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Quasifree expansion picture of break-up events: An analysis of ionizing systems
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~Received 19 April 2002; published 28 February 2003!

We derive some general characteristics of the wave function representing a break-up event, in the asymptotic
region. They have a strong bearing on the validity of some classical pictures, on the correlation between spatial
and momentum variables that develops in the course of the dissociation process and on stringent requirements
on the basis sets that are employed to approximate the wave function. Although other calculations are men-
tioned to underline the generality of our reasonings, we restrict most of the presentation, and all of the
illustrations, to the case of ionization.
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I. INTRODUCTION

The description of break-up events, such as ionization
dissociation induced by dynamical processes or photon
pact, involves the solution of the corresponding tim
dependent Schro¨dinger equation. This requires an accura
representation of the electronic and/or nuclear continua,
specific algorithms have been derived, based on either la
representations@1,2# or expansions in terms of ‘‘effectively’
complete basis sets@3–5#.

In the present work we report some important, and v
general, requirements on those algorithms in order to re
sent the dissociating wave function in the asymptotic regi
and that follow directly from the mechanism, rather th
from empirical findings. For the sake of clarity and cogen
of our analysis, we shall explictly deal with, and confine o
illustrations to, the specific case of ionization in atomic c
lisions, although calculations on photodissociation will
mentioned at the end of the paper. Our main points will
highlighted to clarify the presentation.

II. THE ASYMPTOTIC MECHANISM AND THE
‘’EXPLOSION’’ PHASE

A classical treatment of ionization@6# showed that the
dominant mechanism is a relatively fast process whereby
electron becomes unbound, followed by a quasi-free exp
sion of the electron cloud. Hence, even in the case of lo
range Coulomb forces this limits the role of interfragme
interactions to that of secondary, though important, post
lisional effects. The mechanism was then heuristically
lated to the~explosion! phase of the wave function in a qua
tal treatment. Although semiclassical calculations@4,5,7#
confirmed this relation, the derivation of the phase was e
pirical, even though the same type of expansion phases
pear~e.g., Refs.@8,9#! as a mathematical tool in the use
scaling methods.

Here we start by showing that by using the moment
representation the phase follows from the mechanism,

*Permanent address: CELIA, UMR 5107 du CNRS, Universite´ de
Bordeaux-I, 351 Cours de la Libe´ration, F-33405 Talence, France
1050-2947/2003/67~2!/022716~5!/$20.00 67 0227
r
-

-

nd
ce

y
e-
,

y
r
-

e

n
n-
-

t
l-
-

-
p-

nd

allows to directly and unambiguously check on the releva
of the force-free picture, while pointing to its generality fo
most break-up process. It suffices to assume that after
electron becomes liberated, and for a~sizeable! domain ofp
values, the main features of the ionizing wave functi
f(p,t)5uf(p,t)uexp@ia(p,t)# are given by the solution o
the field-free Schro¨dinger equation

S p2

2m
2 i\

]

]t Df~p,t !50 ~1!

with the ‘‘initial’’ condition at the ~average! time of ioniza-
tion t5t0,

f~p,t0!5uf~p!uexp@ ia0~p!#. ~2!

This solution takes the form fort>t0,

f~p,t !5f~p,t0!expF2
i

2m\
p2~ t2t0!G , ~3!

so that we haveuf(p,t)u5uf(p)u, whose specific form de-
pends on the details of the ionization process fort,t0, and

a~p,t !5a0~p!2
1

2m\
p2~ t2t0!. ~4!

To check this, we have chosen the usual benchmark
He211H(1s) collisions. We have selected a representat
nuclear trajectory with impact parameterb51.2 a.u. and a
nuclear velocityv53 a.u., for which the physical mecha
nism of soft-electron emission was shown in Ref.@7#. As in
that reference, the spatial wave function was calculated w
the method of Pons@4#, using a target-centered expansion
terms of all spherical Besselj l(kr) functions such that
j l(krmax)50 with r max5100 a.u., 0< l<3 and 0<k
<3 a.u.; all spherical harmonics were included up tom52
and the momentum wave function was obtained by the
fourier transform method.

Figure 1 displays the values of the radial component
¹pa as a function ofp for t520/3 and 50/3 a.u. Compariso
to the straight line2pt/m\ (52pt in atomic units! shows
that the free-expansion behavior of Eq.~4! is fulfilled, with
t0'0, and that¹pa0 can be neglected for sufficiently largep
©2003 The American Physical Society16-1
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~say,p.pH); we shall return to the value ofpH later on. The
corresponding angular components of¹pa are very small,
and not shown for conciseness. In order to not restrict
attention to close-coupling approaches, we have checked
the same behavior also holds for the standard, imp
parameter first Born approximation@10#.

We now consider the corresponding spatial wave funct
c(r ,t)5uc(r ,t)uexp@iS(r ,t)/\#. This fulfills the force-free
equation, so that the polar phaseS satisfies

]S

]t
1

~“S!2

2m
5

\2

2m

¹2ucu
ucu

. ~5!

Both the modulus and phase of spatial and momen
wave functions can be closely related fort@t0 @11# starting
from

c~r ,t !5
1

~2p\!3/2E expS i

\ Fp•r2
p2~ t2t0!

2m G Df~p,t0!dp,

~6!

and using the usual stationary phase approximation for
integral,

c~r ,t !;S m

t2t0
D 3/2

f~ps,t0!expS i F2
3p

4
1

1

2\
ps

2~ t2t0!G D
~7!

with the point of stationary phaseps5mr /(t2t0). Substitu-
tion of Eq. ~2! in Eq. ~7! yields

FIG. 1. Radial component of“pa(p,t) with a(p,t) the phase of
the momentum ionizing wave function fort520/3 and 50/3 a.u., as
a function of the modulusp and for fixed values of the angula
coordinates (upe@0,p/4,p/2, . . . ,p#, fpe@0,p/4,p/2, . . . ,2p#).
The straight line2pt denotes the free-expansion behavior of E
~4!. For the sake of a clearer comparison with the straight l
2pt, we present this illustration for discretep values rather than
continuous curves.
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c~r ,t !;uc~r ,t !uexpS i F2
3p

4
1a0S mr

t2t0
D1

mr2

2\~ t2t0!G D
~8!

with uc(r ,t)u5(m/(t2t0))3/2uf(ps)u, andS(r ,t) takes what
is essentially the form of Ref.@6#, which is now obtained as
a consequence of the free-expansion picture, rather
working by analogy.

III. VALIDITY OF CLASSICAL PICTURES

We next show that the relevance of classical traject
Monte Carlo~CTMC! treatments follows from Eq.~8!. First,
one can often neglect“a0@mr /(t2t0)# in the calculation of
“S, as may be expected from Fig. 1 and from Ref.@7#. Then,
S fulfills the field-free Hamilton-Jacobi equation with a cla
sical velocityvC5\“S/m that is identical to the best est
mate of the quantal velocityj (r ,t)/muc(r ,t)u2, obtained
from Eq. ~8!. Since this is also obtained from Eq.~5! in the
classical\/m→0 limit ~i.e., u¹2ucuu!ucu in atomic units!,
there results a justification of classical calculations fot
.t0. In particular, the arrow diagrams of Refs.@6,7# may be
considered as snapshots of a ‘‘geometrical optics’’ appro
mation for the wave motion of the ionized electron, whi
differs from usual limiting procedure@12# in that it does not
require that the spread of the wave packet be smaller tha
width. We note that the justification for the CTMC calcul
tions fort,t0 also differs@7# from the standard semiclassic
limit ~which, as reasoned in Ref.@13#, is inapplicable to soft-
electron emission!, and hinges on the way the statistical di
tribution is generated, and on the specific nature of the C
lomb interaction.

The classical analogy can in turn be employed to prov
estimates of thep.pH and r .r H domains where Eqs.~3!
and ~8! can be expected to hold. We can takepH and r H as
the smallest values fulfillingps5mr /(t2t0) and such that
the electron is unbound@14# with respect to the target field
pH

2 /2m2e2/r H50. This yields the conditions

p.pH5S 2e2m2

t2t0
D 1/3

; r .r H5F2e2~ t2t0!2

m G1/3

, ~9!

which gives, in particular,p.0.67, 0.49 a.u. fort520/3 and
50/3 a.u., respectively, in agreement with Fig. 1; we find
similar accordance for the spatial wave function.

IV. CORRELATION BETWEEN SPATIAL AND
MOMENTUM VARIABLES

Since we should have from Eq.~7! that uc(r ,t)u;@m/(t
2t0)#3/2uf(mr /(t2t0),t)u, spatial and momentum represe
tations are directly related. We illustrate this by displaying
Fig. 2 the one-dimensional Cartesian~scaled! spatial and mo-
mentum densities, obtained by integratinguc(r ,t)u2 and
uf(p,t)u2, respectively, over the remaining variables. To d
scribe these densities, we neglecta0(p), and fit them by
means of normal distributions g(pg)5exp(2pg

2 /
4spg

2 )/@(2p)1/4spg

1/2#:

.
e
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FIG. 2. One-dimensional spa
tial ~top! and momentum~bottom!
distributions of ejected electrons
for t520/3 ~solid line! and 50/3
~dashed line! a.u. The dotted lines
correspond to the fits by means o
normal Gaussian distributions~see
text! with spx

50.8 a.u., spy

50.4 a.u., andspz
50.65 a.u. In

the laboratory-fixed reference
frame, r5(x,y,z) and p
5(px ,py ,pz), with x̂5px̂5b̂, ẑ
5pẑ5 v̂, andŷ andpŷ perpendicu-

lar to the collision (v̂,b̂) plane.
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f~p,t !'uufuug~px!g~py!g~pz!expS 2
ip2~ t2t0!

2m\ D ,

~10!

wherespg
is a measure of the uncertainty ofpg and uufuu2

5uuf(p,t0)uu25uucuu2 is the ionization probability. The Fou
rier transform of Eq.~10! takes an analytical form that tend
for t@t0 to the expression of Eq.~7!. The relevance of the
normal distributions can be gauged from Fig. 2; we see
the y,py distributions are practically normal, as may be e
pected from the accumulation of the ionizing density ab
the collision plane@13#. On the other hand, the fact that th
ionized cloud is pulled towards the projectile@7# results in
that the maximum of thepz distribution is shifted topz
50.5 a.u.; also, the rotation of the ionized cloud@7# results in
a more irregularpx distribution. The same features hold fo
the scaled spatial densities~see Fig. 2!.

We can examine the connection between spatial and
mentum representations more closely by considering the
responding Wigner distribution@15,16# that takes the form
from Eq. ~3!

W~r ,p,t !5
1

~2p\!3E exp$2 iq•@r2p~ t2t0!/m#/\%

3f~p2q/2,t0!f* ~p1q/2,t0!dq. ~11!

It follows from the Riemann-Lebesgue lemma thatW→0 as
t→`, except whenp5mr /(t2t0), in which case it remains
constant in time. Hence, for larget values there develops a
increasingly stronger correlation between spatial and m
02271
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mentum variables, such that the relative velocity betwe
two portions of the ionizing cloud lies along the line joinin
them and is proportional to their separation; this is just
found in Ref.@6#. To illustrate this correlation property, w
display in Fig. 3 the partial Wigner functionsWx ,Wy ,Wz for
t5 20/3 and 50/3 a.u., whereWg(g,pg ,t) is obtained by
integratingW(r ,p,t) over the remaining coordinates. To an
lyze these functions, we use the normal approximation
the densities, by substituting Eq.~10! in Eq. ~11!,

W'uufuu2f ~x,px ,t ! f ~y,py ,t ! f ~z,pz ,t ! f ~g,pg ,t !

5~p\!21expS 2
pg

2

2spg

2
2

2spg

2

m2\2
@mg2pg~ t2t0!#2D .

~12!

As t→`, the correlation coefficient of both sets of bivaria
distributions tends to unity, and the distributions degener
into ‘‘sheets’’ in phase space~see Fig. 3!, just as the classica
distribution function@11#,

W→~ t2t0!3m3~\/p!3/2spx
spy

spz
uufuu2

3expS 2
px

2

2spx

2
2

py
2

2spy

2
2

pz
2

2spz

2 D dS p2
mr

t2t0
D .

~13!
6-3
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FIG. 3. Partial Wigner distri-
butions Wg(g,pg ,t) with g
[$x,y,z%, for t520/3 ~left col-
umn! and 50/3~right column! a.u.
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V. REQUIREMENTS ON BASIS SETS

A major consequence of our analysis is the condition t
numerical treatments should be able to describe both the
pansion of the spatial wave function and the ‘‘explosio
phase exp(iS/\) of Eq. ~8!. It should be noted, in this respec
that we do not necesssarily advocate that basis funct
should expand in time or explicitly contain the phase, o
that they can be able to reproduce these features. This
nontrivial requirement. For instance, in the case of ionizat
the failure of molecular methods to describe the phase res
@17# in an unphysical trapping of the ionizing flux, hence
inaccurate wave functions~though not necessarily in inaccu
rate cross sections!.

A corresponding liability@4# holds for the usual atomic
basis sets of Slater-type orbitals~STO’s!, Sturmian, or
Gaussian orbitals. We display in Fig. 4 the values of
ionizing probabilityuucuu2 along our selected nuclear traje
tory, and we compare it touuP1C2STOcuu2, whereP1C2STO is
the projector onto the manifold spanned by a set of ev
02271
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FIG. 4. Ionization probabilityuucuu2 ~thick line! compared to
values obtained from projections of the ionizing wave function o
various types of close-coupling sets, as defined in te
uuP1C2STOcuu2 ~thin line!, uuP2C2STOcuu2 ~dashed line!,
uuP2C2PWTFcuu2 ~dotted line!, uuP1C2EEFcuu2 ~dot-connected line!.
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QUASIFREE EXPANSION PICTURE OF BREAK-UP . . . PHYSICAL REVIEW A 67, 022716 ~2003!
tempered STO’s r le2anrYlm( r̂ ) centered at the targe
nucleus, withan50.001(1.3)n and 0<n<39. While this
large basis is capable of describing the ionization proc
taking place at shortR, its quality deteriorates at large dis
tances. Use of a two-center basis (P2C2STO), that consists of
the same STO set located on both target and projectile
tres, or modification of these basis functions with plane-wa
translation factors@18# (P2C2PWTF), does not significantly
improve the situation. On the other hand, multiplication
the STO by the explosion factor exp(ivr2/2R)'exp(ir2/2t)
~in atomic units!, yielding P1C2EEF, strikingly improves the
quality of the single-center basis: this unambiguously pro
that the failure of the usual~atomic and molecular! close-
coupling expansions in describing the ionization process
the asymptotic region is due to their inability to reprodu
the free-expansion phase.

VI. GENERALITY OF THE PRESENT FINDINGS

We now consider the limitations of our analysis for ge
eral break-up events. Obviously, how larget must be for our
reasoning to apply depends on the particular physical si
tion. It would never apply for a hypothetical state possess
a sharp value for the momentum conjugate to the disso
tion coordinate, such as represented byd(p
2pd)Ylm(up ,wp); then the phase of the momentum wa
function becomes exp(2ipd

2t/2m\)5exp(2iEdt/\), with Ed
02271
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being the fragmentation energy. The spatial wave functio
then written in terms of spherical waves in the coordinate
dissociation, without an expansion phase. However, in pr
tical situations there is always a sizeable momentum spr
sp and an energy spreadsE , which are determined by the
dynamics of the process or by the linewidth of the radiatio
Then the condition for the stationary phase approximat
~7! to apply is t2t0@\/sE . In turn, this corresponds to
domain of interfragment distances that depends on the ve
ity of separation.

In particular, in our calculations on photodissociatio
events we found that in the absence of Coulomb forces
quasi-free expansion mechanism applies from a few ato
units of internuclear separation onwards; in turn, this cor
sponds tot values of the order of hundreds of a.u., because
the small velocities involved. Explicitly, calculations we
carried out for H2

1 dissociation by strong (I 51013 W/cm2)
and short (FWHMt515 fs) laser pulses, within the two
electronic states Born Oppenheimer approximation@19#, and
the vibrational basis consisted of a set of spherical Be
functions j 0(kR) similar to that of the examples given in th
present paper.
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