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Quasifree expansion picture of break-up events: An analysis of ionizing systems
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We derive some general characteristics of the wave function representing a break-up event, in the asymptotic
region. They have a strong bearing on the validity of some classical pictures, on the correlation between spatial
and momentum variables that develops in the course of the dissociation process and on stringent requirements
on the basis sets that are employed to approximate the wave function. Although other calculations are men-
tioned to underline the generality of our reasonings, we restrict most of the presentation, and all of the
illustrations, to the case of ionization.
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[. INTRODUCTION allows to directly and unambiguously check on the relevance
of the force-free picture, while pointing to its generality for
The description of break-up events, such as ionization omost break-up process. It suffices to assume that after the
dissociation induced by dynamical processes or photon imelectron becomes liberated, and fofsizeable domain ofp
pact, involves the solution of the corresponding time-values, the main features of the ionizing wave function
dependent Schdinger equation. This requires an accurate¢(p,t)=|¢(p,t)|exdia(p,t)] are given by the solution of
representation of the electronic and/or nuclear continua, anthe field-free Schidinger equation
specific algorithms have been derived, based on either lattice )
representationfl,2] or expansions in terms of “effectively” (p_ _inZ
complete basis sef8-5|. 2m ot
In the present work we report some important, and very o N ) o
general, requirements on those algorithms in order to repreVith the “initial” condition at the (averagg time of ioniza-
sent the dissociating wave function in the asymptotic regiontion t=to,
and that follow directly from the mechanism, rather than .
from empirical findings. For the sake of clarity and cogency b(p.to) =|d(p)|exriag(p)]. 2
pf our a}nalysis, we shall. gxplictly dgal \_Nith, an_d confine OUrThis solution takes the form fdr=t,,
illustrations to, the specific case of ionization in atomic col-
lisions, although calculations on photodissociation will be i
mentioned at the end of the paper. Our main points will be ¢(p,t)=¢(p,to)exr{— mpz(t—to)
highlighted to clarify the presentation.

é(p,1)=0 (€

, ()

so that we haves(p,t)|=|¢(p)|, whose specific form de-
Il. THE ASYMPTOTIC MECHANISM AND THE pends on the details of the ionization processtfat,, and

"EXPLOSION” PHASE

A classical treatment of ionizatiofs] showed that the a(p,t)=ag(p)— mpz(t—to)- (4)
dominant mechanism is a relatively fast process whereby an
electron becomes unbound, followed by a quasi-free expanfo check this, we have chosen the usual benchmark of
sion of the electron cloud. Hence, even in the case of IongHe2++H(1s) collisions. We have selected a representative
range Coulomb forces this limits the role of interfragmentnuclear trajectory with impact parameter1.2 a.u. and a
interactions to that of secondary, though important, post colauclear velocityv =3 a.u., for which the physical mecha-
lisional effects. The mechanism was then heuristically re-nism of soft-electron emission was shown in Réfl. As in
lated to the(explosion phase of the wave function in a quan- that reference, the spatial wave function was calculated with
tal treatment. Although semiclassical calculatioi5,7]  the method of Ponf4], using a target-centered expansion in
confirmed this relation, the derivation of the phase was emterms of all spherical Bessdl (kr) functions such that
pirical, even though the same type of expansion phases ap{krma)=0 with r,,=100 a.u., G<I=<3 and 0<k
pear(e.g., Refs[8,9]) as a mathematical tool in the use of <3 a.u.; all spherical harmonics were included upre 2
scaling methods. and the momentum wave function was obtained by the fast
Here we start by showing that by using the momentunfourier transform method.
representation the phase follows from the mechanism, and Figure 1 displays the values of the radial component of
Vpa as a function op for t=20/3 and 50/3 a.u. Comparison
to the straight line- pt/m# (= —pt in atomic unit$ shows
*Permanent address: CELIA, UMR 5107 du CNRS, Univerdite that the free-expansion behavior of Ed) is fulfilled, with
Bordeaux-I, 351 Cours de la Libation, F-33405 Talence, France. ty~0, and that,«, can be neglected for sufficiently large
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with [(r,t)|=(m/(t—10))*9 &(py)|, andS(r,t) takes what

is essentially the form of Ref6], which is now obtained as

a consequence of the free-expansion picture, rather than
working by analogy.

20 ] fx|=|.. T T T T T T I T

3’7T+ mr
R T

¢(r,t)~|1ﬁ(r,t)|exr<i

radial component (a.u.)

IIl. VALIDITY OF CLASSICAL PICTURES

We next show that the relevance of classical trajectory
Monte Carlo(CTMC) treatments follows from Eq8). First,
one can often negle® «[ mr/(t—tg)] in the calculation of
VS, as may be expected from Fig. 1 and from R&f. Then,
Sfulfills the field-free Hamilton-Jacobi equation with a clas-
sical velocityve=#V S/m that is identical to the best esti-
mate of the quantal velocity(r,t)/m|y(r,t)|?, obtained
from Eq. (8). Since this is also obtained from E@) in the
classicalz/m—0 limit (i.e., |V?|y||<|| in atomic units,

FIG. 1. Radial component & ya(p,t) with a(p,t) the phase of there results a justification of classical calculations for
the momentum ionizing wave function for 20/3 and 50/3 a.u., as = to- In particular, the arrow diagrams of Ref$,7] may be

a function of the modulup and for fixed values of the angular considered as snapshots of a “geometrical optics” approxi-
coordinates (e[ 0,m/4,m/2, ... ], ¢,el0mldmi2,... 27]).  mation for the wave motion of the ionized electron, which

The straight line— pt denotes the free-expansion behavior of Eq. differs from usual limiting procedurgl2] in that it does not
(4). For the sake of a clearer comparison with the straight linerequire that the spread of the wave packet be smaller than its
—pt, we present this illustration for discrepevalues rather than width. We note that the justification for the CTMC calcula-
continuous curves. tions fort<t, also differg 7] from the standard semiclassical
limit (which, as reasoned in RéfL3], is inapplicable to soft-

(say,p>py); we shall return to the value @y later on. The  electron emission and hinges on the way the statistical dis-
corresponding angular components gfa are very small, tribution is generated, and on the specific nature of the Cou-
and not shown for conciseness. In order to not restrict oufomb interaction.
attention to close-coupling approaches, we have checked that The classical analogy can in turn be employed to provide
the same behavior also holds for the standard, impactestimates of theg>p, andr>r, domains where Eq<3)
parameter first Born approximati¢aol. and (8) can be expected to hold. We can tgke andr, as

We now consider the corresponding spatial wave functionhe smallest values fuffillingps=mr/(t—t,) and such that
P(r,t)=|y(r,t)|exdiS(r,t)/A]. This fulfills the force-free the electron is unbounfl4] with respect to the target field
equation, so that the polar phaSeatisfies pZ/2m—e?/r=0. This yields the conditions

as+ (VS)? 12 V?y|
ot 2m  2m [y

radial component (a.u.)

p(au) ’

©)

2e2m2 1/3
, r>ry=

2e2(t_t )2 1/3
p>pH=( - — .o
0

m

Both the modulus and phase of spatial and momentum

wave functions can be closely related tert, [11] starting ~ Which gives, in particulaip>0.67, 0.49 a.u. fot=20/3 and
from 50/3 a.u., respectively, in agreement with Fig. 1; we find a

similar accordance for the spatial wave function.

)
o= 3’4 eXp( {p " om || ¢Ptodp, IV. CORRELATION BETWEEN SPATIAL AND
©6) MOMENTUM VARIABLES

and using the usual stationary phase approximation for the Singze we should have from E¢7) that |y(r,t)[~[m/(t
integral, —to) 17 p(mr/(t—1tp),t)|, spatial and momentum represen-

tations are directly related. We illustrate this by displaying in
3w 1 , Fig. 2 the one-dimensional Cartesi@taled spatial and mo-
-7t Eps(t_to)}) mentum densities, obtained by integratihg(r,t)|?> and
7) |#(p.t)|?, respectively, over the remaining variables. To de-
scribe these densities, we neglegi(p), and fit them by
with the point of stationary phagg=mr/(t—ty). Substitu- means of normal distributions g(py)=exp(—p§/
tion of Eq.(2) in Eq. (7) yields 40‘,237)/[(277)1/40"1)/72]:

m 3/2 .
¢(r,t)~(q) ¢(ps,to)exp{|
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ip2(t—tg) mentum variables, such that the relative velocity between
#(p,t)=|l#l|lg(p9(py)a(p)exp — i)’ two portions of the ionizing cloud lies along the line joining

(10) them and is proportional to their separation; this is just as
found in Ref.[6]. To illustrate this correlation property, we

whereo, is a measure of the uncertainty pf, and||¢|[?  display in Fig. 3 the partial Wigner functions, ,W, ,W, for
=||¢(p,to)||2=1|]|? is the ionization probability. The Fou- t= 20/3 and 50/3 a.u., whe/,(y,p,.t) is obtained by
rier transform of Eq(10) takes an analytical form that tends Int€gratingW(r,p,t) over the remaining coordinates. To ana-
for t>t, to the expression of Eq7). The relevance of the lyze the;g functions, we use the nprmal approximation for
normal distributions can be gauged from Fig. 2; we see thafie densities, by substituting EGQLO) in Eq. (11),
they,p, distributions are practically normal, as may be ex-

ected from the accumulation of the ionizing density abou
Fhe collision plang13]. On the other hand, thge fact tﬁ/at the RN%||¢||2f(x,px,t)f(y,py,t)f(z,pz,t)f(y,py,t)

ionized cloud is pulled towards the project]lé] results in 2 242

that the maximum of thep, distribution is shifted top, =(mh) lexp — Py ’ [my—po(t—to) ]2

=0.5 a.u.; also, the rotation of the ionized clddd results in 20'2) m2#,2 v 0 '
Y

a more irregulaip, distribution. The same features hold for

the scaled spatial densiti¢see Fig. 2 (12
We can examine the connection between spatial and mo-

mentum representations more closely by considering the cor-

responding Wigner distributiofil5,16] that takes the form Ast—, the correlation coefficient of both sets of bivariate
from Eq. (3) distributions tends to unity, and the distributions degenerate

into “sheets” in phase spadasee Fig. 3, just as the classical
distribution function[11],

W(r,p,t)= fex —ig-[r—p(t—tg)/m]/h
(r.p.t) i) pl—iq-[r—p(t—to)/m]/f}
_ 33 3/2 2

X d(p-al2to) $* (p+a/2t)dg. (1D W (L= o) m(h/ m) o, o g || ]

It follows from the Riemann-Lebesgue lemma th'ét-0 as Py pf/ P2 mr
; \ . . xXexpl — - - — .

t—o0, except wherp=mr/(t—tg), in which case it remains 202 202 242 t—to
constant in time. Hence, for lardevalues there develops an Px Py Pz
increasingly stronger correlation between spatial and mo- (13
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FIG. 3. Partial Wigner distri-
butions W, (v,p,,t) with vy
¥ ={x,y,z}, for t=20/3 (left col-
umn) and 50/3(right column a.u.
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V. REQUIREMENTS ON BASIS SETS b T T T T T T T

A major consequence of our analysis is the condition that
numerical treatments should be able to describe both the ex
pansion of the spatial wave function and the “explosion”
phase exp@/#) of Eq. (8). It should be noted, in this respect, £
that we do not necesssarily advocate that basis functionig 02

&

should expand in time or explicitly contain the phase, only
that they can be able to reproduce these features. This is
nontrivial requirement. For instance, in the case of ionization L
the failure of molecular methods to describe the phase result:
[17] in an unphysical trapping of the ionizing flux, hence in

inaccurate wave functionshough not necessarily in inaccu- 0 L—

rate cross sections -0 50 5 IOZ_ 15 20 25 30 35 40
A corresponding liability[4] holds for the usual atomic =vt(au.)

basis sets of Slater-type orbitalSTO's), Sturmian, or FIG. 4. lonization probabilityl|]|? (thick line) compared to

Gaussian orbitals. We display in Fig. 4 the values of theyajues obtained from projections of the ionizing wave function onto
ionizing probability| ||| along our selected nuclear trajec- various types of close-coupling sets, as defined in text:
tory, and we compare it 9P~ ST%||2, whereP'©~STOis  ||p1c-STOy|12 (thin line), ||P2° STO)||2 (dashed ling
the projector onto the manifold spanned by a set of evenP?¢~PWTFy||2 (dotted ling, ||P°~EEFy||? (dot-connected line
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tempered STO’sr'e““nrY|m(F) centered at the target
nucleus, witha,=0.001(1.3} and 0<n<39. While this

large basis is capable of describing the ionization proces

taking place at shomR, its quality deteriorates at large dis-
tances. Use of a two-center basi?f~ST9), that consists of

PHYSICAL REVIEW A 67, 022716 (2003

being the fragmentation energy. The spatial wave function is
then written in terms of spherical waves in the coordinate of
gissociation, without an expansion phase. However, in prac-
tical situations there is always a sizeable momentum spread
o, and an energy spreage, which are determined by the

the same STO set located on both target and projectile cefflynamics of the process or by the linewidth of the radiation.

tres, or modification of these basis functions with plane-wav
translation factor§18] (P?¢~PWTF)  does not significantly
improve the situation. On the other hand, multiplication of
the STO by the explosion factor exp(?/2R) ~exp(r?/2t)

(in atomic unitg, yielding P~ EEF strikingly improves the

quality of the single-center basis: this unambiguously prove§

that the failure of the usudlatomic and molecularclose-
coupling expansions in describing the ionization process i
the asymptotic region is due to their inability to reproduce
the free-expansion phase.

VI. GENERALITY OF THE PRESENT FINDINGS

We now consider the limitations of our analysis for gen-
eral break-up events. Obviously, how laitgeust be for our

€

Then the condition for the stationary phase approximation
(7) to apply ist—ty>#l/og. In turn, this corresponds to a
domain of interfragment distances that depends on the veloc-
ity of separation.

In particular, in our calculations on photodissociation
vents we found that in the absence of Coulomb forces the

quasi-free expansion mechanism applies from a few atomic

rlrmits of internuclear separation onwards; in turn, this corre-

sponds td values of the order of hundreds of a.u., because of
the small velocities involved. Explicitly, calculations were
carried out for H dissociation by strongl& 10" Wicn?)

and short (FWHM=15 fs) laser pulses, within the two
electronic states Born Oppenheimer approximafit#i, and

the vibrational basis consisted of a set of spherical Bessel
functionsjo(kR) similar to that of the examples given in the

reasoning to apply depends on the particular physical situgsresent paper.
tion. It would never apply for a hypothetical state possessing

a sharp value for the momentum conjugate to the dissocia-

tion coordinate, such as represented by(p
—Pa)Yim(0p,¢p): then the phase of the momentum wave
function becomes exp(ipﬁt/th)=exp(—iEdt/ﬁ), with Eq4
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