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Quantum-trajectory Monte Carlo method for internal-state evolution of fast ions traversing
amorphous solids
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We present a theoretical framework for the evolution of the internal state of a fast highly charged one-
electron ion traversing an amorphous solid. We employ an open quantum system approach which incorporates
the complex array of collisions with electrons and ionic cores in the solid within the framework of system-
reservoir interactions. Interactions with the solid environment and the radiation field are treated on the same
footing and the quantum master equation for the reduced density matrix of the electronic state of the ion is
approximated by a Lindblad equation. The latter allows the solution of this multistate problem in terms of
Monte Carlo sampling of quantum trajectories. Similarities and extensions to methods used in quantum optics
and previously employed in ion-solid interactions are discussed. Our focus is on the transient buildup and
destruction of coherences by stochastic processes. We apply our method to the study of coherence properties of
the internal state of a fast Kr351 ion traversing carbon foils. Simulations exhibit clear signatures of partially
coherent transitions and are found to be in good agreement with experimental data.
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I. INTRODUCTION

The internal electronic state of a fast atom~or ion! tra-
versing solids is an example of an open quantum system
contact with a ‘‘large reservoir.’’ The large number of d
grees of freedom of the environment refers here to the e
tronic and nuclear degrees of freedom of the solid. Moreo
for highly charged ions (Zp@1) the coupling to the vacuum
fluctuations of the radiation field become comparable to
coupling to the particles in the solid. Therefore, the reserv
of the open quantum system should include both the ra
tion field and the degrees of freedom of the solid. We c
sider in the following a hydrogenic one-electron ion trave
ing an amorphous carbon foil. For such systems, accu
experimental data@1–4# have recently become available.

Investigations of the electronic excitations in fast io
solid interactions have remained a theoretical challenge
many decades starting with the early studies by Bohr
Lindhard@5#. The difficulties result not only from the many
body nature of the environment but also from the large nu
ber of states of the open system involved that pose a m
hurdle for a direct application of a quantum master equa
@6–8#. For light ions and weakly bound electrons, a classi
transport theory~CTT! @9–11# employing a Monte Carlo
sampling of classical trajectories calculated from a mic
scopic Langevin equation has proven to be quite succes
in describing experimental data for electron emiss
@12,13#, charge state fractions and excited state distributi
@14,15#. Subsequently, a quantum transport theory~QTT!
@4,16,17# was developed in which the reduced density ma
is constructed as a Monte Carlo average of quantum tra
tories, each of which is the solution of a Schro¨dinger equa-
tion with a stochastic perturbation. The QTT can be cons
ered as a quantized version of the corresponding CTT
both the classical as well as the quantum versions of
1050-2947/2003/67~2!/022902~22!/$20.00 67 0229
in

c-
r,

e
ir
a-
-
-
te

or
d

-
or
n
l

-
ful
n
s

x
c-

-
In
is

transport theory, a quasi-free-electron approximation
scattering of electrons at screened ions or conduction e
trons was used. For deeply bound electrons in fast hig
charged ions, additional quantum effects are expected
originate from the breakdown of the quasi-free-electron
proximation@4#. In this regime, also the strong coupling
the radiation field, which scales as (}Zp

4), becomes competi-
tive with the collisional coupling, which decreases as}vp

22

(vp being the collision velocity!.
Quantum-trajectory Monte Carlo techniques have been

dependently developed in a different context of quantum
tics @18–20# for the description of few-state atomic system
interacting with the radiation field. Quantum trajectories a
constructed from a nonlinear stochastic Schro¨dinger equation
~NLSSE! with, in general, non-Hamiltonian interactions. Th
Monte Carlo solution of the NLSSE is equivalent to a so
tion of a specific class of quantum master equation for
reduced density operator, the Lindblad equation@21,22#,
which imposes the condition of complete positivity on t
dynamics in the open system. However, the connection
tween the Lindblad equation and the original master equa
it attempts to approximate is far from clear@23–28#. For
example, it was shown that the positivity may, in fact,
violated on short time scales@25,27#. The Lindblad equation
has been applied mostly to few-state~typically two- or three-
state! systems. Generalization of the NLSSE to multista
systems, including unbound states, is not obvious.

In the following, we present a unified description for a
open multistate atomic system coupled to both the radia
field and the degrees of freedom of the solid. The start
point of our analysis is the Born-Markov approximation
the quantum master equation, which yields the Redfi
equation@29#. Development of a quantum-trajectory Mon
Carlo ~QTMC! method requires its reduction to a Lindbla
form. The standard ‘‘secular approximation’’@30,31# is un-
©2003 The American Physical Society02-1
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suitable as it neglects the transient buildup of coheren
between nondegenerate states due to stochastic proces
key feature of high-energy collisions. We therefore deve
an alternative approach yielding a Lindblad form that allo
the description of coherences on a time scale correspon
to the energy spacing between near-degenerate energy le
We construct an NLSSE whose quantum Monte Carlo s
pling describes the time evolution of the reduced den
matrix. This technique allows the treatment of hig
dimensional state spaces of the open quantum system. I
limit of weakly bound electrons, our present treatment
duces to the previously developed linear Schro¨dinger theory
with a time-dependent stochastic interaction with the en
ronment. It furthermore possesses a proper classical lim
terms of a classical Langevin equation of motion.

We apply the present theory to the transmission of hyd
genic Krypton ions (Kr351) through amorphous carbon foil
at high velocities (vp547 a.u.). This system is of particula
interest as the time scales for collisional redistribution
states, mixing due to the wake field, spontaneous radia
transitions, level splitting due to the Lamb shift and decoh
ence are all comparable to each other. We analyze in
following the influence of coherences on the x-ray emiss
intensities resulting from the transmission and compare
findings with experimental data. A preliminary approach a
first results have been presented recently@4#. In that paper
the basic ingredients of the QTMC were chosen intuitiv
rather than determined from first principles, as it is the c
in the present formulation. It turns out that our previo
implementation can be identified as a limiting case of
present theory when certain additional approximations
invoked.

The structure of the paper is as follows: In Sec. II w
briefly review the basic properties of the Lindblad equat
and its solution by ensemble averages over trajectories
nonlinear stochastic Schro¨dinger equation. The problem o
reducing the original master equation in the Born-Mark
approximation, usually referred to as Redfield equation, t
Lindblad form will be analyzed in detail in Sec. III. Explic
expressions for the relaxation superoperators for radia
decay, electron-electron scattering, and electron-ionic c
scattering will be given in Sec. IV. The algorithm for th
Monte Carlo sampling of the nonlinear stochastic Sch¨-
dinger equation will be discussed in Sec. V where we w
also analyze its convergence to a Hamiltonian linear Sch¨-
dinger equation for high Rydberg states. Numerical res
will be given for Kr351 propagating through carbon foil
followed by a short summary. Atomic units are used throu
out unless otherwise stated.

II. QUANTUM TRAJECTORIES AND THE LINDBLAD
EQUATION

In this section we briefly review the basic properties
the Lindblad equation and its solution by a Monte Ca
quantum trajectory technique as they pertain to our desc
tion of ion-solid collisions. We consider the interaction of
‘‘small’’ system ~S! with a large reservoir (R), also fre-
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quently referred to as ‘‘heat bath’’ or ‘‘environment.’’ Th
total Hamiltonian is given by

H5HS1HR1VSR. ~2.1!

The system in our applications will be the internal state o
fast ~velocity vp@1), highly charged~nuclear chargeZp
@1) one-electron ion. The system is described by the Ham
tonianHS , which acts only on the electronic degrees of fre
dom of the ion. The reservoir will consist of the radiatio
field as well as charged particles~electrons and ionic cores!
of the solid to be taken later as an amorphous carbon foil
both cases we will consider the reservoir to be in its grou
state,~i.e., temperatureT50), which is an excellent approxi
mation in view of the energy scales involved. The intern
state of the reservoir is described byHR ~we use calligraphic
letters for operators that act only on the reservoir variable!.
VSR describes the coupling between the system and res
tive reservoir~we use bold letters for operators that act
both the system and the reservoir variables!.

The time dependence of the density operatorr(t) is given
by the Liouville–von Neumann equation,

i
dr~ t !

dt
5@H,r~ t !#, ~2.2!

a solution of which is clearly out of reach for realistic sy
tems. Instead, the focus is on the reduced density oper
sS(t) of the system defined as

s~ t !5sS~ t ![TrR@r~ t !#5(
i

$ i ur~ t !u i %, ~2.3!

where all degrees of freedom of the reservoir have b
traced out. We useu i %,u j %, etc. to denote states in the Hilbe
space of the reservoir,HR . Analogously, one can define
reduced density operator of the reservoir,sR(t),

sR~ t ![TrS@r~ t !#5(
a

^aurua&, ~2.4!

whereua&,ub&, etc. denote states in the Hilbert space of t
system,HS . As the open quantum system approach de
almost exclusively with the density operatorsS rather than
with sR , we will drop the subscriptS and will uses(t)
5sS(t).

Formulating a master equation of motion fors is a diffi-
cult task. Even in the perturbative limit when the couplin
between the system and the reservoir,VSR, is weak, this
reduction is nontrivial, as will be analyzed in the followin
section. The approach proposed by Lindblad@22# starts
therefore from a different point of departure. Rather th
attempting to construct a reduced equation of motion fr
Eq. ~2.2!, it directly postulates an equation based on the pr
ciple that the time evolution ofs should be a unitary map
ping of the system Hilbert spaceHS onto itself preserving
complete positive definiteness~i.e., that^cusuc&>0 for any
uc&PHS and all t),
2-2
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ds~ t !

dt
52 i @HS ,s~ t !#1R(L)s~ t !, ~2.5!

whereR(L) is the Lindblad relaxation operator describing t
interaction of the system with the environment and ado
the form

R(L)s~ t !52
1

2V (
kW

@S†~kW !S~kW !s~ t !1s~ t !S†~kW !S~kW !

22S~kW !s~ t !S†~kW !#. ~2.6!

In Eq. ~2.6! we have labeled the Lindblad transition oper
torsS(kW ) by the indexkW which will later take on the meaning
of a wave vector or momentum transfer in collisions~or pho-
ton emission!. It may also include the summation index ov
spin or helicity degrees of freedom. The parameterV in Eq.
~2.6! denotes the quantization volume for the wave vec
The physical significance of Eq.~2.6! has been extensivel
debated in the literature~see, e.g., Refs.@23,25,28#!. Here we
discuss only a few aspects of relevance for the present pa
It is well known that the Lindblad equation cannot be,
general, a faithful representation of the quantum ma
equation on a time scale comparable to the correlation t
tc for fluctuations of the reservoir. On the same time sca
the Born-Markov approximation for the weak-coupling lim
between system and reservoir underlying most approxim
descriptions of the time evolution ofs(t) also breaks down
We adopt in this section a pragmatic approach. We take
~2.6! as a useful approximation for the dynamics of the op
quantum systems on time scalest@tc but comparable to the
time scales for the evolution of the atomic degrees of fr
dom, where expectation values for the atomic observa
can meaningfully be extracted.

The importance of the Lindblad equation in the pres
context is that it can be mapped onto a NLSSE~for details
see Ref.@21#!, which can be solved by a QTMC techniqu
Accordingly, the density operator of the system can be c
structed from the independent evolution of an ensemble
Ntra j pure states

s~ t !5
1

Ntra j
(
h51

Ntra j

uCh~ t !&^Ch~ t !u, ~2.7!

whereh labels the different stochastic realizations of qua
tum trajectoriesuCh(t)&. Initially, at t50, each quantum
trajectory is placed with probabilitypj in one of the eigen-
states of the initial density matrix, that is,uCh(0)&5uj&,
wheres(0)uj&5pjuj&. Expression~2.7! tacitly assumes tha
an initial ensemble can be uniquely defined irrespective o
coupling to the reservoir. Obviously, preservation of posit
definiteness is a condition for the existence of the mapp
onto an incoherent superposition of state probabilities.

The equation of motion ofuCh(t)& is given by the
NLSSE @21#,
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udCh&5H 2 iH Sdt2
dt

2V (
k

@S†~kW !S~kW !2^S†~kW !S~kW !&h#

1
1

V (
kW

dNkW
hS S~kW !

A^S†~kW !S~kW !&h

21D J uCh&, ~2.8!

which is nonlinear inuCh(t)& since the right-hand side ex
plicitly depends on the expectation values^S†(kW )S(kW )&h

5^Ch(t)uS†(kW )S(kW )uCh(t)&. In other words, Eq.~2.8! is
not of Hamiltonian form, i.e.,}2 iH Sdt. Nonlinearity is also
incorporated in the Ito differentialdNkW

h , a variable that takes
the random value 0 or 1 and describes whether or not
system undergoes a stochastic jump during the time inte
(t,t1dt). It can be shown that the reduced density-mat
calculated as Monte Carlo average~2.7! yields Lindblad
equation~2.5! when the expectation value of the Ito diffe
entials for the system in stateuCh& at time t are chosen as

dN
kW
h
dNkW8

h̄
5dNkW

h
VdkWkW85dt^S†~kW !S~kW !&hVdkWkW8. ~2.9!

The obvious technical advantage of the mapping of
Lindblad master equation onto Eqs.~2.7! and~2.8! is that the
computational effort in solving the NLSSE by QTMC met
ods scales withNS

2 rather than withNS
4 for the direct solution

of Eq. ~2.5!, whereNS is the dimension of the state space
the system. AsNS can easily reach 1022103 for realistic
multiple scattering problems, this represents a decisive
vantage. Clearly, the price to pay is the additional scal
with Ntra j , i.e., the number of trajectories required to cont
the statistical error of the ensemble averaged solution.

The stochastic time evolution of each quantum traject
is calculated by constructing the corresponding time evo
tion operatorUh(t,0) such that

uCh~ t !&5Uh~ t,0!uCh~0!&. ~2.10!

We decompose the time evolution operator into a seque
of products of two types of evolution operators:

Uh~ t,0!5Ucont
h ~ t,tn!)

j 51

n

U jump
h ~kW j ,t j !Ucont

h ~ t j ,t j 21!,

~ t050!. ~2.11!

One factor,U jump
h (kW j ,t j ), represents a discontinuous chan

of the wave function, a stochastic jump, at randomly cho
times t5t j and index kW5kW j . The other factor,
Ucont

h (t j 11 ,t j ), stands for a continuous change of the wa
function during the time period@ t j 11 ,t j # between stochastic
jumps. The continuous time evolution of the wave functi
during a time interval between two jumps is given by
2-3
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uCh~ t j !&5Ucont
h ~ t j ,t j 21!uCh~ t j 21!&

5
exp@2 iH e f f~ t j2t j 21!#uCh~ t j 21!&

uuexp@2 iH e f f~ t j2t j 21!#uCh~ t j 21!&uu

~2.12!

with

He f f5HS2 i
G

2
, ~2.13!

where the decay operatorG is given by

G5
1

V (
kW

S†~kW !S~kW !. ~2.14!

The effective, non-Hermitian Hamiltonian of the syste
He f f , includes the effect of decay due to the coupling to
reservoir@21# through the decay operatorG. SinceHe f f is
non-Hermitian, Eq.~2.12! is often referred to as nonunitar
evolution. In fact, due to the renormalization of the sta
vector uCh(t j )& by means of the denominator,Ucont

h corre-
sponds to a unitary ‘‘rotation’’ of the state vector in the H
bert spaceHS . The underlying physical picture is that due
differences in coupling strength of the different eigensta
of HS to the environment, the net effect of the continuo
evolution is the change in phase and relative weight of
expansion coefficients ofuCh& in terms of the eigenstates o
HS . Continuous evolution operator~2.12! accounts for the
first term of Lindblad equation~2.5! and the first two terms
of Lindblad relaxation superoperator~2.6!.

Stochastic jumps at the timet j for a given value ofkW

5kW j are described by the operatorsU jump
h (kW j ,t j ) defined by

uCh~ t j1dt !&5U jump
h ~kW j ,t j !uCh~ t j !&5

S~kW j !uCh~ t j !&

uuS~kW j !uCh~ t j !&uu
,

~2.15!

wheredt→0 is an infinitesimal time step. The jump operat
simulates the effect of the last term of Lindblad relaxati
operator~2.6!, often referred to as the gain or source ter
SinceU jump

h is proportional toS, we refer to the latter for
simplicity also as ‘‘jump’’ operator.

The basic ingredients of the Monte Carlo algorithm th
determine the operatorsUcont

h and U jump
h are the random

jump timest j and the random value ofkW j in Eq. ~2.15!. In
order for the Monte Carlo algorithm to yield the corre
NLSSE, these random variables must be chosen such tha
average number of jumps per infinitesimal time stepsdt
yields Eq. ~2.9!. As is usual in sampling random numbe
from multidimensional distributions, one first samples t
value of t j and, subsequently, one samples the value okW j
from the conditional probability density
02290
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5

uuS~kW j !uCh~ t j !&uu2

V21(
kW

uuS~kW !uCh~ t j !&uu2

. ~2.16!

From Eq.~2.9!, the probability density of jump times%h(t j )
must obey

E
t j 21

t j 211dt

%h~ t j !dtj5dt^G&h5dt^Ch~ t j 21!uGuCh~ t j 21!&.

~2.17!

The most natural choice obeying Eq.~2.17! consists of

%h~ t j !5
d

dt
uuexp@2 iH e f f~ t j2t j 21!#uCh~ t j 21!&uu2.

~2.18!

Since the integral of any probability density has a unifo
distribution in the interval (0,1), the random jump timet j
can be obtained from the implicit equation

u512uue2 iH e f f(t j 2t j 21)uCh~ t j 21!&uu2, ~2.19!

where u is a uniformly distributed random number,u
P@0,1#.

III. LINDBLAD APPROXIMATION OF THE REDFIELD
EQUATION

In this section we analyze the approximate reduction
the quantum master equation in Born-Markov approximat
to a Lindblad form. We emphasize that such a reduction
not unique and requires additional approximations. The
ure of merit for our proposed approximation is the degree
which the resulting Lindblad form is capable of reproduci
the time evolution of atomic coherences on time scales l
compared to the reservoir correlation timetc but short com-
pared to the time scale of the secular motion of the ato
population. Such an analysis appears to be missing for
multistate problems such as excitation by multiple scatteri

The starting point of our analysis is Liouville–von Neu
mann equation~2.2! for the total density operator which ca
be rewritten in the interaction~I! representation as an inte
grodifferential equation

i
d

dt
rI~ t !5@VSR

I ~ t !,rI~0!#

2 i E
0

t

dt8†VSR
I ~ t !,@VSR

I ~ t8!,rI~ t8!#‡. ~3.1!

The transformation to the interaction representation of a
Schrödinger operatorO is given by the total evolution op
erator of the unperturbed system plus reservoir

OI5ei (HS1HR)tOe2 i (HS1HR)t. ~3.2!

The Born-Markov approximation to Eq.~3.1! involves the
following assumptions~see, e.g., Ref.@23#!.
2-4
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~i! The initial density operator at timet50 is given by a
tensor product ofs andsR ,

rI~0!5s I~0! ^ sR
I ~0!. ~3.3!

This assumption can be justified when the interactionVSR is
switched off fort,0. Otherwise, the system-reservoir co
pling will lead to an entanglement between the system
the reservoir degrees of freedom and a break down of
factorization Eq.~3.3!. In our present study, the interactio
between the atomic system and the solid is switched on o
as the fast projectile penetrates the entrance surface o
solid, taken to bet50. By the same token, the initial state
the system will be assumed to be the ground-state and
initial-state decay due to the coupling to the radiation fi
can be neglected fort,0. Therefore, Eq.~3.3! appears to be
a good approximation.

~ii ! The coupling VSR is assumed to be sufficientl
‘‘weak’’ as to allow the evolution of the reservoir to be un
affected by the interaction with the system. This implies t

sR
I ~ t !5sR

I ~0!5sR~0! ~3.4!

and, furthermore, that

rI~ t !5s I~ t ! ^ sR
I ~0!, ~3.5!

i.e., the factorization Eq.~3.3! remains valid for all future
times. The latter can only be correct to orderO(VSR) since
the perturbation will generate transient entanglement
tween the system and the reservoir variables. This is
origin of the failure of the Born-Markov approximation o
short time scales of the order oftc before rapid fluctuations
in the reservoir destroy the entanglement in the ‘‘coar
grained’’ evolution @23,25#. In the present case, the ord
parameter of the strength of the interaction is given for
collisional interaction by the inverse transmission spe
vp

21!1, and byZpa!1 for the radiative interaction, wher
a is the fine structure constant. Assumption~ii ! corresponds
to assuming the linear response of reservoir variables
should be noted, however, that no such assumption is imp
for the degrees of freedom of the system. Under these
sumptions and tracing out the reservoir degrees of freed
in Eq. ~3.1! the equation of motion for the reduced dens
matrix s(t) becomes

i
d

dt
s I~ t !52 i E

0

t

dt

3TrR$VSR
I ~ t !,@VSR

I ~ t2t!,s I~ t2t! ^ sR
I #%,

~3.6!

wheret5t2t8 and we have assumed that the commutat
linear in VSR

I vanish

TrR@VSR
I ~ t !,s I~0! ^ sR

I #50. ~3.7!

Equation~3.7! does not pose serious restrictions on the
lidity of the approach. If Eq.~3.7! does not hold, the corre
sponding contributions can be included in the unpertur
HamiltonianHS .
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We choose now a class of system-reservoir interacti
which can be written as a bilinear form with factors acting
either the reservoir or the system degrees of freedom,

VSR~ t !5
1

2V (
kW

@eikWvW pt f ~kW !W~kW !B †~kW !1H.c.#

5
1

V (
kW

eikWvW pt f ~kW !W~kW !B †~kW !, ~3.8!

where theW operators act on the system Hilbert spaceHS ,
theB operators act on the reservoir Hilbert spaceHR , f (kW ) is
a scalar function, and the abbreviation H.c. means Hermi
conjugate. In order for the last identity in Eq.~3.8! to hold,
we have assumed thatf (2kW )5 f * (kW ), W(2kW )5W†(kW ), and
B(2kW )5B †(kW ) so that the inverse Fourier transform off (kW )
is a real function and that ofW(kW ) andB(kW ) are Hermitian
operators. The boost operator exp(ikW•vWpt) in Eq. ~3.8! ac-
counts for the Galilei shift between the rest frame of t
reservoir ~the solid! and the system~the moving ion!.
Clearly, for the interaction with the vacuum fluctuations
the radiation fieldvp50. Both charged-particle interaction
and the interaction with the radiation field are of the for
Eq. ~3.8!. Explicit expressions forW(kW ) and B(kW ) will be
given below.

Inserting Eq.~3.8! into Eq. ~3.6! leads to

i
d

dt
s I~ t !5

1

V (
kW
E

0

t

dtu f ~kW !u2

3$e2 ikWvW ptWI†~kW ,t !WI~kW ,t2t!s I~ t2t!G~kW ,t!

2eikWvW pts I~ t2t!WI†~kW ,t2t!WI~kW ,t !G* ~kW ,t!

1eikWvW ptWI~kW ,t !s I~ t2t!WI†~kW ,t2t!G* ~kW ,t!

2e2 ikWvW ptWI~kW ,t2t!s I~ t2t!WI†~kW ,t !G~kW ,t!%.

~3.9!

In Eq. ~3.9!, G(kW ,t) denotes the retarded Green’s functio
for the reservoir variableB(kW )

VdkW ,kW8G~kW ,t!52 iu~t!TrR@sR
I B I~kW ,t !B I†~kW8,t2t!#

52 iu~t!TrR@sR
I B~kW !e2 iHRtB †~kW8!eiHRt#,

~3.10!

whereu(t) is the Heaviside step function. The Kroneckerd
in Eq. ~3.10! expresses the translational invariance assum
for the reservoir. The advanced Green’s function is cor
spondingly given byGA(kW ,t)5G* (kW ,2t).

An explicit form of the Green’s function can be obtaine
using an expansion over the eigenstatesun% of the reservoir
defined byHRun%5Enun%. Specializing in the following to
the case where the reservoir is in the ground stateu0% ~or,
equivalently, in the zero temperature limit!, i.e., $nusR

I um%
5d0,nd0,m we have
2-5
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G~kW ,t!52 iu~t!(
n

u$0uB~kW !un%u2e2 iVn0t, ~3.11!

with all Vn05En2E0 positive, signifying the fact that the
reservoir can only be a sink rather than a source of excita
energy. Equation~3.11! applies to both the radiation field an
the solid considered as environment.

We now turn to the Markov approximation of Eq.~3.9!.
The excitation spectrum$Vn0% of the reservoir system is
considered to be sufficiently broad as to renderG(kW ,t) as a
function of t to be rapidly decaying over a characteris
relaxation timetc , which is usually called the correlatio
time @note that retarded Green’s function~3.10! for B(k) is
closely related to its autocorrelation function#. The ‘‘rapid’’
decay of Green’s function is to be measured on the time s
of typical changes of the reduced density matrix of the s
tem such that

s~ t2tc!.s~ t !. ~3.12!

Approximation ~3.12! is usually referred to as loss o
memory since the evolution ofs(t) is assumed to depen
only on the instantaneous values ofs(t) rather than its past
If such an approximation applies, the time integral overt in
Eq. ~3.9! can be extended to infinity. Estimates for the rate
change ofs(t) can be taken from Fermi’s golden rule~set-
ting t.0 in Eq. ~3.9! in the arguments ofWI , G, ands I).
Provided that the system is initially in a pure stateua&, the
validity of Eq. ~3.12! requires that the relative change
saa5^ausua& is small compared to the inverse correlati
time of the reservoir, i.e.,

U d

dt
saa~ t !

saa~ t !
U5U d

dt
saa

I ~ t !

saa
I ~ t !

U!
1

tc
. ~3.13!

The relative change ofsaa
I due to, e.g., the first term in Eq

~3.9! can be estimated to be of the order of

U d

dt
saa

I ~ t !

saa
I ~ t !

U.
2

V (
b,kW

u f ~kW !u2uWba
I ~kW !u2uG~kW ,0!u

3
usin~vW pkWtc/2!u

uvW pkW u
, ~3.14!

where the sum overb runs over a complete set of states
the Hilbert space of the system@other terms in Eq.~3.9! can
be treated analogously#. Consider first the casevp50, i.e.,
the absence of the Galilei shift of the reservoir which app
to the interaction with the radiation field. Eq.~3.13! reduces
to

S 1

V (
b,kW

u f ~kW !u2uWba
I ~kW !u2uG~kW ,0!u D tc

2!1. ~3.15!

The prefactor totc
2 in Eq. ~3.15! is of the order of the tran-

sition rate in the Born approximation~i.e., Fermi’s golden
02290
n

le
-

f

s

rule!, which, from the outset, was assumed to be sm
Therefore, Eq.~3.15! poses only a fairly mild constrain on
tc . Consider now the case of fast collisionsvp@1. Using
the upper boundusin(vWpkWtc/2)u<1, Eq. ~3.13! becomes

S 2

V (
b,kW

u f ~kW !u2uWba
I ~kW !u2uG~kW ,0!u

uvW pkW u D tc!1. ~3.16!

For vp→` the prefactor totc becomes small irrespective o
the size ofW or G. This is directly related to the fact that th
Born approximation is valid for collisions at high speeds d
to the short interaction time even if the~static! perturbation
is not weak. The point to be noted is that neither Eq.~3.15!
nor Eq.~3.16! requiretc to be short on the fast internal tim
scale of the system. The latter is of crucial importance
highly charged ions, where classical orbital periods~or in-
verse transition frequencies! are short and scale as}Zp

22

!1. Since for environments of charged particles, for e
ample an electron gas at metallic densities, typical corre
tion timestc are of the order of one a.u., it is the high spe
that renders the Markov approximation to be valid.

Using Eq.~3.12! in Eq. ~3.9! and projecting onto eigen
statesua& of the unperturbed system~i.e., HSua&5«aua&)
leads to

i
d

dt
sab

I ~ t !5
1

V (
kW

u f ~kW !u2(
n,m

$eivamtWan
† ~kW !Wnm~kW !smb

I ~ t !

3G̃~kW ,vmn2vW pkW !2eivnbtsan
I ~ t !Wnm

† ~kW !

3Wmb~kW !G̃* „kW ,2~vmn1vW pkW !…

1ei (van2vbm)tWan~kW !snm
I ~ t !Wmb

† ~kW !

3@G̃* „kW ,2~vbm1vW pkW !…2G̃~kW ,vna2vW pkW !#%,

~3.17!

wherevab5«a2«b . The functionG̃(kW ,v) results from the
time integral overt and corresponds to the Fourier transfor
of Green’s functionG(kW ,t),

G̃~kW ,v!5E
2`

`

dteivtG~kW ,t!5 lim
d→0

(
n

u$0uB~kW !un%u2

v2Vn01 id
,

~3.18!

whose real and imaginary parts adopt the forms

Re„G̃~kW ,v!…5(
n

u$0uB~kW !un%u2 PS 1

v2Vn0
D , ~3.19!

Im„G̃~kW ,v!…52p(
n

u$0uB~kW !un%u2d~v2Vn0!

~3.20!

and P denotes the principal part.
2-6
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The real part ofG̃ describes the energy shift due to th
virtual transitions in the reservoir. That is, the first two term
of Eq. ~3.17! involving Re(G̃) yield a contribution to the
master equation ofs that has the form of a commutato
@DH,s#, where

DHam5
1

V (
kW

u f ~kW !u2(
n

Wan
† ~kW !

3Wnm~kW !Re„G̃~kW ,vmn2vW pkW !… ~3.21!

represents a Hermitian shift of the original HamiltonianHS .
Physical realizations of this shift are the Lamb shift for t
radiation field or the charge-density fluctuation induced
ergy shift of the projectile electron. Rather than dealing
plicitly with contributions associated with Re(G̃), we will
assume in the following thatDH is already taken into ac
count from the onset in the Hamiltonian of the systemHS in
Eq. ~2.1!. This allows us to include the shift more accurate
than Eq.~3.21! ~either via an independent higher-order c
culation or experimental data! and, moreover, it allows to
incorporate the energy shifts to all orders in the time evo
tion through the phases exp@2i(«a

(0)1D«a)t#. For consistency

reasons, we will remove all terms involving Re(G̃) and as-
sume from now on that only terms containing Im(G̃) con-
tribute to the right-hand side of Eq.~3.17!.

The imaginary part ofG̃ is directly related to the dynami
susceptibilityx of the environment. According to linear re
sponse theory, the relation between these two quantitie
@31#

x~v!5
1

V (
kW

x~kW ,v!5
1

V (
kW

@G̃~kW ,v!2G̃* ~kW ,2v!#.

~3.22!

Using Eq.~3.20! and separatingx into its real and imaginary
parts asx5x82 ix9,

x9~kW ,v!5p(
n

u$0uB~kW !un%u2@d~v2Vn0!1d~v1Vn0!#.

~3.23!

Consequently, we obtain

2Im@G̃~kW ,v!#5x19 ~kW ,v!5u~v!x9~kW ,v!. ~3.24!

The step functionu(v) ~and the subindex1) signifies the
exothermicity condition of the allowed transitions of the e
vironment, which is initially in its ground state~i.e.,
Vn0.0).

Transformings I in Eq. ~3.17! from the interaction repre
sentation back to the Schro¨dinger representation and usin
Eq. ~3.24! results in the Redfield equation@29,31#
02290
-
-

-

is

-

d

dt
sab~ t !52 ivabsab~ t !2

1

V (
kW

u f ~kW !u2

3(
n,m

$Wan
† ~kW !Wnm~kW !smb~ t !x19 ~kW ,vmn2vW pkW !

1san~ t !Wnm
† ~kW !Wmb~kW !x19 ~kW ,vnm2vW pkW !

2Wan~kW !snm~ t !Wmb
† ~kW !@x19 ~kW ,vna2vW pkW !

1x19 ~kW ,vmb2vW pkW !#%. ~3.25!

This equation can be formally written in matrix form a
Lindblad equation~2.5!. The crucial point is now that the
resulting Redfield relaxation operatorR(R) does not posses
the same structure as Lindblad relaxation operator~2.6!. The
Lindblad equation, in turn, corresponds to a system
coupled equations

dsab

dt
52 ivabsab1 (

m,n51

Ns

Rabmn
(L) smn , ~3.26!

where the ‘‘couplings’’Rabmn
(L) have the form

Rabmn
(L) 52

1

2
~dnbGam1damGnb!1

1

V (
kW

Sam~kW !Snb
† ~kW !,

~3.27!

Mapping Eq.~3.25! onto Eqs.~3.26!–~3.27! involves addi-
tional approximations which have profound consequence
to the regime within which the Lindblad equations can
applied. The standard approximation utilized in the literatu
to reach a Lindblad form is the so-called ‘‘secular appro
mation’’ @2,30,31# ~in the quantum optics context sometim
also referred to as the rotating wave approximation@28#!. It
assumes that all terms on the right-hand side of Eq.~3.17!
which carry an oscillatory phase factor average out a
hence only diagonal terms survive. The secular approxim
tion follows from Eq.~3.17! by replacing all complex expo
nentials by Kroneckerd functions, e.g.,

eivnbt5den ,eb
5dn,b , ~3.28!

ei (van2vbm)t5dvan ,vbm
5da,bdnm , ~3.29!

where the last equalities hold when the spectrum is non
generate. As the interaction with the environment indu
small energy splittings in the frequency spectrum of the s
tem through Re(G̃) to be included inHS @see below Eq.
~3.21!#, many degeneracies are removed. In the nondege
ate case, the secular approximation leads to a total de
pling between the diagonal and off-diagonal matrix eleme
of the density matrix. While the populations obey a syst
of coupled rate equations

d

dt
saa~ t !5(

n
Raann

secularsnn~ t !, ~3.30!
2-7
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the time evolution of coherences is governed by a se
independent decay equations

d

dt
sab~ t !5~2 ivab1Rabab

secular!sab~ t !, ~3.31!

where aÞb and Rabsb
secular is negative definite. The secula

approximation does not allow for the production of coh
ences between different unperturbed energy eigenstates
to the interaction with the environment but allows only f
its decay. This result is, however, only valid for the long tim
scalet@t I52p/uvabu for decoherence due to dephasing.
turn, on an intermediate time scale

tc!t<t I ~3.32!

transient coherences caused by interactions with the env
ment can play an important role, an example of which is
internal state evolution in transport through solids. Anoth
example is spontaneous radiative decay, where the buildu
transient coherences can occur@30# but has been mostly ig
nored in the context of Lindblad equations.

Our reduction of the Redfield equation to a Lindbl
equation valid also in the intermediate time regime~3.32!
proceeds by ‘‘symmetrization’’ of the matrix elements of t
Redfield relaxation operator, i.e., the right-hand side of
~3.25!. To this end we split the susceptibility in Eq.~3.25! as
follows. In the first term we set

x19 ~kW ,vmn2vW p•kW !

⇒@„x19 ~kW ,vmn2vW p•kW !…„x19 ~kW ,van2vW p•kW !…#1/2,

~3.33a!

in the second term

x19 ~kW ,vnm2vW p•kW !

⇒@„x19 ~kW ,vnm2vW p•kW !…„x19 ~kW ,vbm2vW p•kW !…#1/2,

~3.33b!

and in the third term

x19 ~kW ,vna2vW p•kW !

.x19 ~kW ,vmb2vW p•kW !

⇒@„x19 ~kW ,vna2vW p•kW !…„x19 ~kW ,vmb2vW p•kW !…#1/2.

~3.33c!

This construction in terms of square roots ofx19 is well
defined because of the positive definiteness of the posit
frequency dissipative component of the susceptibility@Eq.
~3.24!#. For those matrix elements that are nonzero wit
the secular approximation, Eqs.~3.33! agree with the resul
of the secular approximation. With this trick, we can no
define transition operatorsS and S† appearing in Lindblad
relaxation operator~2.6! in terms of matrix elements in th
energy eigenbasis as
02290
f
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Sab~kW !5 f ~kW !Wab~kW !„2x19 ~kW ,vba2kW•vW p!…1/2, ~3.34a!

Sab
† ~kW !5 f * ~kW !Wab

† ~kW !@2x19 „kW ,2~vba1kW•vW p!…#1/2

~3.34b!

5 f * ~kW !Wab
† ~kW !„2x19 ~kW ,vab2kWvW p!…1/2.

~3.34c!

Inserting Eqs.~3.33! and ~3.34! into Eq. ~3.25! results in a
quantum master equation with the relaxation superoper
R(L) in the Lindblad form ~2.6!. This result represents
novel generalization of the secular approximation which
mains valid at time scalest&t I . We will illustrate its utility
below after calculating the relaxation operator for differe
environmental interactions explicitly.

IV. CALCULATION OF THE RELAXATION
SUPEROPERATOR

In this section we analyze the properties of the Lindb
relaxation superoperatorR(L), Eq, ~2.6!, as determined by
the transition operatorsS andS† in Eq. ~3.34!. We consider
the interaction of the internal electronic state of an ion w
three different environments: the radiation fieldVSR

(r ) the
quasi-free-electrons of the solidVSR

(ee), and the ionic cores of
the solid VSR

(c) . We emphasize similarities and differenc
between the different relaxation channels. We perform in
pendent numerical simulations for Kr351 ions with a velocity
vp547 a.u. interacting with either environment. We use tim
t and propagation length in the laboratory frame,d, inter-
changeably, sinced5vpt andvp can be treated as a constan
The latter takes into account that the slowing down of the
at high collision velocities,vp , and for thin foils can be
safely neglected. The zero-pointt50(d50) corresponds to
the time at which the ion enters the foil.

We also analyze the structural differences between
~inverse! lifetimes and the diagonal elements ofG. If the
system is initially in a pure stateua& with a population
saa51, the coupling to the reservoir yields@see Eq.~3.26!#
an exponential dampingsaa5exp(2t/ta), where the inverse
lifetime ta

21 is defined by

ta
21[2Raaaa5Gaa2

1

V (
kW

uSaa~kW !u2. ~4.1!

The last term on the rhs of Eq.~4.1! subtracts fromGaa the
contribution involving transitions fromua& to ua&. There-
fore, ta

21 andGaa are, depending on the interaction with th
environment, in general substantially different. Expressed
terms of propagation distance, the populationsaa decays
exponentially assaa5exp(2d/da), where the decay length
da is given by

da5vpta . ~4.2!

A. Radiation field

The interaction with the vacuum fluctuations of the rad
tion field is a subject well studied in the context of photo
2-8
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atom interactions and quantum optics@30,32#. We only
briefly review the essential ingredients to highlight the sim
larities and differences to collisional relaxation for whic
detailed studies appear to be missing. As usual, the radia
field is described in terms of a set of operators$bl

†(kW )% and

$bl(kW )%, which are the creation and annihilation operators
a photon with wave-vectorkW and polarizationêk̂,l , where
k̂5kW /k and k̂•êk̂,l50. The interaction operator for the cou
pling to the radiation field in the Coulomb gauge is given

VSR
(r )
„rW,$bl~kW !%…

5
i

c
A¢ •¹WrW

5A2p

V (
kW ,l

@ ê2 k̂,lbl~2kW !1êk̂,lbl
†~kW !#

Ack
~ ie2 ikW•rW¹WrW!,

~4.3!

where rW5(r 1 ,r 2 ,r 3)5(I51
3 r

I
ê

I
is the coordinate of the

electron in a frame of reference moving with the ion a
A¢ (rW) is the vector potential of the radiation field. Clearly, t
interaction potential can be factorized as in Eq.~3.8!. How-
ever, in order to simplify the problem, we perform the dipo
approximation@we replace exp(2ikW•rW).1], which reduces
the interaction to a much simpler factorization

VSR
(r )
„rW,$bl~kW !%….

i

c
AW D

•¹WrW5
i

c (
I51

3

A
I

D
d

dr
I

, ~4.4!

whereAW D is the dipole form of the vector potential, whic
only acts on the reservoir degrees of freedom. This dec
position allows us to identify the ingredients in Eq.~3.8! as
the scalarf (I)51, the operatorsW(I)5 id/dr

I
, and

B †~I!5
A

I

D

c
5ê

I
A2p

V (
kW ,l

@ ê2 k̂,lbl~2kW !1êk̂,lbl
†~kW !#

Ack
.

~4.5!

The resulting susceptibility is

x1
(r )9~I,v!5x1

(r )9~v!5
v

~2pc!3
u~v!, ~4.6!

which is isotropic. The susceptibility increases withv with-
out bound~which reflects well-known divergences in QED!.
In the present context, the key observation is that thev spec-
trum is sufficiently broad and the correlation timetc suffi-
ciently short (tc→0) so that the Markov approximation ca
be safely applied.

Susceptibility~4.6! determines, employing Eq.~3.34!, the
jump operators entering the Lindblad relaxation operator
radiative decay,
02290
-

on

f

-

r

R(L,r )s52
1

2 (
I51

3

@S(r )†~I!S(r )~I!s1sS(r )†~I!S(r )~I!

22S(r )~I!sS(r )†~I!#, ~4.7!

where, usinĝ au¹WrWub&52vab^aurWub&,

Sab
(r ) ~I!5

2

A3c3
vba

3/2^aur
I
ub&u~vba!. ~4.8!

The corresponding decay operator, Eq.~2.14!, for the radia-
tion field becomes

Gab
(r ) 5(

n,I
San

(r )†~I!Snb
(r )~I!5

4

3c3 (
n,I

van
3/2vbn

3/2^aur
I
un&

3^nur
I
ub&. ~4.9!

And the inverse lifetime@Eq. ~4.1!# of a given stateua&
adopts the well-known form of the EinsteinA coefficient

~ta
(r )!215Gaa

(r ) 5(
n

4van
3

3c3
u^aurWun&u2. ~4.10!

For radiative decayta
21 andGaa agree becausea→a tran-

sitions are absent for photon emission.
The physics described by the present Lindblad relaxa

operator is illustrated in Figs. 1, 2, and 3. Figure 1 displa
density plots of the relative coherences

Qab5
usabu

Asaasbb

~4.11!

in the a-b plane ~for saa,10210 or sbb,10210 we set
Qab50). Since density matrices have the propertyusabu
<Asaasbb, the relative coherence takes values in the int
val 0,Qab,1. Note that all diagonal elementsQaa are
equal to unity~unlesssaa,10210), and, therefore, the figure
does not provide a quantitative measure of the time evolu
for populations. If the system is in a pure state, all o
diagonal relative coherences of populated states are equ
unity. Finite relative coherences smaller than unity imply th
the system is in a partially coherent state.

For the simulation in this section we use as system Ham
tonian that of the hydrogenic ion in vacuum,

HS
(v)[2

¹ rW
2

2
2

Zp

r
1DHrel , ~4.12!

where DHrel represents relativistic and Lamb shift corre
tions @4#, which will also enter the full simulation when w
calculate the post-foil evolution. The indicesa, b of the
relative coherences refer here to the eigenstatesua& and ub&
of the system Hamiltonian~4.12! and can be expressed a
ua&5unl jmj&, wheren is the principal quantum number,l is
the orbital angular momentum, andj and mj are the total
angular momentum and its projection onto thez axis. In Fig.
1 we consider a Kr351(Zp536) initially in the pure hydro-
2-9
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FIG. 1. Density plots of relative coherences of the reduced density matrix of a Kr351 ion that radiatively decays for various propagatio
times as a function of the state index. The system is initially prepared in the pure stateuc(0)&5u4p3/2,1/2& ~only mj.0 states are shown fo
clarity!.
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genic stateuC(0)&5u4p3/2,1/2&, which is subject only to
spontaneous decay due to the interaction with the radia
field. Direct decay channels are the 1s, 2s, 3s, and 3d states
(4p→2p and 4p→3p transitions are dipole forbidden bu
the 2p levels are populated slowly and indirectly via th
decay of the 3s or 3d states!. A remarkable aspect of th
radiative decay from the initial state is that, unless a m
surement is taken, i.e., the wave function is projected o
eigenstates of observables~e.g., photon energy!, the system
decays into a coherent superposition of states. Intershel
herences~different n quantum numbers! are rapidly washed
out as a consequence of their large level splittingvab ~i.e.,
the decoherence time due to dephasingt I52p/uvabu @Eq.
~3.32!# is very small!. Therefore, in the following we focus
on the intrashell coherences. The most striking feature in
1 is the transient buildup of off-diagonal elements (3s-3d
and 3d-3d coherences! at short timest,t I and their succes
sive decay at much longer timest@t I . Such features are
absent in the standard Lindblad form based on secular
proximation~3.28!.

In order to verify the accuracy of the proposed jump o
02290
n

-
to

o-

g.

p-

-

erators@Eqs. ~3.34! and ~4.8!# entering the Lindblad form,
we compare in Fig. 2 the time evolution of selected dens
matrix elements with the result obtained solving the full Re
field equation~3.25! as well as that of the Lindblad equation
using the standard secular approximation@31,33#. For the
diagonal elements describing the population of the 3s1/2,21/2

and 3d3/2,21/2 states all three approximations agree well w
each other. However, only our Lindblad form can reprodu
the transient buildup of coherence due to the spontane
decay as predicted by the Redfield equation. The secular
proximation, by construction, fails. Coherences begin to
damped out for timest.t I52p/uv3s,3du57.6 a.u. Neverthe-
less, smaller nonvanishing coherences can still be obse
even beyondt I , the reason being that the radiative lifetim
of the ‘‘feeder’’ statet4p3/2

(r ) 5286 a.u. is even longer and th

state continuously replenishes the coherence. The point t
noted is that the standard secular approximation, theref
fails even for times longer thant I and up to the lifetime of
the feeder statet4p3/2

(r ) . It is thus completely inadequate fo

the entire transient regime. In Fig. 3 we provide anoth
2-10
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example of coherent radiative decay for which t
system is initially prepared in a coherent superposit
of the 3s1/2,21/2 and 3p1/2,21/2 states: uC(0)&
5(u3s1/2,21/2&1u3p1/2,21/2&)/A2 and we analyze the tim
evolution of the 2s1/2,21/2 and 2p1/2,21/2 states and their co
herence. In this case, the coherence is damped due to
Lamb shift splitting yielding a longer dephasing decohere
time t I599 a.u. However, also in this case the radiative li
times of the feeder statest3p1/2

(r ) 5123 a.u. and t3s1/2

(r )

53844 a.u. are longer thant I , as in the previous case. Thu
similar conclusions can be drawn concerning the ti
needed for the secular approximation to hold.

B. Interaction with quasifree electrons of the solid

Consider now the interaction of an ion moving with r
spect to a free-electron gas with velocityvW p , to be taken as
the quantization axis~i.e., z-axis ivW p). The free-electron gas
can be described through an ensemble ofNe electrons with
number densityne5Ne /V with coordinates$rWi8% ~we use
primes for coordinates in the laboratory frame!. The interac-
tion of the projectile electron with the electrons in the solid
time dependent and is given by

FIG. 2. Comparison of selected elements of the reduced den
matrix of a Kr351 ion that radiatively decays calculated using thr
different approximations: Redfield equation, Lindblad equation
secular approximation and in the present approximation. The
tem is initially prepared in the pure stateuc(0)&5u4p3/2,1/2&. ~a!
The population of the 3s1/2,21/2 state, ~b! the population of the
3d3/2,21/2 state, and~c! the relative coherence between the 3s1/2,21/2

and 3d3/2,21/2 states.
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e

VSR
(ee)~rW,$rWi8%,t !5(

i 51

Ne 1

urWi82vW pt2rWu

5E d3xE d3x8
re~xW8!rp~xW !

uxW82vW pt2xW u
, ~4.13!

where the pointlike charge densities are given by

rp~xW !5d~xW2rW !, re~xW8!5(
i 51

Ne

d~xW82rWi8!. ~4.14!

In order to express the interaction as in Eq.~3.8!, we intro-
duce the Fourier transforms of the charge densities

r̃p~kW !5eikW•rW, r̃e~kW !5(
i 51

Ne

eikW•rWi8 ~4.15!

Using the fact that*d3x exp(ixW•kW)(1/x)54p/k2, the interac-
tion can be rewritten as

ity

s-

FIG. 3. Comparison of selected elements of the reduced den
matrix of a Kr351 ion that radiatively decays calculated using thr
different approximations~as in Fig. 2!. The system is initially pre-
pared in the pure stateuc(0)&5(u3s1/2,21/2&1u3p1/2,21/2&)/A2. ~a!
The population of the 2s1/2,21/2 state, ~b! the population of the
2p1/2,21/2 state, and~c! the relative coherence between the 2s1/2,21/2

and 2p1/2,21/2 states.
2-11
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VSR
(ee)~rW,$rWi8%,t !5

1

V (
kW

4p

k2
eikW•vW ptr̃p~kW !r̃e

†~kW !,

~4.16!

which is of the form of Eq.~3.8! with the substitutions
B(kW )5 r̃e(kW ), W( k̂)5 r̃p(kW ), and f (kW )54p/k2. Accord-
ingly, the relevant reservoir Green’s function~3.10! in the
present case is related to the density-density correlation f
tion and the corresponding susceptibility reads@35#

x1
(ee)9~kW ,v!5p(

n
u$0ur̃e

†~kW !un%u2d~v2Vn0!.

~4.17!

The latter is directly related to the inverse dielectric functi
as

u~v!ImS 21

e~kW ,v!
D 5

4p

k2
x1

(ee)9~kW ,v!, ~4.18!

where the prefactor to the rhs is the Fourier transform of
Coulomb interaction and coincides withf (kW ). Equation
~4.18! allows us to use dielectric functions in parametriz
forms @13,36# for realistic systems, as obtained from expe
mental data from photon absorption and electron energy-
spectroscopy. With such a choice, Im(21/e) includes all
electronic excitations of the target including those of inn
shells and not just those of the valence band.

Using Eq.~3.34!, the jump operator representing scatt
ing of the projectile electron at target electrons as reservo
given by

Sab
(ee)~kW !5

A8p

k F ImS 21

e~kW ,vba2kW•vW p!
D G 1/2

^aueikW•rWub&

3u~vba2kW•vW p!. ~4.19!

Upon converting the Fourier sum into an integral~i.e.,
V21(k5(2p)23*d3k), the Lindblad relaxation operator fo
electron-electron scatteringR(L,ee) becomes

R(L,ee)s52
1

16p3E d3k@S(ee)†~kW !S(ee)~kW !s

1sS(ee)†~kW !S(ee)~kW !22S(ee)~kW !sS(ee)†~kW !#.

~4.20!

One of the basic ingredients of the jump operator for
present case is given by the form factor^aueikW rWub&, which
represents a transition induced by a momentum transfekW
~i.e., a boost in momentum!. The step function in Eq.~4.19!
provides a restriction on the values of momentum trans
that can be delivered to the electron,

kz<kz
max[

vba

vp
. ~4.21!
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This restriction on the integration domain overkW expresses
the fact that the effective environment consists not just of
electron gas in its ground state but includes the motion of
projectile relative to the electron gas with velocityvp , which
leads to a Doppler shift of the frequency spectrum of
susceptibilityx19 @or Im(21/e)]. The motion serves as th
heat bath that drives inelastic transitions.

For endothermic reactions (vba,0), Eq. ~4.21! implies
the momentum transfer to be antiparallel to the projec
velocity. The jump operator Eq.~4.20! depends on three in
dependent variables, namely,k5Akx

21ky
21kz

2, fk

5tan21(ky /kx), andkz . In this case, the integration doma
of the corresponding relaxation operator is given by 0,fk

,2p, k.kmin5ukz
maxu[uvbau/vp , wherekmin is usually re-

ferred as the minimum momentum transfer and, up to a s
agrees with the constraint Eq.~4.21!.

Matrix elements of the decay operator fore-e scattering
are given by

Gab
(ee)5E d3k

p2k2 (
n

^aue2 ikW•rWun&^nueikW•rWub&

3u~vbn2kW•vW p!u~van2kW•vW p!

3F ImS 21

e~kW ,van2kW•vW p!
D ImS 21

e~kW ,vbn2kW•vW p!
D G 1/2

.

~4.22!

The decay matrix fore-e scattering is approximately diago
nal in the unperturbed energy eigenbasis of the internal e
tronic state of the projectile~the same applies to electron
core scattering discussed below!. This is due to the fact tha
the integrand in Eq.~4.22! places the dominant weight a
small k and fora→a transitionskmin50. For small values
of k the boost can be expanded as

^nueikW•rWua&5dna1 ikW ^nurWua&1O~k2!. ~4.23!

For diagonal elements@a5b in Eq. ~4.22!#, the first term of
Eq. ~4.23!, dna , describing elastic scattering without chan
ing the internal state of the projectile electron dominat
~Here and in the following we refer to ‘‘elastic processes’’
those processes for which the energy of the internal stat
the projectile remains unchanged!. In other words, elastic
scattering, which does not represent decay at all, domin
the decay matrix. The origin of this apparent paradox is
vious from Eq.~4.1!: the inverse lifetimes differ from the
diagonal matrix elements ofG wheneverSaaÞ0. For e-e
interactions, (ta

(ee))21!Gaa
(ee) , where the inverse collisiona

lifetime is given by

~ta
(ee)!215 (

nÞa
E d3k

p2k2
u^nueikW•rWua&u2

3ImS 21

e~kW ,van2kW•vW p!
D u~vba2kW•vW p!.

~4.24!
2-12
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QUANTUM-TRAJECTORY MONTE CARLO METHOD FOR . . . PHYSICAL REVIEW A 67, 022902 ~2003!
This differs from radiative decay, where (ta
(r ))215Gaa

(r ) . The
reason for this difference is that the jump operator for
interaction with the electromagnetic field has vanishing di
onal elements@i.e., the prefactorvba

3/2 in Eq. ~4.8! vanishes
for b5a]. The lifetimeta

(ee) determines the decay rate of
given state whileGaa

(ee) determines the jump timest j entering
the QTMC simulation. The former determines the dec
lengthda

(ee)5vpta
(ee) of a given state@Eq. ~4.2!#, whereas the

latter determines the collisional mean-free-pathla
(ee)

5vp /Gaa
(ee) when the system is in stateua&. The fact that

la
(ee)@da

(ee) implies that the transition probabilities per jum
into statesbÞa are small.

The presence of elastic and near-elastic relaxation ch
nels due to soft collisions has consequences in terms
damping in off-diagonal elements of the reduced density
erator. Suppose that we consider the subset of the Lind
equation involving onlysab neglecting all couplings to othe
elements,

d

dt
sab~ t !52 ivabsab~ t !1Rabab

(ee) sab~ t !, ~4.25!

whose solution is

sab~ t !5sab~0!e2 ivabte2Rabab
(ee) t. ~4.26!

Clearly, Rabab
(ee) can be considered as a damping or ph

diffusion coefficient from which we can define the collision
decoherence length

Dab
(ee)5vpRabab

(ee) . ~4.27!

In the elastic limit@see Eq.~4.23!#, whereWan(kW )}dan ,

Rabab
(ee) ~k→01!.

1

V (
kW→0

u f ~kW !u2x1
(ee)9~kW ,2vW p•kW !

3uWaa~kW !2Wbb~kW !u2. ~4.28!

While diagonal elements (a5b) are unaffected by elasti
scattering because of the complete compensation of sink
source terms, off-diagonal elements are effectively dam
by elastic scattering. Such processes are of particular im
tance for charged-particle scattering because of the do
nance of the soft collisions due to the long-range Coulo
tail. For short-range interaction potentials the damping rat
smaller but it is also present and gives rise to collisio
dephasing and decoherence in neutral gases.

In order to study the dynamics induced by the relaxat
operator fore-e collisions @Eq. ~4.20!#, we have performed
simulations for Kr351 ions with velocityvp547 a.u. subject
only to e-e interactions and using the system Hamiltoni
HS

(v) @Eq. ~4.12!#. Results illustrating the time evolution o
selected matrix elements ofs(t) are depicted in Fig. 4 for an
environment represented by a parametrized dielectric fu
tion of an amorphous carbon foil@36#. The initial state in this
simulation at t50 is the coherent superpositionuC(0)&
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5(u3s1/2,21/2&1u3p1/2,21/2&)/A2 and the results are depicte
as a function of the propagation lengthd5vpt. Since inelas-
tic transitions are relatively weak, we focus on the popu
tions and relative coherences involving states within then
53 shell, namely,ua&5u3s1/2,21/2&, ub&5u3p1/2,21/2&, um&
5u3p3/2,23/2&, and un&5u3p3/2,1/2&. Even though for the
range of propagation lengths depicted in the figure about
collisions take place, most of the probability stays in theua&
and ub& feeder states. They decay approximately expon
tially with a decay length that is different from eitherda

(ee) or
db

(ee) because of the coherent superposition in the ini
state. The time evolution of the initially unpopulated sta
is, in turn, approximately given bysmm(t).const3@1
2exp(2d/dm

(ee))#, which describes the population of a deca
ing state coupled to a feeder state with a constant popula
The results depicted in the figure do indeed obey this fo
and the decay lengths of the fit curves agree withd3p3/2,23/2

(ee)

andd3p3/2,1/2

(ee) .

In Fig. 4~c!, the time evolution of the relative coherenc
Q3s1/2,21/2,3p1/2,21/2

and Q3p3/2,23/2,3p3/2,1/2
is displayed. Due to

FIG. 4. Evolution of selected populations and coherences of
internal state of a Kr351 ion moving with velocityvp547 a.u. sub-
ject to collisions with electrons in an amorphous carbon foil a
function of the propagation length. The system is initially prepa
in the pure stateuc(0)&5(u3s1/2,21/2&1u3p1/2,21/2&)/A2. ~a! The
populations of the 3s1/2,21/2 and 3p1/2,21/2 states,~b! the populations
of the 3p3/2,23/2 and 3p3/2,1/2 states, and~c! the relative coherence
between the 3s1/2,21/2 and 3p1/2,21/2 states and between th
3p3/2,23/2 and 3p3/2,1/2 states.
2-13
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FIG. 5. Density plots of relative coherences of the reduced density matrix of the internal state of a Kr351 ion moving with velocity
vp547 a.u. subject to collisions with electrons in an amorphous carbon foil for various propagation lengths. The system is initially p
in the pure stateuc(0)&5(u3s1/2,21/2&1u3p1/2,21/2&)/A2 ~only matrix elements withmj,0 are shown!.
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the initial conditions of this simulation,Q3s1/2,21/2,3p1/2,21/2

51 at t50. With increasing propagation length, decay
this coherence sets in atd;10 000 a.u., which is close to th
expected length of decoherence by dephasing (dI5t Ivp
52pvp /uvabu515 500 a.u.). Interestingly,Q3p3/2,23/2,3p3/2,1/2

also starts very close to unity indicating that the sta
3p3/2,23/2 and 3p3/2,1/2 are coherently populated by a sing
collision. Since these two states are degenerate, decohe
in this case is only a consequence of successive mul
collisions. Although both coherences tend to decay with
creasing propagation length, they remain high with valu
above 0.9. This results from the fact that the interaction w
electrons in the solid both generates coherences betw
states and decoheres the internal state of the ion. We
observe this behavior in Fig. 5 in more detail, where
relative coherencesQab are displayed in thea-b plane. The
first panel displays the initial state. In the second paneld
5100 a.u.), states with the same principal quantum numb
are coherently populated by a single collision. Despite
fact that relative coherences diminish in magnitude as
propagation length increases, the system remains part
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coherent even for the longest propagation length analy
~last panel!.

C. Interactions with ionic cores of the solid

Consider now the interaction of the electron with an e
semble of screened ionic cores, which can be descri
through an ensemble ofNA atoms with number densitynA

5NA /V with coordinates$RW i8% in the laboratory frame. This
problem is closely related to that in the preceding secti
For a neutral system the atomic densitynA is related to the
electron densityne5ZTnA , whereZT is the nuclear charge
of the atoms in the solid. In line with the discussion abo
the relevant degree of freedom in the target is the he
particle motion while electronic excitations in the core a
already included in thee-e scattering term as described b
Im(21/e). The inelastic processes considered in the follo
ing are therefore excitations of phonons. The first obvio
difference between thee-e interaction and thee-c interaction
is that the effective two-body interactionVc is not pure Cou-
lombic. The total interaction potential is given by
2-14
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VSR
(c)~rW,$RW i8%,t !5(

i 51

NA

Vc~RW i82vW pt2rW !

5E d3xE d3x8rc~xW8!rp~xW !Vc~xW82vW pt2xW !

5
1

V (
kW

Ṽc~kW !eikW•vW ptr̃p~kW !r̃c
†~kW !, ~4.29!

where the pointlike charge density of the target cores and
Fourier transform are given by

rc~xW8!5(
i 51

NA

d~xW82RW i8!, r̃c~kW !5(
i 51

NA

eikW•RW i8.

~4.30!

Clearly, Eq.~4.29! is of the form of Eq.~3.8! with the system
operatorW(kW )5 r̃p(kW ) being the same as fore-e interactions
while the reservoir operatorB(kW )5 r̃c(kW ), and f (kW )
5Ṽc(kW ). The interaction potential with ionic cores,Vc , cor-
responds to an attractive screened Coulomb interaction
typical choice, which is used in this work, isVc(rW)
52(ZT /r )exp(2r/aTF) with the Thomas-Fermi screenin
length aTF50.885ZT

21/3 and the Fourier transformṼc(kW )
52(4pZT)/(k21aTF

22).
The susceptibility entering the relaxation operator ref

now to the density fluctuation of ionic cores. For the phon
excitation spectrum we consider for simplicity the dispers
relation

v5
k2

2Mc
, ~4.31!

whereMc is the mass of the ionic cores. Neglecting colle
tive excitations and phonon damping, a simple choice for
susceptibility that satisfies thef- ~or Thomas-Kuhn! sum rule
@35#

E
0

`

dv
2Mc

k2
vx1

(c)9~kW ,v!5pnA ~4.32!

is given by

x1
(c)9~kW ,v!5pnAdS v2

k2

2Mc
D . ~4.33!

The fundamental differences to electron-electron scatte
result from the properties of the phonon dispersion. Beca
of the large massMc , the d function in Eq. ~4.33! peaks
close tov.0. Consequently, the imaginary part of the su
ceptibility for electron-ion core scattering is approximate
given by

x1
(c)9~k,v5vab2vW p•kW !.pnAd~vab2vW p•kW !.

~4.34!

The relaxation channel involving ionic cores of the solid
therefore often, somewhat misleadingly, referred to as ‘‘e
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tic scattering’’ even though it can drive inelastic excitatio
of the internal state of the projectile as efficiently as t
electron-electron channel. The term elastic originates h
from the small energy transfer to the target degrees of fr
dom~i.e.,v.0). The energy required for inelastic process
originates, as above, from the translational degree of freed
of the projectile. In order to distinguish this scattering pr
cess from true elastic scattering we will refer to this rela
ation channel as electron-ion-core~c! scattering.

Thed function in Eq.~4.34! fixes thez component of the
momentum transfer to

kz5kz
ba5

vba

vp
. ~4.35!

and implies that the absolute magnitude of the momen
transfer must bek.kmin[uvbau/vp .

The d function in Eq.~4.34! allows one to carry out the
integration overkz such that the final form ofR(L,c) involves
only a two-dimensional integral overkW'5kW2kzẑ,

R(L,c)s52
1

16p3E d2k'@S(c)†~kW'!S(c)~kW'!s

1sS(c)†~kW'!S(c)~kW'!22S(c)~kW'!sS(c)†~kW'!#,

~4.36!

where the jump operator is given by

Sab
(c)~kW'!5S 2pnA

vp
D 1/2

Ṽc~kW'1 ẑkz
ba!^auei (kW'1 ẑkz

ba)rWub&.

~4.37!

The resulting decay matrix becomes

Gab
(c)55

nA

4p2vp
(

n
E d2k'^aue2 i (kW'1 ẑkz

an)rWun&

3^nuei (kW'1 ẑkz
bn)rWub&Ṽc* ~kW'1 ẑkz

an!Ṽc~kW'1 ẑkz
bn!,

~4.38!

whereas the inverse collisional lifetime adopts the form

~ta
(c)!215

nA

4p2vp
(
nÞa

E d2k'uṼc~kW'1 ẑkz
na!u2

3u^auei (kW'1 ẑkz
na)rWun&u2, ~4.39!

which can be used to define the decay length of each s
da

(c)5vpta
(c) , as in Eq.~4.2!.

In Figs. 6 and 7, we analyze the effect of the relaxat
operatorR(L,c) ~4.36! for a Kr351 ion with vp547 traversing
an amorphous carbon foil. The initial internal state of the i
consists of a statistical incoherent superposition of
1s1/2,21/2 and 1s1/2,1/2 states, which mimics typical experi
mental initial conditions@4#. Since 1s states are deeply
bound, feeding higher-energy levels through core collisio
is a slow process. In fact, the decay length of the ground s
2-15
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is d1s
(c);83105, which is larger than the range of propag

tion length shown in Fig. 6 and much larger than the typi
collisional mean-free path of free electronsl (c);103. We
focus here on the evolution of the populations of t
3s1/2,21/2 and 3p1/2,21/2 states@Fig. 6~a!# and their relative
coherenceQ3s1/2,21/2,3p1/2,21/2

@Fig. 6~b!# as a function of the

propagation length. Initially, the 3s1/2,21/2 and 3p1/2,21/2
states are not populated and, therefore, the populations
crease at first assmm(t).const3@12exp(2vpt/dm

(c))#. The
dominance of the excitation ofp states is valid for alln shells
and indicates that the typical momentum transfers invol
in the excitation process are small such that the boost is
the dipole limit @see Eq.~4.23!#. The relative coherence in
Fig. 6~b! at d50 is Q3s1/2,21/2,3p1/2,21/2

;0.5 and, subse

quently, it starts dropping rapidly from this value atd
;3000 a.u. This decay length is close to the collisional
coherence length@Eq. ~4.27!# and is much shorter than th
dephasing decoherence length of these states,vpt I
;15 500 a.u.@see Eq.~3.32!#. In other words, the interaction
with the atomic cores of the solid decoheres the internal s
of the ion very efficiently. This trend can be seen directly
Fig. 7, where we display the relative coherence in st
space. For short propagation lengths, states are coher

FIG. 6. Evolution of selected populations and coherences of
internal state of a Kr351 ion moving with velocityvp547 a.u. sub-
ject to collisions with screened nuclei in an amorphous carbon
as a function of the propagation length. The system is initially p
pared in a statistical incoherent superposition of the 1s1/2,21/2 and
1s1/2,1/2 states.~a! The populations of the 3s1/2,21/2 and 3p1/2,21/2

states and~b! the relative coherence between the 3s1/2,21/2 and
3p1/2,21/2 states.
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populated by a single collision. For long propagation lengt
however, coherences are almost completely washed out
the internal state of the ion turns into an incoherent mixt
of states.

V. SIMULATION OF THE INTERNAL STATE EVOLUTION
IN ION-SOLID INTERACTIONS

A. Implementation of the QTMC

In this section we combine the relaxation processes
cussed in the preceding section for a fast hydrogenlike
with nuclear chargeZp and velocityvp through an amor-
phous foil with a given thicknessd. Accordingly, the cou-
pling of the system, the internal electronic state of the p
jectile, to the environment, the solid and the electromagn
field, is given by

VSR5VSR
(r )1VSR

(ee)1VSR
(c) . ~5.1!

Within linear response theory, the couplings to the vario
environmental degrees of freedom are independent of e
other and are independent stochastic processes. Accordi
the relaxation operator entering the Lindblad equation
comes

R(L)5(
,

R(L,,)5R(L,r )1R(L,ee)1R(L,c), ~5.2!

where ,5r ,ee,c denotes independent relaxation chann
for radiative decay, electron-electron, and electron-core s
tering. Thus, one can implement all the tools introduced
Sec. II provided that the indexkW @Eq. ~2.6!# is replaced by
appropriate indices for each environmental degree of fr
dom: I for ,5r @Eq. ~4.7!#, kW for ,5ee @Eq. ~4.20!#, andkW'

for ,5c @Eq. ~4.36!#.
The solution of the Lindblad equation for the relaxatio

operator in Eq.~5.2! by the QTMC method proceeds as fo
lows. Between stochastic jumps, the continuous time evo
tion @Eq. ~2.12!# is governed by an effective non-Hermitia
Hamiltonian~2.13! with the total decay operator

G5(
,

G (,)5G (r )1G (ee)1G (c), ~5.3!

where the decay matrices for each relaxation channel
given by Eqs.~4.9!, ~4.22!, and~4.38!. The HamiltonianHS
in Eq. ~2.13! is assumed to contain all energy shifts due
the interaction between the system and the environme
degrees of freedom. The continuous evolution intertwin
different relaxation channels. The stochastic timest j are de-
termined by the solution of the implicit Eq.~2.19!, which
incorporates the reduction in state population due to all p
sible relaxation channels. The probability for the occurren
of one particular relaxation channel (r , ee, or c) being re-
sponsible for the next jump is determined by

e

il
-
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FIG. 7. Density plots of relative coherences of the reduced density matrix of the internal state of a Kr351 ion moving with velocity
vp547 a.u. subject to collisions with screened nuclei in an amorphous carbon foil for various propagation lengths. The system is
prepared in a statistical incoherent superposition of the 1s1/2,21/2 and 1s1/2,1/2states~only matrix elements involvingmj,0 states are shown!.
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P(,)h5
^Ch~ t !uG (,)uCh~ t !&

(
,8

^Ch~ t !uG (,8)uCh~ t !&

. ~5.4!

After the channel index, is selected by drawing a random
number according to Eq.~5.4!, the wave function after the
stochastic jump is obtained by application of the correspo
ing normalized jump operator, Eq.~2.15!, for the particular
selected channel@i.e., using Eqs.~4.8!, ~4.19!, or ~4.37!#.
Application of the jump operator requires the determinat
of a particular value ofkW according to Eq.~2.16!. For radia-
tive decay this corresponds to a discrete distribution of
index I whereas for collisions it corresponds to continuo
two-dimensional and three-dimensional probability densi
for kW' and kW for electron-core ande-e interactions, respec
tively.

B. Application to Kr 35¿ traversing amorphous carbon foils

We consider now the QTMC simulation for Kr351(1s)
traversing amorphous carbon foils. Experimental and th
02290
-

n

e
s
s

o-

retical studies for this system have been reported elsew
@4#. The ion is initially prepared in a statistical incohere
superposition of 1s states and is traveling at the speedvp
547 a.u. The Kr isotopes used in the experiments are cho
such that the hyperfine structure of the ion can be ignor
The fine-structure HamiltonianHS

(v) @Eq. ~4.12!# is therefore
adequate.

In order to probe the time evolution of the internal state
the ion, Balmera lines are measured for foils of differen
thicknesses that vary from 3 to 220mg/cm2. The total pho-
ton intensity of all lines emitted from a particular level
given by

I a5Ga
(r )E

0

`

dtsaa~ t !. ~5.5!

The intensity provides direct information on the time integ
of the populationsaa(t) ~weighted by a constant deca
rate!. Note that the time integral involves the populatio
while the ion is both inside the solid and after foil ex
2-17
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The population of the excited state is initially zero, increa
due to excitation inside the foil, and tends to zero again
t→`, when the atom relaxes to the ground state by radia
decay after foil transmission. Since transport through foils
different thickness yield different intermediate population
changes in the line intensities provide direct evidence of
changing behavior of the populations due to transport.
cause energy levels of differentmj are not experimentally
resolved, the observable intensities correspond toI n,l , j
5(mj

I n,l , j ,mj
.

In Eq. ~5.5! ua& represents an eigenstate of the free-
HamiltonianHs

(v) @Eq. ~4.12!#. It is important to note that the
system Hamiltonian inside and outside the solid is differe
Therefore, the calculation of the dynamics of the inter
state of the ion is separated in two parts. First, we propa
the ion inside the foil and the calculation is carried out in
basis setuā&, ub̄&, etc., of eigenstates of the system Ham
tonian inside the solid,

HS
(s)[2

¹ rW
2

2
2

Zp

r
1DHrel1Vwake~rW !. ~5.6!

The Coulomb field of the swift ion polarizes the solid, resu
ing in a ‘‘wake’’ of density fluctuations@34#. This wake acts
back on the ion shifting and splitting the internal electron
energy levels. For a highly charged ion the dominant po
ization of the solid that affects the time evolution of th
internal state of the ion is that due to the nucleus of the
rather than that of the projectile electron. We therefore
clude the ion-induced wake potentialVwake(rW) in Eq. ~5.6!.
The ~conservative! potentialVwake(rW) resembles, to leading
order and at small distances from the nucleus, an elec
field which causes Stark splittings in hydrogenic manifol
The interaction of the projectile electron with its self-induc
polarization described by Re(G̃) ~or x8) is small by com-
parison and will be neglected in the following. A more d
tailed explanation of the different ingredients ofHS

(s) can be
found in Ref.@4#. At the foil exit, the density matrix is pro
jected onto the set of eigenstatesua& of the free-ion Hamil-
tonian HS

(v) @Eq. ~4.12!# and is subsequently propagated
time in that basis.

In Figs. 8~a! and 8~c!, the populations of the 3s1/2,21/2 and
3p1/2,21/2 states as well as the relative coheren
Q3s1/2,21/2,3p1/2,21/2

are displayed as a function of the propag
tion length. ~Note that propagation length is equivalent
foil thickness.! The results of the full simulation depicted i
Figs. 8~a! and 8~c! are found to be very similar to thos
involving only core collisions, indicating that much of th
dynamics of the system is dominated by core collisions. T
is also evident in the density plots of the relative coheren
depicted in Fig. 9, which look very similar to those in Fig.
Only for large propagation lengths are the results of the
simulation clearly different from those involving only cor
collisions, which is a consequence ofe-e collisions and ra-
diative decay. The relative coherence@Fig. 8~c!# is very large
for thin foils and is subsequently damped due to multi
collisions.
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In order to analyze the effect of collisional coherences
the populations of the states, we also display in Fig. 8~b!
results of simulations with and without collisional cohe
ences. The QTMC method easily allows us to eliminate
herences by making the decay matrices diagonal and by m
tiplying the matrix elements of the jump operator in the ba
set that diagonalizes the system Hamiltonian by rand
phases uniformly distributed in the interval (0,2p). In order
to highlight the differences between the simulations, F
8~b! displays the ratio between the populations of t
3p1/2,21/2 and 3s1/2,21/2 states with and without coherence
included. For thin foils, the population ratio is nearly co
stant, reflecting the ratios of direct transition probabiliti
from the ground state of Kr to different final states und
single-collision conditions. Subsequently, it decreases t
value close to unity. Without coherences, the simulat
reaches this asymptotic ratio much faster. Similar effects
curs in the absence of the wake field@4#. This is due to the
fact that for the relative phases associated with the excita
process, the wake field tends to increase the ratio of the 3p1/2
population to the 3s1/2 population.

Direct experimental evidence of coherences can be

FIG. 8. Evolution of selected populations and coherences of
internal state of a Kr351 ion traversing an amorphous carbon fo
with velocity vp547 a.u. as a function of the propagation leng
The system is initially prepared in a statistical incoherent super
sition of the 1s1/2,21/2 and 1s1/2,1/2states and we compare the resu
of the full simulation with those in Fig. 6.~a! Populations of the
3s1/2,21/2 and 3p1/2,21/2 states,~b! ratio of the 3p1/2,21/2 population
to the 3s1/2,21/2 population, and~c! relative coherence between th
3s1/2,21/2 and 3p1/2,21/2 states.
2-18
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FIG. 9. Density plots at various propagation lengths of relative coherences of the reduced density matrix of the internal state o351

ion traversing and amorphous carbon foil with velocityvp547 a.u. and subject to radiative decay,e-e collisions and core collisions. The
system is initially prepared in a statistical incoherent superposition of the 1s1/2,21/2 and 1s1/2,1/2 states~only matrix elements involvingmj

,0 states are shown!.
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tained by measuring ratios of line emission intensities@1#. In
Fig. 10 we compare the results of our simulations with a
without collisional coherences and experimental data for
ratio I 3p1/2

/I 3s1/2
. Only inclusion of collisional coherence

leads to the correct degree intrashell mixing of states
yields photon intensities that are in reasonable agreem
with the experimental data. It is also worth noting that t
calculated ratioI 3p1/2

/I 3s1/2
obtained from the full simulation

including post-foil evolution increases for increasing fo
thickness, whereas the ratio of the populations at the foil
@Fig. 8~b!# are a decreasing function of foil thickness. This
a direct consequence of radiative decay during the trans
in the foil.

In our previous work@4#, numerical simulations yielded
slighly better agreement with the experimental data in
thick-foil region than that in Fig. 10. This observation is
first glance somewhat surprising since for the limiting ca
of highly excited states~which will be discussed in the fol
lowing section! our previous approach is based on additio
approximations to the present theory. Comparison of
02290
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rt
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e
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present jump operators, continuous time evolution operat
and jump times with those in Ref.@4# indicates that the
present approach differs from the previous one in sev
details entering the QTMC simulations. These differences
not yield dramatically different results for the present syst
but they could be of importance for other systems~for ex-
ample, the model used in Ref.@4# for radiative decay did not
describe the buildup of coherences due to the interac
with the environment!. While the slightly better agreemen
between our previous calculations and experiment in
thick-foil region may be, in part, fotuitous, there is one po
sible source of the discrepany that warrants further inve
gation. The present QTMC implementation is strictly unita
as is the underlying Lindblad equation it solves by way
ensemble averages. In other words, there exists no flow
probability from the finite Hilbert subspaceHS spanned by
the basis set to its complement~i.e., we have neglected th
flow of probability from low-n states to high-n and con-
tinuum states!. In our previous work we provided an intuitiv
way to account for this flow~while neglecting the back flow!
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and it was found to have a small effect in the thick fo
region. The derivation of a generalized ‘‘Lindblad’’ form tha
accounts for this flow and its QTMC solution is in progres

C. Transport of Rydberg states: Linear stochastic Schro¨dinger
equation

We consider now the limit of the NLSSE when the initi
state of the projectile is in a highly excited or Rydberg st
(n@1). As radiative decay rates decrease asn2x (x
53 to 4.5) while collisional rates for charged particles ra
idly increase for lown as;n2 and saturate for largen, only
collisional relaxation is important. In this limit, the NLSS
drastically simplifies and reduces to a linear equation. T
key point is that the dependence of the susceptibilityx19 on
the internal energy differencesvan can be neglected com
pared to the magnitude of the Doppler shift,ukvpu and Eq.
~3.34! becomes

Sab~kW !. f ~kW !Wab~kW !@2x19 ~kW ,2kW•vW p!#1/2. ~5.7!

Consequently, decay matrix~2.14! simplifies to

Gab5
1

V (
kW

u f ~kW !u2x19 ~kW ,2kW•vW p!^auW†~kW !W~kW !ub&.

~5.8!

For e-e and core collisionsW5exp(ikW•rW) and W†(kW )W(kW )
51. Therefore, we arrive at

Gab5dab

1

V (
kW

u f ~kW !u2x19 ~kW ,2kW•vW p!5gdab , ~5.9!

FIG. 10. Relative line emission intensities resulting from t
transmission of Kr351 ions through amorphous carbon foils wit
velocity vp547 a.u. as a function of the foil thickness. The syste
is initially prepared in a statistical incoherent superposition of
1s1/2,21/2 and 1s1/2,1/2 states. The results of our full simulation a
compared with experimental data@4# and with a simulation in
which coherences are neglected.
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which is not only diagonal but proportional to the unit matr
and with the scattering rateg for free electrons as prefacto
Thus, the approximationvan→0 amounts to the so-calle
quasi-free-electron approximation for weakly bound ele
trons. The fact thatG is state independent has profound co
sequences for the resulting stochastic time evolution. T
continuous unitary evolution operator@Eqs. ~2.12! and
~2.13!# becomes independent ofG,

Ucont~ t j ,t j 21!5exp@2 iH S~ t j2t j 21!#. ~5.10!

Similarly, using Eq.~5.7! in the definition of the jump opera
tor Eq. ~2.15! yields

U jump~kj
W ,t j !5exp~ ikW j•rW !. ~5.11!

Note that we have dropped the indexh in Eqs. ~5.10! and
~5.11! since these operators are in this limit independent
the particular realization of the quantum trajectory. Bo
Ucont andU jump , as well as their product Eq.~2.11! reduce
to linear operators. Consequently, the time evolution of
quantum trajectory is governed by alinear Schrödinger
equationiduC(t)&/dt5HuC(t)& generated by the stochast
Hamiltonian

H~ t !5HS2(
j

d~ t2t j !rW•kW j , ~5.12!

where the random jump timest j and momentum transferskj
are obtained from Eqs.~2.19! and~2.16!, which in the quasi-
free-electron approximation reduce tou512exp(gt), and
P(kW )5g21u f (kW )u2x19 (kW ,2kWvW p), respectively.

Equation~5.12! is nothing but the Hamiltonian of an im
pulsively driven atom, a system frequently studied in t
connection of quantum chaos@37–42# and of Rydberg atoms
perturbed by half-cycle pulses~Refs. @43,44#!. Equation
~5.12! possesses a well-defined classical limit in terms
Hamilton equations of motion and allows to treat the pro
lem also within the realm of classical mechanics. In this lim
we recover the Langevin-type equations of motion unde
ing the classical transport theory@9–14# and applicable to
transport of weakly bound and continuum electrons. The p
viously developed quantum transport theory for internal st
evolution in ion-solid interactions~Refs.@16,17#! was based
on Eq.~5.12!. The present analysis shows it to be the limitin
case of a NLSSE when the quasi-free approximation@Eq.
~5.7!# can be applied. For light ions and high Rydberg sta
of highly charged ions the quasi-free-electron approximat
is valid to a good degree of approximation.

It is worth noting that this linear limit of the NLSSE i
specific to collisions. For radiative processes, the suscept
ity x19 ;uvabu @Eq. ~4.6!# vanishes in the limitvab→0.
Therefore the assumption of a, to leading order, frequen
independentx19 which would allow the use of a closure re
lation and of the unitarity ofW @see Eq.~5.7! and~5.8!# fails.
From another angle, radiative transition probabilities a
strongly state dependent and an approximation of state in
pendence in analogy to the quasi-free-electron approxi
tion for electron scattering~5.7! is not possible.

e
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VI. CONCLUSIONS

In this work we have derived from first principles a ge
eral method based on the Lindblad equation and its quant
trajectory Monte Carlo implementation to describe the d
namics of fast atoms or ions interacting with a lar
environment consisting of the electromagnetic field and
solid. One major advantage of the present formulation is
is goes beyond the secular approximation and can acc
for the short time evolution of the coherences of the syst
The present treatment contains our previous approxima
~e.g., Ref.@4#! as the limiting case when the nonlinear st
chastic Schro¨dinger equation reduces to a linear stochas
equation. We show that this limit emerges from the qua
free-electron approximation to electron-electron a
electron-core scattering. The results obtained in this work
line emission intensities resulting from ion-solid interactio
resemble those found in our previous work and, therefo
partially validate our previous approach. However, sign
cant differences, in particular for the radiative decay, aris

One major conclusion from our present treatment is t
the interaction with the environment does not only decoh
a quantum state in the long-time limit but also can lead t
buildup of coherences on an intermediate time scale given
the inverse of a frequency spacing between closely ly
levels of the system. While the present method was de
oped with the goal to treat internal-state evolution during
penetration through solids, it is equally applicable to oth
as
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atomic systems in contact with an environment. Examp
for future studies include Rydberg atoms in a trap envision
as gates and registers for quantum information processin
this case, stray fields, collisions with ambient molecules, a
the radiation field represent the environment@45#.

One major limitation of the present approach should
pointed out. One virtue of the Lindblad equation and
QTMC implementation, the strictly unitary time transform
tion of the reduced density-matrixs(t) is, in fact, of limited
value when the atomic system couples to the continuum
cannot be completely subtended within any realistic ba
size. In other words, when the atomic Hilbert subspaceHS
represented by theNS dimensional basis is strongly couple
to its complement, unitarity is not preserved nor should it
since there is net flux out of the reduced Hilbert space. T
present formulation of the Lindblad equation and its QMT
implementation does not account for an explicitly nonunita
evolution of the system. As the ionization channel becom
increasingly important for lowerZp, extension of the presen
formulation to explicitly nonunitary system dynamics
planned.
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