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Jordan blocks and Gamow-Jordan eigenfunctions associated with a degeneracy of unbound stat
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An accidental degeneracy of unbound states gives rise to a double pole in the scattering matrix, a double
zero in the Jost function, and a Jordan chain of length 2 of generalized Gamow-Jordan eigenfunctions of the
radial Schro¨dinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion
in bound- and resonant-state energy eigenfunctions plus a continuum of scattering wave functions of a complex
wave number. In this biorthonormal basis, any operatorf (Hr

(,)) which is a regular function of the Hamiltonian
is represented by a complex matrix that is diagonal except for a Jordan block of rank 2. The occurrence of a
double pole in the Green’s function, as well as the non exponential time evolution of the Gamow-Jordan
generalized eigenfunctions are associated with the Jordan block in the complex energy representation.
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I. INTRODUCTION

For many years now, it has been appreciated that there
distinct advantages in describing quantum resonances
the quantum phenomena associated with the production,
lution, and decay of unbound quantum states in terms
resonant or Gamow eigenstates, since many effects are
readily expressed and evaluated@1#.

The Gamow eigenstates represent unbound deca
states of a physical system in a situation in which there
no particles incident. Hence, the resonant or Gamow eig
functions are eigenfunctions of a self-adjoint Hamiltoni
which are regular at the origin of coordinates and behave
purely outgoing waves at infinity. The corresponding ene
eigenvalues are complex,En5En2 iGn/2, with En.Gn/2
.0. These resonance energy eigenvalues are precisely e
to the complex resonance energies of the system which o
as poles of the scattering matrix located in the lower half
the second or unphysical sheet of energy. Accordingly, a
generacy of resonances, that is, the exact coincidence of
~or more! simple resonance poles that merge to produce
double~or higher rank! pole of the scattering matrix result
from the degeneracy of two~or more! resonance energy e
genvalues of the Hamiltonian.

In this paper we are concerned with the degeneracy
resonance eigenstates in the absence of symmetry, the
comitant double~or higher order! poles of the scattering ma
trix, and the Gamow-Jordan generalized eigenfunctions
nondiagonal Jordan blocks in the complex energy repre
tation of the Hamiltonian which are associated with them

The possibility of multiple resonance poles in partia
wave scattering amplitudes and nonexponential decays o
associated unstable particles was already explicitly m
tioned in the classical paper by Goldberger and Watson@2#.
Afterwards, the possible occurrence of double poles in
scattering matrix was discussed in connection with proble
in nuclear @3# and hadron physics@4,5#. Some interesting
examples of interfering unbound two-level systems are
S51,T50,1,Jp521 doublet in 8Be @6–8#, theT50,1 dou-
blet of r and v mesons, and thes-Ks doublet of neutral
sigma andK mesons@7,9–12#. However, the initial interes
1050-2947/2003/67~2!/022721~15!/$20.00 67 0227
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declined because, although the phenomenon of reson
overlapping might be related to the occurrence of doub
pole resonances, at present, there is little empirical evide
for the existence of naturally occurring higher-order po
resonance states in nuclear or hadronic systems.

Later, it was realized that, when the resonant-states ca
manipulated by external parameters, i.e., the application
external fields, degeneracies of resonances can be ma
occur by simply adjusting the parameters. This interest
possibility brought about a renewed interest in the interf
ence effects of resonances, the crossing and anticros
properties of the energies and widths of two unbound lev
and the occurrence of double poles of the scattering ma
For example, it was pointed out that Stark mixing in an ato
@13# and the decay of Rabi oscillations in a two-level syste
@14# can induce degeneracies that lead to a double pole
cay.

Similarly, it was shown that degeneracies occur in t
two-color ionization of atoms using commensurate frequ
cies @15#. Hernández and Mondrago´n showed that the dou
blet of nuclear unbound states in8Be with S51 and T
50,1 is analytically connected with a degeneracy of re
nances@8#. It was also shown@16# that degeneracies of reso
nances occur when the ground~or excited! state of an atom is
strongly coupled to an autoionizing resonance. Kylstra a
Joachain@17# demonstrated double-pole degeneracies in
S matrix of laser-assisted electron-atom scattering.

The problem of the degeneracy of resonances also a
naturally in connection with the Berry phase of resona
states@15,18–20#, which was recently measured by Dem
bowskiet al. @21#. A detailed discussion of the geometric an
topological properties of the Berry phase acquired by t
closely spaced unbound states when they are adiabati
transported in parameter space around a degeneracy of
nances is given by Mondrago´n and Herna´ndez@19,20#.

Some examples of simple quantum-mechanical syst
with double poles in the scattering matrix have been rece
described. Vanrooseet al. @22# examined the formation o
resonant double poles of theSmatrix in a two-channel mode
with square-well potentials. Herna´ndez et al. @23# investi-
gated a one-channel model with two spherical concen
©2003 The American Physical Society21-1



a
e

nd
a
hm

pl
le
e

ia

e
y

ns
a

tio
in
n
a

ne
fo
in

ve
o
a

re

o
ar
n
n
le

r
th
r

iza
nc
e

a
.

a
n-
an

s of

y

wo

y

-

ten-
an

t

ity
ux

ng
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cavities bounded byd-function barriers, and showed that
double pole of theS matrix can be induced by tuning th
parameters of the model; Vanroose@24# generalized this
model to the case of two finite width barriers.

The formal theory of multiple-pole resonances a
Gamow-Jordan resonant-states in the rigged Hilbert-sp
formulation of quantum mechanics was developed by Bo
et al. @25# and Antoniouet al. @26#.

In the present paper, we deal with the problem of multi
poles of the scattering matrix and the generalized comp
energy eigenfunctions associated with them in the fram
work of the theory of the analytic properties of the rad
wave functions.

The plan of this paper is as follows. In Secs. II and III, w
introduce some basic concepts and fix the notation by wa
a short reminder of resonances and resonant-states in
theory of the analytic properties of the radial wave functio
In Sec. IV, bound- and resonant-state eigenfunctions
characterized as elements of a rigged Hilbert space. Sec
V and VI are devoted to a short discussion of the no-cross
rule for bound states and its nonapplicability to resona
states. In Sec. VII, we show that a double pole of the sc
tering wave function~double zero of the Jost function! is
associated with a chain of length 2 of Gamow-Jordan ge
alized eigenfunctions and derive explicit expressions
these generalized eigenfunctions in terms of the outgo
wave Jost solution, the Jost function, and its derivati
evaluated at the double pole. We also show that the Gam
Jordan generalized eigenfunctions in the Jordan chain
elements of a complete set of states containing the
~bound states! and complex~resonant-states! energy eigen-
functions plus a continuum of scattering wave functions
complex wave number. Section VIII, is devoted to the ch
acterization of the Gamow-Jordan generalized eigenfu
tions as solutions of a Jordan chain of differential equatio
In Sec. IX we derive expansion theorems in the comp
energy basis~spectral representations! for operatorsf (Hr

(,)),
which are regular functions of the radial HamiltonianHr

(,) ,
and show that, in this basis, the operatorf (Hr

(,)) is repre-
sented by a complex matrix, which is diagonal except fo
Jordan block of rank 2 associated with the double zero of
Jost function and the corresponding Jordan chain of gene
ized Gamow-Jordan eigenfunctions. We give the normal
tion and orthogonality rules for the generalized eigenfu
tions in the Jordan chain associated with the double pol
the Green’s function in Sec. X. We end our paper with
summary of the results and some conclusions in Sec. XI

II. REGULAR AND PHYSICAL SOLUTIONS
OF THE RADIAL EQUATION

The nonrelativistic scattering of a spinless particle by
short-range potentialv(r ) is described by the solution of
Schrödinger equation. When the potential is rotationally i
variant, the wave function is expanded in partial waves,
one is left with the radial equation

d2f,~k,r !

dr2
1Fk22

,~,11!

r 2
2v~r !Gf,~k,r !50. ~1!
02272
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As is usually done when discussing the analytic propertie
the solutions of Eq.~1! as functions ofk, rather than starting
by defining the physical solutionsc,

(1)(k,r ), we define the
regular and irregular solutions of Eq.~1! by boundary con-
ditions that lead to simple properties as functions ofk. The
regular solutionf,(k,r ) is uniquely defined by the boundar
condition @27#

lim
r→0

~2,11!!! r 2,21f,~k,r !51. ~2!

f,(k,r ) may be expressed as a linear combination of t
independent, irregular solutions of Eq.~1!, which behave as
outgoing and incoming waves at infinity:

f,~k,r !5 1
2 ik2,21@ f ,~2k! f ,~k,r !2~21!,

3 f ,~k! f ,~2k,r !#, ~3!

where f ,(2k,r ) is an outgoing wave at infinity defined b
the boundary condition

lim
r→`

exp~2 ikr ! f ,~2k,r !5~1 i !, ~4!

and f ,(k,r ) is an incoming wave at infinity related tof ,

(2k,r ) by

f ,~k,r !5~21!, f ,* ~2k,r ! ~5!

for k real and nonvanishing.
The Jost functionf ,(2k)5 f ,(2k,0) is given by

f ,~2k!5~21!,k,W@ f ,~2k,r !,f,~k,r !#, ~6!

whereW@ f ,g#5 f g82 f 8g is the Wronskian. The Jost func
tion f ,(2k) has zeros~roots! on the imaginary axis and in
the lower half of the complexk plane.

When the first and second absolute moments of the po
tial exist, and the potential decreases at infinity faster th
any exponential@e.g., if v(r ) has a Gaussian tail or if i
vanishes identically beyond a finite radius#, the functions
f ,(2k), f,(k,r ), andk, f ,(2k,r ), for fixed r .0, are en-
tire functions ofk @27#.

The scattering wave functionc,
(1)(k,r ) is the solution of

Eq. ~1!, which vanishes at the origin and behaves at infin
as the sum of a free incoming spherical wave of unit fl
plus a free outgoing spherical wave,

c,
(1)~k,0!50 ~7!

and

lim
r→`

$c,
(1)~k,r !2@ ĥ,

(2)~k,r !2S
,
~k!ĥ,

(1)~k,r !#%50. ~8!

In this expression,ĥ,
(2)(k,r ) and ĥ,

(1)(k,r ) are Ricatti-
Hankel functions that describe incoming and outgoi
waves, respectively,S,(k) is the scattering matrix.

Hence, the scattering wave functionc,
(1)(k,r ) and the

regular solution are related by
1-2
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JORDAN BLOCKS AND GAMOW-JORDAN . . . PHYSICAL REVIEW A67, 022721 ~2003!
c,
(1)~k,r !5

k,11f,~k,r !

f ,~2k!
, ~9!

and the scattering matrix is given by

S,~k!5
f ,~k!

f ,~2k!
. ~10!

The complete Green’s function for outgoing particles
resolvent of the radial equation may also be written in ter
of the regular solutionf,(k,r ), and the irregular solution
f ,(2k,r ) which behaves as an outgoing wave at infinity:

G,
(1)~k;r ,r 8!5~21!,11k,

f,~k,r ,! f ,~2k,r .!

f ,~2k!
. ~11!

III. BOUND- AND RESONANT-STATE EIGENFUNCTIONS

Bound- and resonant-state energy eigenfunctions are
solutions of Eq.~1! that vanish at the origin,

un,~kn,0!50, ~12!

and at infinity satisfy the boundary condition

lim
r→`

F 1

un,~kn ,r !

dun,~kn ,r !

dr
2 iknG50, ~13!

wherekn is a zero of the Jost function,

f ,~2kn!50. ~14!

From Eqs.~1! and ~3! we verify that all roots~zeros! of the
Jost function are associated with energy eigenfunctions
the Schro¨dinger equation.

From Eqs.~3!, ~4!, and~14!, bound states and Gamow o
resonance eigenfunctions are related to the regular solu
f,(k,r ) by

un,~kn ,r !5Nn,
21f,~kn ,r !, ~15!

whereNn, is a normalization constant. Due to the vanishi
of f ,(2kn), f,(kn ,r ) is now proportional to the outgoing
wave solutionf ,(2kn ,r ) of Eq. ~1!. Hence, bound-state an
resonant eigenfunctions take the form

un,~kn ,r !5Nn,
21 i

2

~21!,11

k,11
f ,~kn! f ,~2kn ,r !. ~16!

Bound-state eigenfunctions are associated with the z
of f ,(2k) that are on the positive imaginary axis, whi
resonant or Gamow state eigenfunctions belong to the z
of the Jost function that are in the fourth quadrant of
complexk plane.

Equation ~16! shows, in a very explicit way, that th
Gamow eigenfunctionsun,(kn ,r ) with kn5kn2 ign and
kn.gn.0 are solutions of Eq.~1! that vanish at the origin
and asymptotically behave as purely outgoing waves
02272
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oscillate between envelopes that increase exponentially
r, the corresponding energy eigenvaluesEn are complex with
ReEn.ImEn .

The bound-state eigenfunctionsus,(ks ,r ) are also solu-
tions of Eq.~1! that vanish at the origin and satisfy the ou
going wave boundary condition~13!, but, in this case the
wave number is purely imaginary, withks5 iks andks.0.
Hence, the outgoing wave solutionf ,(2ks ,r ) and the
bound-state eigenfunctionus,(ks ,r ) as functions ofr behave
asymptotically as decreasing exponentials vanishing ar
goes to infinity,

lim
r→`

us,,~ks ,r !50, ~17!

the corresponding energy eigenvaluesEs52\2ks
2/2m are

real and negative. Hence, the bound-state eigenfunctions
bounded for all values ofr and, as functions ofr, they are
square integrable.

IV. ENERGY EIGENFUNCTIONS AS ELEMENTS
OF A RIGGED HILBERT SPACE

Since bound-state radial eigenfunctions vanish at the
gin and are square integrable, they are elements of the
bert spaceH of square-integrable functions ofr,

H5L 2
„@0,̀ !,dr…. ~18!

Therefore, making an abstraction of the name of the eig
functions, we may refer to the formal differential expressi

Hr
(,)[

\2

2m F2
d2

dr2
1

,~,11!

r 2
1v~r !G , ~19!

occurring on the left-hand side of the radial Scho¨dinger
equation, Eq.~1!, as a ‘‘formal Hamiltonian,’’ which may be
considered~defined! as an operator acting in a space of fun
tions. If this space is the Hilbert spaceH of square-integrable
functions that vanish at the origin, the HamiltonianHr

, is
bounded from below and essentially self-adjoint@25#. By this
last statement we mean that, ifHr

(,)† is the adjoint ofHr
(,) in

H, andH̄r
(,) is the closure ofHr

(,) in H, then

Hr
(,)†5H̄r

(,)5Hr
(,) . ~20!

The self-adjointness~Hermiticity! of Hr
(,) in H implies that

Hr
(,) as an operator inH has only real eigenvalues. Henc

the Gamow state eigenfunctions cannot be elements of
space.

Indeed, due to their nondecreasing oscillating behavio
large values ofr, the scattering wave functionsc,

(1)(k,r )
and the Gamow eigenfunctionsun,,(kn ,r ) are not square-
integrable functions ofr, that is, they are not elements of th
Hilbert spaceH. In other words, the Hilbert spaceH is not
ample enough to contain either the scattering wave functi
associated with the real energies in the continuum spect
of Hr

(,) or the resonant eigenfunctions belonging to the co
plex eigenenergiesEn5\2kn

2/2m.
1-3
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If we want to consider all the physical solutions of th
radial Schro¨dinger equation~1! as elements of a space, the
a space larger than the Hilbert spaceH is required. This
larger space is a rigged Hilbert space@28#, which is a triplet
of spaces,

F,H,F3, ~21!

whereH is the Hilbert spaceL 2
„@0,̀ ),dr…, F is the space

of very well behaved functions inH ~the Schwarz space o
test functions, i.e., the subspace ofH of all functions admit-
ting derivatives at all orders and such that they and th
derivatives go to zero faster than any exponential at infini!,
andF3 is the space of antilinear functionals defined over
spaceF.

The domainD(Hr
(,)) of the radial Hamiltonian is the sub

space ofH with elements that are functionsf (r ) such that
they vanish at the origin and have a continuous derivative
@0,̀ ) and for which f 8(r ) is not only continuous but also
absolutely continuous over each compact subinterval
@0,̀ ) @29,30#. Thus the domain ofHr

(,) is

D~Hr
(,)!5$ f eL 2

„@0,̀ !,dr…u f eAC2@0,̀ !,Hr
(,) f eL 2

3„@0,̀ !,dr…, f ~0!50%. ~22!

Therefore, the domainD(Hr
(,)) of the HamiltonianHr

(,)

lies somewhere betweenF andH,

F,D~Hr
(,)!,H. ~23!

The action of the HamiltonianHr
(,) , which, as an opera

tor, is, in principle, only defined on the elements of its d
main in H, can be extended to the elements ofF3 by de-
fining the following extended operatorHr

(,)3 :

^wuHr
(,)3F&ª^Hr

(,)wuF&;weF, FeF3, ~24!

where the notation means, as usual,

^Hr
(,)wuF&5E

0

`

@Hr
(,)w~r !#* F~r !dr. ~25!

We verify that Eq.~24! is satisfied as

E
0

`

w* ~r !@Hr
(,)3F~r !#dr5E

0

`

@Hr
(,)w~r !#* F~r !dr.

~26!

Finally, using the definition~24! and Eq.~26!, and inte-
grating by parts on the right-hand side of Eq.~26!, when
F(r ) is the Gamow eigenfunctionun,(kn ,r ), we get

E
0

`

w* ~r !@Hr
(,)un~kn ,r !#dr5kn

2E
0

`

w* ~r !un~kn ,r !dr.

~27!

If the arbitrary test functionweF is omitted in this last equa
tion, we recover the differential equation

Hr
(,)un,~kn ,r !5kn

2un,~kn ,r !, ~28!
02272
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whereHr
(,) is the ‘‘formal’’ Hamiltonian given in Eq.~19!.

This last result shows that we may consider~define! the same
formal HamiltonianHr

(,) as an extended operatorH (,)3, act-
ing in the larger spaceF3 which contains the Hilbert spac
H of square-integrable functions, the scattering wave fu
tions, and the Gamow eigenfunctions. In such a space,
formal HamiltonianHr

(,) can have eigenfunctions that a
not square integrable and have complex energy eigenva
We also notice that whenHr

(,)3 is expressed as a forma
differential operator acting on the elements ofF3, it has
exactly the same form asHr

(,) given in Eq.~19!, which is
essentially self-adjoint, that is, Hermitian, in the Hilbe
spaceH.

Considered as elements of a rigged Hilbert space, Gam
eigenfunctions and scattering wave functions may be cha
terized as energy eigenkets. But whereas Dirac kets des
ing scattering states are associated with a real value of
energy in the continuous Hilbert-space spectrum of the s
adjoint HamiltonianHr

(,) , the Gamow eigenkets are not, b
have complex eigenvalues. The existence of these Gam
eigenfunctions~or eigenkets! allows us to interpret reso
nances as well-defined quantum states of physical syst
labeled with a complete set of quantum numbers.

V. THE NO-CROSSING RULE FOR BOUND-STATES

In the case of bound-states, the normalization cons
occurring in Eqs.~15! and~16! is related to the derivative o
the Jost function evaluated atks and it may also be expresse
as a normalization integral. The zero of the Jost function
on the positive imaginary axis, and the bound-state eig
function is quadratically integrable@for time reversal invari-
ant forcesf,( iks ,r ) is real#. Newton gives the following
expression@27#

Ns,
2 5

1

i4ks
2~,11! S d f,~2k!

dk D
ks

f ,~ks!5E
0

`

uf,~ks ,r !u2dr.

~29!

Since the normalization integral is positive and the fun
tion f ,(k) is regular atks5 iks , the derivative of the Jos
function evaluated atks5 iks cannot vanish. Therefore, th
zero of f ,(2k) at ks5 iks must be simple. The correspond
ing pole inG,

(1)(k;r ,r 8), c,
(1)(k,r ), andS,(k) must also be

simple.
It follows that, in the absence of symmetry, the re

negative-energy eigenvalues of the radial equation for a o
channel problem cannot be degenerate.

VI. CROSSING OF RESONANT STATES

In the case of a resonant-state, the zero of the Jost fu
tion f ,(2k) lies in the fourth quadrant of the complexk
plane,

kn5kn2 ign , ~30!

with kn.gn.0.
1-4
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The resonant or Gamow eigenfunctionf,(kn ,r ) is an
outgoing spherical wave of complex wave numberkn and
angular momentum,. Therefore, for large values ofr,
f,(kn ,r ) oscillates between envelopes that grow expon
tially with r. Hence, the integrals overr must be properly
defined. This may be done by means of a Gaussian regu
and a limiting procedure@31#; Berggren@32,33# gives the
following expression

1

i4kn
2~,11! S d f,~2k!

dk D
kn

f ,~kn!

5 lim
n→0

E
0

`

exp~2nr 2!f,
2~kn ,r !dr. ~31!

The integral on the right-hand side is a complex number
may vanish.

Sincef ,(kn) has no zeros in the lower half of the comple
k plane, the left-hand side of Eq.~31! vanishes only when
@d f,(2k)/dk#kn

vanishes. Then, we have two possibilitie

~i! When @d f,(2k)/dk#kn
does not vanish,f (2k) has a

simple zero atk5kn , the integral on the right-hand side o
Eq. ~31! does not vanish, and the normalization constantNn,

2

occurring in Eq.~15! is given by Eq.~31!.
~ii ! When

S d f,~2k!

dk D
kn

50, ~32!

the integral on the right-hand side of Eq.~31! vanishes,

lim
n→0

E
0

`

exp~2nr 2!f,
2~kn ,r !dr50, ~33!

and the Jost functionf ,(2k) has a multiple zero atk5kn .
In this case, the Green’s functionG,

(1)(k;r ,r 8), the scatter-
ing wave functionc,

(1)(k,r ) and the scattering matrixS,(k)
have a multiple pole atk5kn . The normalization constant o
the Gamow eigenfunction is no longer given by Eq.~31!.

Furthermore, it will be shown below that whenf ,(2k)
has a multiple zero@a multiple resonant pole of rankr in
G,

(1)(k;r ,r 8), c,
(1)(k,r ,), and S,(k)] the corresponding

complex energy eigenvalues are degenerate even in the
sence of symmetry. That is, the no-crossing rule does
hold for resonant eigenstates.

VII. COMPLETENESS AND THE EXPANSION IN
COMPLEX RESONANCE ENERGY EIGENFUNCTIONS

In this section, it will be shown that associated with
double zero of the Jost function@double pole of the scatter
ing wave function c,

(1)(k,r ), the Green’s function
G,

(1)(k;r ,r 8), and the scattering matrixS,(k)] there is a
chain of generalized Gamow-Jordan eigenfunctions, wh
together with the bound-state and resonant-state eigenf
tions form a biorthonormal set that may be completed wit
02272
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continuum of scattering wave functions of complex wa
number.

Given two square-integrable and very well behaved fu
tions F(r ) and x(r ), which decrease at infinity faster tha
any exponential, the completeness of the orthonormal se
bound-state and scattering solutions of the radial Schro¨dinger
equation@27# allows us to write

^Fux&5 (
s bound states

^Fuvs,,&^vs,,ux&

1
2

pE0

`

^Fuc,
(1)~k8!&^c,

(1)~k8!ux&dk8, ~34!

where^Fux& is the standard Dirac bracket notation

^Fux&5E
0

`

F* ~r !x~r !dr. ~35!

We shall assume that the Jost functionf ,(2k) has a
double zero atk5km in the fourth quadrant of the comple
k8 plane, all other zeros off ,(2k8) in that quadrant being
simple. Then the scattering functionc,

(1)(k8,r ), as function
of k8 complex, has one double-resonance pole atk85km and
simple resonance poles atk5kn , n51,2, . . . ,m21,m
11, . . . , all in thefourth quadrant of the complexk8 plane.
The functionc (1)* (k8,r ) is regular and has no poles in th
lower half of thek8 plane.

In order to make explicit the contribution of the resona
states to the expansion in eigenfunctions, the integration c
tour in the second term on the right-hand side of Eq.~34! is
deformed as shown in Fig. 1.

When the deformed contourC crosses over resonan
poles, the theorem of residues gives

FIG. 1. Integration contourC in the complexk8 plane.
1-5
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^Fux&5 (
s bound states

^Fuvs,,&^vs,,ux&

1 (
resonance poles

2p i ResF 2

p
^Fuc,

(1)~k8!&

3^c,
(1)~k8!ux&G1

2

pEC
^Fuc,

(1)~k8!&

3^c,
(1)~k8!ux&dk8. ~36!

The residues may be readily computed from equations~9!
and ~36!.

When f ,(2k8) has a simple zero atk85kn ,

2p i ResF 2

p
^Fuc,

(1)~k8!&^c,
(1)~k8!ux&G

k85kn

54i ResF ^Fuf,~k8!&^f,~k8!ux&k82(,11)

~k82kn!S d f,~2k8!

dk8
D f ,~k8!

G
k85kn

5
1

f ,~kn!

4ikn
2(,11) S d f,~2k8!

dk8
D

kn

@^Fuf,~k8!&#k85kn

3@^f,~k8!ux&#k85kn
, ~37!

where

@^Fuf,~k8!&#k85kn
5 lim

k8→kn

E
0

`

F* ~r !f,~k8,r !dr, ~38!

and

@^f,~k8!ux&#k85kn
5 lim

k8→kn

E
0

`

f,~k8,r !x~r !dr, ~39!

sincef,(k8,r ) is real and bounded fork8 real, the integrals
in Eqs.~38! and ~39! exist.

Furthermore, sincef,(kn ,r ) is an outgoing wave tha
oscillates between envelopes that grow exponentially at
finity andF(r ) andx(r ) are very well behaved functions o
r that decrease at infinity faster than any exponential,
integrals of the productsF* (r )f,(kn ,r ) andf,(kn ,r )x(r )
also exist, and we may take the limit indicated on the rig
hand side of Eqs.~38! and ~39! under the integration sign.

Therefore,

2p iResF 2

p
^Fuc,

(1)~k8!&^c,
(1)~k8!ux&G

k85kn

5^Fuun,~kn!…„un,~kn!ux&, ~40!

where the notation means
02272
-

e

-

^Fuun,„kn!)5E
0

`

F* ~r !un,~kn ,r !dr ~41!

and

~un,~kn!ux&5E
0

`

un,~kn ,r !x~r !dr, ~42!

The Gamow eigenfunction or normal modeun,(kn ,r ), is
given by Eq. ~16! and the normalization constantNn, is
given by

Nn,
2 5

1

i4kn
2(,11)

f ,~kn!S d f,~2k8!

dk8
D

kn

, ~43!

in agreement with Berggren’s result given in Eq.~31!.
When the Jost functionf ,(2k8) has a double zero atk8

5km , c,
(1)(k8,r ) has a double pole atk85km ,

c,
(1)~k8,r !5

f,~k8,r !k8(,11)

~k82km!2g,m~k8!
. ~44!

The functiong,m(k8) is regular atk85km and may be ex-
panded as

g,m~k8!5
1

2 S d2f ,~2k8!

dk82
D

km

1
1

6
~k82km!S d3f ,~2k8!

dk83
D

km

1••• ~45!

with

S d2f ,~2k8!

dk82
D

km

Þ0. ~46!

The function c,
(1)* (k8,r 8) is regular at k85km , since

f ,(k8) has no zeros in the lower half of the complexk8
plane,

c,
(1)* ~k8,r 8!5

f,~k8,r 8!k8(,11)

f ,~k8!
. ~47!

Thus, the residue of the term (2/p)^Fuc,
(1)(k8)&

3^c,
(1)(k8)ux& at the double pole ink85km is obtained

from the Cauchy integral formula as
1-6
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2p i ResF 2

p
^Fuc,

(1)~k8!&^c,
(1)~k8!ux&G

k85km

54i ResF ^Fuf,~k8!&^f,~k8!ux&k82(,11)

~k82km!2g,m~k8! f ,~k8!
G

k85km

54iF d

dk8
S ^Fuf,~k8!&^f,~k8!ux&k82(,11)

g,m~k8! f ,~k8!
D G

k85km

.

~48!

After computing the derivative indicated in Eq.~48! and
rearranging some terms, we obtain

2p i ResF 2

p
^Fuc,

(1)~k8!&^c,
(1)~k8!ux&G

k85km

5
1

N m,
2 @^Fuf̂,~km!&^f,~km!ux&

1^Fuf,~km!&^f̂,~km!ux&#, ~49!

where, according to Eq.~15!, f,(km ,r ) is the non-
normalized Gamow eigenfunction andf̂,(km ,r ) is a gener-
alized Gamow-Jordan eigenfunction or abnormal mo
given by

f̂,~km ,r !5
df,~km ,r !

dEm
1C,~km!f,~km ,r !, ~50!

Em is the complex energy eigenvalue,Em5(\2/2m)km
2 and

the constant factorC,(km) multiplying f,(km ,r ) in Eq. ~50!
is

C,~km!5
2m

\2

1

2kmF ,11

km
2

1

2

1

f ,~km!

d f,~km!

dkm

2
1

6 S d2f ,~2k8!

dk82
D

km

21S d3f ,~2k8!

dk83
D

km

G .

~51!

The normalization constantN ml
2 is now

N m,
2 5S 2m

\2 D 1

16ikm
2,13

f ,~km!S d2f ,~2k8!

dk82
D

km

. ~52!

The expression~49! suggests the following normalizatio
rule for the chain of Gamow-Jordan generalized eigenfu
tions belonging to a double zero of the Jost function:
02272
e

c-

um,~km ,r !5
1

Nm,
f,~km ,r ! ~53!

and

ûm,~km ,r !5
1

Nm,
f̂,~km ,r !. ~54!

Substitution of Eqs.~53! and ~54! in Eq. ~49! gives

2p i ResF 2

p
^Fuc,

(1)~k8!&^c,
(1)~k8!ux&G

k85km

5^Fuûm,~km!…„um,~km!ux&1^Fuum,~km!…„ûm,~km!ux&,

~55!

where the notation means

^Fuûm,~km!!5E
0

`

F* ~r !ûm,~km ,r !dr ~56!

and

„ûm,~km!ux&5E
0

`

ûm,,~km ,r !x~r !dr; ~57!

ûm,(km ,r ) is defined in Eq.~54!.
Finally, substitution of the expressions~40! and ~55! in

Eq. ~36! gives the following expansion:

^Fux&5 (
s bound states

^Fuvs,&^vs,ux&

1 (
nÞm resonances

^Fuun,!~un,ux&

1^Fuûm,~km!…„um,~km!ux&

1^Fuum,~km!…„ûm,~km!ux&

1
2

pEc
^Fuc,

(1)~k8!&^c,
(1)~k8!ux&dk8. ~58!

This expression shows that, when the Jost function has m
simple zeros and one double zero in the fourth quadran
the complexk plane, the Gamow eigenfunctionsun,(km ,r )
associated with simple zeros of the Jost function, and
chain $um,(km ,r ),ûm,(km ,r )% of Gamow-Jordan general
ized eigenfunctions associated with the double zero of
Jost function are basis elements of an expansion in gen
ized bound- and resonant-state eigenfunctions plus a
tinuum of scattering functions of complex wave valuesk8.
1-7
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Omitting the arbitrary functionF(r ) in Eq. ~58!, we ob-
tain the complex basis expansion of an arbitrary square i
grable and well-behaved functionx(r ),

x~r !5 (
s bound states

vs,~r !^vs,ux&1 (
nÞm

un,~kn ,r !~un,ux&

1ûm,~km ,r !~um,ux&1um,~km ,r !~ ûm,ux&

1
2

pEc
c,

(1)~k8,r !^c,
(1)~k8!ux&dk8. ~59!

In this expression,un,(kn ,r ) are the Gamow eigenfunc
tions representing decaying states associated with sim
resonance poles of the scattering wave functionc,

(1)(k,r ),
the matrixS(k), and the Green’s functionG(1)(k;r ,r 8). The

set$um,(km ,r ),ûm,(km ,r )% is a Jordan chain of length 2 o
generalized Gamow-Jordan eigenfunctions associated
the double pole of the scattering matrixS(k) and the Green’s
function G(1)(k;r ,r 8) at k5km . The last term on the right
hand side of Eq.~58! and ~59! is the background integra
defined along the integration contour shown in Fig. 1.

VIII. CHAINS OF GAMOW-JORDAN
GENERALIZED EIGENFUNCTIONS

The chain of Gamow-Jordan generalized eigenfunctio
introduced in the preceding section, may be characterize
solutions of a Jordan chain of differential equations with
same boundary conditions as those satisfied by the Gam
eigenfunctions.

According to the definition given in Eqs.~50! and ~54!,
the Gamow-Jordan generalized eigenfunctionûm,,(km ,r ) is
a linear combination of the Gamow eigenfunction and
derivative with respect to the complex energy eigenvalue

ûm,,~km ,r !5
1

Nm,,
F m

\2km

]f,~km ,r !

]km
1C,~km!f,~km ,r !G ,

~60!

where we have writtendEm5(\2/m)kmdkm , andEm is the
complex energy eigenvalue corresponding to the double
of the Jost function atk5km . Consequently, in order to cha
acterizeûm,,(km ,r ) as the solution of a differential equatio
with prescribed boundary conditions, it will be convenient
start by deriving the differential equation satisfied
]f,(k,r )/]k.

The differential equations satisfied by the derivatives
the functionsf,(k,r ), f ,(k,r ) and f ,(2k,r ) with respect to
k are obtained from the radial Schro¨dinger equation, Eq.~1!,
taking derivatives with respect tok on both sides of the equa
tion,
02272
e-

le

ith

s,
as
e
w

s

ro

f

d2ḟ,~k,r !

dr2
1Fk22

,~,11!

r 2
2v~r !G ḟ,~k,r !522kf,~k,r !,

~61!

in this equation we have used the notationḟ,(k,r )
5]f,(k,r )/]k. Similar expressions are valid forḟ ,(2k,r )
and ḟ ,(k,r ).

Let us recall again that, when the first and second abso
moments of the potentialv(r ) exist and the potential de
creases at infinity faster than any exponential@e.g., if v(r )
has a Gaussian tail or if it vanishes identically beyond a fin
radius#, the functionsk, f ,(2k,r ), f ,(2k), andf,(k,r ), for
fixed r .0, are entire functions ofk.

Therefore, the derivatives of these functions with resp
to the wave numberk exist and are entire functions ofk for
all values ofk in the complexk plane.

If we take derivatives with respect tok on both sides of
Eq. ~3!, the function ḟ,(k,r ) may be written as a linea
combination of the two linearly independent irregular so
tions f ,(k,r ) and f ,(2k,r ) and their derivatives with re-
spect tok,

ḟ,~k,r !52
,11

k
f,~k,r !1

i

2k,11
$@ ḟ ,~2k! f ,~k,r !

1 f ,~2k! ḟ ,~k,r !#2~21!,@ ḟ ,~k! f ,~2k,r !

1 f ,~k! ḟ ,~2k,r !#%. ~62!

From the boundary condition~2!, which defines the regu
lar solution f,(k,r ), it may be readily shown that, forr
close to zero@27#,

lim
r→0

]f,~k,r !

]k
' lim

r→0

2~,11!!!

2,13
r ,12~kr !50. ~63!

Similarly, from the boundary conditions satisfied by the
regular solutions, Eq.~4!, it follows that, for large values of
r,

f ,~6k,r !'e6 ikr . ~64!

Therefore,

lim
r→`

H 1

ḟ ,~6k,r !

d ḟ,~6k,r !

dr
6 ikJ 50, ~65!

that is, at infinity, ḟ ,(k,r ) is an incoming wave andḟ ,

(2k,r ) is an outgoing wave.
Therefore, from~3!, ~62!, ~63!, and ~65!, in the general

case of an arbitrary complex value ofk, the function
ḟ,(k,r ), as a function ofr, vanishes at the origin of the
coordinates and asymptotically is a superposition of inco
ing and outgoing waves.

Now, let us consider the particular case whenk5kn is a
resonant zero of the Jost function,f ,(2kn)50, with kn in
the fourth quadrant of the complexk plane; then the coeffi-
1-8
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cient of the incoming wave inf,(k,r ) vanishes and
f,(kn ,r ) becomes proportional to the Gamow eigenfunct
un,(kn ,r ), which vanishes at the origin of the coordinat
and is an outgoing wave for large values ofr,

f,~kn ,r !5
i

2kn
,11 ~21!,11f ,~kn! f ,~2kn ,r !. ~66!

Then, Eq.~62! simplifies to

S ]f,~k,r !

]k D
kn

5
]f,~kn ,r !

]kn
1

i

2kn
,11 S ] f ,~2k!

]k D
kn

f ,~kn ,r !.

~67!

From this expression, we see that, whenkn is a simple
zero of the Jost function, the coefficient of the incomi
wave in (]f,(k,r )/]k)kn

is nonvanishing,@] f ,(2k)/]k#kn

Þ0. Hence, the function@]f,(k,r )/]k#kn
, as a function of

r, behaves at infinity as a superposition of an outgoing w
plus an incoming wave.

Therefore, whenkn is a simple zero of the Jost function
f,(kn ,r ) is an unnormalized Gamow eigenfunction b
@]f,(k,r )/]k#kn

is not a generalized Gamow-Jordan eige
function.

When the Jost function has a double-resonance zerok
5km , @] f ,(2k)/]k#km

vanishes and

S ]f,~k,r !

]k D
km

5
]f,~km ,r !

]km
. ~68!

In this case, both functions f,(km ,r ) and
]f,(km ,r )/]km , as functions of r, vanish at the origin of th
coordinates and at infinity they behave as outgoing wav
Any linear combination off,(km ,r ) and ]f,(km ,r )/]km
also vanishes at the origin and at infinity behaves as an
going wave.

Therefore, when the Jost function has a double-resona
zero atk5km , there is a set of two generalized eigenfun
tions of the radial Schro¨dinger equation,um(km ,r ) and
ûm,,(km ,r ), such that

Hr
(,)um,~km ,r !5Emum,~km ,r !, ~69!

Hr
(,)ûm,~km ,r !5Emûm,~km ,r !1um,~k, ,r !, ~70!

which satisfy the same boundary conditions, namely, t
vanish at the origin and at infinity they behave as outgo
waves.
02272
e

-

t
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t-

ce
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The chain of Gamow-Jordan differential equations m
also be seen as being associated with the Gamow genera
eigenfunctionum,(km ,r ). From this point of view, an eigen
function um,(km ,r ) is selected and the generalized Gamo
Jordan eigenfunctions are generated by successively so
the equations

Hr
(,)um,

~km ,r !5Emum,
~km ,r !,

Hr
(,)ûm,

(1)~km ,r !5Emûm,

(1)~km ,r !1~um ,r !,

A ~71!

Hr
(,)ûm,

(s)~km ,r !5Eûm,

(s)~km,r !1ûm,

(s21)~km ,r !

for as long as there exists a solution to the inhomogene
equation

~Hr
(,)2Em!ûm,,

( j ) ~km ,r !5ûm,,
( j 21)~km ,r !, ~72!

for j 51,2,3, . . . ,s such thatûm,
( j ) (km,r ) vanish at the origin

of coordinates and at infinity they are outgoing waves.
From our previous discussion, it is fairly obvious th

these solutions exist as long as@] ( j )f,(k,r )/]k( j )#km
be-

haves as an outgoing wave whenr goes to infinity for 1< j
<s. But, this condition implies that all the coefficients of th
incoming waves in] ( j )f,(k,r )/]kj , which are the deriva-
tives of the Jost function@] ( i ) f ,(2k)/]k( i )# for 1< i< j
<s, vanish atk5km . It follows that a necessary and suffi
cient condition for having a Gamow-Jordan chain of gen
alized resonance eigenfunctions of lengths11 associated
with the resonance energy eigenvalueEm5\2km

2 /2m is that
the Jost function has a zero of ranks11 at k5km , with km
in the fourth quadrant of the complexk plane.

Obviously, the length of any Gamow-Jordan chain ofHr
(,)

is finite, since@] (s11)f ,(2k)/]k(s11)#km
Þ0, for some finite

value ofs, otherwisef ,(2k) would be a constant.
Furthermore, the members of a Gamow-Jordan chain

linearly independent, as can be seen from the following r
soning.

Let

(
i 50

s

a i ûm,
( i ) ~km ,r !50, ~73!

with um,(km ,r )5um,
(0)(km ,r ),ûm,(km ,r )5ûm,

(1)(km ,r ), etc.
Applying the operator (Hr

(,)2Em)s from the left to both sides
of Eq. ~73!, and noting that
1-9
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~Hr
(,)2Em!sûm,

( j ) ~km ,r !50, ~74!

for j 51, . . . ,s21, we obtain

as~Hr
(,)2Em!sûm,,

(s) ~km ,r !50, ~75!

but (Hr
(,)2Em)sûm,

(s) (km ,r ) is equal to the Gamow eigen
function um,(km ,r ) and is, hence, nonzero. Thus,

as50. ~76!

Applying the operator (Hr
(,)2Em)s21 to the equation

(
i 51

s21

a i ûm,
( i ) ~km ,r !50, ~77!

we, similarly, derive

as2150. ~78!

Repeating this procedure, the linear independence of the
of generalized eigenfunctions of the Gamow-Jordan chai
established.

IX. JORDAN BLOCKS IN THE COMPLEX
ENERGY BASIS

Once it has been established that the Gamow eigenf
tions un,(kn ,r ) and the Jordan chain

$um,(km ,r ),ûm,(km ,r )% of generalized Gamow-Jorda
eigenfunctions are linearly independent elements of the b
set of eigenfunctions in the expansions~58! and ~59!, we
may represent any operatorf (Hr

(,)), which is a regular func-
tion of the HamiltonianHr

(,) , in terms of its matrix elements
in this basis.

Let us start by deriving an expression for the action
f (Hr

(,)) on the generalized Gamow-Jordan eigenfunct

ûm,(km ,r ). With this purpose in mind, let us write the e
genvalue equation satisfied byum,(km ,r ) as

Hr
(,)um,~km ,r !5Emum,~km ,r !, ~79!

where

Hr
(,)52

\2

2m F d2

dr2
2v~r !2

,~,11!

r 2 G , ~80!

v(r ) is a well-behaved short-ranged potential that satis
the conditions stated in Sec. I. Now, let us consider a ho
morphic functionf (E) of the complex variableE, such that
02272
set
is

c-

sis

f
n

s
-

f ~E!5(
j 50

`

ajEj , ~81!

the coefficientsaj are independent ofE.
Then, from Eqs.~79! and ~81!,

f ~Hr
(,)!um,~km ,r !5 f ~Em!um,~km ,r !. ~82!

Taking derivatives with respect to the eigenvalueEm on
both sides of Eq.~82!, we obtain,

f ~Hr
(,)!

]um,~km ,r !

]Em
5 f ~Em!

]um,~km ,r !

]Em

1
] f ~Em!

]Em
um,~km ,r !. ~83!

From this equation and the definition, Eqs.~50!, ~51!, and
~54!, of ûm,(km ,r ), it follows immediately that

f ~Hr
(,)!ûm,~km ,r !5 f ~Em!ûm,~km ,r !1

] f ~Em!

]Em
um~km ,r !.

~84!

Notice that a necessary and sufficient condition for the e
tence of ]um,(km ,r )/]Em is the vanishing of @d f
(2k)/dk#km

.
The rule stated in Eq.~84! permits us to calculate the

action of f (Hr
(,)) on the generalized Gamow-Jordan vecto

occurring in the complex basis expansions~58! and ~59!.
Now, we can write the operatorf (Hr

(,)) in terms of its
matrix elements in the complex energy basis. This may
done by operatingf (Hr

(,)) from the left in both sides of Eq
~59!,

f ~Hr
(,)!x~r !5(

s
f ~Es!vs,~r !^vs,ux&

1 (
nÞm

f ~En!un,~kn ,r !~un,ux&

1S f ~Em!ûm,~km ,r !1
] f ~Em!

]Em
um,~km ,r ! D

3~um,ux&1 f ~Em!um,~km ,r !~ ûm,ux&

1
2

pEc
f ~E8!f,

(1)~k8,r !^f,
(1)~k8!ux&dk8.

~85!

Multiplying both sides of Eq.~85! by F* (r ) and integrating
over r, we get
1-10



JORDAN BLOCKS AND GAMOW-JORDAN . . . PHYSICAL REVIEW A67, 022721 ~2003!
^Fu f ~Hr
(,)!ux&5(

s
^Fuvs,! f ~Es!^vs,ux&1 (

nÞm
^Fuun,! f ~En!~un,ux&1^Fuûm,! f ~Em!~um,ux&

1^Fuum,!S f ~Em!~ ûm,ux&1
] f ~Em!

]Em
~um,ux& D1

2

pEc
^Fuc,

(1)~k8!& f ~E8!^c,
(1)~k8!ux&dk8. ~86!
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To simplify the notation, suppose that the system has
bound states, only resonances, and that the first two r
nances are degenerate. Rearranging Eq.~86! in matrix form,
we get

^Fu f ~Hr
(,)!ux&5~^Fuu1,!,^Fuû1,!,^Fuu3,!, . . . !

3S f ~E1!
] f ~E1!

]E1
0 0 .

0 f ~E1! 0 0 .

0 0 f ~E3! 0 .

0 0 0 f ~E4! .

. . . . .

D
3S ~ û1,ux&

~u1,ux&

~u3,ux&

.

.

D 1
2

pEc
^Fuc,

(1)~k8!& f ~E8!

3^c,
(1)~k8!ux&dk8. ~87!

In this matrix representation off (Hr
(,)) @37#, the upper

left 232 submatrix is a Jordan block of rank 2@34–36#
associated with the chain of Gamow-Jordan generali
eigenfunctions $û1,(k1 ,r ),u1,(k1 ,r )% belonging to the
double zero of the Jost functionf ,(2k) ~double pole of the
scattering matrix and the Green’s function!. Except for this
232 block, this matrix is diagonal with the eigenvalu
f (En) in the diagonal entries. Simple zeros of the Jost fu
tion correspond to simple~nonrepeated! eigenvalues of
f (Hr

(,)), while the double zero off ,(2k) corresponds to the
twice repeated~degenerate! eigenvaluef (E1) occurring in
the Jordan block. The off-diagonal nonvanishing elemen
this block is] f (E1)/]E1.

The difference in physical dimensions of the off-diagon
and the diagonal entries in the 232 Jordan block is compen
sated by the difference in normalization of the Gamo
Jordan chain$û1,(k1 ,r ),u1,(k1 ,r )% and the Gamow eigen
functions un,(kn ,r ) (n53,4, . . . ), which are normalized
according to Eqs.~52!, ~53! and ~54!, and Eqs.~15!, ~29!,
respectively.

It will be instructive to consider some simple example
02272
o
o-

d

-

n

l

-

We first choosef (Hr
(,))5Hr

(,) . Then, from Eq.~87! we
obtain

^Fu f ~Hr
(,)!ux&5~^Fuu1,!,^Fuû1,!,^Fuu3,!, . . . !

3S E1 1 0 0 .

0 E1 0 0 .

0 0 E3 0 .

0 0 0 E4 .

. . . . .

D S ~ û1,ux&

~u1,ux&

~u3,ux&

.

.

D
1

2

pEc
^Fuc,

(1)~k8!&E8^c,
(1)~k8!ux&dk8.

~88!

From this example, it is evident that in a degeneracy
two resonances in the absence of symmetry, the degen
complex eigenvalueE1 occurs twice in the spectral represe
tation of the radial HamiltonianHr

(,) given in Eq.~88!, while
there is only one Gamow eigenvector or normal mo
u1,(k1 ,r ), associated with the degeneracy. This is so
cause the Gamow-Jordan generalized eigenfunction or
normal mode,û1,(k1 ,r ), is not an eigenfunction of the ra
dial HamiltonianHr

(,) . This is a generic property of this kind
of degeneracy, which may be stated in slightly more form
terms as follows: In a degeneracy of resonances in the
sence of symmetry, the algebraic multiplicity is always larg
than the geometric multiplicity. Here, we mean by algebr
multiplicity of a degeneracy,ma , the number of times the
degenerate complex eigenvalue is repeated, and by geo
ric multiplicity of the degeneracy,mg , the dimensionality of
the subspace spanned by the eigenvectors associated wi
degenerate eigenvalue@34–36#.

Then,

ma.mg . ~89!

Let us consider now, the complex energy representatio
the resolvent operator. In this casef (Hr

(,))51/(E2Hr
(,)).

Then, from Eq.~87!, we obtain,
1-11



^Fu
1

E2Hr
(,)

ux&5~^Fuu1,!,^Fuû1,!,^Fuu3,!, . . . !1
1

E2E1

1

~E2E1!2
0 0 .

0
1

E2E1
0 0 .

0 0
1

E2E3
0 .

0 0 0
1

.2 S ~ û1,ux&

~u1,ux&

~u3,ux&

.

.

D
g

the
chain of

be
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E2E4

. . . . .

1
2

pEc
^Fuc,

(1)~k8!&
1

~E2E8!
^c,

(1)~k8!ux&dk8. ~90!

It may easily be verified that, when we delete the arbitrary functionsF(r ) and x(r ) in this expression, the resultin
expansion for̂ r u@1/(E2Hr

(,))#ur 8& is just the expansion in resonance eigenfunctions of the complete Green’s function

G,
(1)~k;r ,r 8!5

\2

2m F (
s bound

states

vs,~k,r !vs,* ~k,r 8!

E1uEsu
1 (

nÞm
resonant

states

un,~kn ,r !un,~kn ,r 8!

E2En
1

um,~km ,r !um,~km ,r 8!

~E2Em!2

1
um,~km ,r !ûm,~km ,r 8!1ûm,~km ,r !um,~km ,r 8!

~E2Em! G1
2

pEC

c,
(1)~k8,r !c,

(1)* ~k8,r 8!

~k22k82!
dk8. ~91!

The occurrence of the double pole inG,
(1)(k;r ,r 8), as a function of the complex energy, is thus associated with

occurrence of a Jordan block of rank 2 in the complex basis representation of the resolvent operator and a Jordan
Gamow-Jordan generalized eigenfunctions$û1,(k1 ,r ),u1,(k1 ,r )% associated with the double zero of the Jost function.

Finally, let us consider the time evolution operator exp(2iHt). For each fixed value of the angular momentum, it will
enough to consider the operatorf (Hr

(,))5exp(2iHr
(,)t). In this case, from Eq.~87!,

^Fuexp~2 iH r
(,)t !ux&5~^Fuu1,!,^Fuû1,!,^Fuu3,!, . . . !S exp~2 iE1t ! 2 i texp~2 iE1t ! 0 0 .

0 exp~2 iE1t ! 0 0 .

0 0 exp~2 iE3t ! 0 .

0 0 0 exp~2 iE4t ! .

. . . . .

D
3S ~ û1,ux&

~u1,ux&

~u3,ux&

.

.

D 1
2

pEc
^Fuc,

(1)~k8!&exp~2 iE8t !^c,
(1)~k8!ux&dk8. ~92!
to
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a

-
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nc-
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-
a
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As in the previous examples, the time evolution opera
is nondiagonal in the complex energy basis representa
The time evolution of the Jordan chain of Gamow-Jord

generalized eigenfunctions$û1,(k1 ,r ),u1,(k1 ,r )% is given
by a Jordan block of 232 with an exponential time depen
dence in the diagonal entries and a first-order polynom
02272
r
n.
n

l

times an exponential in the off-diagonal entry. Hence,
time evolution of the Gamow-Jordan generalized eigenfu
tion or abnormal mode is a superposition of the abnorm

modeû1,(k1 ,r ) evolving exponentially in time plus the nor
mal modeu1,(k,r ) evolving according to the product of
first-order polynomial times an exponential time evoluti
1-12
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factor. The time evolution of the normal modeu1,(k1 ,r ) in
the Gamow-Jordan chain$û1,(k1 ,r ),u1,(k1 ,r )%, as well as
the time evolution of all other normal modesun,(kn ,r ) as-
sociated with the simple zeros of the Jost function~simple
poles of the scattering matrix! are purely exponential.

An alternative derivation of the main results in this se
tion in the rigged Hilbert-space formulation of quantum m
chanics may be found in the papers by Bohmet al. @25# and
Antoniou, Gadella, and Pronko@26#.

X. ORTHOGONALITY AND NORMALIZATION
INTEGRALS FOR GAMOW-JORDAN EIGENFUNCTIONS

As in the case of bound- and resonant-state eigenfunct
associated with simple poles of the Green’s function, we m
derive orthogonality and normalization rules for the Gamo
Jordan eigenstates in terms of regularized integrals of
generalized Gamow-Jordan eigenfunctions. Following
same procedure as by Berggren@32,33#, it may be shown
that, whenf ,(2k8) has a double zero atk85km , the follow-
ing relations are valid:

1

i8km
2~,11!

f ,~km!S d2f ,~2k8!

dk82
D

k85km

5 lim
n→0

E
0

`

e2nr 2 df,~km ,r !

dkm
f,~km ,r !dr ~93!

and

1

i8km
2(,11)

f ,~km!F 1

3 S d3f ,~2k8!

dk83
D

k85km

2S d2f ,~2k8!

dk82
D

k85km

S 2~,11!

km
2

1

f ,~km!

d f,~km!

dkm
D G

5 lim
n→0

E
0

`

e2nr 2S df,~km ,r !

dkm
D 2

dr. ~94!

From the expression~51! for C,(km) and Eqs.~93! and
~94!, it follows that

lim
n→0

E
0

`

e2nr 2S df,~km ,r !

dkm
D 2

dr12C,~km!
\2km

m

3S lim
n→0

E
0

`

e2nr 2 df,~km ,r !

dkm
f,~km ,r !dr D 50,

~95!

which may be rewritten as
02272
-
-

ns
y
-
e
e

lim
n→0

E
0

`

e2nr 2Fdf,~km ,r !

dEm
1C,~km!f,~km ,r !G2

dr

5C,
2~km! lim

n→0
E

0

`

e2nr 2
f,

2~km ,r !dr, ~96!

but, according to Eq.~32! and ~33!, when f ,(2k) has a
double zero atk5km , the integral on the right-hand side o
Eq. ~96! vanishes. Therefore, the integrand on the left-ha
side of Eq. ~96! is the square of the generalized Jorda
Gamow eigenfunction, and the relation~94! translates into

lim
n→0

E
0

`

e2nr 2
f̂,

2~km ,r !dr50, ~97!

which shows that also the regularized integral of the squ
of the generalized Gamow-Jordan eigenfunction vanishe

An expression for the normalization constantN m,
2 in

terms of a normalization integral may be obtained from E
~93!,

N m,
2 5 lim

n→0
E

0

`

e2nr 2 df,~km ,r !

dEm
f,~km ,r !dr. ~98!

Writing df, /dEm in terms of f̂,(km ,r ) and recalling that
the integral off,

2(km ,r ) vanishes, we get

N m,
2 5 lim

n→0
E

0

`

e2nr 2
f̂,~km ,r !f,~km ,r !dr, ~99!

which shows that the right-hand side of Eq.~99! is the nor-
malization integral for the Gamow-Jordan generalized eig
functions associated with a double-pole degeneracy of re
nances withN m,

2 as given in Eq.~52!. However, it is
convenient to note that this expression does not fix the n
malization rule forf,(km ,r ) andf̂,(km ,r ) in a unique way.
Sincef,(km ,r ) andf̂,(km ,r ) are linearly independent, the
have different dimensions and their product has no obvi
interpretation in terms of observable quantities, therefo
there is noa priori reason to normalize both functions wit
the same normalization constant. Thus, we still have the f
dom to write Eq.~99! as

lim
n→0

E
0

`

e2nr 2S Xm

Nm,
f̂,~km ,r ! D S 1

XmNm,
f,~km ,r ! Ddr51,

~100!

whereN m,
2 is given in Eq.~52! and Xm is a nonvanishing

real or complex number that we associate with the doub
pole singularity of G,

(1)(k;r ,r 8) at k5km . Therefore, a
more general normalization rule for the Gamow a
Gamow-Jordan generalized eigenfunction than that propo
in Eqs.~52!–~54! would be

um,~km ,r !5
1

XmNm,
f,~km ,r ! ~101!
1-13
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HERNÁNDEZ, JÁUREGUI, AND MONDRAGÓN PHYSICAL REVIEW A 67, 022721 ~2003!
and

ûm,~km ,r !5
Xm

Nm,
f̂,~km ,r !. ~102!

With this normalization, the orthogonality and normalizati
integrals for the generalized Gamow-Jordan eigenfunc
associated with a double pole of the Green’s function, E
~33!, ~97!, and~99!, take the form

lim
n→0

E
0

`

e2nr 2
um,

2 ~km ,r !dr50, ~103!

lim
n→0

E
0

`

e2nr 2
ûm,

2 ~km ,r !dr50, ~104!

and

lim
n→0

E
0

`

e2nr 2
um,~km ,r !ûm,~k,r !dr51. ~105!

The form of these orthogonality and normalization con
tions is independent of the value of the constantXm . How-
ever, if the Gamow-Jordan generalized eigenfunctions
normalized according to Eqs.~101! and~102!, the expression
for the residue at the double pole ofG,

(1)(k;r ,r 8) would be
explicitly dependent onXm , since a factorXm

2 will appear,
multiplying the termum,(km ,r )um,(km ,r 8) in the expres-
sion for the residue at the double pole ofG,

(1)(k;r ,r 8) given
in Eq. ~91!.

Xm
2 um,~km ,r !um,~km ,r 8!

~E2Em!2

1
um,~km ,r !ûm,~km ,r 8!1ûm,~km ,r !um,~km ,r 8!

~E2Em!
.

~106!

As is evident from the definition~50!, the generalized eigen
functionsfn,(km ,r ) and f̂n,(km ,r ) have different dimen-
sions, if one takesXm of dimension~energy! 1/2, the normal-
ized eigenfunctionsun,(kn ,r ) and ûn,(kn ,r ) have the same
dimensions, namely,~energy! 21/2 so that when @Xm#
5(energy)1/2 the higher-order Gamow-Jordan vectors b
come Jordan vectors with the same dimensions as
Gamow vectors.

This freedom in the normalization rules could be used
define normalized Gamow-Jordan eigenfunctions with
same dimensions as those of the Gamow eigenfunctions
sociated with simple poles ofG,

(1)(k;r ,r 8).

XI. SUMMARY AND CONCLUSIONS

In the theory of the scattering of a beam of particles b
short-ranged potential, resonances are associated with th
currence of poles of the scattering matrixS,(k), the Green’s
function G,

(1)(k;r ,r 8), and the scattering wave functio
02272
n
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cn,(k,r ). These resonance poles are caused by zeros o
Jost function lying in the fourth quadrant of the complexk
plane. Accordingly, a degeneracy of resonances, that is,
exact coincidence of two~or more! simple resonance pole
of the scattering matrix, results from the exact coincidence
two ~or more! simple resonance zeros of the Jost functio
which merge into one double~or higher rank! zero lying in
the fourth quadrant of the complexk plane.

We found that, associated with a double-resonance zer
the Jost function, there is a Jordan chain of length 2@35,36#
of generalized Gamow-Jordan eigenfunctio

$ûm,(km ,r ),um,(km ,r )% belonging to the same degenera
complex energy eigenvalueEm . Hence, the correspondin
second-rank pole occurring in the scattering matrix,S,(k),
the Green’s functionG,

(1)(k;r ,r 8) and the scattering wave
function c,

(1)(k,r ) is also associated with this Jordan cha
of Gamow-Jordan generalized resonance eigenfunctions

As the two simple zeros of the Jost function merge in
one double zero, the two Gamow eigenfunctions correspo
ing to the two resonances that become degenerate merge
one Gamow eigenfunction or normal mode belonging to
double zero of the Jost function. The other element in
Jordan chain, namely, the Gamow-Jordan generalized ei
function or abnormal mode is not a proper eigenfunction
the radial Hamiltonian. Hence, at a degeneracy of re
nances, one resonance eigenfunction or normal mode is
and a new kind of generalized resonance eigenfunction
abnormal mode is generated. Therefore, the dimension
of the subspace of eigenfunctions associated with a de
eracy of two resonances or geometric multiplicitymg of the
degeneracy is 1, yet, the number of times the degene
complex energy eigenvalue is repeated in the spectral re
sentation ofHr

(,) or algebraic multiplicity of the degenerac
ma is 2. It follows that the algebraic multiplicity is large
than the geometric multiplicity of a degeneracy of res
nances.

Explicit expressions for the normalized Gamow a
Gamow-Jordan generalized eigenfunctions in the Jor
chain, written in terms of the outgoing wave Jost solutio
the Jost function, and its derivatives evaluated at the dou
zero, are obtained from the computation of the residue of
scattering wavec,

(1)(k,r ) function at the double pole. The
chain of Gamow-Jordan generalized eigenfunctions are s
tions of a Jordan chain of differential equations with t
same boundary conditions as those satisfied by the Gam
eigenfunctions.

We also showed that the Jordan chain of generali
eigenfunctions are elements of the complex biorthonorm
basis formed by the real~bound states! and complex~reso-
nance states! energy eigenfunctions, which can be complet
by means of a continuum of scattering wave functions
complex wave number. This set is a complete basis o
rigged Hilbert space. With the help of this result, we deriv
expansion theorems~spectral representations! for operators
f (Hr

(,)), which are regular functions of the radial Hami
tonianHr

(,) . In this basis, the operatorf (Hr
(,)) is represented

by a complex matrix which is diagonal except for one Jord
block of rank 2@35,36# associated with the double zero o
1-14
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the Jost function and the corresponding chain of general
eigenvectors. The diagonal entries in this matrix are the
genvaluesf (En), simple zeros of the Jost function corr
spond to nondegenerate eigenvalues off (Hr

(,)), while the
double zero of the Jost function corresponds to the tw
repeated~degenerate! eigenvaluef (Em) in the diagonal en-
tries of the Jordan block. The off-diagonal, nonvanishing
ement in this block is] f (Em)/]En . In particular, the occur-
rence of a double pole in the Green’s function, as a funct
of the complex energy, is thus associated with the occurre
of a Jordan block of rank 2 in the complex basis represe
n.

ith

02272
d
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ce
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tion of the resolvent operator and the corresponding Jor
chain of Gamow-Jordan generalized eigenfunctions.
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