitude of certain peaks in the recurrence spectrum. T
mismatch was interpreted as arising from the interference
the orbit perpendicular to the field~which lies on the node of
a spherical harmonic whenM50 and is thus semiclassicall
forbidden! with theR2

1 orbit. As stated, the recurrences ass
ciated with classical orbits lying in the node of a wave fun
tion were first observed by Shawet al. @7# when comparing
2-3
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quantum and semiclassical calculations for the diamagn
hydrogen atom at low scaled energies~e.20.7!. They ob-
tained a formula for the contribution of the perpendicu
orbit by matching the returning semiclassical wave to
ansatz~a rotated first-order Bessel function!. In this section,
we shall derive simply the contribution to the oscillat
strength of this type of first-order suppressed orbit by e
ploying the same framework introduced in Sec. II, witho
introducing additional assumptions; only the stationary ph
integration needs to be performed differently. We will al
derive a formula to account for the peaks in them51 recur-
rence spectra appearing at the scaled action of them50
parallel orbit, since the parallel orbit does not exist clas
cally when LzÞ0 and there is therefore no correspondi
R̃k

j (e j ) factor. Numerical results and examples will be giv
in Sec. IV.

B. Contribution of on-node suppressed orbits

The rationale for including the contribution of orbits lyin
on the node of a wave function was already given in Ref.@7#:
strictly speaking, an orbitk closed at the core with initial and
returning anglesu ik and u f k is not isolated, but has neigh
boring orbits that are not closed at the origin. We assum
neighboring orbit returns with an angleū f and envisage the
initial angle ū i of this orbit to be a function ofū f , i.e., ū i

5u( ū f). To the first order inū f2u f k , we have

Yl jmj
~ ū i !5Yl jmj

~u ik!1
]Yl jmj

~u ik!

]u ik

]u ik

]ū f
U

u f k

~ ū f2u f k!,

~8!

Yl jmj
* ~ ū f !5Yl jmj

* ~u f k!1
]Yl jmj

* ~ ū f !

]ū f

U
u f k

~ ū f2u f k!. ~9!

In the usual case, the contribution of the neighboring orb
with initial and final angles (ū i ,ū f) is negligible when com-
02340
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pared to the central orbit with angles (u ik ,u f k). However,
when the central orbit lies on a node of a spherical harmo
the semiclassical wave function can only be carried by
neighboring orbits, and this contribution can be significa
provided the classical density of trajectories is sufficien
large on return to the core.

It turns out that, to the first order inū f2u f k , such a
contribution comes into play if we have bothYl jmj

(u ik)50

and Yl jmj
* (u f k)50. If k is such an orbit, its contribution to

the outgoing wavecout
Njmj @Eq. ~4!# vanishes. The contribution

of the neighboring orbits are taken into account by insert
Eq. ~8! in Eq. ~4! and Eq.~9! in Eq. ~7!; the right-hand side
of Eq. ~7! then takes the form

22pE
0

p

dū f usinū fsinu iku1/2

3(
l j 8

Ql j 8

]Yl j 8mj
~u ik!

]u ik

]u ik

]ū f
U

u f k

]Yl jmj
* ~ ū f !

]ū f

U
u f k

3Ak
Njmj~r f ,ū f !F ~ ū f2u f k!

2

3 exp$ i @Sk
Njmj~r f ,ū f !2vk

Njmjp/2#%G . ~10!

Following Hüpper et al. @11#, we express the action on th
boundary (r f ,ū f) in terms of the action of the orbit closed a
the origin, Sk

Njmj(r f ,ū f).Sk(closed)
Njmj 1Ar f /8(ū f2u f k)

2. The
integral can now be performed; a straightforward station
phase integration would lead to zero, since the integr
vanishes at the point of stationary phaseū f5u f k . However,
we can assume the integrand to vary slowly around the a
of stationary phase, and integrate exactly the term betw
square brackets~see Appendix A!. In the semiclassical limit,
Eq. ~A4! is appropriate. Equation~10! then becomes
\eip/221/2@r f
21/4Ak

Njmj~r f ,u f k!#
2sgnS ]u ik

]u f k
D

3H 223/4p~2p\!1/2eip/4(
l j 8

Ql j 8

]Yl j 8mj
~u ik!

]u ik

]Yl jmj
* ~ ū f !

]ū f

U
u f k

usinu iksinu f ku1/2r f
21/4Ak

Njmj~r f ,u f k!

3 exp$@ i ~Sk(closed)
Njmj 22A8r f2vk

Njmjp/2!#%J , ~11!

where we have usedAk
Njmj(r f ,u f k)5u]u ik /]u f ku1/2. For clarity we have singled out the factor specific to on-node orbits~in

front of the curly brackets! relative to the expression valid for ‘‘typical’’ allowed orbits~inside the curly brackets!. In particular,
it can be seen on-node orbits are suppressed by a factor\ relative to typical orbits.
2-4
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The relevant scaled factorR̃k-node
j (e j ) giving the contribution of an orbit lying on the node of a wave function in

absorption rate is thus

R̃k-node
j ~e j !5\eff2

1/2sgnS ]u ik

]u f k
D usinu iksinu f ku1/2(

l j l j 8

~21! l j 1 l j 8
]Yl j 8mj

~u ik!

]u ik

]Yl jmj
* ~ ū f !

]ū f

U
u f k

3@ r̃ f
21/4Ak

Njmj~r f ,u f k!#
3exp@ i ~2pS̃k

Njmj /\eff2vk
Njmjp/22p/4!#. ~12!
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This formula holds for nonvanishing angles. Specializing
our atomic and molecular models described above, we h
l 51, so this formula only applies to the orbit perpendicu
to the field (u ik5u f k5p/2) for them50 manifolds~e.g., for
a molecule, whenM50, for an outer electron associate
with core states having a projectionMN50). Note that in
the absence of core effects, Eq.~10! becomes strictly equiva
lent to the correction obtained in Ref.@7# for the hydrogen
atom.

C. Contribution of the ‘‘classically nonexisting’’ parallel orbit

1. Contribution of the parallel orbit when LzÄ0

We first recall that the orbit parallel to the field (u ik
5u f k50) classically exists ifLz50. Even then, this orbit is
treated as a special case, because the formulas valid fo
other orbits, Eqs.~1! and ~2!, need to be modified. This
modification was originally obtained by matching the sem
classical returning wave to a particular Bessel function
the z axis @9#. We show here that the reason this orbit
‘‘special’’ is that the standard stationary phase approximat
vanishes. Indeed, settingusinuik /sinufku1/2→u]u ik /]u f ku1/2 in
the outgoing wave~3!, the expression to be integrated arisi
from the matching condition@Eq. ~7!# is

E
0

p

dū fsinū fexp~ iAr f /8ū f
2/\!, ~13!

which is zero in the standard stationary phase approximat
However, an approximate closed form may be obtained~see
Appendix B!. To the first order in\, we have

E
0

p

dū fsinū fexp~ iAr f /8ū f
2/\!'\eip/2A2/r . ~14!

This result is reduced by a factorh1/2eip/4221/4p21/2 relative
to the standard stationary phase integration for nonzero
gree orbits, which is exactly the result obtained in@9#. The
parallel orbit thus appears as a first-order suppressed o
which is apparent from its\ dependence.

2. Contribution of the parallel orbit when LzÅ0

When Lz is nonvanishing, the diamagnetic Hamiltonia
contains the repulsive term proportional toL̃z

2/ r̃2, whereL̃z

5g1/3Lz is the scaled angular momentum andr̃5g2/3r the
scaled distance from thez axis @10#. Even though in the
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semiclassical limit,L̃z is small ~since heff[g1/3→0), the
centrifugal term is infinite on thez axis, and the parallel orbi
no longer exists@12#. However, we may expect orbits neigh
boring thez axis and not closed at the nucleus to contribu
to the oscillator strength, in the same manner as for the
node orbit~orbits near thez axis for LzÞ0 and their struc-
tural stability asLz→0 were actually investigated in Re
@12#!. Starting from Eqs. ~8! and ~9! and setting
usinuik /sinufku1/2→u]u ik /]u f ku1/2 in Eq. ~3! as in Sec. III B
leads, after matching the semiclassical returning wave to
MQDT expansion, to the integral

E
0

p

dū fsinū f ū f
2exp~ iAr f /8ū f

2/\!. ~15!

To the lowest order in\, we have~see Appendix B!

E
0

p

dū fsinū f ū f
2exp~ iAr f /8ū f

2/\!'
24\2

r
. ~16!

The resulting scaled contribution to the oscillator strength
given by

R̃k-forb 0
j ~e j !5\eff

3/225/4p21/2sgnS ]u ik

]u f k
D (

l j l j 8

~21! l j 1 l j 8

3
]Yl j 8mj

~u ik!

]u ik

]Yl jmj
* ~ ū f !

]ū f

U
u f k

3@ r̃ f
21/2Ak

Njmj~r f ,u f k50!#2

3exp@ i ~2pS̃k
Njmj /\eff2vk

Njmjp/2!#. ~17!

Within our molecular model, this correction applies wh
umu51; this is of course the case whenM51, but even for
M50, the outer electron may be associated with core st
having a projectionuMNu51, i.e., N52 MN51,21. Note
that we have followed the standard notation used previou
whereby the zero-degree orbit amplitude is set
Ak

Njmj(r f ,u f k50)5u]u ik /]u f ku ~althoughstricto sensu, this
is the square of the genuine two-dimensional semiclass
amplitude!, so that nowr̃ f

21/2Ak
Njmj(r f ,u f k50) is indepen-

dent of the boundary radiusr f .
2-5
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D. \ dependence

Unsurprisingly, the contribution of the forbidden orbits
the recurrence spectra have a different\ dependence. The
on-node orbit is suppressed by a factor\ relative to a typical
primitive orbit; the parallel orbit is suppressed by a fac
\1/2 relative to a typical orbit, and the forbidden parallel by
factor \ relative to the classically allowed parallel orbit an
\3/2 relative to a typical orbit. This is to be contrasted wi
the core-scattered~‘‘diffractive’’ ! orbits: each encounter with
the core brings in for a typical orbit a factor\1/2. Thus,
single core scattering is expected to dominate the photo
sorption spectrum in the semiclassical regime; however,
\ dependence is balanced by the amplitude factors, exp
ing why for individual orbits the forbidden contribution ma
be strong, as will be seen below. It may also be noted that
combination of orbits having different individual\ depen-
dence through core scattering@last term in Eq.~1!# will give
rise to peaks in the recurrence spectra with a dependenc
the form\n/2, wheren is an integer depending on the type
primitive orbits connected by the core scattering process
particular, core-scattering between two forbidden parallel
bits is expected to be highly suppressed in the semiclas
limit.

IV. RESULTS

We compare below quantum and semiclassical calc
tions to assess the importance of the forbidden orbits in
recurrence spectra of atoms and molecules. The nume
examples given in this section correspond to nonhydroge
atoms and different molecules obtained by choosing differ
sets of quantum defects, within the framework of the mo
described in Sec. II.

Figure 1 displays the recurrence spectrum of a nonhyd
genic atom withm l 5150.5, M50, ate520.7, in the range
g21/35@60,120#. The top figure gives the quantum calcul

FIG. 1. Recurrence spectrum~Fourier transform of the photoab
sorption spectrum! for a nonhydrogenic atom withm l 5150.5, M
50, ate520.7, in the rangeg21/35@60,120#. Top: quantum cal-
culations. Bottom: standard semiclassical calculations~solid line!,
semiclassical calculation including the higher-order contribut
from the on-node orbit~broken line!.
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tion, whereas the solid line in the bottom part of the p
results from the standard semiclassical treatment; this s
line only accounts for less than half of the peaks in the
currence spectrum. The missing peaks relative to the qu
tum results arise from the orbitR1 perpendicular to the field
~and itsnth repetitionRn)—which lies on the node of the
wave function and is thus not excited according to the st
dard treatment—as well as from the combinations produ
by core scattering betweenRn and the parallel orbit and be
tween the on-node orbits. The broken line includes the c
tribution of the on-node orbit@Eq. ~12!# in the semiclassica
calculation.

At higher scaled energies, the contribution of the forb
denRn orbit is visible through the mismatch observed in R
@4# between the height of the peaks in the quantum and se
classical recurrence spectra. Figure 2 displays a global v
of the recurrence spectrum for a molecule with the set
quantum defectsmS520.3, mP50.1, M50, at eN505
20.3 andeN52520.8 in the rangeg21/35@60,120#. These
quantum defects yield a balanced contribution of the diff
ent type of orbits: the primitive geometric orbits~that is, the
orbits that appear in the recurrence spectrum of the hydro
atom!, the elastic scattered diffractive orbits~that appear in
the recurrence spectra of nonhydrogenic atoms and in m
ecules! and the inelastic scattered diffractive orbits~that
solely appear in molecular systems!. In Figs. 3–5, we focus
on some individual peaks in the recurrence spectra, choo
different sets of quantum defects but keeping the other
rameters~scaled energies,g range! constant, to observe th
presence of the on-node orbit and how its interplay with c
scattering affects the amplitude of the recurrence peaks.

Figure 3 displays the recurrence spectra for nonhyd
genic atoms withm l 5150.5 @a#, m l 5150.25 @b#, andm l 51
50.1 @c#, at e520.3, around the peaks labeled 3 and
13 in Fig. 2. According to the standard treatment~solid
line!, peak 3 is produced by theR2

1 ‘‘pac-man’’ orbit ~the
shapes and characteristics of the orbits mentioned here
given in Table I and Fig. 6 of Ref.@4#; R2

1 has bifurcated
from R2 at a slightly lower energy, and thus the two orb
have nearly the same scaled action!, and 113 results from
the combination of theV1

1 ‘‘balloon’’ orbit ~peak 1) andR2
1

n

FIG. 2. General view of the recurrence spectrum for a molec
with the set of quantum defectsmS520.3, mP50.1, M50, at
eN50520.3 andeN52520.8 in the rangeg21/35@60,120#. The
semiclassical result~bottom! has been calculated in the one cor
scatter approximation, but the first-order suppressed contribut
have been included.
2-6
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FIG. 3. Recurrence spectra for nonhydrogenic atoms w
m l 5150.5 @a#, m l 5150.25 @b#, and m l 5150.1 @c#. The left panel
represents the peak labeled 3 in Fig. 2, the right panel shows
combination peak 113 ~the amplitude of the 113 peak has been
multiplied by 3 relative to the amplitude of the peak on the l
panel!. For each peak, the quantum result~top! is plotted versus
semiclassical calculations~upside down! without ~solid line! and
with ~broken line! the higher-order contributions.

FIG. 4. The peak labeled 313 in Fig. 2 is shown for a molecule
with quantum defectsmS50.5, mP50 @a# andmS50.5, mP50.5
@b#. The inclusion of the higher-order contributions~broken line!
gives a better agreement with the quantum calculations~top! than
the standard semiclassical formalism~solid line upside-down!.
02340
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t

FIG. 5. The peak labeleda13, due to inelastic core scatterin
in Fig. 2 is shown for the choice of quantum defectsmS50.5,
mP50. The inclusion of the higher-order contributions~broken
line! gives a better agreement with the quantum calculations~top!
than the standard semiclassical formalism~solid line upside-down!.

FIG. 6. Recurrence spectrum for the hydrogen atom
e520.55, M51, in the rangeg21/35@30,240#. The plot focuses
on the first and second repetitions of the first-order suppressed ‘‘
allel’’ orbit, which is clearly visible on the quantum calculation
~top!. This feature is absent from the standard semiclassical ca
lations ~bottom, solid line!, but the inclusion of the higher-orde
contributions~bottom, broken line! results in an excellent agree

ment with the quantum calculations. Note that the peak aS̃
50.95 sits on the right shoulder of the much strongerR1 orbit; the
oscillations are due to the finite range of the Welch-windowed F
rier transform.
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through core scattering. The mismatch for the peak 3 ar
from interference between the contributions of theR2

1 and
the on-nodeR2 orbit; indeed, including the on-node orbit i
the semiclassical calculations results in excellent agreem
with the quantum result. The peak 3, thus, results from
interference of primitive orbits and accordingly does not d
pend on the value of the quantum defect; however, the p
113 does depend on the quantum defect and vanishes in
limit m l 51→0; the contribution of the on-node orbit in
13 is seen to be important~in absolute terms!, only pro-
vided the quantum defect is large. Note that, in principle,
should also have taken into account the first and third rep
tions of the perpendicular orbit, but their corresponding a
plitudes are very small, so these orbits have a neglig
contribution to the recurrence spectra.

The situation depicted in Fig. 4 is more involved: a clo
up of the peak atS̃53.9 ~labeled 313 in Fig. 2! is shown for
a molecule with quantum defectsmS50.5, mP50 @a# and
mS50.5, mP50.5 @b#; the peak 313 arises from recur-
rences produced by different orbits: the second return ofR2

1

and the fourth returnR4 of the on-node perpendicular orbi
the combinationsR2

11R2
1, R2

11R2, and R21R2 via core
scattering. The resulting peak amplitude depends both on
quantum defects~which rule the core-scattering amplitude!
and on the inclusion of the two on-node orbits: in the fi
case, the standard semiclassical resultunderestimatesthe ex-
act quantum calculation, whereas in Fig. 4~b!, the standard
semiclassical resultoverestimatesthe correct recurrence
strength. Adding the contribution of the on-node orbits in t
semiclassical treatment results in both cases in a better a
ment with the quantum calculations.

Figure 5 displays the peak labeled a13 in Fig. 2 but for
the choice of quantum defectsmS50.5, mP50. This peak
results from the inelastic scattering betweenR2

1 at e520.3
and the perpendicular orbit associated with the core statN
52, m561 at e520.8. Again, the standard closed-orb
result underestimates the recurrence strength and the in
sion of the first-order suppressed on-node orbit improves
agreement with the quantum results.

Finally, Fig. 6 shows a portion of the recurrence spectr
for the hydrogen atom ate520.55, M51, in the range
g21/35@30,240#. We have focused on the peaks atS̃50.95
andS̃51.91, which are due to the first and second returns
the classically ‘‘nonexisting’’ forbidden parallel orbit. Not
that the peak atS̃50.95 sits on the right shoulder of th
much strongerR1 orbit, whereas the second return atS̃
51.91 is sufficiently isolated. The quantum calculation
M51 thus displays peaks for orbits, which classically ‘‘d
not exist,’’ at the actions of the correspondingM50 parallel
orbit. The standard semiclassical treatment~solid line! can-
not obviously account for those peaks, but including E
~17!, which takes into account higher-order contribution
yields an excellent agreement with the quantum results, s
those forbidden orbits contribute, albeit modestly, to the p
toabsorption spectrum.

V. DISCUSSION AND CONCLUSION

The feature developed in this paper is one of the m
refinements that can be undertaken to improve a semicla
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cal formalism such as closed-orbit theory. Some proces
are forbidden on purely classical grounds~e.g., the above-
barrier reflection of excited lithium in an electric field whic
results in very broad resonances in the absorption spec
@13#!, whereas other processes are semiclassically disto
~e.g., diverging amplitudes at bifurcations!.

The role of the perpendicular on-node orbit was first o
served in calculations for the diamagnetic hydrogen atom
low scaled energy (e.20.7) @7#. Subsequent high-
resolution experiments on helium in a magnetic field in t
same dynamical regime did not clearly detect the on-n
orbits ~they were within the experimental noise! @14#. We
have given a simpler derivation of the contribution of the
first-order suppressed orbits, and our numerical results i
cate that on-node orbits are more likely to be detected
nonhydrogenic atomic or molecular systems with stro
quantum defects. At low scaled energies, peaks resul
from the core scattering of the on-node orbit with a stro
allowed orbit could be more easily detected; at higher sca
energies, the on-node orbit is most likely to affect the amp
tude of peaks due to typical allowed orbits.

The presence of contributions in the quantum photo
sorption spectra which were not correlated with any class
orbit was observed in calculations for nonhydrogenic ato
with mÞ0 in an electric field by Robicheaux and Shaw@8#;
these contributions were coined ‘‘recurrences without clo
orbits’’ because they appear at the scaled action of the pa
lel orbit, which only exists classically whenLz50 and
should, therefore, be absent in anmÞ0 recurrence spectrum
These authors also gave anad hoc semiclassical formula
akin to the on-node correction which resulted in a po
agreement with the quantum calculations. Main@15# later
pointed out that, for small but nonvanishingLz , periodic
orbits having nearly the same action as theLz50 parallel
orbit do exist; it was unclear however, whether, the rec
rences without closed orbits could be attributed to such
bits, in particular, because the starting point of these orbit
several atomic units away from the core. Our formula@Eq.
~17!# correctly accounts for the peaks in the recurrence sp
trum associated with these apparently nonexisting orbits;
\ dependence is different to that of the suppressed on-n
orbits. The physical picture is similar in both cases: just
Eq. ~12! accounts for close neighbors to the on-node or
which are not closed at the origin but carry a portion of t
wave function back to the core region, Eq.~17! takes into
account nonradial orbits close to thez axis which also give
rise to recurrences by carrying the wave function from a
into the core region.

To conclude, we have seen that the first-order forbidd
processes can be included within the closed-orbit theory
simple and unified manner by elementary manipulations
the stationary phase integral, which yield a higher-orde\
dependence. In passing, we have shown that the zero-de
orbit, which has always required special treatment, is in f
a case calling for a refined stationary phase integrat
Analogous manipulations of the stationary phase integra
the Green’s function were performed in Ref.@16# to obtain
an improved semiclassical long-range scattering matrix
Rydberg atoms in fields. Our method provides a conven
and effective way of including nonradial and nonclosed t
2-8



ti
th
ic
s

ul
a

th
n

u
n

,
f

e

in

rd
by

for
Eq.

CONTRIBUTION OF FORBIDDEN ORBITS IN THE . . . PHYSICAL REVIEW A 67, 023402 ~2003!
jectories that nevertheless contribute to the photoabsorp
spectra of Rydberg atoms and molecules in fields without
need to calculate explicitly the involved classical dynam
of those trajectories. The validity of the method was asses
by comparing our semiclassical results to quantum calc
tions for Rydberg atoms and molecules in an external m
netic field.
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APPENDIX A

We briefly work out the integral needed to determine
contribution of an orbit lying on the node of a wave functio
in Sec. III,

E
0

p

dū f~ ū f2u f k!
2exp@ iAr f /8~ ū f2u f k!

2/\#. ~A1!

This integral can be integrated directly but for present p
poses, it is convenient to express it in terms of sine a
cosine Fresnel integrals and take the limit for the range
which the standard stationary phase approximation holds
the usual orbits. For example, in the neighborhood ofu f k ,
the real part of Eq.~A1! can be expressed in the form

I ~n!52E
u f k

u f k1«n
dū f~ ū f2u f k!

2cos@Ar f /8~ ū f2u f k!
2/\#

~A2!

5@223/4\3/2r 23/4p1/2#$2S~A112n!22A112ncospn%,
~A3!

where S is the sine Fresnel integral and«n

521/4r 21/4p1/2\1/2A112n with n a real numbern.21/2.
For large half-integer values ofn, I (n11)2I (n)'0 and
S(A112n);1/2. I (n) can then be approximated by th
term between square brackets in Eq.~A3!. This is consistent
with having neglected terms of order (ū f2u f k)

4 in Eq. ~A1!
provided\→0. The imaginary part of Eq.~A1! is treated in
the same way by writing the result in terms of the cos
Fresnel integralC(x). Hence
ys

ys
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E
0

p

dū f~ ū f2u f k!
2exp@ iAr f /8~ ū f2u f k!

2/\#'
\3/2p1/2e3ip/4

r 3/4225/4
.

~A4!

Note that this result is independent of the value ofu f k , pro-
vided u f kÞ0.

APPENDIX B

A closed-form expression for the integrals

I 1~«!5E
0

«

dū fsinū fexp~ isū f
2! ~B1!

and

I 2~«!5E
0

«

dū fsinū f ū f
2exp~ isū f

2!, ~B2!

with s real, are obtained in the limit, in which the standa
stationary phase approximation holds for the usual orbits
replacing the upper bound by«→`. Then Eqs.~B1! and
~B2! are given in terms of infinite series@17#, which are
actually representations of special functions. Choosing
simplicity a representation in terms of Fresnel integrals,
~B1! becomes in this limit,

I 1~`!5S p

2sD
1/2

expi S 2
1

4s
1

p

2 D $C@~2ps!21/2#

1 iS@~2ps!21/2#%, ~B3!

whereas for Eq.~B2!, we have

I 2~`!52
1

4s2 H 11S p

2sD
1/2

~2s2 i !expS 2
i

4sD
3$C@~2ps!21/2#1 iS@~2ps!21/2#%J . ~B4!

When s→`, to the first order, only C@(2ps)21/2#
;(2ps)21/2 contributes toI 1(`), whereas forI 2(`), the
term between the braces simply gives 2.
ys.
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