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Generalized oscillator strength and Coulomb excitation

Marita C. Chidichimo and Michael D. Thorsley*
Department of Applied Mathematics, University of Waterloo, Ontario, Canada N2L 3G1

~Received 20 September 2002; published 28 February 2003!

Coulomb interaction is characterized by two nondimensional fundamental quantities: the Sommerfeld pa-
rameterh and the adiabaticity parameterj5h f2h i . In this different approach, we choose these variables to
describe the behavior of the generalized oscillator strength~GOS!. The expression we obtain is valid for
scattering of electrons, positrons, and nuclei by arbitrary targets. We present asymptotic expansions, in the
quantal and semiclassical approximation, of the electric dipole GOS.

DOI: 10.1103/PhysRevA.67.022717 PACS number~s!: 34.10.1x
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I. INTRODUCTION

We develop a method of analysis to study thegeneralized
oscillator strength~GOS!

f ~K !5
Ei f

4

ki

kf
K2

dsCBe~ i→ f !

dV
, ~1.1!

in the Coulomb excitation of atomic systems@1#.
The GOS represents the dynamical response of the ato

system to momentum transfer from a moving charged p
ticle. The GOS information, for both the valence and inn
shell excitations of atoms and molecules, is of great inte
in areas ranging from astrophysics and laser developme
radiation biology.

The difference in our approach resides in the choice of
nondimensional variablesh i andj, and the deflection angle
u @2,3#, to describe the behavior of GOS. The expression
obtain is valid for the scattering of electrons and nuclei
arbitrary targets.

The parameterh i measures the strength of the interactio
while the parameterj gives an estimate of the collision time
and thus measures whether the process isimpulsive(j!1)
or adiabatic(j@1). We show in this paper a very importa
property that the limiting value of the GOS, asj goes to
zero, is the optical oscillator strength~OOS!. This limiting
behavior of GOS may be used to put therelativeexperimen-
tal differential cross section~DCS! on an absolute scale
@4–6#.

The scalar\K denotes the magnitude of the momentu
change vector,\K5\ki2\kf , when a particle is scattere
through an angleu. The squared magnitude of the vectorK
is then given by

K2a0
25ki

21kf
222kikfcos~u!

5S Z1Z2M

h ih f
D 2

@j214h ih fsin2~u/2!#

5MEiF22
Ei f

Ei
22S 12

Ei f

Ei
D 1/2

cos~u!G , ~1.2!

*Present address: Bios Group, 317 P˙aseo de Peralta, Santa F
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wherea0 is the Bohr radius.
The dimensionless Sommerfeld parameterh i is defined

by

h i5
Z1Z2e2

\v i
5

Z1Z2M

ki
5Z1Z2AM

Ei
, ~1.3!

whereZ1 (Z2) is the charge number of the projectile~atomic
system!, v i is the relative velocity,ki is the wave number
measured ina0

21 units, M is the reduced mass in electron
mass units, andEi is the initial kinetic energy of relative
motion measured in rydbergs~13.6 eV!. The dimensionless
adiabaticity parameterj is defined by

j5h f2h i5h iF S 12
Ei f

Ei
D 21/2

21G
5Z1Z2AM

Ei
F S 12

Ei f

Ei
D 21/2

21G , ~1.4!

where the indicesi and f refer to the initial and final states
respectively, andEi f 5Ei2Ef is the energy loss of the pro
jectile measured in rydbergs.

The traditional approach is to analyze the behavior
GOS as a function ofK or K2 @7–16#. SinceK combines into
one variable, the distinct contributions ofthree variables: u,
h i , andj or alternativelyu, Ei , andEi f , the mathematical
analysis of GOS has been difficult, to say the least. Mzes
and co-workers have used this approach to conduct in-d
studies of GOS, for electron-impact excitation of neutral
oms ~see Refs.@17,18#, and references therein!.

Some of the ground work for the present paper deri
from earlier papers@19,20#, henceforth referred to as I and I
respectively.

We begin our discussion with the quantal express
@21,22# of the electric dipole differential excitation cross se
tion,

dsCBe~ i→ f !

dV
5

9Z1
2M2f 0

4pki
2Ei f

d f̂E1~u,h i ,j!

dV
a0

2 , ~1.5!

which determines the angular distribution of inelastica
scattered particles in Coulomb excitation@2,3#. The differen-
tial cross section is obtained by asssuming the validity of
first-order time-independent perturbation theory, i.e.,
Coulomb-Bethe approximation. We define the quant
Z1

2M2f 0, in Eq. ~1.5! as the generalized OOS correspondi
©2003 The American Physical Society17-1
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to transition i→ f . Notice that in the case of electron- o
positron-impact excitation,Z151 andM51.

The differential excitation function is given by

d f̂E1~u,h i ,j!

dV
5

8p3h ih f

9j2

e2pj

sinh~ph i !sinh~ph f !

3
d

dx S 2x
d

dxU2F1~2 ih i ,2 ih f ;1;x!U2D .

~1.6!

We can convert the repulsive case (h i.0) to the attractive
case (h i,0) by simply switching the signs ofh i , h f , and
j. The only, but crucial, effect of this transformation is
replace the factor of exp(2pj), for repulsive potentials, by a
factor of exp(1pj), for attractive potentials, in whichj is
positive. Throughout the paper we considerj andu positive.

The argumentx is defined by

x524 sin2~u/2!
h ih f

j2

524 sin2~u/2!
~12Ei f /Ei !

1/2

@12~12Ei f /Ei !
1/2#2

, ~1.7!

where u is the deflection angle of the scattered partic
Gauss’s hypergeometric function2F1(a,b;c;z) is defined by

2F1~a,b;c;z!5 (
n50

`
~a!n~b!n

n! ~c!n
zn, ~1.8!

within the circle of convergenceuzu,1 and by analytic con-
tinuation elsewhere. Henceforth, we omit the subscripts
write 2F1(•••) simply asF(•••). We used the symbolic
computation programMAPLE VI @23# to help us with the al-
gebraic manipulations.

II. GENERALIZED OSCILLATOR STRENGTH

By substituting Eqs.~1.2!, ~1.5!, and~1.6! into Eq. ~1.1!,
we obtain
.

d

f ~u,h i ,j!5
p2

2
f 0Z1

2M2j22@j214h ih fsin2~u/2!#

3
e2pj

sinh~ph i !sinh~ph f !

d

dx

3S 2x
d

dxU2F1~2 ih i ,2 ih f ;1;x!U2D . ~2.1!

We perform differentiation in the previous equation usi
Eq. ~15.2.2! of Ref. @25# and, after some manipulation, w
obtain ~Paper II!

f ~u,h i ,j!5
p2

2
f 0Z1

2M2h ih fj
22@j214h ih fsin2~u/2!#

3
e2pj

sinh~ph i !sinh~ph f !
$2 Re@F~12 ih i ,

12 ih f ;2;x!F~ ih i ,ih f ;1;x!#

1x@Re$~12 ih i !~12 ih f !F~22 ih i ,

22 ih f ;3;x!F~ ih i ,ih f ;1;x!%

22h ih f uF~12 ih i ,12 ih f ;2;x!u2#%. ~2.2!

For neutral targets (Z250), the parametersj, h i , andh f
vanish, and the argumentx is finite for Ei>Ei f . In this case,
the hypergeometric functions reduce to elementary functio
and one can show that

f ~u,0,0!5 f 0Z1
2M2, ~2.3!

for arbitrary values of the colliding energyEi . This limit is
known as the Lassettre limit theorem@7#.

For ionized targets (Z2Þ0), this functional form of GOS
is suitable for colliding energiesEi→Ei f , that is the argu-
ment x→0. The parametersj and h f , on the other hand
tend to infinity, whereash i remains finite.

We also obtain an equivalent definition of GOS, approp
ate forj→0, i.e., the conditionEi@Ei f and ionized targets
The definition below is also suitable forj→” 0, with h i ,h f
→`. We use the analytic continuations~15.3.5! and~15.3.6!
of Ref. @25#, and some intricate manipulation~Paper I! yields
f ~u,h i ,j!5p2f 0Z1
2M2e2pj

h ih f

sinh~ph i !sinh~ph f !
H uG~ i j !u2

uG~11 ih i !u2G~11 ih f !u2
@ Im~e12e3!2Re~e4!#

1ImS t2 ijG2~ ij!

G2~12 ih i !G
2~11 ih f !

~e22e5!D 2ReS t2 ijG2~ ij!

G2~12 ih i !G
2~11 ih f !

~e6!D
1tF uG~ i j !u2

uG~11 ih i !u2G~11 ih f !u2
@ Im~e3!1Re~e4!#1ImS t2 ijG2~ ij!

G2~12 ih i !G
2~11 ih f !

~e5!D
1ReS t2 ijG2~ ij!

G2~12 ih i !G
2~11 ih f !

~e6!D G J , ~2.4!

022717-2
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where

t5
j2

j214h ih fsin2~u/2!

5
@12~12Ei f /Ei !

1/2#2

@12~12Ei f /Ei !
1/2#214sin2~u/2!~12Ei f /Ei !

1/2
,

~2.5!

and

e152h iF~11 ih i ,12 ih f ;12 i j;t !F~12 ih i ,ih f ;

11 i j;t !1h fF~11 ih i ,12 ih f ;12 i j;t !

3F~2 ih i ,11 ih f ;11 i j;t !, ~2.6!

e252h fF~11 ih i ,12 ih f ;12 i j;t !F~ ih i ,12 ih f ;

12 i j;t !1h iF~11 ih i ,12 ih f ;12 i j,t !

3F~11 ih i ,2 ih f ;12 i j;t !, ~2.7!

e352h iF~11 ih i ,22 ih f ;12 i j;t !F~12 ih i ,ih f ;

11 i j;t !1h fF~21 ih i ,12 ih f ;12 i j;t !

3F~2 ih i ,11 ih f ;11 i j;t !, ~2.8!

e45h ih f@F~11 ih i ,22 ih f ;12 i j;t !F~12 ih i ,ih f ;

11 i j;t !1F~21 ih i ,12 ih f ;12 i j;t !

3F~2 ih i ,11 ih f ;11 i j;t !22F~12 ih i ,11 ih f ;

11 i j;t !F~11 ih i ,12 ih f ;12 i j;t !#, ~2.9!

e552h fF~11 ih i ,22 ih f ;12 i j;t !F~ ih i ,12 ih f ;

12 i j;t !1h iF~21 ih i ,12 ih f ;12 i j;t !

3F~11 ih i ,2 ih f ;12 i j;t !, ~2.10!

e65h f
2F~11 ih i ,22 ih f ;12 i j;t !F~ ih i ,12 ih f ;12 i j;t !

1h i
2F~21 ih i ,12 ih f ;12 i j;t !F~11 ih i ,2 ih f ;

12 i j;t !22h ih fF
2~11 ih i ,12 ih f ;12 i j;t !. ~2.11!

The above expression has the advantage that all of the
pergeometric functions are evaluated att, a variable bounded
between zero and one, which is small provided the condi

j2!4h ih fsin2S u

2D ~2.12!

holds. Over most of the angular range available, this con
tion can be met for small enoughj, so Eq.~2.4! is ideal for
taking the limit j→0. A problem arises, however, whenu
50 or Ei5Ei f , since, in that case,t[1. If Ei5Ei f , one
should use Eq.~2.2!. Accordingly, we distinguish the case
u50 anduÞ0. Figure 1 displays the variablet as a function
of u for different values ofj andh i .
02271
y-

n

i-

III. ANGLE uÄ0

We can take the limit asu→0 in Eq. ~2.2!, provided we
also assume thatjÞ0, i.e., the collision is inelastic. Unde
these conditions,x50 and, since all the hypergeometr
functions have the value of unity, we obtain

f ~0,h i ,j!5 f 0Z1
2M2p2h ih f

e2pj

sinh~ph i !sinh~ph f !
~3.1!

for ionized targets.
We consider the following possibilities.
~1! The initial kinetic energyEi@Ei f . It is then straight-

forward to show thatj/h i!1; see the definition~1.4! of j.
If, in addition, we haveph i!1, then Eq.~3.1! reduces to

f ~0,h i ,j!' f 0Z1
2M2e2pjS 12

p2h i
2

3 D , ~3.2!

to a second order inph i . The same result was obtained b
Ancarani @16#, using the standard approach of consideri
GOS a function ofK. Obviously f (0,0,0)5 f 0Z1

2M2.
~2! The initial kinetic energyEi→Ei f , i.e., Ef→0. Here,

the parametersj,h f→`, whereash i remains finite; see the
definitions ~1.3! and ~1.4! of h i and j, respectively. The
asymptotic behavior off (0,h i ,j) as j→` is different for
repulsive and attractive potentials. It diverges linearly withj
in the case of attractive potentials, and converges to zero
repulsive ones

f ~0,h i ,j→`!'2 f 0Z1
2M2p2h i

e2ph i

sinhp~h i !

3H j→`, attractive

je22pj→0, repulsive.
~3.3!

~3! One may encounter situations in which it might b
correct to assume thath i , h f→`, andj is finite ~semiclas-
sical approximation!. This is the case of highly charged ion
being excited by incoming heavy particles. In such a lim
we have the asymptotic behavior

f class~0,h i→`,j!'4 f 0Z1
2M2p2

3H h i
2e22ph i→0, attractive

e22pjh i
2e22ph i→0, repulsive.

~3.4!

IV. ANGLE uÅ0

The GOS is a rather complicated function of its para
etersu, h i , and j. To study its asymptotic behavior, w
distinguish three cases, as inu50.

A. No energy loss„j\0…

The energy loss by the projectile,Ei f 5Ei2Ef , is small
compared to its initial energyEi . We use Eq.~2.4! and, upon
application of Eqs.~6.1.29! and~6.1.31! of Ref. @25#, we find
7-3
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FIG. 1. t5j2/@4h(h1j)sin2(u)# as a function of the deflection angleu in degrees. We use the variable nameh i5h and expressh f

ash1j. For small values ofj, the variablet is small compared to unity except for a narrow interval aroundu50. At u50, t[1 for all
h andj.
n

em

al

to
f ~u,h i ,j!5 f 0Z1
2M2

pj

sinh~pj!
e2pjH ImS e12e3

j2 D 2ReS e4

j2D
1ImFeiwS e22e5

j2 D G2ReFeiw
e6

j2G1tF ImS e3

j2D
1ReS e4

j2D 1ImS eiw
e5

j2D 1ReS eiw
e6

j2D G J , ~4.1!

where the phasew is given by

w5argF2
t2 i jG2~11 i j!

G2~12 ih i !G
2~11 ih f !

G5p1a, ~4.2!

a52j lnS j2

j214h ih fsin2~u/2!
D 12 argG~11 i j!

22 argG~12 ih i !22 argG~11 ih f !, ~4.3!

and the parametert by Eq. ~2.5!.
SinceEi@Ei f , j/h i!1, andj!1. It is therefore a good

approximation to neglect the energy loss completely a
consider the limitj→0. We also consider anglesu, such that
t5j2/@4h ih fsin2(u/2)#!1.
02271
d

Since we have factorized the expression~4.1! into subex-
pressions, all of which have finite limits asj→0, we may
take the limits of each factor separately and combine th
afterwards. We expand the six subexpressions~2.6!–~2.11! as
a series inj, making sure to take into account the addition
factors of j, due to the relation between the variablesh f
5h i1j. Upon substitution of these asymptotic forms in
Eq. ~4.1!, we find

f ~u,h i ,j!' f 0Z1
2M2

pj

sinh~pj!

3e2pjH cos~a!1
1

2sin2~u/2!
@12cos~a!#

2
j

2sin2~u/2!
sin~a!1

j2

8 sin4~u/2!

3F3@12cos~a!#2
1

4sin2~u/2!
G J , ~4.4!

where

a5j lnS 4h i
2sin2~u/2!

j2 D . ~4.5!
7-4
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FIG. 2. The differentialE1 excitation functiond f̂E1(h,j,u)/dV for various values ofh (h i5h) as a function of the deflection angleu
in degrees.2, quantal expression;22, classical expression. The limit asj→0 is independent ofh. The plots are normalized so tha

d f̂E1(u5180°)/dV51. With this normalization, there is no distinction between the repulsive and attractive cases.
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Notice, of course, that we are left with the intensely antic
mactic resultf (u,h i ,j)→ f 0Z1

2M2 asj→0.
In the limit of j2/(4h ih fsin2(u/2)!1, the differential ex-

citation function~1.6! reduces to

d f̂E1~u,h i ,j!

dV
'

4

9

p

sin2~u/2!

pj

sinh~pj!

3e2pjH cos~a!1
1

2sin2~u/2!
@12cos~a!#

2
j

2sin2~u/2!
sin~a!1

j2

8 sin4~u/2!

3F3@12cos~a!#2
1

4 sin2~u/2!
G J . ~4.6!

For j→0, one obtains from Eq.~4.6! the formula
02271
- d f̂E1~u,h i ,0!

dV
5

4

9

p

sin2~u/2!
, ~4.7!

which coincides exactly with the classical result quoted
Alder et al. ~see Secs. II E.71 and II A.29 of Ref.@24#!. The
behavior of the quantal expression, and its convergenc
the classical expression is illustrated in Fig. 2.

Figure 3 shows the normalized exact GO
f (u,h i ,j)/ f 0Z1

2M2, for attractive potentials @replace exp
(2pj) by exp(1pj) in Eq. ~4.1!#, and different values ofh i
and j. For smallj, the GOS tends to the optical oscillato
strengthf 0Z1

2M2, as expected. Ash i increases, the contribu
tion from small angles decreases. Figure 4 displays the
proximate GOS, given by Eq.~4.4!, as well the exact one, fo
h i50.5 andj50.1. The approximate form is in excellen
agreement with the exact GOS, for angles greater than 4
i.e., j2/4h i

2sin2(u/2)<0.024.
7-5
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FIG. 3. Quantal GOS, for an attractive Coulomb field, for various values ofh i and j @Eq. ~4.1!#. The normalized function
f (u,h i ,j)/ f 0Z1

2M2 plotted as a function of the deflection angleu in degrees.
t

ra

-
-

B. Total-energy loss„j\`…

The projectile transfers a large proportion of its energy
the target in the collision. In this case,Ei→Ei f implies
j,h f→` and h i finite. We begin with Eq.~2.2! and, using
results derived in Paper II, we distinguish between the att
tive and repulsive potentials

f ~u,h i ,j!'2 f 0Z1
2M2p2h i

e2ph i

sinh~p~h i !
g~u,h i !

3H j→`, attractive

je22pj→0, repulsive,
~4.8!

where
02271
o

c-

g~u,h i !5Re@1F1(12 ih i ,2;z0!1F1~ ih i ,1;2z0!

12ih i~12 ih i !sin2S u

2D 1F1~22 ih i ,3;z0

3 1F1~ ih i ,1;2z0!#14h i
2sin2S u

2D
3u 1F1~12 ih i ,2;z0!u2, ~4.9!

and z054 ih isin2(u/2). In Figs. 5 and 6, we show the quo
tient f (u,h i ,j)/ f (0,h i ,j), calculated using the exact quan
tal expressions~2.2! for uÞ0 and ~3.1! for u50, and the
asymptotic expressiong(u,h i)5 f (u,h i ,j→`)/ f (0,h i ,j
→`). With this normalization off (u,h i ,j), there is no dis-
tinction between the repulsive and attractive cases.
7-6
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C. Semiclassical approximation:h i ,h f\`, jÄh fÀh i finite

In the quantal expression~2.4!, we let h i ,h f→`, with
the restriction thatj5h f2h i remains finite, which leads to
~Paper I!

f class~u,h i→`,j!' f 0Z1
2M2j2e2pj

1

sin2~u/2!

3H cos2~u/2!K ij
2 S j

sin~u/2! D
1K

ij

82S j

sin~u/2! D J , ~4.10!

FIG. 4. Normalized GOS, for an attractive Coulomb field, a
function of the deflection angleu in degrees.22, quantal expres-
sion ~4.1!; 2, approximate expression~4.4! corresponding toj
→0.

FIG. 5. Quantal GOS, for an attractive Coulomb field, for lar
values ofj. Normalized functionf (u,h i ,j)/ f (0,h i ,j) plotted as a
function of the deflection angleu in degrees.22, quantal expres-
sion ~2.2!; 2, asymptotic expression~4.8!. With this normalization,
there is no distinction between the repulsive and attractive cas
02271
whereKn(z) is the modified Bessel function of the secon
kind, andKn8(z) is its derivative with respect to its argume
z. It is straightforward to show, using the relations~9.6.8!,
~9.6.9!, and ~9.6.27! of Ref. @25#, that f class(u,h i→`,j)
→ f 0Z1

2M2 asj→0.
Figures 7 and 8 show the correspondence of the quant

mechanical~2.4! and the semiclassical results~4.10! for at-
tractive potentials@replace exp(2pj) by exp(1pj) in the
corresponding formulas#. Figure 9 illustrates the singular be
havior, at u50, of the semiclassical approximation asj
→0, namely,

f class~u,h i→`,j!

f 0Z1
2M2

5H 0, for u50

1, for uÞ0.
~4.11!

.

FIG. 6. Normalized asymptotic GOS (j→`), plotted as a func-
tion of the deflection angleu in degrees, for increasing values ofh i

@Eq. ~4.8!#.

FIG. 7. Normalized GOS, for an attractive Coulomb field, plo
ted as a function of the deflection angleu in degrees, forj50.1 and
increasing values ofh i . 22, quantal expression~2.4!; 2, semi-
classical expression~4.10!. The caseh i51.0 is almost indistin-
guishable from theh i→` case, except at very small angles.
7-7
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M. C. CHIDICHIMO AND M. D. THORSLEY PHYSICAL REVIEW A67, 022717 ~2003!
The present calculations have been performed as an in
step in a more general investigation of GOS and Coulo
excitation. Future work will include the systematic applic
tion and testing our formulation to the available data
charged particles. We plan to improve our study of t
asymptotic behavior of GOS by considering the Coulom
Born approximation, which will investigate the importan
of electron-exchange effects. A further extension could co

FIG. 8. Normalized GOS, for an attractive Coulomb field, plo
ted as a function of the deflection angleu in degrees, forj51 and
increasing values ofh i . 22, quantal expression~2.4!; 2, semi-
classical expression~4.10!.
s
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from studying relativistic effects in the Born series approa
which should be particularly relevant for the excitation
ionization of heavy-atomic targets.
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FIG. 9. Normalized asymptotic GOS (h i→`), plotted as a
function of the deflection angleu in degrees, for decreasing value
of j @Eq. ~4.10!#. As j→0, f class(u,h i ,j)/ f 0Z1

2M2 tends to one for
uÞ0 and zero foru50.
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