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Generalized oscillator strength and Coulomb excitation
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Coulomb interaction is characterized by two nondimensional fundamental quantities: the Sommerfeld pa-
rametery and the adiabaticity parametér »;— »; . In this different approach, we choose these variables to
describe the behavior of the generalized oscillator strefG®S. The expression we obtain is valid for
scattering of electrons, positrons, and nuclei by arbitrary targets. We present asymptotic expansions, in the
guantal and semiclassical approximation, of the electric dipole GOS.
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I. INTRODUCTION

We develop a method of analysis to study gemeralized
oscillator strength(GOS

E k  doCPeif
f(K)=T'fk—; 222 ) dg_’ ) (1.2)

in the Coulomb excitation of atomic systerfis.

PACS nuntber34.10+x

wherea, is the Bohr radius.
The dimensionless Sommerfeld parameigris defined

by
| Z4Z,&  ZyZ,M

=Z.Z \/M
= ﬁvi ki L1452 Ei,

whereZ; (Z,) is the charge number of the projectiEomic
system, v; is the relative velocityk; is the wave number
measured i, ! units, M is the reduced mass in electron-

1.3

The GOS represents the dynamical response of the atomigass units, and; is the initial kinetic energy of relative
system to momentum transfer from a moving charged parmotion measured in rydberdd3.6 e\). The dimensionless
ticle. The GOS information, for both the valence and inner-adiabaticity paramete§ is defined by

shell excitations of atoms and molecules, is of great interest
in areas ranging from astrophysics and laser development to

radiation biology.

The difference in our approach resides in the choice of the

nondimensional variables; and ¢, and the deflection angle

0 [2,3], to describe the behavior of GOS. The expression we

Eif —1/2
fzﬂf—ﬂi:m[(l—g) —1}
M E_f —1/2
=77, \fg ( 1- ?') -1/, (1.4

obtain is valid for the scattering of electrons and nuclei bywhere the indices andf refer to the initial and final states,

arbitrary targets.

The parameter; measures the strength of the interaction

while the parametef gives an estimate of the collision time,
and thus measures whether the procesmpulsive(é<<1)

or adiabatic(£>1). We show in this paper a very important
property that the limiting value of the GOS, gsgoes to
zero, is the optical oscillator strengf®OS. This limiting
behavior of GOS may be used to put tiedative experimen-
tal differential cross sectiofDCS) on an absolute scale
[4-6].

respectively, andE;; =E;— E; is the energy loss of the pro-

‘jectile measured in rydbergs.

The traditional approach is to analyze the behavior of
GOS as a function ok or K? [7—16]. SinceK combines into
one variable the distinct contributions ahree variables 6,
7, and¢ or alternativelyd, E;, andE;;, the mathematical
analysis of GOS has been difficult, to say the least. Mzesane
and co-workers have used this approach to conduct in-depth
studies of GOS, for electron-impact excitation of neutral at-
oms(see Refs[17,18], and references thergin

The scalaiK denotes the magnitude of the momentum g o of the ground work for the present paper derives

change vectorhK =#k;—k;, when a particle is scattered
through an angl®. The squared magnitude of the veckor
is then given by

K?a3=k?+k?— 2kk;cod 6)

B lezM)2 ) o

—( oo L€ + 47 Si?(0/2)]

_ Eif ( Eif>1/2

=ME|2- ¢ ~2[1- £'| cos0)|, (12
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from earlier papergl9,20, henceforth referred to as | and II,
respectively.

We begin our discussion with the quantal expression
[21,22 of the electric dipole differential excitation cross sec-
tion,

do Bi—1) 9ZIM*fo dies(0,7;,8) .

= 1.
@0 amkE, A0 (9

2
0
which determines the angular distribution of inelastically
scattered particles in Coulomb excitati@3]. The differen-

tial cross section is obtained by asssuming the validity of the
first-order time-independent perturbation theory, i.e., the
Coulomb-Bethe approximation. We define the quantity
Z2M?f,, in Eq. (1.5 as the generalized OOS corresponding
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to transitioni—f. Notice that in the case of electron- or

positron-impact excitatior ;=1 andM=1.
The differential excitation function is given by

e ™
sinh( 7 77;) sinh( 77 7¢)

dfes(0,7;,8) _ 837
dQ 9¢?

X oFi(—inmi,—ins;1;x)

|

(1.6

dx| ~Xdx

We can convert the repulsive casg, £0) to the attractive
case (7;<0) by simply switching the signs of;, »;, and

&. The only, but crucial, effect of this transformation is to
replace the factor of exp(w¢), for repulsive potentials, by a

factor of exp(m¢€), for attractive potentials, in whicl§ is
positive. Throughout the paper we considgeand 6 positive.
The argumenk is defined by

x=—4 sirf( 49/2)77i—jf
£
(1-Ey /E)™2

= —4sirf(0/2)
e e e

1.7

where 6 is the deflection angle of the scattered particle

Gauss’s hypergeometric functiofr,(a,b;c;z) is defined by

JFi(abiciz)= 2, @O,

n=0 n!(c)n z (1.8)

within the circle of convergenciz| <1 and by analytic con-
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77_2

£(0,71.6)= 5 ToZiM?E 2 £24 Ao mysin?(612))

" e ¢ d
sinh(7r »;)sinh( 7 ;) dx

X 2Fi(—ini,—ins;1;x)

2). (2.1

—X&

We perform differentiation in the previous equation using
Eqg. (15.2.2 of Ref.[25] and, after some manipulation, we
obtain (Paper )

2
[(0,7,6) = (0 ZIMZ gy L&+ Ay s (612)]
e ¢
X — .
sinh( 7 7;) sinh( 7 7¢)
1=in;2X)F( 7, n5515%)]
+X[Re{(1-in)(1-in)F(2—in,
2—ine ;3 F(in,in 1,x)}
=2y F(L=in, 1=in:;2;%)|%]).

For neutral targetsZ,=0), the parameters, »;, and»;
vanish, and the argumeris finite for E;=E;; . In this case,

{2R4F(1-imn;,

2.2)

‘the hypergeometric functions reduce to elementary functions,

and one can show that
£(6,0,0)=f,Z2M?, (2.3

for arbitrary values of the colliding enerdy; . This limit is
known as the Lassettre limit theorgm).

tinuation elsewhere. Henceforth, we omit the subscripts and FOr ionized targetsZ,#0), this functional form of GOS

write ,F4(---) simply asF(---). We used the symbolic
computation progranmAPLE VI [23] to help us with the al-
gebraic manipulations.

II. GENERALIZED OSCILLATOR STRENGTH

By substituting Egs(1.2), (1.5, and(1.6) into Eqg.(1.2),
we obtain

7i ¢

is suitable for colliding energieg;— E;;, that is the argu-
mentx—0. The parameter§ and 7, on the other hand,
tend to infinity, whereasy; remains finite.

We also obtain an equivalent definition of GOS, appropri-
ate foré—0, i.e., the conditiorE;>E;; and ionized targets.
The definition below is also suitable f@~0, with 7;, 7;
—o, We use the analytic continuatiofs5.3.5 and(15.3.6
of Ref.[25], and some intricate manipulatigRaper } yields

f(0,7;,6)=m’foZ?M%e™ ¢

t4T2(ig)

IT(i €)]?
sinh( 7 a7;) sinh( 7 77¢)

|F(1+i77i)|2I‘(]_+im)|2[|m(el_93)—Re(e4)]

t4T2(ig)

| — -R
+m(rz(l—ini>r2‘(1+im>(e2 e5)> e(r2<1—ini>r2(1+inf>(e‘3))

IT(i &)?
IT(1+i7) | (1+in)|?

]
P2t 2|

[Im(e3) +Ree,)]+Im

tEr2(ig) )
P21 i) P2t i)

(2.9
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where
§2
= —rpyy
B [1-(1-E/E)Y?P?
[1—(1—E; /E) Y22+ 4sirf(6/2)(1— E;¢ [E;)) Y2

(2.5
and
er=—nF(1+in, 1-in 1-i&EOF(1—in,in,
1+i&)+pF(1+in, 1-in 1-i&t)
XF(—in;,1+ing;,1+i&1), (2.6)
e=—mF(1+in,1-in ; 1-i&OF(in, 1—iny;
=&+ pF(L+in 1—in 1—i&t)
XF(1+in,—in;1-i&t), 2.7
e3=—niF(1+in , 2=in ; 1-iEOF(1—in iy
1+i&0)+pF(2+in,1-ins 1-i&)
XF(=in,1+in;1+i&t), (2.9

€= nin[F(1+in , 2—=in  1-1&EOF(1—in,ins;
1+ +F(2+in,1-in;1-i&t)
XF(=in,1+in 1+i&t) —2F(1—in, 1+in;,
1+iEOF(L+in, 1-in 1-i&0)], 2.9
es=— miF(1+in;, 2—in ;1= &R (g, 1—iny;
1-i&)+niF(2+ing, 1-in1-i&t)
XF(A+in,—in;1—-i&t), (2.10
€= 7iF(L+in ,2=in 1-i&OF (g, 1-in;1-i&t)
+PF(2+im A=in - EOF(I+in, —in;

1—i&t) =2y pF2(L+in ,1—in1—i&t). (21D

The above expression has the advantage that all of the hy-
pergeometric functions are evaluated,at variable bounded
between zero and one, which is small provided the condition

(2.12

Y
<4y, ﬂf5|”2(§

holds. Over most of the angular range available, this condi
tion can be met for small enough so Eq.(2.4) is ideal for
taking the limité—0. A problem arises, however, wheh
=0 or E;=E;j;, since, in that casea=1. If E;=E;;, one
should use Eq(2.2). Accordingly, we distinguish the cases
0=0 and#+0. Figure 1 displays the variablas a function

of @ for different values of¢ and 7, .
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Ill. ANGLE 6=0

We can take the limit ag—0 in Eq.(2.2), provided we
also assume that+#0, i.e., the collision is inelastic. Under
these conditionsx=0 and, since all the hypergeometric
functions have the value of unity, we obtain

e ¢

sinh( 7 n;) sinh( 7 7)
(3.1

£(0,7;,€) = foZiM2m2 ;7

for ionized targets.

We consider the following possibilities.

(1) The initial kinetic energye;>E;; . It is then straight-
forward to show that/n;<1; see the definitiori1.4) of &.
If, in addition, we haver7;<1, then Eq.3.1) reduces to

2 2
T

f(0,7;,6)~foZiM e”f(l— : (3.2

to a second order imr»; . The same result was obtained by
Ancarani[16], using the standard approach of considering
GOS a function oK. Obviouslyf(0,0,0)=f,Z5M?,

(2) The initial kinetic energye;—E;;, i.e.,E{—0. Here,
the parameter§, n;—, whereasy; remains finite; see the
definitions (1.3) and (1.4) of # and ¢, respectively. The
asymptotic behavior of (0,7;,¢) as é—« is different for
repulsive and attractive potentials. It diverges linearly vgith
in the case of attractive potentials, and converges to zero for
repulsive ones

2n2,.-2 e
FOmi, =) =20 M iy S
&—o, attractive

(3.3

X .
e 2m0, repulsive.

(3) One may encounter situations in which it might be
correct to assume that;, 7;—o0, and¢ is finite (semiclas-
sical approximation This is the case of highly charged ions
being excited by incoming heavy particles. In such a limit,
we have the asymptotic behavior

fe13590, 0, £) ~ 4fZEM 272

attractive
e 27T§77i2e— 271'7”_)0’

7ie 20,
repulsive.
(3.9

IV. ANGLE 6+#0

The GOS is a rather complicated function of its param-
eters 9, 7;, and ¢é&. To study its asymptotic behavior, we
distinguish three cases, as @+ 0.

A. No energy loss(£—0)

The energy loss by the projectilg;; =E;—E;, is small
compared to its initial energlg; . We use Eq(2.4) and, upon
application of Eqs(6.1.29 and(6.1.3) of Ref.[25], we find

022717-3
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90 135 180
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FIG. 1. t=£%[4n(n+ &)sir’(6)] as a function of the deflection anglein degrees. We use the variable name= 7 and expressy;
as n+ ¢. For small values o€, the variablet is small compared to unity except for a narrow interval arodsd. At =0, t=1 for all

7 andé.

£(6, 7, ,g)zfozimzﬁiaeﬂé{ |m< el;f’*) —Re( ?)
+1m ew(ezg—zes —Re[eiv’? + |m(§)
+Re<§ +Im(e“"§ +Re(e“”§>“, 4.1

where the phase is given by

=7+a, (4.2

({ tET2(1+i ¢)
=ard —
e T T i T2 (1t i)

§2
E24 An nSirt(012)
—2argl’'(1—in)—2argl'(1+in), (4.3

a=—¢In +2argl’'(1+i¢)

and the parametdrby Eq. (2.5).

SinceE;>Ej;, &/ 7;<1, andé<1. ltis therefore a good
approximation to neglect the energy loss completely and (477izsin2( 3/2))
a=¢In .

consider the limit— 0. We also consider anglés such that
t=E%/[ 4 nsin?(612)]<1.

Since we have factorized the expressidri) into subex-
pressions, all of which have finite limits @&—0, we may
take the limits of each factor separately and combine them
afterwards. We expand the six subexpressi@®—(2.11) as
a series irg, making sure to take into account the additional
factors of &, due to the relation between the variables
=5+ &. Upon substitution of these asymptotic forms into
Eq. (4.2), we find

T

~ 2 PPTVEEN
(6,7 ,§)~folezsinf(7T§)

Xe‘”g{ coq o)+ ZST]@/Z)[J.—COQQ)]

— LS"’I(OZ) + 5—2
2sirf(6/2) 8 sirf( 6/2)

] , (4.9

(4.5

X|3[1l—coda)]—

4sirt(012)

where

62
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FIG. 2. The differentiaEl excitation functiom?El(n,f, 0)/dQ for various values ofy (7= n) as a function of the deflection angfe
in degrees—, quantal expression: —, classical expression. The limit @&-0 is independent of;. The plots are normalized so that
dfe,(0=180°)/dQ=1. With this normalization, there is no distinction between the repulsive and attractive cases.

Notice, of course, that we are left with the intensely anticli-

: 202 dfe (6,7,00 4 =«
mactic resultf (6, 7; &) —f,ZZM? asé—0. ) =93 : 4.7
In the limit of £2/(4 7, 7;Sik(612)<1, the differential ex- Sirf(6/2)
citation function(1.6) reduces to
dfe(6,7,6) 4 @ wé which coincides exactly with the classical result quoted by
a0 ~9 sir?(6/2) Sin(7) Alder et al. (see Secs. IIE.71 and 11 A.29 of R¢R4]). The

behavior of the quantal expression, and its convergence to

the classical expression is illustrated in Fig. 2.
X e ™ coq a)+

———[1—-coga)] Figure 3 shows the normalized exact GOS,
2sirf(612) f(6,7,)/1,Z2M?, for attractive potentials [replace exp
¢ & (—mé) by exp(+=é) in Eq. (4.1)], and different values of,

and ¢. For small¢, the GOS tends to the optical oscillator

- — Sin( @) + —
2sir’(6/2) 8 sirf'(6/2) strengthfZ2M?, as expected. Ag; increases, the contribu-

tion from small angles decreases. Figure 4 displays the ap-
B _ proximate GOS, given by E@4.4), as well the exact one, for
X . . Nl
3[1-cosa)] 4 sirt( 6/2) } (4. 7;=0.5 and£=0.1. The approximate form is in excellent
agreement with the exact GOS, for angles greater than 40°,
For £&—0, one obtains from Eq4.6) the formula i.e., £214n?sir?(6/2)<0.024.

022717-5
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FIG. 3. Quantal GOS, for an attractive Coulomb field, for various valuespofand ¢ [Eq. (4.1)]. The normalized function
f(6,7;,&)/f,Z5M? plotted as a function of the deflection anglén degrees.

B. Total-energy loss(§— ) 9(0,7)=Re 1F1(1—i%,2,20)1F1(1 7,1~ Z0)

The projectile transfers a large proportion of its energy to . . 2 0 i g
the target in the collision. In this cas&;—E; implies +2imi(1—-imsint| 5 [1F,(2=17,3:2
&, ms—o0 and #; finite. We begin with Eq(2.2) and, using ,
r_esults derived in Paper I!, we distinguish between the attrac X JFy(in ,1;20)]+47;i25in2()
tive and repulsive potentials 2

— X|1F1(1=in,2;20) |, (4.9

f(0.m.)=2feZiM mni g 90, m1)

£, attractive andzo=4 i7;sir?(0/2). In Figs. 5 and 6, we show the quo-

w ' _ (4.9 tient f(0,n;,£)/f(0,7;,£), calculated using the exact quan-

e 2m0, repulsive, tal expressiong2.2) for #+0 and(3.1) for =0, and the

asymptotic expressiong(6,7;,)=1(0,n;,E—»)/f(0,n; &
—o0). With this normalization of (6, »; ,£), there is no dis-

where tinction between the repulsive and attractive cases.
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FIG. 4. Normalized GOS, for an attractive Coulomb field, as a  FIG. 6. Normalized asymptotic GOg{«), plotted as a func-

function of the deflection anglé in degrees— —, quantal expres- tion of the deflection anglé in degrees, for increasing values gf
sion (4.1); —, approximate expressiof#.4) corresponding tof  [Ed. (4.8)].
—0.

whereK ,(z) is the modified Bessel function of the second
C. Semiclassical approximation:#; , p;—«, &= n;— #; finite kind, andK(z) is its derivative with respect to its argument
In the quantal expressiof2.4), we let 7; , 7;—, with z It is straightforward to show, using the relatio(%6.8,
L . . . clas ¢
the restriction that= »;— 7; remains finite, which leads to (9-6-95 and (9.6.27 of Ref. [25], that f**°Y0, 7 —,¢)
(Paper ) —foZiM* as¢—0.

Figures 7 and 8 show the correspondence of the quantum-
mechanical2.4) and the semiclassical resul.10 for at-
tractive potentials[replace expt &) by exp@ wé) in the
corresponding formuldsFigure 9 illustrates the singular be-

fclas 0, 1m—x,&)~f ZZMZ 2= 7
10,7, §)~1oZ1M7¢E S|r12(0/2)

) ¢ havior, at =0, of the semiclassical approximation &s
X co§(0/2)Ki§<Sin(0/2)) —0, namely,
'l felasg g, p—o,&) [0, for =0
: i (4.10 2 2 - f 0 (4.17
i€\ sin(612)) |’ foZIM 1, for 6+#0.

0 20 40 60 80 100 120 140 160 180
(3]

FIG. 5. Quantal GOS, for an attractive Coulomb field, for large  FIG. 7. Normalized GOS, for an attractive Coulomb field, plot-
values ofé. Normalized functiorf (0, %; ,£)/T(0,7; ,&) plotted as a  ted as a function of the deflection anglén degrees, foé=0.1 and
function of the deflection anglé in degrees— —, quantal expres- increasing values of;. ——, quantal expressiof2.4); —, semi-
sion(2.2); —, asymptotic expressiof@.8). With this normalization, classical expressio.10. The casen;=1.0 is almost indistin-
there is no distinction between the repulsive and attractive cases.guishable from they,— o case, except at very small angles.
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f(o"'ré)zo ﬁ M

[:]

FIG. 8. Normalized GOS, for an attractive Coulomb field, plot-  FIG. 9. Normalized asymptotic GOSp{—), plotted as a
ted as a function of the deflection anglén degrees, foé=1 and  function of the deflection anglé in degrees, for decreasing values
increasing values ofy . ——, quantal expressiof2.4); —, semi-  of ¢ [Eq.(4.10]. As £—0, €354, »; ,&)/f,Z7M? tends to one for
classical expressio.10. 6+ 0 and zero ford=0.

h lculati h b ¢ d ... from studying relativistic effects in the Born series approach,
The present calculations have been performed as an initighioy should be particularly relevant for the excitation or

step in a more general investigation of GOS and CoulomB, .- 4tion of heavy-atomic targets.
excitation. Future work will include the systematic applica-
tion and testing our formulation to the available data on
charged particles. We plan to improve our study of the
asymptotic behavior of GOS by considering the Coulomb- We would like to thank Dr. S. G. Davison for valuable
Born approximation, which will investigate the importance discussions. This work was supported in part by the Natural
of electron-exchange effects. A further extension could com&ciences and Engineering Research Council of Canada.
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