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We present a theoretical framework for the evolution of the internal state of a fast highly charged one-
electron ion traversing an amorphous solid. We employ an open quantum system approach which incorporates
the complex array of collisions with electrons and ionic cores in the solid within the framework of system-
reservoir interactions. Interactions with the solid environment and the radiation field are treated on the same
footing and the quantum master equation for the reduced density matrix of the electronic state of the ion is
approximated by a Lindblad equation. The latter allows the solution of this multistate problem in terms of
Monte Carlo sampling of quantum trajectories. Similarities and extensions to methods used in quantum optics
and previously employed in ion-solid interactions are discussed. Our focus is on the transient buildup and
destruction of coherences by stochastic processes. We apply our method to the study of coherence properties of
the internal state of a fast B ion traversing carbon foils. Simulations exhibit clear signatures of partially
coherent transitions and are found to be in good agreement with experimental data.
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[. INTRODUCTION transport theory, a quasi-free-electron approximation for
scattering of electrons at screened ions or conduction elec-
The internal electronic state of a fast atgor ion) tra-  trons was used. For deeply bound electrons in fast highly
versing solids is an example of an open quantum system inoharged ions, additional quantum effects are expected that
contact with a “large reservoir.” The large number of de- originate from the breakdown of the quasi-free-electron ap-
grees of freedom of the environment refers here to the eleg@roximation[4]. In this regime, also the strong coupling to
tronic and nuclear degrees of freedom of the solid. Moreoverthe radiation field, which scales aszﬁ), becomes competi-
for highly charged ions4,>1) the coupling to the vacuum tive with the collisional coupling, which decreasessas;2
fluctuations of the radiation field become comparable to the{Up being the collision velocity
coupling to the particles in the solid. Therefore, the reservoir Quantum-trajectory Monte Carlo techniques have been in-
of the open quantum system should include both the radiajependently developed in a different context of quantum op-
tion field and the degrees of freedom of the solid. We contics [18—2( for the description of few-state atomic systems
sider in the following a hydrogenic one-electron ion travers-interacting with the radiation field. Quantum trajectories are
ing an amorphous carbon foil. For such systems, accuratgonstructed from a nonlinear stochastic Scimger equation
experimental datfl-4] have recently become available.  (NLSSE with, in general, non-Hamiltonian interactions. The
Investigations of the electronic excitations in fast ion- Monte Carlo solution of the NLSSE is equivalent to a solu-
solid interactions have remained a theoretical challenge fofion of a specific class of quantum master equation for the
many decades starting with the early studies by Bohr angeduced density operator, the Lindblad equat{@i,22,
Lindhard[5]. The difficulties result not only from the many- which imposes the condition of complete positivity on the
body nature of the environment but also from the large numdynamics in the open system. However, the connection be-
ber of states of the open system involved that pose a majatveen the Lindblad equation and the original master equation
hurdle for a direct application of a quantum master equatiorit attempts to approximate is far from clef23—-2§. For
[6—8]. For light ions and weakly bound electrons, a classicakxample, it was shown that the positivity may, in fact, be
transport theory(CTT) [9-11] employing a Monte Carlo violated on short time scal¢25,27. The Lindblad equation
sampling of classical trajectories calculated from a micro-has been applied mostly to few-stdtgpically two- or three-
scopic Langevin equation has proven to be quite successfstatg systems. Generalization of the NLSSE to multistate
in describing experimental data for electron emissionsystems, including unbound states, is not obvious.
[12,13, charge state fractions and excited state distributions In the following, we present a unified description for an
[14,15. Subsequently, a quantum transport the¢@TT) open multistate atomic system coupled to both the radiation
[4,16,17 was developed in which the reduced density matrixfield and the degrees of freedom of the solid. The starting
is constructed as a Monte Carlo average of quantum trajegoint of our analysis is the Born-Markov approximation to
tories, each of which is the solution of a Sctlimger equa- the quantum master equation, which yields the Redfield
tion with a stochastic perturbation. The QTT can be considequation[29]. Development of a quantum-trajectory Monte
ered as a quantized version of the corresponding CTT. Ii€arlo (QTMC) method requires its reduction to a Lindblad
both the classical as well as the quantum versions of thiform. The standard “secular approximatiof30,31] is un-
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suitable as it neglects the transient buildup of coherenceguently referred to as “heat bath” or “environment.” The
between nondegenerate states due to stochastic processegptal Hamiltonian is given by

key feature of high-energy collisions. We therefore develop

an alternative approach yielding a Lindblad form that allows H=Hg+Hr+Vsg. 23

the description of coherences on a time scale correspondin _ o _ _

to the energy spacing between near-degenerate energy Ieve-%‘.e syster_n in our apphpaﬂons will be the internal state of a
We construct an NLSSE whose quantum Monte Carlo sam@st (velocity v,>1), highly charged(nuclear chargez,
pling describes the time evolution of the reduced density” 1) one-electron ion. The system is described by the Hamil-
matrix. This technique allows the treatment of high_tonlaan, which acts only on the electronic degrees of free-

dimensional state spaces of the open quantum system. In t m of the ion. The reservoir will consist of 'the. radiation
limit of weakly bound electrons, our present treatment re-Ield as W_e” as charged particléslectrons and ionic core_s
duces to the previously develope near Scinger theory 51(1¢ 591012 b eken eer o 1 amorefous carben ol 1
with a time-dependent stochastic interaction with the envi- 9

ronment. It furthermore possesses a proper classical limit iﬁrggtt?c;(rz.eiﬁ, 5?2&5%??#?;2’ Wg'ggléi ?Qv%)l(\‘;\:ger']l}hipipr:toexr;al
terms of a classical Langevin equation of motion. 9y )

We apply the present theory to the transmission of hydro-State of the reservoir is described b, (we use ca!ligraphic
genic Krypton ions (K¥") through amorphous carbon foils I\(/ette:js for _%perar:ors thatl_actk?nly on thk? reservoir vadnables
at high velocities ¢, =47 a.u.). This system is of particular R rfssgrr\'loﬁﬁvceeugguggﬂjgIetf;"rvse"fegr toee?gféfgtﬁgt aﬁsgﬁc'
interest as the time scales for collisional redistribution of P

states, mixing due to the wake field, spontaneous radiativgOth thq system and the reservoir vgrlahles L

transitions, level splitting due to the Lamb shift and decoher- The time c_jependence of the de”S'W operg(@) is given

ence are all comparable to each other. We analyze in th@y the Liouville—von Neumann equation,

following the influence of coherences on the x-ray emission dp(t)

intensities resulting from the transmission and compare our ip—z[H,p(t)], (2.2

findings with experimental data. A preliminary approach and dt

first results have been presented recepdly In that paper

the basic ingredients of the QTMC were chosen intuitively@ solution of which is clearly out of reach for realistic sys-

rather than determined from first principles, as it is the caséems. Instead, the focus is on the reduced density operator

in the present formulation. It turns out that our previousos(t) of the system defined as

implementation can be identified as a limiting case of the

ip;]r\(lajlfgé.theory when certain additional approximations are a(t)zos(t)ETrR[p(t)]=Ei (il p(0]i}, 2.3
The structure of the paper is as follows: In Sec. Il we

briefly review the basic properties of the Lindblad equationyhere all degrees of freedom of the reservoir have been
and its solution by ensemble averages over trajectories of @aced out. We usg},|j}, etc. to denote states in the Hilbert
nonlinear stochastic Schiimger equation. The problem of space of the reservoitjg. Analogously, one can define a
reducing the original master equation in the Born-Markovreqyced density operator of the reserveig(t),
approximation, usually referred to as Redfield equation, to a

Lindblad form will be analyzed in detail in Sec. Ill. Explicit

expressions for the relaxation superoperators for radiative O'R(t)ETrs[p(t)]zz (a|pla), (2.4
decay, electron-electron scattering, and electron-ionic cores “

scattering will be given in Sec. IV. The algorithm for the ) i

Monte Carlo sampling of the nonlinear stochastic SehroWhere|a),|B), etc. denote states in the Hilbert space of the
dinger equation will be discussed in Sec. V where we willSYStem,Ils. As the open quantum system approach deals
also analyze its convergence to a Hamiltonian linear Schro@lMost exclusively with the density operates rather than
dinger equation for high Rydberg states. Numerical result®¥ith or, we will drop the subscrip& and will use o(t)

will be given for K" propagating through carbon foils =os(t).

followed by a short summary. Atomic units are used through- Formulating a master equation of motion feris a diffi-
out unless otherwise stated. cult task. Even in the perturbative limit when the coupling

between the system and the reservdigg, is weak, this
reduction is nontrivial, as will be analyzed in the following
section. The approach proposed by Lindblg2P] starts
therefore from a different point of departure. Rather than
attempting to construct a reduced equation of motion from

In this section we briefly review the basic properties of Eq.(2.2), it directly postulates an equation based on the prin-
the Lindblad equation and its solution by a Monte Carlociple that the time evolution of should be a unitary map-
quantum trajectory technique as they pertain to our descripping of the system Hilbert spadés onto itself preserving
tion of ion-solid collisions. We consider the interaction of a complete positive definitenesise., that{ /| o|)=0 for any
“small” system (S) with a large reservoir R), also fre- |¢)elgand allt),

II. QUANTUM TRAJECTORIES AND THE LINDBLAD
EQUATION
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do(t) " dt . -
gt~ [Hs,o(]+R™a (), (2.9 |dW7)= —iHsdt- oo ; [ST(k)S(k)—(S'(k)S(k)),]
whereR(") is the Lindblad relaxation operator describing the N 1 S dN? S(k) “1] ey, 29
interaction of the system with the environment and adopts V < K\ stk sok o
the form k (S'(k)s(k)),
1 which is nonlinear infW¥ ”(t)) since the right-hand side ex-
R(L)U(t):_ﬁz [ST(K)S(K) o (t) + o(t)ST(K) S(K) plicitly depends on the expectation valués'(k)S(k)),
k =(W¥7(t)|ST(k)S(k)| ¥ 7(t)). In other words, Eq(2.8) is
—25(K) (1) SH(K)]. (2.6) not of Hamiltonian form, i.e.- —iH dt. Nonlinearity is also

incorporated in the Ito differenti@N?, a variable that takes
) . the random value 0 or 1 and describes whether or not the
In Eq. (2.6) we have labeled the Lindblad transition opera- gy stem undergoes a stochastic jump during the time interval
tors S(k) by the indexk which will later take on the meaning (t,t+dt). It can be shown that the reduced density-matrix
of a wave vector or momentum transfer in collisidos pho-  calculated as Monte Carlo average.?) yields Lindblad
ton emission It may also include the summation index over equation(2.5 when the expectation value of the Ito differ-

spin or helicity degrees of freedom. The param&fén Eq.  entials for the system in stat@ 7) at timet are chosen as
(2.6) denotes the quantization volume for the wave vector.

The physical significance of E¢2.6) has been extensively

debated in the literatur@ee, e.g., Ref$23,25,28). Here we dNZdN? :WV&*,:dt(S’r(R)S(IZ)) Vo, (2.9
discuss only a few aspects of relevance for the present paper. k™K k™ Ok 7" Tk

It is well known that the Lindblad equation cannot be, in

general, a faithful representation of the quantum master The obvious technical advantage of the mapping of the
equation on a time scale compa_rable to the corre_latlon timgindblad master equation onto Eq8.7) and(2.8) is that the

7. for fluctuations of the reservoir. On the same time scalecomputational effort in solving the NLSSE by QTMC meth-
the Born-Markov approximation for the weak-coupling limit o4s scales witiN rather than wittNZ for the direct solution
between system and reservoir underlying most approximaigt gq. (2.5), whereNs is the dimension of the state space of
descriptions of the time evolution of(t) also breaks down. e system. AfNg can easily reach £6-10° for realistic
We adopt in this section a pragmatic approach. We take Eqyytiple scattering problems, this represents a decisive ad-
(2.6) as a useful approximation for the dynamics of the open,aniage. Clearly, the price to pay is the additional scaling
quantum systems on time scales; but comparable to the  yjth N, i.e., the number of trajectories required to control
time scales for the evolution of the atomic degrees of freey,e statistical error of the ensemble averaged solution.
dom, where expectation values for the atomic observables The stochastic time evolution of each guantum trajectory

can meaningfully be extracted. o is calculated by constructing the corresponding time evolu-
The importance of the Lindblad equation in the present;qp, operatorU 7(t,0) such that

context is that it can be mapped onto a NLS@&& details

see Ref[21]), which can be solved by a QTMC technique.

Accordingly, the density operator of the system can be con- | 7(t))y=U"(t,0)|¥7(0)). (2.10
structed from the independent evolution of an ensemble of

Niraj pure states ) ) )
We decompose the time evolution operator into a sequence

N of products of two types of evolution operators:
traj

> W) w (), (2.7)

t =
o(t) Ntraj n=1

n
U7(6,0)= U tstn) L1 Ufimp(K; 1) Udondty t-0),

where 7 labels the different stochastic realizations of quan-

tum trajectories| ¥ 7(t)). Initially, at t=0, each quantum (to=0). (211
trajectory is placed with probabilitp, in one of the eigen-

states of the initial density matrix, that iE¥V7(0))=|¢), I _ _
wherea(0)|£)=p,|£). Expressior(2.7) tacitly assumes that ONe factorU ji,ny(k;.t;), represents a discontinuous change
an initial ensemble can be uniquely defined irrespective of it9f the wave function, a stochastic jump, at randomly chosen
coupling to the reservoir. Obviously, preservation of positivetimes t=t; and index k=k;. The other factor,
definiteness is a condition for the existence of the mappindJ 7,,(tj+1,t;), stands for a continuous change of the wave

onto an incoherent superposition of state probabilities. function during the time periofit; . ;,t;] between stochastic
The equation of motion ofW7(t)) is given by the jumps. The continuous time evolution of the wave function
NLSSE[21], during a time interval between two jumps is given by
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[W7(4)) = Ullnd 42 ¥ 708 1)) (R )y = ISR P

_ exd —iHee(tj—t;— )W 7(tj_1)) l V_lz ||S(IZ)|\I“7(tj))||2
llext —iH ers(tj—t; 1) ][ W 7(t; 1)) “
(2.12 From Eq.(2.9), the probability density of jump timeg”(t;)
must obey

(2.16

with fo1+at
ft_ e(t))dtyj=6KT) = t(W"(t;_1)|T[P"(t;_1)).

T o 2.1
Herr=Hs—i, (213 (217
The most natural choice obeying E&.17) consists of

where the decay operatbris given by d
e(t))= a“qu_iHeff(tj_tj—l):”q,”(tj—l))Hz-

(2.18

Since the integral of any probability density has a uniform

distribution in the interval (0,1), the random jump tire
The effective, non-Hermitian Hamiltonian of the system, can be obtained from the implicit equation

Hes, includes the effect of decay due to the coupling to the _

reservoir[21] through the decay operatdt. SinceHgy; is u=1—|le Mer~ti-Djwn(t;_,))||?, (2.19

non-Hermitian, Eq(2.12) is often referred to as nonunitary

evolution. In fact, due to the renormalization of the statewhere u is a uniformly distributed random numbeu

vector|W7(t;)) by means of the denominatdd?,,, corre- ~ €[0,1].

sponds to a unitary “rotation” of the state vector in the Hil-

bert spacéls. The underlying physical picture is that due to Ill. LINDBLAD APPROXIMATION OF THE REDFIELD

differences in coupling strength of the different eigenstates EQUATION

of Hg to the environment, the net effect of the continuous . . . :

evolution is the change in phase and relative weight of the In this section we analyze _the approximate redu<_:t|0n_ of

expansion coefficients ¢f7) in terms of the eigenstates of the quantum master equation in _Born—Markov approximation

Hg. Continuous evolution operat@.12 accounts for the to a Ll_ndblad form. We emphas'ze that quh a reductlon. IS

first term of Lindblad equatio2.5) and the first two terms not unique and requires additional qppro_xmaﬂons. The fig-

of Lindblad relaxation superoperat(2.). ure of merit for our proposed approximation is the degree to

o i ) - which the resulting Lindblad form is capable of reproducing
Stochastic jumps at the timg for a given value ok he fime evolution of atomic coherences on time scales long

=k; are described by the operatdsg,,,(K; ,t;) defined by  compared to the reservoir correlation timebut short com-
pared to the time scale of the secular motion of the atomic

r=12 StK)S(K). (2.14
V=

S(IZ-)|\II”7(t')) population. Such an analysis appears to be missing for true
VIt +6t))=U" (K .t)|T7(t.))= J ] multistate problems such as excitation by multiple scattering.
| ( ] )) Jump( ] ])| ( J)> e ! . . . . . .
[|S(k) [P 7(t))]| The starting point of our analysis is Liouville—von Neu-

(2.15 mann equatiori2.2) for the total density operator which can
be rewritten in the interactiofl) representation as an inte-
wherest— 0 is an infinitesimal time step. The jump operator 9rodifferential equation
simulates the effect of the last term of Lindblad relaxation
operator(2.6)_, often referred to as the gain or source term. id_Pl(t):[VISR(t),P'(O)]
Since U, is proportional toS, we refer to the latter for t
simplicity also as “jump” operator.

t
The basic ingredients of the Monte Carlo algorithm that —if dt'[Vs().[Vst),p' (1) 1] (3.0
determine the operatord /,,, and U, are the random 0

jump timest; and the random value & in Eq. (2.15. In 4 yansformation to the interaction representation of any

order for the Monte Carlo algorithm to yield the correct o i — ;
) chralinger operatolO is given by the total evolution op-
NLSSE, these random variables must be chosen such that tg g P g y P

. P ; fator of the unperturbed system plus reservoir
average number of jumps per infinitesimal time stefs
yields Eq.(2.9. As is usual in sampling random numbers 0' = el(Hst HRtp g~ i(Hst HR)t. (3.2
from multidimensional distributions, one first samples the
value oft; and, subsequently, one samples the valu&jof The Born-Markov approximation to Ed3.1) involves the
from the conditional probability density following assumptiongsee, e.g., Ref.23)).
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(i) The initial density operator at time=0 is given by a We choose now a class of system-reservoir interactions
tensor product obr and oy, which can be written as a bilinear form with factors acting on
| | | either the reservoir or the system degrees of freedom,
p'(0)=0'(0)® oR(0). (3.3
1 e _ _
This assumption can be justified when the interaciiag is Vsr) =5y Ek [e*pf(K)W(K)BT(K)+H.c]

switched off fort<0. Otherwise, the system-reservoir cou-
pling will lead to an entanglement between the system and 1 2o ot

the reservoir degrees of freedom and a break down of the =V > ekUrt(kW(k)BT(K), (3.8
factorization Eq.(3.3). In our present study, the interaction K
between the atomic system and the solid is switched on onl%

as the fast projectile penetrates the entrance surface of thehere theW operators act on the system Hilbert spatg

solid, taken to beé=0. By the same token, the initial state of the B operators act on the reservoir Hilbert spage, f(K) is o
the system will be assumed to be the ground-state and tr%sqalar function, and the abbrey|at|qn H.c. means Hermitian
initial-state decay due to the coupling to the radiation fieldconjugate. In order for the last identity in EG.8) to hold,
can be neglected far< 0. Therefore, Eq(3.3 appears to be We have assumed thet— k) = f* (k), W(—k)=W'(k), and
a good approximation. B(— IZ) = BT(Kk) so that the inverse Fourier transformfgk)

(i) The coupling Vsg is assumed to be sufficiently s  real function and that aiV(k) and B(K) are Hermitian
“weak” as to allow the evolution of the reservoir to be un- operators. The boost operator eifpﬁpt) in Eq. (3.8) ac-

affected by the interaction with the system. This implies thatCounts for the Galilei shift between the rest frame of the

U:?(t):U:Q(O)ZO'R(O) (3.4 reservoir (the solig and the system(the moving ion.
Clearly, for the interaction with the vacuum fluctuations of
and, furthermore, that the radiation fieldv,=0. Both charged-particle interactions

and the interaction with the radiation field are of the form
Eqg. (3.8). Explicit expressions fokN(IZ) and B(IZ) will be
given below.

Inserting Eq.(3.8) into Eq.(3.6) leads to

p(t)=c'(t)@o(0), (3.5

i.e., the factorization Eq(3.3) remains valid for all future
times. The latter can only be correct to ord2{Vsg since
the perturbation will generate transient entanglement be- 1 t
tween the system and the reservoir variables. This is the—g'(t)=— >, Jdr|f(l2)|2
origin of the failure of the Born-Markov approximation on dt Vi Jo
short time scales of the order ef before rapid fluctuations

—ikvgna1 (e PR ”
in the reservoir destroy the entanglement in the “coarse- x{e P WH(k, HW (k,t= 7)o (t= ) G(K,7)

rained” evolution[23,25. In the present case, the order iKo o7 | p LN~
garameter of the s[treng?h of the irr:teraction is given for the —ee (= Wk = Wk, DG (k. 7)
collisional interaction by the inverse transmission speed, +e“zl;pTWI(|Z,t)0'l(t—T)WIT(lz,t—T)G*(E,T)
v, <1, and byZ,a<1 for the radiative interaction, where i . A
«a is the fine structure constant. Assumpti@n corresponds —e W (k,t— 1) o' (t— W (K1) G(k,7)}.

to assuming the linear response of reservoir variables. It
should be noted, however, that no such assumption is implied
for the degrees of freedom of the system. Under these as- - , .
sumptions and tracing out the reservoir degrees of freedo Eq. (3.9, G(.k’T) .denote»s the retarded Green's function
in Eq. (3.1) the equation of motion for the reduced density for the reservoir variablé(k)

matrix o(t) becomes

(3.9

§ t Vo oGk, 1) =—i0(r)Trel okB' (K1) B'T(K' ,t—7)]
iao‘l(t): —i fodT =—io T)TrR[UEB(E)efiHRTBT(EI)eiHRr],
X Trr{VEL D) [V5(t—17).0!(t— D@ ok}, (3.10

(3.6)  wheref(7) is the Heaviside step function. The Kronecker

in Eqg. (3.10 expresses the translational invariance assumed
v_vhere_a-ztl—t’ and we have assumed that the commutatorsor the reservoir. The advanced Green's function is corre-
linear inVsg vanish spondingly given byGA(K,7)=G* (k,— 7).

TrR[VISR(t),O'I(O)®O':Q]:O_ (3.7 An explicit form of the Green’s function can be obtained

using an expansion over the eigenstdtgsof the reservoir
Equation(3.7) does not pose serious restrictions on the va-defined byHg|n}=E|n}. Specializing in the following to
lidity of the approach. If Eq(3.7) does not hold, the corre- the case where the reservoir is in the ground sf@}e(or,
sponding contributions can be included in the unperturbegquivalently, in the zero temperature limit.e., {n|og|m}
HamiltonianHsg. = dpndom We have

022902-5



MINAMI, REINHOLD, AND BURGDORFER PHYSICAL REVIEW A67, 022902 (2003

R ) R . 0 rule), which, from the outset, was assumed to be small.
G(k,7)=—i 6’(T); [{O|B(K)[n}|“e™ """, (3.1)  Therefore, Eq(3.15 poses only a fairly mild constrain on
7. Consider now the case of fast collisiong>1. Using
with all Q,,=E,—E, positive, signifying the fact that the the upper boundsin@kr,/2)|<1, Eq.(3.13 becomes
reservoir can only be a sink rather than a source of excitation

energy. Equation3.11) applies to both the radiation field and 2 |f(E)|2|W|Ba(|Z)|2|G(|Z,0)|
the solid considered as environment. v E — 7.<1. (3.16
We now turn to the Markov approximation of E(.9). B.k |Upk|

The excitation spectrunf(),o} of the reservoir system is

considered to be sufficiently broad as to ren@¢k,7) as a  FOrvp— the prefactor tor, becomes small irrespective of
function of = to be rapidly decaying over a characteristic the size oiW_orG_. Th_|s is (_jlrectly rglgted to th_e fact that the
relaxation timer., which is usually called the correlation BOrn approximation is valid for collisions at high speeds due
time [note that retarded Green’s functi¢®.10 for B(k) is f[o the short mteractl.on time even |f.thistat|d perturbatlon
closely related to its autocorrelation funcioirhe “rapid” IS not weak. The point to be noted is that neither EJ19
decay of Green’s function is to be measured on the time scal@°" Ed.(3.16) requirer, to be short on the fast internal time

of typical changes of the reduced density matrix of the sys_scale of the system. The latter is of crucial importance for
tem such that highly charged ions, where classical orbital perigds in-

verse transition frequenciesre short and scale a&Zgz
o(t—7)=0o(t). (3.12 <1. Since for environments of charged particles, for ex-
ample an electron gas at metallic densities, typical correla-
Approximation (3.12) is usually referred to as loss of tion timesr, are of the order of one a.u., it is the high speed
memory since the evolution af(t) is assumed to depend that renders the Markov approximation to be valid.
only on the instantaneous values«ft) rather than its past. Using Eq.(3.12 in Eq. (3.9 and projecting onto eigen-

If such an approximation applies, the time integral ovén states|«) of the unperturbed systeftie., Hga)=g,|a))
Eq. (3.9 can be extended to infinity. Estimates for the rate ofjeads to

change ofa(t) can be taken from Fermi’'s golden rulset-

ting =0 in Eq. (3.9 in the arguments ofV', G, andd"). d 1
Provided that the system is initially in a pure stbt¢, the iaol‘*ﬁ(t)zv 2
validity of Eq. (3.12 requires that the relative change of k
0.o={a|o|a) is small compared to the inverse correlation
time of the reservaoir, i.e.,

f(K)|22 {e'antW! (KW, (K)o, 5(1)
v,

XG(K,w,,—vK)—e“sal (W] (k)

d X W, 5(K)G* (K, — (@,,,+ U pK))
aoaa(t) ao-laa(t)

1
v | | ot |5 BB

+e@aropdtW,, (K)o, (W], 4(K)

X[G* (K, — (wg, Tvpk)— G(K,w,,—v,K) 1},
The relative change Qf'w due to, e.g., the first term in Eq. (3.17
(3.9 can be estimated to be of the order of

wherew,z=¢,—¢ 5. The functionG(k, ) results from the

gglaa(t) time integral overr and corresponds to the Fourier transform
e :3 (k)[4 W, (K)|2G(K,0)| of Green’s functionG(k, 7),
Tha(t) VK “
L < - S {0 B(K)|n}|2
si k7c/2 = ior =i Ll
Jsinvpkrd)| (3.14 Gkw) ﬁx,dTe Gk [L'L“OE 0 Qo tid’
v k| (3.18
where the sum oveB runs over a complete set of states in . :
the Hilbert space of the systejather terms in Eq(3.9) can whose real and imaginary parts adopt the forms
be treated analogouglyConsider first the case,=0, i.e.,
the absence of the Galilei shift of the reservoir which applies = _ > 2
to the interaction with the radiation field. E(B.13 reduces Re(G(k,w))—; OBk n}] P( w—Qn())’ 319
to
1 . . . ~ - .
v Ek 1K) Wi, (K)|2G(K,0)| | 72<1. (3.15 Im(G(k,w))=—7r; 10| B(K)|n}|28(w— Qo)
B,
(3.20

The prefactor tor? in Eq. (3.15 is of the order of the tran-
sition rate in the Born approximatiofi.e., Fermi’s golden and P denotes the principal part.

022902-6



QUANTUM-TRAJECTORY MONTE CARLO METHOD F@® . .. PHYSICAL REVIEW A 67, 022902 (2003

The real part ofG describes the energy shift due to the d . 1 .
virtual transitions in the reservoir. That is, the first two terms a%ﬁ(t) =~ 1wap0ap(t) — Vv % [f(K)]
of Eq. (3.17) involving Re@G) yield a contribution to the
master equation ofr that has the form of a commutator % t o " "G ot
[AH.o]. where 2 WL (ROW,u(K) 7,5 (K~ oK)
Lo oS Wk 0 OW,, (KW, 6(K) X (K0, = U k)
AH,,== [f (k)| W, (k) , o T
" VE z = Wo, (K)o (DWW 5 (K) XL (K, @0~ 0 oK)
XW,,(K)ReG(k,w,,—v,K) (3.2 + X" (K, 5~ vK) 1} (3.29

This equation can be formally written in matrix form as
Lindblad equation(2.5). The crucial point is now that the
resulting Redfield relaxation operatBf? does not possess
the same structure as Lindblad relaxation operéd). The
Lindblad equation, in turn, corresponds to a system of
coupled equations

represents a Hermitian shift of the original Hamiltontdg.
Physical realizations of this shift are the Lamb shift for the
radiation field or the charge-density fluctuation induced en
ergy shift of the projectile electron. Rather than dealing ex

plicitly with contributions associated with R&(, we will
assume in the following thaAH is already taken into ac-
count from the onset in the Hamiltonian of the systdin
Eqg.(2.1). This allows us to include the shift more accurately
than Eq.(3.21) (either via an independent higher-order cal- dt
culation or experimental dataand, moreover, it allows to

incorporate the energy shifts to all orders in the time evoluwhere the “CouplingS"R%W have the form
tion through the phases gxpi(c©+Ae)t]. For consistency

do Ns
B .
2= —iwp0 .5+ 2 . RS‘,,;MV(TW, (3.26
o=

: - L 1 1
reasons, we will remove all terms involving R&Y and as- L __ - - et (i
g X~ Rggl""_ 2 (5vﬁra,u+ 5a,ur VB) + Vi Z Suz,u(k)syﬁ( k)l
sume from now on that only terms containing I@&)( con- k
tribute to the right-hand side of E¢3.17). (3.27

The imaginary part o6 is directly related to the dynamic
susceptibility y of the environment. According to linear re-
sponse theory, the relation between these two quantities
[31]

Mapping Eq.(3.25 onto Egs.(3.26—(3.27) involves addi-
tional approximations which have profound consequences as
B the regime within which the Lindblad equations can be
applied. The standard approximation utilized in the literature
to reach a Lindblad form is the so-called “secular approxi-
1 - 1 - - - - mation” [2,30,3] (in the quantum optics context sometimes
x(w)= V; 2 X(k""):v 2 [G(k,w)=G*(k,~w)]. also referred to as the rotating wave approximafi®8). It
K k (3.22 assumes that all terms on the right-hand side of BdL?)
which carry an oscillatory phase factor average out and
hence only diagonal terms survive. The secular approxima-
Using Eq.(3.20 and separating into its real and imaginary  tjon follows from Eq.(3.17) by replacing all complex expo-

parts asy=x"—ix", nentials by Kroneckes functions, e.g.,
) i gloypt= 5EV’Eﬁ: Sup (3.28
X'(K,@)=m2 [{0| BN} (0= Qo) + e+ Qo) .
(3.23 eCaropll=0, ., =08.p0u (3.29

where the last equalities hold when the spectrum is nonde-
generate. As the interaction with the environment induces
. ) R small energy splittings in the frequency spectrum of the sys-
—IM[G(K,0)]= X" (K,0)=0(w)X"(K,®). (324  tem through ReB) to be included inHg [see below Eq.
(3.21], many degeneracies are removed. In the nondegener-
ate case, the secular approximation leads to a total decou-
exothermicity condition of the allowed transitions of the en-pIIng between the diagonal and off-diagonal matrix elements

vironment, which is initially in its ground statdi.e., of the density matrix._WhiIe the populations obey a system
0,0>0) of coupled rate equations
n :

Consequently, we obtain

The step functiord(w) (and the subindex-) signifies the

Transformingo' in Eq. (3.17) from the interaction repre- d
sentation back to the Sc'fdirm_ger repre;entation and using —om(t)=2 Ri‘z‘:,,j'a'ow(t), (3.30
Eq. (3.24 results in the Redfield equatid@9,31] dt v
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the time evolution of coherences is governed by a set of (K)=f(K)W,, 5(K) (2x" (K, @ 5 — K- 0 )12 (3.343
independent decay equations p ap TR R
d _ | Shp(K) = (WL 5(K)[2Xs (K, — (@ o+ K-vp)] Y
JiTasD) = (—lwpt RS a,5(1),  (3.3D) (3.34h
= OWT (K "k ke ))12
where a# 8 and Riiaffuzlsar is negative definite. The secular = PP (O Wep(K) 2x % (K, w5~ kv p)) ™™ (3.340

approximation does not allow for the production of coher-
ences between different unperturbed energy eigenstates dH%erting Eqs(3.33 and (3.34 into Eq. (3.25 results in a

to the interaction with the environment but allows only for quantum master equation with the relaxation superoperator
its decay. This result is, however, only valid for the long timeg(L) i the Lindblad form (2.6). This result represents a
scalet>t,=2m/|w,g| for decoherence due to dephasing. In,ye| generalization of the secular approximation which re-
turn, on an intermediate time scale mains valid at time scalesst, . We will illustrate its utility
below after calculating the relaxation operator for different

<ts< . . 4 e
Te<t=t environmental interactions explicitly.

(3.32
transient coherences caused by interactions with the environ-

ment can play an important role, an example of which is the IV. CALCULATION OF THE RELAXATION
internal state evolution in transport through solids. Another SUPEROPERATOR

example is spontaneous radiative decay, where the buildup of |, ihis section we analyze the properties of the Lindblad

transient coherences can oc¢860] but has been mostly ig-
nored in the context of Lindblad equations.

Our reduction of the Redfield equation to a Lindblad
equation valid also in the intermediate time regi3e32
proceeds by “symmetrization” of the matrix elements of the
Redfield relaxation operator, i.e., the right-hand side of Eq
(3.25. To this end we split the susceptibility in E@®.25 as
follows. In the first term we set

X4 (K,w,,—vpK)

=L (K@, =0 KO (K@, =0y k)Y,

(3.333
in the second term
X,-I%—(Eiwvy,_l;p'lz)
= (K@, =V K (K, wpg,— v, k)Y
(3.33h

and in the third term

i

)(,_;_(E,w,,a—l;p- k)
zX’;(IZ,wMB—Jp. IZ)
ST (K@, =0 K (K05~ 0,p-K) Y2
(3.330

This construction in terms of square roots gf is well
defined because of the positive definiteness of the positiv
frequency dissipative component of the susceptibiliEg.

(3.24)]. For those matrix elements that are nonzero within

the secular approximation, EqR.33 agree with the result
of the secular approximation. With this trick, we can now
define transition operatorS and S appearing in Lindblad
relaxation operato(2.6) in terms of matrix elements in the
energy eigenbasis as

relaxation superoperat®®"), Eq, (2.6), as determined by
the transition operatorS andS' in Eq. (3.34. We consider
the interaction of the internal electronic state of an ion with
three different environments: the radiation field!} the
quasi-free-electrons of the sohd?, and the ionic cores of
the solid V{. We emphasize similarities and differences
between the different relaxation channels. We perform inde-
pendent numerical simulations for Rf ions with a velocity

v, =47 a.u. interacting with either environment. We use time
t and propagation length in the laboratory frande,inter-
changeably, sincé=uv ,t andv, can be treated as a constant.
The latter takes into account that the slowing down of the ion
at high collision velocitiesp,, and for thin foils can be
safely neglected. The zero-point 0(d=0) corresponds to
the time at which the ion enters the foil.

We also analyze the structural differences between the
(inverse lifetimes and the diagonal elements Bf If the
system is initially in a pure statéa) with a population
0..=1, the coupling to the reservoir yielflsee Eq(3.26)]
an exponential damping,,= exp(-t/7,), where the inverse
lifetime 7, * is defined by

aa

> [SaalK)[2

k

4.9

<lr

The last term on the rhs of E¢4.1) subtracts from”,,, the
contribution involving transitions froma) to |a). There-
fore, 7, * andT",, are, depending on the interaction with the
environment, in general substantially different. Expressed in
terms of propagation distance, the populatiep, decays
exponentially asr,,=exp(—d/d,), where the decay length

eda is given by

d=0pTy- 4.2

A. Radiation field

The interaction with the vacuum fluctuations of the radia-
tion field is a subject well studied in the context of photon-
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atom interactions and quantum opti€30,32. We only

briefly review the essential ingredients to highlight the simi-
larities and differences to collisional relaxation for which
detailed studies appear to be missing. As usual, the radiation

field is described in terms of a set of operatfs§(k)} and

PHYSICAL REVIEW A 67, 022902 (2003

Mw

1
RENDo=— > [S7(5)SM () o+ 0SVT(5)S0(5)

1

_
Il

{6,(K)}, which are the creation and annihilation operators ofwhere, using a|Vi| 8) = — w,z(alr| 8),

a photon with wave-vectok and polarizationék,x, where

k=Kk/k andk-e; ,=0. The interaction operator for the cou-
pling to the radiation field in the Coulomb gauge is given by

VEXr {6, (K)})
— i A —)*
= AV,
 2re [ (R e bR o
V5 % N (ie”"™"Vp),
(4.3

where r=(ry,r,,r)=33_,r e is the coordinate of the
electron in a frame of reference moving with the ion and
A(r) is the vector potential of the radiation field. Clearly, the

interaction potential can be factorized as in E28). How-

ever, in order to simplify the problem, we perform the dipole

approximation[we replace exp{ilZ-F):l], which reduces
the interaction to a much simpler factorization

o d

Sar 4

. .3
> - | R
VA {0, (k)= A°- V= - X A
J=1

—281(5)oSN(5)], (4.7)
() 2 g
Sup(a)= \/?wﬁa<a|rj|ﬁ>0(wﬂa)' (4.9

The corresponding decay operator, E2,14), for the radia-
tion field becomes

4
r=2 s'Qso)=— 2 wilwgalr |»)
iy 3c V5
X(v[r |B). 4.9

And the inverse lifetime[Eq. (4.1)] of a given state| @)
adopts the well-known form of the Einstefcoefficient

XTI
() =T 0=3 T alf Il

(4.10

For radiative decay;;l andI' ,, agree because— « tran-
sitions are absent for photon emission.

The physics described by the present Lindblad relaxation
operator is illustrated in Figs. 1, 2, and 3. Figure 1 displays
density plots of the relative coherences

|Uaﬁ|

Qaﬁzm (4.1)

where AP is the dipole form of the vector potential, which in the a-B plane (for o,,<10 ' or g4,<1071° we set
only acts on the reservoir degrees of freedom. This decoeraBZO). Since density matrices have the propely, |

position allows us to identify the ingredients in E8.8) as
the scalarf(5)=1, the operatorW(j)=id/dr§, and

D

i

AT L ag (e iab(—K) e, bl ()]
B'(;)=—/=¢e —Z .
c TVV Vek
(4.9
The resulting susceptibility is
r)m _ () _ w
X+ (g o)=xy"(0)= (2770)3 (), (4.6)

which is isotropic. The susceptibility increases wighwith-
out bound(which reflects well-known divergences in QED
In the present context, the key observation is thatsrepec-
trum is sufficiently broad and the correlation timg suffi-

ciently short ¢.—0) so that the Markov approximation can

be safely applied.
Susceptibility(4.6) determines, employing E§3.34), the

<\ 0,,0pp the relative coherence takes values in the inter-
val 0<Q,z<1. Note that all diagonal element3,, are
equal to unity(unlesso,, <1019, and, therefore, the figure
does not provide a quantitative measure of the time evolution
for populations. If the system is in a pure state, all off-
diagonal relative coherences of populated states are equal to
unity. Finite relative coherences smaller than unity imply that
the system is in a partially coherent state.

For the simulation in this section we use as system Hamil-
tonian that of the hydrogenic ion in vacuum,

V2 Z
H(SU)E_ _r_Tp+AHreIu

5 (4.12

where AH,. represents relativistic and Lamb shift correc-
tions[4], which will also enter the full simulation when we
calculate the post-foil evolution. The indices B of the
relative coherences refer here to the eigenstatesand|3)
of the system Hamiltoniaigt4.12) and can be expressed as
|ay=|nljm;), wheren is the principal quantum numbdris
the orbital angular momentum, andand m; are the total

jump operators entering the Lindblad relaxation operator foangular momentum and its projection onto #hexis. In Fig.

radiative decay,

1 we consider a I@’F’*(Zp=36) initially in the pure hydro-
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FIG. 1. Density plots of relative coherences of the reduced density matrix of°a kon that radiatively decays for various propagation
times as a function of the state index. The system is initially prepared in the puréyg{@)e=|4ps 19 (only m;>0 states are shown for
clarity).

genic state|¥(0))=|4psp12, Which is subject only to erators[Egs.(3.34 and (4.8)] entering the Lindblad form,
spontaneous decay due to the interaction with the radiatiowe compare in Fig. 2 the time evolution of selected density-
field. Direct decay channels are the, s, 3s, and 3 states  matrix elements with the result obtained solving the full Red-
(4p—2p and 49— 3p transitions are dipole forbidden but field equation3.25 as well as that of the Lindblad equations
the 2p levels are populated slowly and indirectly via the using the standard secular approximati@i,33. For the
decay of the 8 or 3d states. A remarkable aspect of the diagonal elements describing the population of tg,3 1,
radiative decay from the initial state is that, unless a meagnd 3,,_,,, states all three approximations agree well with
surement is taken, i.e., the wave function is projected ont@ach other. However, only our Lindblad form can reproduce
eigenstates of observablésg., photon energythe system e transient buildup of coherence due to the spontaneous
decays into a coherent superposition of states. Intershell CQecay as predicted by the Redfield equation. The secular ap-
herenceddifferent n quantum _numbe)sare rap!dl_y wa_shed proximation, by construction, fails. Coherences begin to be
out as a consequence of their large Ie_vel splittisg, (i.e., damped out for times>t, = 27/ wsq 34/ = 7.6 a.u. Neverthe-

the decoherence time due to dephasing2m/|w,g| [Eq. less, smaller nonvanishing coherences can still be observed

f)e;w?t)rzl)g iiﬁtézrzefllzggé:ehr?(:rgzor‘?ﬁénrr:ggt fsotlrlil.;\ilﬂgn?e\iavti rfg?rlﬁ:i even beyond,, the reason being that the radiative lifetime
. . “ ” (r) — i i
%f the “feeder stater;, =286 a.u. is even longer and this

1 is the transient buildup of off-diagonal elementss&l _ _ i
and 31-3d coherencesat short timeg<t, and their succes- State continuously replenishes the coherence. The point to be
sive decay at much longer timés-t,. Such features are noted is that the standard secular approximation, therefore,

absent in the standard Lindblad form based on secular af@ilS €ven for times longer than and up to the lifetime of
imati the feeder state’”) . It is thus completely inadequate for
proximation(3.28). 4pg,

In order to verify the accuracy of the proposed jump op-the entire transient regime. In Fig. 3 we provide another
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FIG. 2. Comparison of selected elements of the reduced density Propagation time (a.u.)

matrix of a K" ion that radiatively decays calculated using three ) )
different approximations: Redfield equation, Lindblad equation in  FIG. 3. Comparison of selected elements of the reduced density

secular approximation and in the present approximation. The syghatrix of a K" ion that radiatively decays calculated using three
tem is initially prepared in the pure stat$(0))=|4psyo.12. (@ dlfferer_n approximationgas in Fig. 2. The system is initially pre-
The population of the 8, 1, state, (b) the population of the Pared in the pure state/(0)) = (3512 12+ |3P12-12)/V2. (@

3d3/2’7 U2 State, andc) the relative coherence between tmi/@,*l/Z The pOpU|atI0n of the 91/2',1/2 State, (b) the pOpU|atI0n of the
and 3, ,, States. 2pys» -1y State, andc) the relative coherence between the,2_ 1,

and 20,/ -1/, States.

example of coherent radiative decay for which the

system is initially prepared in a coherent superposition oo e 1

of the 3y, 1, and Jy, 1, States: |V(0)) VEIr v =2 ———
=(|3s12_12)*13p12-12)/2 and we analyze the time =1 [ —opt=r]

evolution of the 2., _,,, and 20/, _,/, States and their co- (X" ) po(X)
herence. In this case, the coherence is damped due to the :J d3XJ d%’%, (4.13
Lamb shift splitting yielding a longer dephasing decoherence X’ —vpt—X|

time t,=99 a.u. However, also in this case the radiative life-

times of the feeder StateSr(grng: 123 a.u. and 7'(3r5)1/2 where the pointlike charge densities are given by

=3844 a.u. are longer thdp, as in the previous case. Thus,

similar conclusions can be drawn concerning the time _ L R Ne

needed for the secular approximation to hold. pp(X)=68(X—r), pe(X')= E S(x'—t). (4.19
i=1

N

B. Interaction with quasifree electrons of the solid ) . ) .
In order to express the interaction as in E8.8), we intro-

Consider now the interaction of an ion moving with re- gyce the Fourier transforms of the charge densities
spect to a free-electron gas with velocity, to be taken as
the quantization axi§i.e., z—axis||z;p). The free-electron gas R L Ne
can be described through an ensemblégfelectrons with k) =€T, (k)= ek (4.19
number densityng=Ng/V with coordinates{?i’} (we use =t
primes for coordinates in the laboratory fram€&he interac-
tion of the projectile electron with the electrons in the solid isUsing the fact thaf d®x epr>Z~ IZ)(l/x) =47/K?, the interac-
time dependent and is given by tion can be rewritten as
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E - This restriction on the integration domain O\Aérexpresses
"olpp(K)pd(K) the fact that the effective environment consists not just of the
4.16 electron gas in its ground state but includes the motion of the
' projectile relative to the electron gas with velodity, which
which is of the form of Eq.(3.8) with the substitutions leads to a Doppler shift of the frequency spectrum of the
B(IZ)=}39(IZ) W(R)=Ep(IZ) and f(IZ)=47-r/k2. Accord- susceptibility x”. [or Im(—1/e)]. The motion serves as the

. ! : ; heat bath that drives inelastic transitions.
ingly, the relevant reservoir Green'’s functi¢®.10 in the ! . N
present case is related to the density-density correlation fun(fﬁeF(r)T:o?T?gr?ttS;r?acnrs?‘thLgnggggit?p)ér;?e.I(Litl)zjt)htlamgrlgzctile
tion and the corresponding susceptibility req8s] velocity. The jump operator Ed4.20 depends on three in-
~ dependent variables, namely,k= \/kX2+ ky2+ kzz, bx
(een |z — E | Ol T IZ | |25 -0 _ _ 1 . ! . .
x5 7" (Kw)=12, [{0[pe(K)[N}“0(w— o). =tan *(ky/k,), andk,. In this case, the integration domain

" 4.17) of the corresponding relaxation operator is given by @,

' <2, kK>Knpin= |kma"1:|wﬁa|/vp, wherek,i, is usually re-

The latter is directly related to the inverse dielectric functionferred as the minimum momentum transfer and, up to a sign,

41

(ee)f{t.}t)— > e
k k

as agrees with the constraint EG.217).
Matrix elements of the decay operator fe®e scattering
-1 A are given by
0(w)|m< ) —x©9(k, ), (4.18
e(K,w) G

3

rip=[ S5 (ale  nrie g
where the prefactor to the rhs is the Fourier transform of the Tk
Coulomb interaction and coincides with(k). Equation i
(4.18 allows us to use dielectric functions in parametrized X Owp,— 3 Up) Uwa,~K-vp
forms[13,36 for realistic systems, as obtained from experi-
mental data from photon absorption and electron energy-loss X Im( = —— ) ( )
spectroscopy. With such a choice, Iml/e) includes all ek, 0q,—k-vp (K T k- Up)
electronic excitations of the target including those of inner (4.22
shells and not just those of the valence band.

Using Eq.(3.34), the jump operator representing scatter- The decay matrix foe-e scattering is approximately diago-

ing of the projectile electron at target electrons as reservoir igal in the unperturbed energy eigenbasis of the internal elec-

1/2

given by tronic state of the projectiléthe same applies to electron-
core scattering discussed belowhis is due to the fact that
\/_ -1 vz the integrand in Eq(4.22 places the dominant weight at
S (k)= Im| — —— (ale™ " B) smallk and for a— a transitionsky;,=0. For small values
e(k,wga—k-vp) of k the boost can be expanded as

X O(w0pa—K-vp). (4.19 (v]eX T @)= 5,0 +iK(v|T|a)+ O(KD). (423
Upon converting the Fourier sum into an integrale.,
VI3, =(27) 3fd%k), the Lindblad relaxation operator for
electron-electron scatterirg(“:¢® becomes

For diagonal elemenfsx= 3 in Eq. (4.22], the first term of
Eq. (4.23, 6,,, describing elastic scattering without chang-
ing the internal state of the projectile electron dominates.
(Here and in the following we refer to “elastic processes” as
those processes for which the energy of the internal state of
the projectile remains unchangedn other words, elastic
scattering, which does not represent decay at all, dominates
+gs(ee)T(E)s(ee)(E)—zs(ee)(ﬁ)gs(ee)T(E)]_ the decay matrix. The origin of this apparent paradox is ob-
vious from Eq.(4.1): the inverse lifetimes differ from the
(4.20 diagonal matrix elements df wheneverS,,#0. Fore-e
¢¢9)~2<19  where the inverse collisional

aa !

R(L.€8) 5 —

d3k[ ST (k)SEI(K) o

One of the basic ingredients of the jump operator for thepnteracﬂons
ir lifetime is given by
present case is given by the form facter|e'*"| ), which
represents a transition induced by a momentum trarsfer (e —1_
(i.e., a boost in momentumThe step function in Eq4.19 (1o /) "= E J
provides a restriction on the values of momentum transfers
that can be delivered to the electron,

X oleF

XMl ——————|0(w a_lz'l; ).
<k 8 422 (e(k,ww—k-vm) e
Up ' (4.24
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This differs from radiative decay, where'{) *=T() _ The L] B L) B L B
reason for this difference is that the jump operator for the

interaction with the electromagnetic field has vanishing diag- ~ § 0.4

onal elementgi.e., the prefactow. in Eq. (4.8 vanishes - A

for B=a]. The lifetime 79 determines the decay rate ofa &4, 3p"2"”2

given state whild"¢? determines the jump times entering | CT Tean

the QTMC simulation. The former determines the decay il il el .
lengthd(*¥ = v, 79 of a given stat¢Eq. (4.2)], whereas the 0 100 1000 10000
latter determines the collisional mean-free-pai{®® 0.l gr—1s T
=v,/T9 when the system is in stafer). The fact that o= gy

(ce}
- ~lexp(-nd’, N

A (¢9>d®9 implies that the transition probabilities per jump -
v=- ~lexp(-xid, 0]

into statesB+ « are small.
The presence of elastic and near-elastic relaxation chan-&
- ; 0.001
nels due to soft collisions has consequences in terms of*
damping in off-diagonal elements of the reduced density op-
erator. Suppose that we consider the subset of the Lindblac 0.0001
equation involving onlyr .z neglecting all couplings to other

0.01

lation

u

»
. »*
||ltﬂ( 1 Lol 1 Lol 1

100 1000 10000

elements, 1 LI ) ||||| 1 -l-l.l-lll_ll L) T LI ) ||||| L)
8 Nnininininiininininieieiab T
d E 0.98 -—
Gi (D)=~ (0 +RED g0, p(1),  (4.29 2 0.96[-
2 F | — 331/2'_1/2 and 3pm__1/2
Lo %0‘94 [ |-~ 3p,, .,and 3p
whose solution is I 5 312,32 32,172
092 | | |
i _R(e9 100 1000 10000
Tup(t)=0,50)€ '0aple ™ Rapap!, (4.26 Propagation length (a.u.)

Clearly, Rffgzw can be considered as a damping or phase FIG. 4. Evolution of selected populations and coherences of the
diffusion coefficient from which we can define the collisional internal state of a KF* ion moving with velocityv ,=47 a.u. sub-

decoherence length ject to collisions with electrons in an amorphous carbon foil as a
function of the propagation length. The system is initially prepared

DEI—, R(€9 (4.27) in the pure statdy(0))= (351,12 +13P1r2-12)/V2. (8 The

ap TP tafa: ' populations of the 8/, 1, and 3, 1, States(b) the populations

of the 3p3, -3, and 33,1/, States, andc) the relative coherences
between the 8,,_;, and 3py,_1, states and between the

3P3i2- 32 and Pgpp,15 States.

In the elastic limit[see Eq.(4.23], whereW,, (k)= 4,,,

1 N LS
REDp(k—0") =5 2 [F(K)[*XE9"(k,—v,p-K)
pab Vo " b =(13sy2_ 112+ |3P12-12))/ V2 and the results are depicted
as a function of the propagation lengtk-v ;t. Since inelas-

tic transitions are relatively weak, we focus on the popula-

While diagonal elementsa(= ) are unaffected by elastic tions and relative coherences involving states within the
scattering because of the complete compensation of sink ard3 Shell, namely|a)=[3S12-12), |B8)=13P12-12) 1)
source terms, off-diagonal elements are effectively damped |3Ps2-32), and [)=|3pg,12. Even though for the
by elastic scattering. Such processes are of particular impofange of propagation lengths depicted in the figure about 100
tance for charged-particle scattering because of the domrollisions take place, most of the probability stays in [thi
nance of the soft collisions due to the long-range Coulomtand |3) feeder states. They decay approximately exponen-
tail. For short-range interaction potentials the damping rate isially with a decay length that is different from eithe{®® or
smaller but it is also present and gives rise to collisionald%ee) because of the coherent superposition in the initial
dephasing and decoherence in neutral gases. _ state. The time evolution of the initially unpopulated states
In order to study the dynamics induced by the relaxations in turn, approximately given byo,,,(t) =const[ 1
operator fore-e collisions[Eq. (4.20], we have performed —exp(—d/dﬁfe)], which describes the population of a decay-

- B 5+ . . . _ .
simulations for KF** ions with velocityv ;=47 a.u. subject ing state coupled to a feeder state with a constant population.

on(lvyg to e-e interactions aqd using the sy.stem Ham!ltonlanThe results depicted in the figure do indeed obey this form
H¢” [Eq. (4.12)]. Results illustrating the time evolution of and the decay lengths of the fit curves agree )
selected matrix elements of(t) are depicted in Fig. 4 for an (e9) 312,312

environment represented by a parametrized dielectric func’i”ddspS,z,l,z-
tion of an amorphous carbon f¢B6]. The initial state in this In Fig. 4(c), the time evolution of the relative coherences
simulation att=0 is the coherent superpositign¥’(0)) Q331/2,—1/2v3p1/2,—1/2 and Q3p3/2’73/2,3p3/2’1/2 is displayed. Due to

X W o (K) = Wgg(K)|2. (4.28
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s, F 4

3d,, | 4

P | +

3P1/2 — 4
3s — -+

2p3/2

», -1

2 (a) Propagation length = 0

1s B T

(b) Propagation length = 100 (a.u.)

3d —

35 |

3, F
3 |
3s —
2Py,
»,

2s —

1s B

(c) Propagation length = 1000 (a.u.) 7] (d) Propagation length = 10000 (a.u.)

Is 2s 2pl 2p3 3s 3pl 3p3 3d3 3d 1s  2s Zpl 2p3 3s 3pl 3p3 3d3 3d

3 5
2

5
2 2 2 2 2 2

2 2 2 2 2
FIG. 5. Density plots of relative coherences of the reduced density matrix of the internal state f adfr moving with velocity
vp,=47 a.u. subject to collisions with electrons in an amorphous carbon foil for various propagation lengths. The system is initially prepared
in the pure statéy(0))=(|3S1/_12) +|3P1/2.1/2))/ V2 (only matrix elements withn; <0 are showh

the initial conditions of this simulationQss , .3, ,,  coherent even for the longest propagation length analyzed

=1 att=0. With increasing propagation length, decay of (Iast panel.
this coherence sets in dt-10 000 a.u., which is close to the
expected length of decoherence by dephasidg=¢v,
=270, /| 0,5 =15500 a.u.). InterestinglRsp., .. 3p., .,
also starts very close to unity indicating that the states Consider now the interaction of the electron with an en-
3Paj2_ a2 and 3 1 are coherently populated by a single semble of screened ionic cores, WhICh can be d_escnbed
collision. Since these two states are degenerate, decohererffgough an ensemble @i, atoms with number density

in this case is only a consequence of successive multiplesNA/V with coordinate{®?/} in the laboratory frame. This
collisions. Although both coherences tend to decay with infproblem is closely related to that in the preceding section.
creasing propagation length, they remain high with valued-or a neutral system the atomic dengity is related to the
above 0.9. This results from the fact that the interaction withelectron densityne=2Z:n,, whereZ; is the nuclear charge
electrons in the solid both generates coherences betweaf the atoms in the solid. In line with the discussion above,
states and decoheres the internal state of the ion. We cdhe relevant degree of freedom in the target is the heavy
observe this behavior in Fig. 5 in more detail, where theparticle motion while electronic excitations in the core are
relative coherence® .z are displayed in the-g plane. The  already included in the-e scattering term as described by
first panel displays the initial state. In the second paxel ( Im(—1/e). The inelastic processes considered in the follow-
=100 a.u.), states with the same principal quantum numberigg are therefore excitations of phonons. The first obvious
are coherently populated by a single collision. Despite thelifference between the-e interaction and the-c interaction
fact that relative coherences diminish in magnitude as thés that the effective two-body interactiafy, is not pure Cou-
propagation length increases, the system remains partiallpmbic. The total interaction potential is given by

C. Interactions with ionic cores of the solid

022902-14
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:f d3xf d3x’ p(X") pp(X) V(X' — vt —X)

1 — e e
=3 Z Ve(k)e* o, (K)pi(k), (4.29
k
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tic scattering” even though it can drive inelastic excitations
of the internal state of the projectile as efficiently as the
electron-electron channel. The term elastic originates here
from the small energy transfer to the target degrees of free-
dom(i.e., w=0). The energy required for inelastic processes
originates, as above, from the translational degree of freedom
of the projectile. In order to distinguish this scattering pro-
cess from true elastic scattering we will refer to this relax-
ation channel as electron-ion-ca® scattering.

where the pointlike charge density of the target cores and its 1 n€ d function in Eq.(4.34 fixes thez component of the

Fourier transform are given by
Na Na o
po(x') =2, S(X' =), pe(k)=3, e,
(4.30
Clearly, Eq.£4.2£)) isﬁof the form of Eq(3.8) with the system
operatotW(k) = p,(k) being the same as fere interactions

while the reservoir operatorB(lZ)=}3c(IZ), and f(IZ)
=VC(IZ). The interaction potential with ionic coreg,, cor-

responds to an attractive screened Coulomb interaction. A

typical choice, which is used in this work, i¥.(r)

=—(ZsIr)exp(-rlarg) with the Thomas-Fermi screening

length a;=0.88%2;¥® and the Fourier transfornV(k)
= —(47Z7)I(K*+arfd).

The susceptibility entering the relaxation operator refers

momentum transfer to

w
k=kgt ==L
p

(4.39

and implies that the absolute magnitude of the momentum
transfer must bé&>Kpin=|wg,|/v,, .

The § function in Eq.(4.34 allows one to carry out the
integration ovek, such that the final form oR(“:©) involves

only a two-dimensional integral ovér, =k—Kk,z,
1 _ R
REOg=— —f d?k, [SOT(k,)SO(k, ) o
1673

+ oSNk, ) SOk, )~ 289 (k) eSOk, )],

now to the density fluctuation of ionic cores. For the phononwhere the jump operator is given by
excitation spectrum we consider for simplicity the dispersion

relation

k2

w=

whereM. is the mass of the ionic cores. Neglecting collec-
tive excitations and phonon damping, a simple choice for the

susceptibility that satisfies tHe (or Thomas-Kuhipsum rule
[35]

©  2Mq (&
. dw?w)(+ (K,w)=mny (4.32

is given by

(4.33

2
On(R )= _
xy"(K,w) 7TnA5(w 2MC>'

The fundamental differences to electron-electron scattering

(4.36
R 2mn\ Y2 L. ik, +2kPyf
sg°,%<kl>=( A) Ve(k, +2kEe) (a2 g).
(4.39

The resulting decay matrix becomes

n

M= o S [ e (ale B
p 14

X(u] el 20 BV (R, + 2k V(R + 2KE7),

(4.38

whereas the inverse collisional lifetime adopts the form

; oo
(r) = 3| ok Vo, + 2|2

4772vp vEa

X |(aleits 202,

(4.39

result from the properties of the phonon dispersion. Because

of the large mrfsswrl) the 8 funcgion in Eq F()4 33 peaks which can be used to define the decay length of each state
(o] . . .

close tow=0. Consequently, the imaginary part of the sus-0¥ =0, as in Eq.(4.2).

ceptibility for electron-ion core scattering is approximately N Figs.LB and 7, we analyze the effect of the relaxation
given by operatorR(-® (4.36) for a Kr®>* ion with v ,= 47 traversing

an amorphous carbon foil. The initial internal state of the ion
X(f)”(k,w=wa,g—5p' IZ)zrrnAﬁ(wa,g—l;p~ K). consists of a statistical incoherent superposition of the
(4.34) 1sy/5 152 @nd 1sy, 1), States, which mimics typical experi-
mental initial conditions[4]. Since k states are deeply
The relaxation channel involving ionic cores of the solid isbound, feeding higher-energy levels through core collisions
therefore often, somewhat misleadingly, referred to as “elasis a slow process. In fact, the decay length of the ground state
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LOx10° Er T g populated by a single collision. For long propagation lengths,
F ] however, coherences are almost completely washed out and
- T the internal state of the ion turns into an incoherent mixture
1.0x10™ 3 of states.
g X . ]
% 1.0x10° E E V. SIMULATION OF THE INTERNAL STATE EVOLUTION
£ - 3 3 IN ION-SOLID INTERACTIONS
[ . 3 ]
LOx10° ff_ _ 3p11’/2211’; @ 3 A. Implementation of the QTMC
C 3 In this section we combine the relaxation processes dis-
L.0x10” I TN BTN B cqssed in the preceding section _for a fast hydrogenlike ion
’ 100 1000 10000 with nuclear chargeZ, and velocityv, through an amor-
phous foil with a given thicknesd. Accordingly, the cou-
L D L pling of the system, the internal electronic state of the pro-
jectile, to the environment, the solid and the electromagnetic
(b) field, is given by
[}
504 Ve VI VED 1 v(©) 5.1
z sr=Vsrt Vs +Vsg. (5.9
8
§ Within linear response theory, the couplings to the various
202 environmental degrees of freedom are independent of each
|| — Biap@d 3, other and are independent stochastic processes. Accordingly,
the relaxation operator entering the Lindblad equation be-
olonnd el 0l comes
100 1000 10000
Propagation length (a.u.)
FIG. 6. Evolution of selected populations and coherences of the RL=>D REOH=RENLRLeILRLO (52

internal state of a KP" ion moving with velocityv ,=47 a.u. sub- ¢

ject to collisions with screened nuclei in an amorphous carbon foil
as a function of the propagation length. The system is initially pre

. T - ‘where £=r,eec denotes independent relaxation channels
pared in a statistical incoherent superposition of tisg,1 ;, and

1s states.(a) The populations of the & and D for radiative decay, electron-electron, and electron-core scat-

112,112 : pop /2~ 112 ¥2-12 - tering. Thus, one can implement all the tools introduced in
states andb) the relative coherence between the;3 i, and | i N ]
3Py, 1 States. ' Sec. Il provided that the indek [Eq. (2.6)] is replaced by

' appropriate indices for each environmental degree of free-

is di9~8x 10P, which is larger than the range of propaga- dom:, for €=r [Eq. (4.7)], K for ¢=ee[Eq. (4.20], andK,
tion length shown in Fig. 6 and much larger than the typicalfor ¢ =c [Eq. (4.36)].
collisional mean-free path of free electron&)~10°. We The solution of the Lindblad equation for the relaxation
focus here on the evolution of the populations of theoperator in Eq(5.2) by the QTMC method proceeds as fol-
3sy2-12 and 3y, ), States[Fig. 6@)] and their relative  lows. Between stochastic jumps, the continuous time evolu-
coherencaggsl/%1/2,3,)1/2,71/2 [Fig. 6(b)] as a function of the tion [Eq. (2.12] is governed by an effective non-Hermitian

propagation length. Initially, the 3, 1, and 3 15 Hamiltonian(2.13 with the total decay operator

states are not populated and, therefore, the populations in-

crease at first asrw(t)zconstx[1—exp(—vpt/d§f))]. The

dominance of the excitation fstates is valid for alh shells r=> rO=r04+reEd1rO, (5.3

and indicates that the typical momentum transfers involved ¢

in the excitation process are small such that the boost is near

the dipole limit[see Eq.(4.23]. The relative coherence in where the decay matrices for each relaxation channel are
Fig. 6b) at d=0 is Qg ,.3p,, ,,~ 0.5 and, subse- given by Eqs(4.9), (4.22, and(4.38. The HamiltoniarH g
quently, it starts dropping rapidly from this value dt in Eq. (2.13 is assumed to contain all energy shifts due to
~3000 a.u. This decay length is close to the collisional dethe interaction between the system and the environmental
coherence lengthEq. (4.27] and is much shorter than the degrees of freedom. The continuous evolution intertwines
dephasing decoherence length of these stategt different relaxation channels. The stochastic tirfjeare de-
~15500 a.u[see Eq(3.32)]. In other words, the interaction termined by the solution of the implicit Eq2.19), which

with the atomic cores of the solid decoheres the internal stat#écorporates the reduction in state population due to all pos-
of the ion very efficiently. This trend can be seen directly insible relaxation channels. The probability for the occurrence
Fig. 7, where we display the relative coherence in state®f one particular relaxation channel,(ee, or c) being re-
space. For short propagation lengths, states are coherengponsible for the next jump is determined by
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3d5/2 B 1T

3y, | 4
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2s B (a) Propagation length = 0
1s

(b) Propagation length = 100 (a.u.)
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(c) Propagation length = 1000 (a.u.) N (d) Propagation length = 10000 (a.u.)
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FIG. 7. Density plots of relative coherences of the reduced density matrix of the internal state Bf @dfr moving with velocity
vp=47 a.u. subject to collisions with screened nuclei in an amorphous carbon foil for various propagation lengths. The system is initially
prepared in a statistical incoherent superposition of #ig 1./, and 1s,, 1, Stategonly matrix elements involvingy; <0 states are shown

(U(t) [T O (1)) retical studies for this system have been reported elsewhere
pO7= : (5.4 [4]. The ion is initially prepared in a statistical incoherent
2 (¥ 77(t)|1“(€')|‘lf’7(t)) superposition of & states and is traveling at the speeg
¢ =47 a.u. The Kr isotopes used in the experiments are chosen

After the channel index is selected by drawing a random such _that the hyperfine_ strqcture of the ion can be ignored.
number according to E¢5.4), the wave function after the The fine-structure HamiltoniaH§” [Eq. (4.12] is therefore
stochastic jump is obtained by application of the correspondadequate.

ing normalized jump operator, E€R.15, for the particular In order to probe the time evolution of the internal state of
selected channdli.e., using Eqs.(4.9), (4.19, or (4.39].  the ion, Balmera lines are measured for foils of different
Application of the jump operator requires the determinationthicknesses that vary from 3 to 220y/cn?. The total pho-

of a particular value ok according to Eq(2.16). For radia-  ton intensity of all lines emitted from a particular level is
tive decay this corresponds to a discrete distribution of theiven by

index 5 whereas for collisions it corresponds to continuous

two-dimensional and three-dimensional probability densities | ZF(r)fwdtU (t) (5.5
for k, andK for electron-core an@-e interactions, respec- R
tively.

The intensity provides direct information on the time integral
of the populationo,,(t) (weighted by a constant decay

We consider now the QTMC simulation for #F (1s) rate. Note that the time integral involves the population
traversing amorphous carbon foils. Experimental and theowhile the ion is both inside the solid and after foil exit.

B. Application to Kr 25t traversing amorphous carbon foils
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The population of the excited state is initially zero, increases  1.0x10® grrrrr — T — T T
due to excitation inside the foil, and tends to zero again for z
t—o, when the atom relaxes to the ground state by radiative . 1.0x10™
decay after foil transmission. Since transport through foils of% 5
different thickness vyield different intermediate populations, 2, 1.0x10
changes in the line intensities provide direct evidence of the<
changing behavior of the populations due to transport. Be-

cause energy levels of different; are not experimentally O VLT i Y R SIS TY S S R T] —
resolved, the observable intensities correspondl{g; 100 1000 10000

o
"

-

— full simulation
1.0x10°® . == only e-c scattering

:Emjln,l,j,mj-
In Eqg. (5.5 |@) represents an eigenstate of the free-ion
HamiltonianH{") [Eq. (4.12)]. It is important to note that the

3

2.5

system Hamiltonian inside and outside the solid is different. ~_ 1.5
1

5

31,0

P,

Therefore, the calculation of the dynamics of the internal
state of the ion is separated in two parts. First, we propagate o —— withont coherences
the ion inside the foil and the calculation is carried out in a ol — il

basis seta), | B), etc., of eigenstates of the system Hamil- 100 1000 10000

3Pizan

0

C [— full simulation

tonian inside the SOlld, 0.8 — T T T T TTTTT] T T T T T
v: 2 0.6 311n 204311 © -
HO=— - — P+ AH e+ Vaad). (5.6 - ]

= full simulation
- = only e-c scattering

Relative coherence
=)
'S
I

¢
[}
I

The Coulomb field of the swift ion polarizes the solid, result-
ing in a “wake” of density fluctuation$34]. This wake acts T T
back on the ion shifting and splitting the internal electronic 100 1000 10000
energy levels. For a highly charged ion the dominant polar- Propagation length (a.u.)

!zatlon of the solid .that_ affects the time evolution of the FIG. 8. Evolution of selected populations and coherences of the
internal state of the ion is t'hat'due to the nucleus of the iONnternal state of a KF* ion traversing an amorphous carbon foil
rather than that of the projectile electron. We therefore inyith velocity v,=47 a.u. as a function of the propagation length.
clude the ion-induced wake potentid), 5. {r) in Eq. (5.6). The system is initially prepared in a statistical incoherent superpo-
The (conservativi pOtentiaWWﬁke(F) resembles, to leading sition of the 1s,,, 1, and s, 1o States and we compare the results
order and at small distances from the nucleus, an electrigf the full simulation with those in Fig. 6@ Populations of the
field which causes Stark splittings in hydrogenic manifolds 3Su2-1/2 and 315 1, States (b) ratio of the Py, population
The interaction of the projectile electron with its self-induced© the 3uz-12 population, andc) relative coherence between the

o . ~ . 3S1/2—1/2 and _4yp States.
polarization described by R&) (or x’) is small by com- v2-vz 8N Prz -z

parison and W'_" be neglec_:ted n t_he foII_owmg. ;?‘ more de- In order to analyze the effect of collisional coherences on
tailed gxplanatmn of the @ffergnt mgred@ntsiﬁb@ ~can be the populations of the states, we also display in Fig) 8
found in Ref.[4]. At the foil exit, the density matrix is pro- reqyits of simulations with and without collisional coher-
jected onto the set of eigenstajes of the free-ion Hamil-  opces The QTMC method easily allows us to eliminate co-
tonian HY [Eq. (4.19] and is subsequently propagated in herences by making the decay matrices diagonal and by mul-
time in that basis. tiplying the matrix elements of the jump operator in the basis
In Figs. 8a) and §c), the populations of thesd, _;,and  set that diagonalizes the system Hamiltonian by random
3p1p-12 States as well as the relative coherencephases uniformly distributed in the interval (&2 In order
Qss,y, 112301, € displayed as a function of the propaga-to highlight the differences between the simulations, Fig.
tion length. (Note that propagation length is equivalent to 8(b) displays the ratio between the populations of the
foil thickness) The results of the full simulation depicted in 3py,, 1, and 3,1, States with and without coherences
Figs. 88 and &c) are found to be very similar to those included. For thin foils, the population ratio is nearly con-
involving only core collisions, indicating that much of the stant, reflecting the ratios of direct transition probabilities
dynamics of the system is dominated by core collisions. Thisrom the ground state of Kr to different final states under
is also evident in the density plots of the relative coherencesingle-collision conditions. Subsequently, it decreases to a
depicted in Fig. 9, which look very similar to those in Fig. 7. value close to unity. Without coherences, the simulation
Only for large propagation lengths are the results of the fullreaches this asymptotic ratio much faster. Similar effects oc-
simulation clearly different from those involving only core curs in the absence of the wake fi¢ll. This is due to the
collisions, which is a consequence &#® collisions and ra- fact that for the relative phases associated with the excitation
diative decay. The relative cohereriégg. 8(c)] is very large  process, the wake field tends to increase the ratio of fhe 3
for thin foils and is subsequently damped due to multiplepopulation to the 8,,, population.
collisions. Direct experimental evidence of coherences can be ob-

(=
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(a) Propagation length =0 (b) Propagation length = 100 (a.u.)

(c) Propagation length = 1000 (a.u.) 7] (d) Propagation length = 10000 (a.u.)

1s 2s b i 1s 28 2p

1 =53 1
2 2 2
FIG. 9. Density plots at various propagation lengths of relative coherences of the reduced density matrix of the internal stdté of a Kr
ion traversing and amorphous carbon foil with veloaity=47 a.u. and subject to radiative decaye collisions and core collisions. The
system is initially prepared in a statistical incoherent superposition of $he 1, and 1s,, ,,, states(only matrix elements involvingn

<0 states are shown

tained by measuring ratios of line emission intensitigs In present jump operators, continuous time evolution operators,
Fig. 10 we compare the results of our simulations with andand jump times with those in Ref4] indicates that the
without collisional coherences and experimental data for th@resent approach differs from the previous one in several
ratio I3, /135, Only inclusion of collisional coherences details entering the QTMC simulations. These differences do
leads to the correct degree intrashell mixing of states andot yield dramatically different results for the present system
yields photon intensities that are in reasonable agreemeiiut they could be of importance for other syste(f ex-
with the experimental data. It is also worth noting that theample, the model used in Ré¢#] for radiative decay did not
calculated ratid 3 /135 , Obtained from the full simulation  describe the buildup of coherences due to the interaction
including post-foil evolution increases for increasing foil with the environment While the slightly better agreement
thickness, whereas the ratio of the populations at the foil exibetween our previous calculations and experiment in the
[Fig. 8b)] are a decreasing function of foil thickness. This is thick-foil region may be, in part, fotuitous, there is one pos-
a direct consequence of radiative decay during the transposible source of the discrepany that warrants further investi-
in the foil. gation. The present QTMC implementation is strictly unitary
In our previous work4], numerical simulations yielded as is the underlying Lindblad equation it solves by way of
slighly better agreement with the experimental data in theensemble averages. In other words, there exists no flow of
thick-foil region than that in Fig. 10. This observation is at probability from the finite Hilbert subspadés spanned by
first glance somewhat surprising since for the limiting casethe basis set to its compleme(ite., we have neglected the
of highly excited stateswhich will be discussed in the fol- flow of probability from lown states to higm and con-
lowing section our previous approach is based on additionaltinuum states In our previous work we provided an intuitive
approximations to the present theory. Comparison of thavay to account for this flovgwhile neglecting the back flow
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ST — T - which is not only diagonal but proportional to the unit matrix
B Experiment (D, Vernhet, et al) and with the scatt_ering rate for free electrons as prefactor.
— Present work ’ Thus_, the approxmatlom)a,.,ﬂo_ amounts to the so-called
- = simulation without coherences Ei quasi-free-electron approximation for weakly bound elec-

trons. The fact thal’ is state independent has profound con-
sequences for the resulting stochastic time evolution. The
continuous unitary evolution operatdEqgs. (2.12 and
(2.13] becomes independent bf,

I3pm/ I3s|/z

Ucont(tj rtjfl):exn:_iHS(tj_tjfl)]- (5.10

Similarly, using Eq(5.7) in the definition of the jump opera-
tor Eq. (2.1 yields

Ujump(Kj, tj) = exp(ik; ). (5.10)

1 L1l 1 ! TR | !

10 100 Note that we have dropped the indexin Egs.(5.10 and
(5.1 since these operators are in this limit independent of
the particular realization of the quantum trajectory. Both

FIG. 10. Relative line emission intensities resulting from the Ycont @NdUjump, as well as their product Eq2.1D) reduce
transmission of K§¥* ions through amorphous carbon foils with O linear operators. Consequently, the time evolution of the
velocity v,= 47 a.u. as a function of the foil thickness. The systemduantum trajectory is governed by lamear Schralinger
is initially prepared in a statistical incoherent superposition of theequationid| ¥ (t))/dt=H|W(t)) generated by the stochastic
1sy/5—12 @and 1sy, 1p states. The results of our full simulation are Hamiltonian
compared with experimental dafd] and with a simulation in
which coherences are neglected.

Foil thickness (ug/cmz)

H(t)=Hs— 2, a(t—t)r-k;, (5.12
and it was found to have a small effect in the thick foil ]
region. The derivation of a generalized “Lindblad” form that where the random jump times and momentum transfeks
accounts for this flow and its QTMC solution is in progress.are obtained from Eq$2.19 and(2.16), which in the quasi-
free-electron approximation reduce to=1-—exp(yt), and
C. Transport of Rydberg states: Linear stochastic Schrdinger P(K) =y Y f(K) |2 (K, — IZz;p), respectively.
equation Equation(5.12) is nothing but the Hamiltonian of an im-

We consider now the limit of the NLSSE when the initial Pulsively driven atom, a system frequently studied in the
state of the projectile is in a highly excited or Rydberg stateonnection of quantum chag37-42 and of Rydberg atoms
(n>1). As radiative decay rates decrease ms® (x  Perturbed by half-cycle pulseeRefs. [43,44). Equation
=3 to 4.5) while collisional rates for charged particles rap-(5-12 possesses a well-defined classical limit in terms of
idly increase for lown as~n? and saturate for large, only Hamilton equations of motion and allows to treat the prob-
collisional relaxation is important. In this limit, the NLSSE lem also within the realm of classical mechanics. In this limit
drastically simplifies and reduces to a linear equation. ThdV€ récover the Langevin-type equations of motion underly-

key point is that the dependence of the susceptibifityon ing the classical transport theof9—14] and applicable to
the internal energy differencas,, can be neglected com- transport of weakly bound and continuum electrons. The pre-

. viously developed quantum transport theory for internal state
F;;? tt)zctg;err;agmtude of the Doppler shift;| and Eq. evolution in ion-solid interactionéRefs.[16,17]) was based

on Eq.(5.12. The present analysis shows it to be the limiting
o\ (D > noR LT N2 case of a NLSSE when the quasi-free approximafigg.
Sap(K) =T (IO Was(K)[2x% (K —k-vp) 75 (5.7) (5.7)] can be applied. For light ions and high Rydberg states
Consequently, decay matr{®.14) simplifies to of highly charged ions the quasi-free-electron approximation
is valid to a good degree of approximation.
1 . R o It is worth noting that this linear limit of the NLSSE is
Faﬁzv Z [F(K)2x" (K, — k- vp) (@] W (K)W(K)| B). specific to collisions. For radiative processes, the susceptibil-
k 5.8 ity x~|w,g [Eq. (4.6)] vanishes in the limitw,z;—0.

' Therefore the assumption of a, to leading order, frequency-
independeny”. which would allow the use of a closure re-
lation and of the unitarity oV [see Eq(5.7) and(5.9)] fails.
From another angle, radiative transition probabilities are
1 . o strongly state dependent and an approximation of state inde-
T5= 5“ﬁv 2 |f(k)|2X1(k,—k'vp)=75a;§, (5.9 pendence in analogy tp the quaS|—free—e_Iectron approxima-

k tion for electron scatterinb.7) is not possible.

For e-e and core collisiondV=exp(k-r) and W' (k)W(Kk)
=1. Therefore, we arrive at
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VI. CONCLUSIONS atomic systems in contact with an environment. Examples
for future studies include Rydberg atoms in a trap envisioned
as gates and registers for quantum information processing. In

trajectory Monte Carlo implementation to describe the dyr?hls case, stray fields, collisions with ambient molecules, and

namics of fast atoms or ions interacting with a lar ethe radiation field represent the environmptf]
) o g with 9 One major limitation of the present approach should be
environment consisting of the electromagnetic field and

solid. One major advantage of the present formulation is th ointed out. One virtue of the Lindblad equation and its
. ' | g preser TMC implementation, the strictly unitary time transforma-
is goes beyond the secular approximation and can accou

for the short time evolution of the coherences of the system.Ion of the reduced d_ensﬂy-matrrx(t) Is, in fact, of I|_m|ted

The present treatment contains our previous approximatio\rllalue when the atomic system couplgs.to the continuum thgt
S ) cannot be completely subtended within any realistic basis

e.g., Ref.[4_]) as the limiting case when the nonlinear sto- size. In other words, when the atomic Hilbert subspHge

chastic Schrdinger equation reduces to a linear StOChaStiCreprésented by thal ,dimensional basis is stronalv coupled

equation. We show that this limit emerges from the quasi- " | y i S itarity | i q gyh Idp't b

free-electron approximation to electron-electron andt0 Its complement, unitarity Is not preserved nor should it be

electron-core scattering. The results obtained in this work fois'rr;(;eeé?%fn']ilzlaggué ?#é Egggglgzdgcjgﬂggbae% Sifsagem_—rrge
line emission intensities resulting from ion-solid interactions? q

resemble those found in our previous work and, therefore|mplementat|on does not account for an explicitly nonunitary

partially validate our previous approach. However, signifi-févo'u“qn of the system. As the fonization channel becomes

cant differences, in particular for the radiative decay, arise. mcreasmgly Important for IOW@ZP.’ extension of the present
One major conclusion from our present treatment is tha{ormulatlon to explicitly nonunitary system dynamics is

the interaction with the environment does not only decoheré)lanned'

a quantum state in the long-time limit but also can lead to a ACKNOWLEDGMENTS
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