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Jordan blocks and Gamow-Jordan eigenfunctions associated with a degeneracy of unbound states
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An accidental degeneracy of unbound states gives rise to a double pole in the scattering matrix, a double
zero in the Jost function, and a Jordan chain of length 2 of generalized Gamow-Jordan eigenfunctions of the
radial Schrdinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion
in bound- and resonant-state energy eigenfunctions plus a continuum of scattering wave functions of a complex
wave number. In this biorthonormal basis, any opera(bﬂ”) which is a regular function of the Hamiltonian
is represented by a complex matrix that is diagonal except for a Jordan block of rank 2. The occurrence of a
double pole in the Green’s function, as well as the non exponential time evolution of the Gamow-Jordan
generalized eigenfunctions are associated with the Jordan block in the complex energy representation.

DOI: 10.1103/PhysRevA.67.022721 PACS nuntber03.65.Nk, 33.40tf, 03.65.Ca

[. INTRODUCTION declined because, although the phenomenon of resonance
overlapping might be related to the occurrence of double-
For many years now, it has been appreciated that there apole resonances, at present, there is little empirical evidence
distinct advantages in describing quantum resonances arfdr the existence of naturally occurring higher-order pole
the quantum phenomena associated with the production, eveesonance states in nuclear or hadronic systems.
lution, and decay of unbound quantum states in terms of Later, it was realized that, when the resonant-states can be
resonant or Gamow eigenstates, since many effects are themanipulated by external parameters, i.e., the application of
readily expressed and evaluated. external fields, degeneracies of resonances can be made to
The Gamow eigenstates represent unbound decayingccur by simply adjusting the parameters. This interesting
states of a physical system in a situation in which there ar@ossibility brought about a renewed interest in the interfer-
no particles incident. Hence, the resonant or Gamow eigerence effects of resonances, the crossing and anticrossing
functions are eigenfunctions of a self-adjoint Hamiltonianproperties of the energies and widths of two unbound levels,
which are regular at the origin of coordinates and behave aand the occurrence of double poles of the scattering matrix.
purely outgoing waves at infinity. The corresponding energyFor example, it was pointed out that Stark mixing in an atom
eigenvalues are complexX,=E,—il',/2, with E,>I",/2  [13] and the decay of Rabi oscillations in a two-level system
>0. These resonance energy eigenvalues are precisely eqlid#l] can induce degeneracies that lead to a double pole de-
to the complex resonance energies of the system which occaay.
as poles of the scattering matrix located in the lower half of ~Similarly, it was shown that degeneracies occur in the
the second or unphysical sheet of energy. Accordingly, a detwo-color ionization of atoms using commensurate frequen-
generacy of resonances, that is, the exact coincidence of twaes[15]. Hernandez and Mondragoshowed that the dou-
(or more simple resonance poles that merge to produce onblet of nuclear unbound states i#Be with S=1 and T
double(or higher rank pole of the scattering matrix results =0,1 is analytically connected with a degeneracy of reso-
from the degeneracy of tw@r more resonance energy ei- nanceg8]. It was also show16] that degeneracies of reso-
genvalues of the Hamiltonian. nances occur when the groufat excited state of an atom is
In this paper we are concerned with the degeneracy otrongly coupled to an autoionizing resonance. Kylstra and
resonance eigenstates in the absence of symmetry, the caleachain17] demonstrated double-pole degeneracies in the
comitant doubleor higher orderpoles of the scattering ma- S matrix of laser-assisted electron-atom scattering.
trix, and the Gamow-Jordan generalized eigenfunctions and The problem of the degeneracy of resonances also arises
nondiagonal Jordan blocks in the complex energy represematurally in connection with the Berry phase of resonant
tation of the Hamiltonian which are associated with them. states[15,18—-20Q, which was recently measured by Dem-
The possibility of multiple resonance poles in partial- bowskiet al.[21]. A detailed discussion of the geometric and
wave scattering amplitudes and nonexponential decays of thepological properties of the Berry phase acquired by two
associated unstable particles was already explicitly menelosely spaced unbound states when they are adiabatically
tioned in the classical paper by Goldberger and Waf@dn transported in parameter space around a degeneracy of reso-
Afterwards, the possible occurrence of double poles in tha@ances is given by Mondragaand Hernadez[19,20).
scattering matrix was discussed in connection with problems Some examples of simple quantum-mechanical systems
in nuclear[3] and hadron physic§4,5]. Some interesting with double poles in the scattering matrix have been recently
examples of interfering unbound two-level systems are thelescribed. Vanrooset al. [22] examined the formation of
S=1T=0,1J0"=2" doublet in®Be[6-8], theT=0,1 dou-  resonant double poles of t!&matrix in a two-channel model
blet of p and w mesons, and the-K doublet of neutral with square-well potentials. Herndez et al. [23] investi-
sigma andK mesong7,9-12. However, the initial interest gated a one-channel model with two spherical concentric
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cavities bounded by-function barriers, and showed that a As is usually done when discussing the analytic properties of
double pole of theS matrix can be induced by tuning the the solutions of Eq(1) as functions ok, rather than starting
parameters of the model; Vanroo§24] generalized this by defining the physical solution;é%”(k,r), we define the
model to the case of two finite width barriers. regular and irregular solutions of E¢l) by boundary con-
The formal theory of multiple-pole resonances andditions that lead to simple properties as functionsoThe
Gamow-Jordan resonant-states in the rigged Hilbert-spaa@gular solutions,(k,r) is uniquely defined by the boundary
formulation of quantum mechanics was developed by Bohntondition[27]
et al.[25] and Antoniouet al. [26].
In the present paper, we deal with the problem of multiple lime+D)r g, (kr)=1. (2
poles of the scattering matrix and the generalized complex r—0
energy eigenfunctions associated with them in the frame- . S
work of the theory of the analytic properties of the radial _‘W(k’r) may t_)e expressed_as a linear cor_nbmatlon of two
wave functions. independent, irregular solutions of Eg), which behave as

The plan of this paper is as follows. In Secs. Il and llI, we outgoing and incoming waves at infinity:

introduce some basic concepts and fix the notation by way of L —t-1rf (_ o ane
a short reminder of resonances and resonant-states in the pe(kr)=zik [fe(=kfe(kr)=(=1)
theory of the analytic properties of the radial wave functions. X fo(K)fe(—k,r)], 3

In Sec. IV, bound- and resonant-state eigenfunctions are

characterized as elements of a rigged Hilbert space. Sectiomghere f,(—K,r) is an outgoing wave at infinity defined by
V and VI are devoted to a short discussion of the no-crossinghe boundary condition

rule for bound states and its nonapplicability to resonant-

states. In Sec. VII, we show that a double pole of the scat- lim exp(—ikr)f(—k,r)=(+i) (4)
tering wave function(double zero of the Jost functipris =

associated with a chain of length 2 of Gamow-Jordan gener-
alized eigenfunctions and derive explicit expressions fo k) b
these generalized eigenfunctions in terms of the outgoiné 1) by

wave Jost solution, the Jost function, and its derivatives AR

evaluated at the double pole. We also show that the Gamow- fe(kn=(=D e (=kr) ®
Jordan generalized eigenfunctions in the Jordqn chain amg, | real and nonvanishing.

elements of a complete set of states contalnlng_the real The Jost functiorf ,(— k) = f ,(—k,0) is given by

(bound statgsand complex(resonant-statésenergy eigen-

functions plus a continuum of scattering wave functions of fo(—K)=(—1) KW F,(—Kk,), de(k,D)], (6)
complex wave number. Section VI, is devoted to the char-

acterization of the Gamow-Jordan genera”ZEd EigenfUnC\NhereW[f,g]:fg’ _f’g is the Wronskian. The Jost func-
tions as solutions of a Jordan chain of differential equations&ion f((_k) has Zerog{roots on the imaginary axis and in

In Sec. IX we derive expansion theorems in the complexhe |ower half of the complek plane.

energy basigspectral representatiorfr operatorsf (H{")), When the first and second absolute moments of the poten-
which are regular functions of the radial Hamiltonieit®) , tial exist, and the potential decreases at infinity faster than
and show that, in this basis, the operaf¢H ")) is repre- any exponentiale.g., if v(r) has a Gaussian tail or if it
sented by a complex matrix, which is diagonal except for avanishes identically beyond a finite radjushe functions
Jordan block of rank 2 associated with the double zero of thé,(—k), ¢.(k,r), andk‘f,(—k,r), for fixedr>0, are en-
Jost function and the corresponding Jordan chain of generalire functions ofk [27].

ized Gamow-Jordan eigenfunctions. We give the normaliza- The scattering wave functioq}%*)(k,r) is the solution of
tion and orthogonality rules for the generalized eigenfuncEg. (1), which vanishes at the origin and behaves at infinity
tions in the Jordan chain associated with the double pole ods the sum of a free incoming spherical wave of unit flux
the Green’s function in Sec. X. We end our paper with aplus a free outgoing spherical wave,

summary of the results and some conclusions in Sec. XI.

nd f,(k,r) is an incoming wave at infinity related tby

# I (k,0=0 @)
II. REGULAR AND PHYSICAL SOLUTIONS
OF THE RADIAL EQUATION and

The nonrelativistic scattering of a spinless particle by a  jim { (") (k,r)—[R{(k,r)—S (k)AL (k,r)]}=0. (8)
short-range potential(r) is described by the solution of a o ¢
Schralinger equation. When the potential is rotationally in-
variant, the wave function is expanded in partial waves, andh this expressionh{(k,r) and h{")(k,r) are Ricatti-

one is left with the radial equation Hankel functions that describe incoming and outgoing
) waves, respectivel\s,(k) is the scattering matrix.
d"pekr) | o €D _ Hence, the scattering wave functiaff™(k,r) and the
+| k v(r)|de(k,r)=0. (1) A
dr? r2 regular solution are related by
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K 2eho(k,r) oscillate between envelopes that increase exponentially with
w%”(k,r):W, (9  r, the corresponding energy eigenvaldesare complex with
¢ ReS,>Imé,,.
and the scattering matrix is given by The bound-state eigenfunctiomg,(ks,r) are also solu-
tions of Eq.(1) that vanish at the origin and satisfy the out-
fo(k) going wave boundary conditiofl3), but, in this case the
Se(k)= (=K (100 wave number is purely imaginary, with.=ixs and x>0.

Hence, the outgoing wave solutiofi,(—kg,r) and the
The complete Green's function for outgoing particles orP0Und-state eigenfunctian, (ks,r) as functions of behave

resolvent of the radial equation may also be written in termé‘symptOt'C"’lIIy as decreasing exponentials vanishing as

of the regular solutionp,(k,r), and the irregular solution 90€S to infinity,
fo(—Kk,r) which behaves as an outgoing wave at infinity: lim ug ¢(Ks,r)=0, (17)

¢€(k1r<)f€(_k1r>)
fe(=k)

r—ow

GI(kr,r)y=(—1)¢" k¢ . (1D

the corresponding energy eigenvalués= —ﬁ2;<§/2,u are
real and negative. Hence, the bound-state eigenfunctions are
bounded for all values of and, as functions of, they are
square integrable.

Bound- and resonant-state energy eigenfunctions are the
solutions of Eq(1) that vanish at the origin, IV. ENERGY EIGENFUNCTIONS AS ELEMENTS
OF A RIGGED HILBERT SPACE

IIl. BOUND- AND RESONANT-STATE EIGENFUNCTIONS

un((knao)zov (12) . . . . . .
Since bound-state radial eigenfunctions vanish at the ori-
and at infinity satisfy the boundary condition gin and are square integrable, they are elements of the Hil-
bert space+ of square-integrable functions of
1 dun.(k,,r)

rli:r; A g " ikn|=0, (13 H=L2[0%),dr). (18

Therefore, making an abstraction of the name of the eigen-

wherek, is a zero of the Jost function, functions, we may refer to the formal differential expression
fe(—ky)=0. (14 o h%| d? e+
HO=—| - —+——+un|. (19
From Egs.(1) and(3) we verify that all rootszeros of the H|odr r

Jost function are associated with energy eigenfunctions of ) . o m
the Scuh'r'd;nger equationl. WI gy eigeniuncl occurring on the left-hand side of the radial Sdimger

From Egs.(3), (4), and(14), bound states and Gamow or equation, Eq(1), as a “formal Hamiltonian,” which may be

resonance eigenfunctions are related to the regular Solutio(;_.pnydere_c{deflned_as an qperator acting in a space of func-
bo(K,r) by tions. If this space is the Hilbert spagéof square-integrable

functions that vanish at the origin, the Hamiltoniat} is
Une(Kn, 1) =N-2abo(K,, 1), (15)  bounded from below and essentially self-adj¢28]. By this
nen neTen last statement we mean thatHf?" is the adjoint oH{") in

whereN,, is a normalization constant. Due to the vanishingH, andH{" is the closure oH{® in 7, then

of f,(—kp), ¢¢(k,,r) is now proportional to the outgoing o

wave solutionf ,(—k,,r) of Eq.(1). Hence, bound-state and HOT=HO=H(O (20)
resonant eigenfunctions take the form

The self-adjointnesgHermiticity) of H{") in H implies that
H( as an operator if{ has only real eigenvalues. Hence,
the Gamow state eigenfunctions cannot be elements of this
space.

Bound-state eigenfunctions are associated with the zeros Indeed, due to their nondecreasing oscillating behavior at
of f,(—k) that are on the positive imaginary axis, while large values ofr, the scattering wave functiong; ™ (k,r)
resonant or Gamow state eigenfunctions belong to the zer@nd the Gamow eigenfunctions, ,(k,,r) are not square-
of the Jost function that are in the fourth quadrant of theintegrable functions of, that is, they are not elements of the
complexk plane. Hilbert spaceH. In other words, the Hilbert spadé is not

Equation (16) shows, in a very explicit way, that the ample enough to contain either the scattering wave functions
Gamow eigenfunctionsu, (k,,r) with k,=«,—iy, and associated with the real energies in the continuum spectrum
k> v,=>0 are solutions of Eq(1) that vanish at the origin of H{*) or the resonant eigenfunctions belonging to the com-
and asymptotically behave as purely outgoing waves thaplex eigenenergieénzhzkﬁlz,u.

71i (_1)€+1
un{f(knvr):Nn{’ EW”(kn)ff(_knar)- (16)
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If we want to consider all the physical solutions of the whereH!") is the “formal” Hamiltonian given in Eq.(19).
radial Schrdinger equatior{1) as elements of a space, then, This last result shows that we may consif#efine the same
a space larger than the Hilbert spakeis required. This  formal HamiltonianH!") as an extended operatdf*, act-
larger space is a rigged Hilbert spg@8], which is a triplet  ing in the larger spacé* which contains the Hilbert space
of spaces, ‘H of square-integrable functions, the scattering wave func-
% tions, and the Gamow eigenfunctions. In such a space, the
PCHCDT, 21 formal HamiltonianH(" can have eigenfunctions that are
where? is the Hilbert spacec 2([04<),dr), ® is the space NOt square integrable and have complex energy eigenvalues.
of very well behaved functions ifi{ (the Schwarz space of We also notice that whehl (") is expressed as a formal
test functions, i.e., the subspaceZgfof all functions admit-  differential operator acting on the elements ®f*, it has
ting derivatives at all orders and such that they and theiexactly the same form ad'") given in Eq.(19), which is
derivatives go to zero faster than any exponential at infinity essentially self-adjoint, that is, Hermitian, in the Hilbert
and® ™ is the space of antilinear functionals defined over thespace.
spaced. Considered as elements of a rigged Hilbert space, Gamow
The domainD(Hﬁ‘)) of the radial Hamiltonian is the sub- €igenfunctions and scattering wave functions may be charac-
space ofH with elements that are functiorf¢r) such that terized as energy eigenkets. But whereas Dirac kets describ-
they vanish at the origin and have a continuous derivative it"d scattering states are associated with a real value of the
[0) and for whichf’(r) is not only continuous but also €nergy in the continuous Hilbert-space spectrum of the self-
absolutely continuous over each compact subinterval ofdjoint HamiltonianH{"), the Gamow eigenkets are not, but

[0%) [29,30. Thus the domain oH(® is have complex eigenvalues. The existence of these Gamow

eigenfunctions(or eigenkets allows us to interpret reso-
D(H{D)={feL?([0),dr)|feACY00),HfeL? nances as well-defined quantum states of physical systems

labeled with a complete set of quantum numbers.
X ([00),dr),f(0)=0}. (22
Therefore, the domai®(H!”)) of the HamiltonianH (" V. THE NO-CROSSING RULE FOR BOUND-STATES

lies somewhere betweeh and’t, In the case of bound-states, the normalization constant

dCDHO)CH 23 occurring in Eqs(15) and(16) is related to the derivative of

: .

the Jost function evaluatedlat and it may also be expressed
The action of the Hamiltoniahiﬁ“, which, as an opera- as a norma_ll_zatl_on m_tegral. T_he zero of the Jost funcnqn is
on the positive imaginary axis, and the bound-state eigen-
function is quadratically integrabldor time reversal invari-
ant forcesg,(ixs,r) is real. Newton gives the following

tor, is, in principle, only defined on the elements of its do-
main in H, can be extended to the elementsdaf by de-
fining the following extended operatét(“)* :

expressionf27]
<go|Hg)XF>:=<H$€)<p|F>V(p6<D, Fed™, (24
| , 1 (df(-k - ,
where the notation means, as usual, Nse=— 0| " dk fe(kg)=| [e(ks,r)|?dr.
i4ks k 0

* 29

<H$%|F>=f [HOo(r)]*F(r)dr. (25) 29
0

Since the normalization integral is positive and the func-

We verify that Eq.(24) is satisfied as tion f (k) is regular atks=i«kg, the derivative of the Jost
function evaluated aks=ikg cannot vanish. Therefore, the

= ()% =0 . zero of f,(—k) atks=ixg must be simple. The correspond-
fo @*(r)[H; F(r)]dr=f0 [H e(r)]*F(r)dr. ing pole inG{"(k;r,r"), ¢4 (k,r), andS,(k) must also be
(26) simple.

It follows that, in the absence of symmetry, the real
Finally, using the definition(24) and Eq.(26), and inte- negative-energy eigenvalues of the radial equation for a one-
grating by parts on the right-hand side of E@6), when  channel problem cannot be degenerate.
F(r) is the Gamow eigenfunction,.(k,,r), we get

VI. CROSSING OF RESONANT STATES

fo ¢* (N[H: un(kn ,r)]dr—knfo ¢* (r)Un(ky,r)dr. In the case of a resonant-state, the zero of the Jost func-
(27) tion f,(—k) lies in the fourth quadrant of the compléx
plane,
If the arbitrary test functiorpe®d is omitted in this last equa-
tion, we recover the differential equation Kn=kKn=1%n, (30
HOU(Kn 1) =K3Une(Kn.1), (28 with x> y,>0.
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The resonant or Gamow eigenfunctiaby(k,,r) is an N mk’
outgoing spherical wave of complex wave numligrand
angular momentum¢. Therefore, for large values of,
¢¢(k,,r) oscillates between envelopes that grow exponen-
tially with r. Hence, the integrals over must be properly
defined. This may be done by means of a Gaussian regulatc

and a limiting procedur¢31]; Berggren[32,33 gives the Rek’
following expression =,
1 df,(—k) ‘K 7@
e dk ), S,

n

= lim fwexp(— vr2)p?(k,,r)dr. (31
0

v—0

The integral on the right-hand side is a complex number anc
may vanish.

Sincef (k) has no zeros in the lower half of the complex
k plane, the left-hand side of E¢31) vanishes only when double pole at k'= k
[df(—k)/d k],<n vanishes. Then, we have two possibilities, m N\

(i) When[df,(—k)/dk]_does not vanishf(—k) has a
simple zero ak=k,,, the integral on the right-hand side of
Eq. (31) does not vanish, and the normalization consMﬁ}t
occurring in Eq.(15) is given by Eq.(31).

(i) When

FIG. 1. Integration contou€ in the complexk’ plane.

continuum of scattering wave functions of complex wave
number.

Given two square-integrable and very well behaved func-
df (k) tions d(r) and x(r), which decrease at infinity faster than
((_> =0, (32)  any exponential, the completeness of the orthonormal set of

dk K, bound-state and scattering solutions of the radial Sthger
equation[27] allows us to write

the integral on the right-hand side of E®&1) vanishes,

(@)= > (Dlog)(vsex)

lim JO exp(— v12) ¢2(ky,r)dr=0, (33 > bound states

v—0 2 (=

+— J (@KWK K, (34)

and the Jost functiof,(—k) has a multiple zero dt=Kk,. 0

In this case, the Green’s functid®{")(k;r,r’), the scatter-

ing wave functiony!*)(k,r) and the scattering matrig, (k)

have a multiple pole &=k,,. The normalization constant of .

the Gamow eigenfunction is no longer given by E8{). <<D|X>=J @* (1) x(r)dr. (35)
Furthermore, it will be shown below that whdn(—k) 0

has a multiple zer¢a multiple resonant pole of rankin

G (k;r,r"), #4P(k,r,), and Sy(k)] the corresponding We shall assume that the Jost functibf(—k) has a

complex energy eigenvalues are degenerate even in the atbouble zero ak=k_, in the fourth quadrant of the complex

sence of symmetry. That is, the no-crossing rule does ndt’ plane, all other zeros of,(—k’) in that quadrant being

where(®|y) is the standard Dirac bracket notation

hold for resonant eigenstates. simple. Then the scattering functiqfrf)(k’,r), as function
of k' complex, has one double-resonance pole’ atk,, and

VIl. COMPLETENESS AND THE EXPANSION IN simple resonance poles &=k, n=12,...m—-1m
COMPLEX RESONANCE ENERGY EIGENFUNCTIONS +1,..., allin thefourth quadrant of the complex’ plane.

The functiony{™)* (k’,r) is regular and has no poles in the
In this section, it will be shown that associated with ajower half of thek’ plane.

double zero of the Jost functiddouble pole of the scatter-  |n order to make explicit the contribution of the resonant-
ing wave function y{")(k,r), the Green's function states to the expansion in eigenfunctions, the integration con-
Gfﬁ)(k;r,r’), and the scattering matri$, (k)] there is a tour in the second term on the right-hand side of 8¢) is
chain of generalized Gamow-Jordan eigenfunctions, whicldeformed as shown in Fig. 1.
together with the bound-state and resonant-state eigenfunc- When the deformed contou€ crosses over resonant
tions form a biorthonormal set that may be completed with goles, the theorem of residues gives
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2 <q)|vs,€><vs,€|)(>

s bound states

(®|x)=

2
+ > 2 i Re%(cml/,(;)(k'»

resonance poles

2
X (KDx) +;fc<<b|¢%”<k'>>

X( (KD x) K.
The residues may be readily computed from equati®ns

and(36).
Whenf,(—k’) has a simple zero &' =k,

(36)

. 2 + +
2 i Re:{;(@lz//% YK )(k’)lxﬁ

k' =k,

! ’ "2(6+1)
—4iRe (@le(k))NDe(kD XK

df(—k)
(k'—kn)(—, fo(k')
dk ook
- : (D] de(k)]
fo(ky) [dfe(—K') an =
4ik; DL dk )
X[{De(K)X) e =k, (37)

where

(@] be(K )Ty, = lim fxcb*(rm(k',r)dr, (38)

k' —ky

and
[(be(k)X) T =, = lim f:m(k',r)x(r)dr, (39)
k'—»kn

since ¢,(k’,r) is real and bounded fd¢’ real, the integrals
in Egs.(38) and(39) exist.

Furthermore, sincep,(k,,r) is an outgoing wave that
oscillates between envelopes that grow exponentially at in-
finity and ®(r) and x(r) are very well behaved functions of

PHYSICAL REVIEW A 67, 022721 (2003

@itk = [ unkynar @

and

(Une(kn)|X>:fowun€(kn:r)X(r)dra (42)

The Gamow eigenfunction or normal modgy(k,r), is
given by Eq.(16) and the normalization constai,, is
given by

, 1 )(dfe(—k’)

Nne:W k)| — 47 )k, (43

n

in agreement with Berggren’s result given in E§1).
When the Jost functiofi,(—k’) has a double zero &'
=km, ¥4 (k’,r) has a double pole & =k,

¢€(k/'r)k/(€+l)
(K" —Km)2Ggm(k)

Pk )= (44)

The functiong, (k') is regular atk’ =k,, and may be ex-
panded as

1 [ d2f,(—K') 1 d3f ,(—k')
g«m<k'>=§<f—,> +g<k'—km><€—,
dk'2 |, ak’®

m m

+... (45)

with

2 !
(—d fe(—k )) £0. (46)
dk'2

m

r that decrease at infinity faster than any exponential, th&he function zpﬁf)*(k’,r') is regular atk'=k,, since

integrals of the product®* (r) ¢(k,,r) and ¢,(k,,r)x(r)

f¢(k’) has no zeros in the lower half of the complik

also exist, and we may take the limit indicated on the right-plane,

hand side of Eqs(38) and (39) under the integration sign.
Therefore,

2
27 Re{;(cm¢(€+)(k')><w%+)(k’)|x>
K’ =k

= <(D|un€(kn))(un€(kn)|X>,

where the notation means

¢€(kr,rr)k’(€+1)

(+)* k/ 1y —
e fe(k’)

(47)

Thus, the residue of the term @(®|4\) (k"))
x(w%”(k’)b() at the double pole irk’ =k, is obtained
from the Cauchy integral formula as
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. 2 + +
2mi Re%;(d)hﬁ% (KW )(k')|X>}

K’ =K

4 ﬁ{<‘1>|¢>e(k’)><<;s((|<’)|x>k’2<e+1}
=4i Re
(K —km)?Gem(K) Fe(k) |,
{ g
:4| -
dk’

After computing the derivative indicated in E@8) and
rearranging some terms, we obtain

<<I>|Mk'>><¢>e<k'>|x>k’2““j ]
Iem(K)fe(k') .

(48)

. 2 + +
2i Re:{;(CDII,b(( YKo )(k’)lx>}
K=k,
1 “
N—zm[<‘b| G (k) Y De(Km) | x)

(D[ pe(kn) ) ek [ X)1,

(49

where, according to Eq.(15), ¢.(ky,,r) is the non-

normalized Gamow eigenfunction alzid;(km,r) is a gener-
alized Gamow-Jordan eigenfunction or abnormal mode

given by

depe(Km.r)

(%5(km1r): d€

+C€(km)¢€(km!r)1 (50)
Em is the complex energy eigenvalué“=(ﬁzlz,u)kfn and
the constant facto€,(k,,) multiplying ¢,(k,,r) in Eq. (50
is

dfe(Km)
dky,

1 ( dzfe(—k’)> 1( d3f((—k’))
_6 /2 /3
dk o\ dk .

2w 1 [e+1 1 1

Cotkm) = 22 2| kw2 Fulke)

(51)
The normalization constatt’2, is now
2u 1 d?f,(—k")
Nom| 5 s flka) | ———| 62
™o\ #2 )16k dK'2

m
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1
umf(kmvr):m¢€(km-r) (53
and
R 1 .
umf(kmar):mdjf(kmvr)' (54)
Substitution of Eqs(53) and(54) in Eq. (49) gives
2 i Res (| g (kN Y (k!
™ e%ﬂ.< L (k) (K | x)
kK =K,
= (@[ Upme(Km)) U (Ken) [ x) (P [Ure (Ke) ) U (ki) X))
(59
where the notation means
(@)= | @ Ol (56
and
(amf(km)|X>:f:am,f(kmar)X(r)dr; (57)

Upne (K, 1) is defined in Eq(54).
Finally, substitution of the expressiori40) and (55) in
Eq. (36) gives the following expansion:

(@)= > (@log)(velx)

s bound states

+ 2 <(I)|un€)(un€|)(>

n#m resonances

+<q)|am(f(km))(um(f(km)|)(>
+ (D[ Upme (k) U (K | x)

2
+;fc«blw%*><k'>><¢%*><k')lx>dk'. (58)

This expression shows that, when the Jost function has many
simple zeros and one double zero in the fourth quadrant of
the complexk plane, the Gamow eigenfunctions, (K, ,r)

associated with simple zeros of the Jost function, and the

chain {Ume¢(Km,r),Ume(Km,r)} of Gamow-Jordan general-
ized eigenfunctions associated with the double zero of the

The expressioit49) suggests the following normalization Jost function are basis elements of an expansion in general-
rule for the chain of Gamow-Jordan generalized eigenfuncized bound- and resonant-state eigenfunctions plus a con-

tions belonging to a double zero of the Jost function:

tinuum of scattering functions of complex wave vallkgs
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bo(k,r)=—2ke,(k,r),
(61)

Omitting the arbitrary functiorb (r) in Eq. (58), we ob- a2, (k,r) { (€+1)
D e
2

tain the complex basis expansion of an arbitrary square inte—d— 5 —u(r)
r r

grable and well-behaved functigy(r),

in this equation we have used the notatiaby(k,r)
(= > Ve {wselx)+ 2 Une(KnoF)(Unelx) =d¢,(k,r)/ok. Similar expressions are valid fdg(—k,r)
s bound states n#m B
andf,(k,r).
Let us recall again that, when the first and second absolute
moments of the potentiab(r) exist and the potential de-
2 , . ) creases at infinity faster than any exponenit@ag., if v(r)
+ ;chgﬂ(k ,r)(zp([)(k )x)dk'. (59 has a Gaussian tail or if it vanishes identically beyond a finite
radiug, the functionk‘f ,(—k,r),f,(—k), and¢,(k,r), for
fixed r>0, are entire functions df.
Therefore, the derivatives of these functions with respect
Fo the wave numbek exist and are entire functions &ffor
&1l values ofk in the complexk plane.

+am(4(kmrr)(umf|X>+um((kmvr)(am€|)(>

In this expressionu,.(k,,r) are the Gamow eigenfunc-
tions representing decaying states associated with simp

rﬁsonange pkoles %f tr?e scatte,ri?g nge(jt;nlzﬂéﬁ’)(k,r%, If we take derivatives with respect toon both sides of
the matrixS(k), and the Green's functiog™"(k;r,r’). The Eq. (3), the function ¢,(k,r) may be written as a linear

set{Um¢(km,r),Um¢(km,r)} is @ Jordan chain of length 2 of combination of the two linearly independent irregular solu-
generalized Gamow-Jordan eigenfunctions associated Witfions f,(k,r) and f,(—k,r) and their derivatives with re-
the double pole of the scattering matBk) and the Green's  spect tok,
function G)(k;r,r') atk=Kk,,. The last term on the right-

hand side of Eq(58) and (59) is the background integral ) +1 i )

defined along the integration contour shown in Fig. 1. be(kir)=—— ¢e(k,f)+W{[fe(—k)f{(k,r)

(=K F (k1) ]= (=) (k) fo(—k,r)
VIII. CHAINS OF GAMOW-JORDAN )
GENERALIZED EIGENFUNCTIONS +f (K f(—=k,r)]}. (62

The chain of Gamow-Jordan generalized eigenfunctions, From the boundary conditiof2), which defines the regu-

introduced in the preceding section, may be characterized ag; sojution b(k,r), it may be readily shown that, for
solutions of a Jordan chain of differential equations with theg|gse to zerd27)

same boundary conditions as those satisfied by the Gamow
eigenfunctions. o dge(kr) 24+
According to the definition given in Eq$50) and (54), lim oK ~li 5073

r—0

ré*2(kry=0. (63

the Gamow-Jordan generalized eigenfunclﬁxmg(km,r) is o

a linear combination of the Gamow eigenfunction and itSgjmijarly, from the boundary conditions satisfied by the ir-
derivative with respect to the complex energy eigenvalue o4y iar solutions, Eq4), it follows that, for large values of

r,
1 w dpe(Km,r) fo(xk,r)~e k" (64)

etk 0= N Ry 7K

+Co(km) de(Km.r)

(60)

Therefore,

lim
where we have writtel&,,= (%% u)kndky, and &, is the Fco
complex energy eigenvalue corresponding to the double zero ) )
of the Jost function dt=k,,. Consequently, in order to char- that is, at infinity, f,(k,r) is an incoming wave and,
acterizel,, ((kn,r) as the solution of a differential equation (—Kk.r) is an outgoing wave.
with prescribed boundary conditions, it will be convenient to ~ Therefore, from(3), (62), (63), and (65), in the general
start by deriving the differential equation satisfied bycase of an arbitrary complex value d¢f the function
dpe(Kk,r)/ok. ¢e(k,r), as a function ofr, vanishes at the origin of the

The differential equations satisfied by the derivatives ofcoordinates and asymptotically is a superposition of incom-
the functionse,(k,r),f,(k,r) andf,(—k,r) with respect to ing and outgoing waves.

[ 1 dﬂ(tk,r)ﬂk . 5

fo(xkr) dr

k are obtained from the radial Scliliager equation, Eq1), Now, let us consider the particular case whenk, is a
taking derivatives with respect toon both sides of the equa- resonant zero of the Jost functiofy(—k,) =0, with k, in
tion, the fourth quadrant of the compldxplane; then the coeffi-
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cient of the incoming wave in¢.(k,r) vanishes and The chain of Gamow-Jordan differential equations may

¢¢(k,,r) becomes proportional to the Gamow eigenfunctionalso be seen as being associated with the Gamow generalized

un¢(kn,r), which vanishes at the origin of the coordinateseigenfunctioru,,(k.,,r). From this point of view, an eigen-

and is an outgoing wave for large valuesrof functionu,,,(kn,,r) is selected and the generalized Gamow-
Jordan eigenfunctions are generated by successively solving
the equations

i
be(kn 1) = =7 (=D H (k) fo(—kn,r).  (66)
2 H U, (K 1) = Eti, (ki)

Then, Eq.(62) simplifies to R R
HEO) (ko1 = Enl S (K1) + (U 1),

dpe(k,r) dpe(Ky,r) [ f(—k)
( oK )k: ok, +2kg+1( oK )kff(k”’”' : (71)

()

n

HEOUE) (k1) = €05 (ki) + U85, P (K1)
From this expression, we see that, whenis a simple
zero of the Jost function, the coefficient of the incoming
wave in @¢(k,r)/dK), is nonvanishing[df,(—k)/dk]x  for as long as there exists a solution to the inhomogeneous
#0. Hence, the functioﬁadbg(k,r)/ak]kn, as a function of equation

r, behaves at infinity as a superposition of an outgoing wave
plus an incoming wave. © ~ i) ~(1-1)

Therefore, wherk, is a simple zero of the Jost function, (H = En Ui ¢ (Km T) = Uy ¢~ (Km 1), (72
¢¢(k,,r) is an unnormalized Gamow eigenfunction but
[a¢€(k,r)/ak]kn is not a generalized Gamow-Jordan eigen-
function.

When the Jost function has a double-resonance zeko at
=K, [df(— k)/ak]km vanishes and

for j=1,2,3...,s such thatu!)(k,r) vanish at the origin

of coordinates and at infinity they are outgoing waves.
From our previous discussion, it is fairly obvious that

these solutions exist as long &89 ¢, (k,r)/okD],  be-

haves as an outgoing wave whegoes to infinity for k|

dde(K,r) Ipe(Km,T) <s. But, this condition implies that all the coefficients of the
( K ) = . (68)  incoming waves ind"¢,(k,r)/dkl, which are the deriva-
km m tives of the Jost functiod 9 f(—k)/ok®] for 1<i<|

<s, vanish atk=k,. It follows that a necessary and suffi-
. ) cient condition for having a Gamow-Jordan chain of gener-
In this case, both functions ¢¢(ky,r) and  gjized resonance eigenfunctions of length1 associated

aqbe(klm,r)/&km, as fun_ctjons of r, vanish at the origin of the \yith the resonance energy eigenvalfjg= ﬁzkrzn/z,u is that
coordinates and at infinity they behave as outgoing wavesne jost function has a zero of ragk 1 atk=Kk,,, with k.,

Any linear combination ofe(Ky,r) and dé(km.r)/dkm iy the fourth quadrant of the complédxplane.

also vanishes at the origin and at infinity behaves as an out- Obviously, the length of any Gamow-Jordan chairh-k,()‘f)

going wave. e : (s+1)f ¢ (s+1) T
Therefore, when the Jost function has a doubIe—resonané% finite, since] J fe(=k)1ok ]kmgﬁo’ for some finite

zero atk=k,,, there is a set of two generalized eigenfunc-Value ofs, otherwisef ((—k) would be a constant. _
tions of the radial Schdinger equation,u, (k.,r) and Furthermore, the members of a Gamow-Jordan chain are

0. o(ko.r), such that Ilnegrly independent, as can be seen from the following rea-
' soning.
Let

H U (K, T) = EmUme (K F), (69)

S
- . > U (k1) =0, (73
H U0 (K, F) = EmUme(Ke F) +F Ume(ke 1), (70) =0

which satisfy the same boundary conditions, namely, thevith Um¢(Km 1) =u{S) Ky, 1), Ume(Km.r) = UG (kp.r), etc.
vanish at the origin and at infinity they behave as outgoingApplying the operatorii{") — £,,) from the left to both sides
waves. of Eqg. (73), and noting that
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2]

f(&=2 a8, (81)

i=0

(H{O = En) %y (km,1) =0, (74)

for j=1,...5—1, we obtain

the coefficientsa; are independent of.

N Then, from Eqs(79) and(81),
ag(HO =038, (k1) =0, (75

. fF(H Y upe (Ko, F) = F(Em)Ume (K1) - (82
but (H9—£)%U8) (k1) is equal to the Gamow eigen- romen, mme T,
function u,¢(kn,r) and is, hence, nonzero. Thus, ) o ) )
Taking derivatives with respect to the eigenvaltig on

both sides of Eq(82), we obtain,

as=0. (76)
Applying the operator (") — &)~ to the equation f(H(f))wzf(g )M
r Em m 0Em
s1 7 (En)
> aiu®(ky,r)=0, (77) g Ume(kmir). (83
= IEm
we, similarly, derive From this equation and the definition, Ed50), (51), and
(54), of Unme(Km,r), it follows immediately that
a5_1=0. (78)
f(H ) UK F) = (Eq) Ume (K F) + af(gm)u (K, T)
Repeating this procedure, the linear independence of the set™ " =~ ™™™ M= me Ay, MmN
of generalized eigenfunctions of the Gamow-Jordan chain is (84
established.
Notice that a necessary and sufficient condition for the exis-
IX. JORDAN BLOCKS IN THE COMPLEX tence of dup(ky,r)/d€y is the vanishing of [df

ENERGY BASIS (—k)/dk]y_.
The rule stated in Eq(84) permits us to calculate the
Giction off(Hﬁe)) on the generalized Gamow-Jordan vectors

A ] occurring in the complex basis expansidbs) and (59).
{Um¢(Km 1), Ume(km,r)}  of generalized Gamow-Jordan — Now, we can write the operatdi(H(")) in terms of its

eigenfunctions are linearly independent elements of the basjg5trix elements in the complex energy basis. This may be
set of eigenfunctions in the expansio(®8) and (59), we  y4ne by operating(H(“) from the left in both sides of Eq.
may represent any operatt(H ")), which is a regular func- (59 '
tion of the HamiltoniarH{") , in terms of its matrix elements '
in this basis.

Let us start by deriving an expression for the action of ) _
f(H{Y) on the generalized Gamow-Jordan eigenfunction f(H )X(r)_z’ FEvse(rvse )

ﬂme(km,r). With this purpose in mind, let us write the ei-

Once it has been established that the Gamow eigenfun
tions Une(Kp, 1) and the Jordan chain

genvalue equation satisfied b, (ky,,r) as + 0 F(E)Une(Kp ) (Unelx)
n#m
H U (K o) = EmUme (KT, 79 . af (&,
r m€( m ) m me( m ) ( ) + f(5m)ume(km,r)+ ;gm)ume(km,f)
m
where -
X(um€|X>+f(gm)umf(kmrr)(umAX)
2[ 42 2
po— N8 D g +;ff(5'>¢%+’<k’,r><¢%+>(k'>|x>dk’-
2up| dr? r? ¢
(85

v(r) is a well-behaved short-ranged potential that satisfies
the conditions stated in Sec. |. Now, let us consider a holoMultiplying both sides of Eq(85) by ®* (r) and integrating
morphic functionf (£) of the complex variabl€, such that  overr, we get
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(@IFHIONN) =2 (Plos) FEN Vsl x)F 2 (@[Une) T(En) (Unelx) +(P]Ume) F(Em) (Ul x)

~ af(gm) 2 (F) (! ’ ()t ’
+<Cb|um€) f(gm)(um€|)(>+a—€m(um€|)(> +;JC<(D|‘/’€ (k ))f(E )<‘/’€ (k )|X>dk- (86)

To simplify the notation, suppose that the system has no We first choosef (H{¥))=H{? . Then, from Eq.(87) we
bound states, only resonances, and that the first two resebtain
nances are degenerate. Rearranging(8®).in matrix form,
we get

. <<I>|f(HE“)|X>=(<<I>|u1e),<<I>|01e),<<1>|u3e), cal)
(@IF(HD) x)=(@[uge),(P[Uze) (Pugp), . . .)

& 1.0 0 . (a1€|X>
f(&r) &) 0 0 . 0 & 0 0 . (uelx)
9% x| 00 & 0 .|| (uyly)
0 f(&€1) 0 0 . 0 0 0 &
“I o 0 f(&) O
0 0 0 f(&4)
2 () /! 1/ g (F) L ’
# [ @lpOwE w0 hodk
(a14|X> (88)
(Urelx)

2 () ’
X1 (ugelx) T C@’W{ (k'))Hf(E)

From this example, it is evident that in a degeneracy of
two resonances in the absence of symmetry, the degenerate
complex eigenvalué€; occurs twice in the spectral represen-

XS (K| x)dK . (87)  tation of the radial Hamiltoniahi_ﬁ” given in Eq.(88), while
there is only one Gamow eigenvector or normal mode,
uq.(kqs,r), associated with the degeneracy. This is so be-
cause the Gamow-Jordan generalized eigenfunction or ab-

left 2x 2 submatrix is a Jordan block of rank [34—3¢  normal mOde,*]lf((lfq%'r)’ Is not an eigenfunction of the ra-
associated with the chain of Gamow-Jordan generalizedial HamiltonianH;™". This is a generic property of this kind
eigenfunctions {alf(klvr)iuw(klvr)} belonging to the of degeneracy, which may be stated in slightly more formal

double zero of the Jost functidn(—Kk) (double pole of the g(aerrqlse 2?3:52’;} Inﬂ?ei?g:ggiic%uﬁ rﬁcsi?n%n;ﬁams tlg? ZP'
scattering matrix and the Green’s functiofexcept for this y Y: g phcity Y 9

22 block, this matrix is diagonal with the eigenvalues than the geometric multiplicity. Here, we mean by algebraic

. : . : multiplicity of a degeneracyu,, the number of times the
f_(E,’n) in the diagonal entries. Simple zeros of the Jost func'degenerate complex eigenvalue is repeated, and by geomet-
tion correspond to simplgnonrepeated eigenvalues of

0 . i ric multiplicity of the degeneracy,y, the dimensionality of
f(H;™), while the double zero of,(—k) corresponds to the the subspace spanned by the eigenvectors associated with the

twice repeateddegenerateeigenvaluef(&;) occurring in : .
the Jordan block. The off-diagonal nonvanishing element indegrir;rate eigenvald4—3g.

this block isdf (&)1 €.
The difference in physical dimensions of the off-diagonal
and the diagonal entries in thex2 Jordan block is compen-
sated by theAdiﬁerence in normalization of the Gamow- B g (89)
Jordan chaiquq,(kq,r),uq¢(kq,r)} and the Gamow eigen-
functions u,.(k,,r) (n=3,4,...), which are normalized
according to Eqs(52), (53) and (54), and Eqs.(15), (29), Let us consider now, the complex energy representation of
respectively. the resolvent operator. In this cageH{")=1/(E—H").
It will be instructive to consider some simple examples. Then, from Eq.(87), we obtain,

In this matrix representation of(H!")) [37], the upper
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1 1 0
E-& (E-&)? i
1 (Uzelx)
0 0 0 .
E_é‘l (ul{7|X>
<¢)|E H(()|X> (@ uge) (PlULe) (P uge), - . .) 0 0 1 0 . (Use|x)
E-&
0 0 0 !
E-&,
—f (P HD) =g (KD bdK (90)

It may easily be verified that, when we delete the arbitrary functidifs) and y(r) in this expression, the resulting
expansion forr|[ 1/(E— Hﬁf))]|r’> is just the expansion in resonance eigenfunctions of the complete Green’s function

G(+)(k rr )_ hz s€(k!r)v:€(k'r’) 2 un{{(knvr)une(knar,) + um((kmar)um((kmarl)
21| s bound E+|Es| n#m E-&, (E—gm)z
states resonant

states

4 UK 1) U (KT + U (Ko7 U (i o) +3f PR (K
C

(E—&m) w (K—k'2) e o

The occurrence of the double pole Glfﬁ)(k;r,r’), as a function of the complex energy, is thus associated with the
occurrence of a Jordan block of rank 2 in the complex basis representation of the resolvent operator and a Jordan chain of
Gamow-Jordan generalized eigenfunctie@f]%(kl,r),ulg(kl,r)} associated with the double zero of the Jost function.

Finally, let us consider the time evolution operator exip{t). For each fixed value of the angular momentum, it will be
enough to consider the operatiH (") =exp(—iH{"t). In this case, from Eq87),

exp—i&t) —itexp(—i&t) 0 0
0 exp —i&qt) 0 0
(@]expt —iH{Ot) [ x) = (®[u1) (@[010) (Puse), . . ) 0 0 ex-ist) 0
0 0 0 expg—i&,t)
(a1e|X>
(uzelx) X
x| (Uaclx) +;f (®[gHK)yexp—i €Dk x)dK' . (92

As in the previous examples, the time evolution operatottimes an exponential in the off-diagonal entry. Hence, the
is nondiagonal in the complex energy basis representatioriime evolution of the Gamow-Jordan generalized eigenfunc-
The time evolution of the Jordan chain of Gamow-Jordantion or abnormal mode is a superposition of the abnormal

generalized eigenfunctionﬁﬁlg(kl,r),ulg(kl,r)} is given  modeuly(k;,r) evolving exponentially in time plus the nor-
by a Jordan block of 2 with an exponential time depen- mal modeu,,(k,r) evolving according to the product of a
dence in the diagonal entries and a first-order polynomiafirst-order polynomial times an exponential time evolution
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factor. The time evolution of the normal mode,(k;,r) in

the Gamow-Jordan chaifu,,(k;,r),us.(kq,r)}, as well as
the time evolution of all other normal modeg,(k,,,r) as-
sociated with the simple zeros of the Jost functisimple
poles of the scattering matpivare purely exponential.

An alternative derivation of the main results in this sec-
tion in the rigged Hilbert-space formulation of quantum me-
chanics may be found in the papers by Boathal.[25] and
Antoniou, Gadella, and PronK@6].

X. ORTHOGONALITY AND NORMALIZATION
INTEGRALS FOR GAMOW-JORDAN EIGENFUNCTIONS

As in the case of bound- and resonant-state eigenfunctions
associated with simple poles of the Green’s function, we may
derive orthogonality and normalization rules for the Gamow-
Jordan eigenstates in terms of regularized integrals of th

generalized Gamow-Jordan eigenfunctions. Following th
same procedure as by BerggrE32,33, it may be shown
that, whenf ,(—k’) has a double zero & =k,,, the follow-
ing relations are valid:

) kr:km

fmevr2d¢€(km!r)
0 dkm

d*f(—k')

——o fe(Km)
|8k§1(€+1) m ( dkr2

= lim do(Ky,r)dr (93

and

1

d3f(—k")
| 5| =L

Fal.,

m

dk'3

_(d%d—kj) 200+1) 1 dumw)
, km  fo(kp) dkg
dk? /o, ¢

o = 2 dde(Km1) 2

_BT»L (——aaf—)dr 94)

From the expressiofb1) for C,(k,) and Eqgs.(93) and
(94), it follows that

[Ferr
0

fwe_yr2d¢€(km!r)
0 dkm

12K,

m

dd)@(kmvr)
dk,,

2
lim dr+2C(Ky)

v—0

X[ lim

v—0

¢€(km,r)dr)=0,

(95

which may be rewritten as

e

PHYSICAL REVIEW 467, 022721 (2003

p dee(K,.,r 2
nmj e—vrz[Mmg(kmm(km,r) dr
olo dé,
::CﬁkaWnJ.e‘”2¢ﬁkm,0dr, (96)
»—07J0

but, according to Eq(32) and (33), when f,(—k) has a
double zero ak=k,,, the integral on the right-hand side of
Eqg. (96) vanishes. Therefore, the integrand on the left-hand
side of Eq.(96) is the square of the generalized Jordan-
Gamow eigenfunction, and the relati¢®4) translates into

lim

v—0

| et nar=o, @)
0

g/hich shows that also the regularized integral of the square
of the generalized Gamow-Jordan eigenfunction vanishes.
An expression for the normalization constakf, in
terms of a normalization integral may be obtained from Eq.
(93),

NZ,=lim

v—0

(98)

* 2 ka
f err Md)((km,r)dr
0

dé,,

Writing d¢,/d&,, in terms offm(km,r) and recalling that
the integral of¢p?(ky,,r) vanishes, we get

NZ,=lim

v—0

J:eﬂfz&s@(km,r>¢>e<km,r>dr, (99)

which shows that the right-hand side of E§9) is the nor-
malization integral for the Gamow-Jordan generalized eigen-
functions associated with a double-pole degeneracy of reso-
nances withNﬁw as given in Eq.(52). However, it is
convenient to note that this expression does not fix the nor-
malization rule fore,(k,,,r) and&be(km ,I) in a unique way.
Sinced (K ,r) ande,(ky,,r) are linearly independent, they
have different dimensions and their product has no obvious
interpretation in terms of observable quantities, therefore,
there is noa priori reason to normalize both functions with
the same normalization constant. Thus, we still have the free-
dom to write Eq.(99) as

[

Where/\/ﬁw is given in Eq.(52) and X,, is a nonvanishing
real or complex number that we associate with the double-
pole singularity of G{")(k;r,r’) at k=k,,. Therefore, a
more general normalization rule for the Gamow and
Gamow-Jordan generalized eigenfunction than that proposed
in Egs. (52)—(54) would be

lim

v—0

—wr? xm 3 1 -
e (md’e(km,r))(m(ﬁg(km,r) dr=1,
(100

1
um((km!r):md){’(kmvr) (101)
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and Une(k,r). These resonance poles are caused by zeros of the
Jost function lying in the fourth quadrant of the complex

(102 plane. Accordingly, a degeneracy of resonances, that is, the
exact coincidence of twgor more simple resonance poles

) ) L ) .. ofthe scattering matrix, results from the exact coincidence of
With this normalization, the orthogonality and normalization ,, o (or more simple resonance zeros of the Jost function,

integrals for the generalized Gamow-Jordan eigenfunctioq}vh-Ch merae into one doubker hiaher rank zero ving in

associated with a double pole of the Green’s function, Eqs‘theI fourthrguz;drant of theucc?;:plég(plarnre kz ying |

(33), (97), and(99), take the form We found that, associated with a double-resonance zero of
o ) the Jost function, there is a Jordan chain of leng{B® 36|

lim fo e ""uZ(Kp,rdr=0, (103 of generalized Gamow-Jordan eigenfunctions

0 {Ume¢(Km,T),Ume(Km,r)} belonging to the same degenerate
w ). complex energy eigenvalué,. Hence, the corresponding
Iimj e uﬁw(km,r)drzo, (104 second-rank pole occurring in the scattering mat8xk),
v—0 the Green's functiorG{™)(k;r,r’) and the scattering wave
function ¢{")(k,r) is also associated with this Jordan chain

. X -
umf(km1r):'/\[_€¢€(km1r)-

and of Gamow-Jordan generalized resonance eigenfunctions.
- , A As the two simple zeros of the Jost function merge into
lim f e " Ume(Ky, M) Upe(k,r)dr=1. (105  one double zero, the two Gamow eigenfunctions correspond-
v—070 ing to the two resonances that become degenerate merge into

one Gamow eigenfunction or normal mode belonging to the
~ The form of these orthogonality and normalization condi-double zero of the Jost function. The other element in the
tions is independent of the value of the constépt How-  jordan chain, namely, the Gamow-Jordan generalized eigen-
ever, if the Gamow-Jordan generalized eigenfunctions arfynction or abnormal mode is not a proper eigenfunction of
normalized according to Eq€l01) and(102), the expression  the radial Hamiltonian. Hence, at a degeneracy of reso-
for the residue at the double pole 6¢*)(k;r,r') would be  nances, one resonance eigenfunction or normal mode is lost,
explicitly dependent orX,, since a factoix?, will appear, and a new kind of generalized resonance eigenfunction or
multiplying the termup¢(Km,r)ume(km,r’) in the expres- abnormal mode is generated. Therefore, the dimensionality
sion for the residue at the double pole(bf)(k;r,r’) given  of the subspace of eigenfunctions associated with a degen-

in Eq. (92). eracy of two resonances or geometric multipligity of the
degeneracy is 1, yet, the number of times the degenerate
X2 Ume(Km o) Ume(Km P complex energy eigenvalue is repeated in the spectral repre-
(E_£.)? sentation ofH!”) or algebraic multiplicity of the degeneracy
m Mo is 2. It follows that the algebraic multiplicity is larger
Unne (K s F) Umne(Keny o T ')+ U (Ko F) U (Kpny o7 than the geometric multiplicity of a degeneracy of reso-

nances.
Explicit expressions for the normalized Gamow and
(1069  Gamow-Jordan generalized eigenfunctions in the Jordan
chain, written in terms of the outgoing wave Jost solution,
As is evident from the definitiof60), the generalized eigen- the Jost function, and its derivatives evaluated at the double
functions ¢ (Km.r) and ¢n¢(ky,r) have different dimen- zero, are obtained from the computation of the residue of the
sions, if one takeX,, of dimension(energy*?, the normal- ~ scattering waves!"(k,r) function at the double pole. The
ized eigenfunctionsi,,(ky,r) andan€(kn ,r) have the same chain of Gamow-Jordan generalized eigenfunctions are solu-
dimensions, namely,(energy ~*? so that when [X.,] tions of a Jordan chain of differential equations with the
= (energy}? the higher-order Gamow-Jordan vectors be-Same boundary conditions as those satisfied by the Gamow
come Jordan vectors with the same dimensions as th@igenfunctions.
Gamow vectors. We also showed that the Jordan chain of generalized
This freedom in the normalization rules could be used tetigenfunctions are elements of the complex biorthonormal
define normalized Gamow-Jordan eigenfunctions with thdasis formed by the redbound statgsand complex(reso-
same dimensions as those of the Gamow eigenfunctions agance statgeenergy eigenfunctions, which can be completed
sociated with simple poles @{")(k;r,r"). by means of a continuum of scattering wave functions of
complex wave number. This set is a complete basis of a
rigged Hilbert space. With the help of this result, we derived
expansion theoreméspectral representationfor operators
In the theory of the scattering of a beam of particles by af(HE‘;)), which are regular functions of the radial Hamil-
short-ranged potential, resonances are associated with the aonianH (" . In this basis, the operaté¢H (") is represented
currence of poles of the scattering mat8xk), the Green’s by a complex matrix which is diagonal except for one Jordan
function Gf)(k;r,r’), and the scattering wave function block of rank 2[35,36 associated with the double zero of

(E=&m)

XI. SUMMARY AND CONCLUSIONS
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the Jost function and the corresponding chain of generalizetion of the resolvent operator and the corresponding Jordan
eigenvectors. The diagonal entries in this matrix are the eiehain of Gamow-Jordan generalized eigenfunctions.

genvaluesf(&,), simple zeros of the Jost function corre-

spond to nondegenerate eigenvaluesf@i{"), while the
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