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Error bounds for molecular Hamiltonians inverted from experimental data
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Inverting experimental data provides a powerful technique for obtaining information about molecular Hamil-
tonians. However, rigorously quantifying how laboratory error propagates through the inversion algorithm has
always presented a challenge. In this paper, we develop an inversion algorithm that realistically treats experi-
mental error. It propagates the distribution of observed laboratory measurements into a family of Hamiltonians
that are statistically consistent with the distribution of the data. This algorithm is built upon the formalism of
map-facilitated inversion to alleviate computational expense and permit the use of powerful nonlinear optimi-
zation algorithms. Its capabilities are demonstrated by identifying inversion families fo(rjtﬁg anda3s }
states of Nathat are consistent with the laboratory data.
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[. INTRODUCTION described by a probability distribution. The important feature
of the inversion family is that any potential from within it
In order to predict molecular processes, it is first necesshould reproduce the experimental data to within the labora-
sary to have quantitative knowledge of the Hamiltonian gov-tory precision. Similarly, potentials from outside the family
erning the system’s behavift]. As such, constructing mo- should correspond to observables that lie outside the experi-
lecular potential energy surfaces has been a longstandingental tolerance. Furthermore, a potential from the inversion
area of active research. Despite advanceahrinitio tech-  family that has a high inversion confidence should corre-
nigues, many of the most powerful methods for determiningspond to a value of the observable that has a high laboratory
molecular potentials extract them from laboratory measureeonfidence. A family of potentials that meets these criteria
ments. Data inversion, however, is nontrivial for two rea-will be referred to agonsistent with the data
sons. First, the connection between the Hamiltonian and its This definition ofconsistencyntroduces a new means of
associated observables is nonlinear and indirect—the Schrexpressing inversion that involves identifying a family that
dinger equation is buried within it. Second, laboratory datacontains many distinct Hamiltonians. Obtaining an inversion
contain experimental error. family requires a global and nonlinear inversion algorithm
Providing a realistic analysis of how laboratory uncer-because a Gaussidor any other distribution in the data
tainty propagates through an inversion algorithm is challengneed not correspond to a Gaussiansimilar distribution of
ing because the experimental error must be treated on thaverted potentials. This nonintuitive feature of Hamiltonian
same footing as the data. Inversion is often computationallynversions results because the relationship between potential-
expensive and it is even more costly to map the experimentanergy space and its associated observables is nonlinear.
error back to a proper characterization of the Hamiltonian The need for global, nonlinear inversion capabilities
uncertainty. Furthermore, these issues are complicated by theaces strict demands on the computational efficiency of the
nonlinear character of the relationship between the moleculanversion algorithm. Resolving the inversion family can re-
Hamiltonian and the data. Consequently, traditional inversiomuire extracting hundreds of distinct Hamiltonians from the
methods have provided only approximate error analyses. Fatata to reveal the distribution. It is therefore important to
example, Hoet al. [2] addressed error in th¥ 12;“ and adopt map-facilitated inversion techniquEs-5] that have
a323' state potentials for l\jzaJsing a Monte Carlo treatment been specifically developed for finding solution families.
of laboratory noise, but resorted to linearization. Functional map$6] alleviate the expense of repeatedly solv-
In order to rigorously treat experimental error, it is neces-ing the Schrdinger equation, making it possible to identify
sary toinvert the entire distribution of measured laboratory the full, nonlinear inversion family.
data, not simply the mean values of the observables. From a In this paper, we extend the formalism of map-facilitated
laboratory perspective, data values that differ within the exinversion to treat a distribution of laboratory data and obtain
perimental precision are indistinguishable. The relative cona full family of consistent potentials. To the best of our
fidence in any particular value is described by a probabilityknowledge, this is the first general inversion algorithm to
distribution(often Gaussiarthat results from the experimen- treat quantum-mechanical experimental data in such a man-
tal statistics. In order for data inversion to reflect these proph€r. The inversion algorithm is presented in Sec. Il, and a
erties of the measurements, it should similarly provide ademonstration of the procedure is provided in Sec. lll. We
family of indistinguishablepotentials whose confidence is invert the rovibrational spectra of Babaky and Husdéih
and Barrowet al. [8] for the X' ; state potential of Na
and the spectrum of Let al. [9] for the a33 state. The
*Present address: Norman Bridge Laboratory of Physics, Maipurpose of treating this collection of data is to demonstrate
Code 12-33, California Institute of Technology, Pasadena, CAhe concept of inverting a distribution, rather than just invert-
91125. Electronic address: jgeremia@Caltech.EDU ing the mean data. We also provide evidence that error
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propagation can be nonlinear, even when the data are of higential space with sufficient flexibility often requiré§,>1.

laboratory precision. Consequently, it is necessary to employ a more judicious
procedure for sampling and interpolatifi¢v), if lineariza-
ll. ALGORITHM tion is to be avoided.

] ) ) - It has recently been demonstrateg] that the nonlinear
Th_|s section adapts a recently mtyoduced map—facnlltateqlﬂap can be constructed by reformulatiffy) as a finite
data inversion methof8,4] in order to invert a full probabil- expansion

ity distribution of laboratory data. The procedure can be

separated into two stages. First, a numerical potential Ny Ny

— observable map6] is learned by solving the Schiimger f(v)=fo+ > fi(o)+ > fij(viv))+-
equation for a small, but judiciously chosen, collection of =1 =

representative potentials. Then, the inversion is performed as +f N1, o), (3)

an optimization over.'.the map, which provides a highly accu-
rate proxy for the Schuinger equation. Evaluating the map \yheref,, is a constant tern{f;(v;)} are single-variable func-

is fast, and it permits the use of global, nonlinear searchions, (f, (v;,v,)} are bivariate functions, etc. Expansions of
algorithms. The optimization result is the full family of po- the form in Eq.(3) are referred to as high-dimensional model

tentials consistent with the distribution of the data. representation. They form a family of multivariate represen-
tations used to capture the inpubutput relationships of
A. Learning the forward map many high-dimensional physical systefs6,10—18. It is
The direct connection between the potentigt) andd,  important to note that Eq3) is not a Taylor series. It can be

for example, the spectrum, can rarely be formulated in closeffuncated without sacrificing nonlinearity because the low
form. Mapping the relationship implicitly involves solving order terms, although subdimensional, can display arbitrary

the Schrdinger equation and then computing the relevantonlinearity.

observables, The hierarchy of terms in Eq3) can be assigned an
ordering indexL that groups the functions according to di-

[Ho+V(N)]|¥)=E|¢), (18 mensionalityL =0 corresponds to the constant L=1 in-

cludes only the single-variable functiof§;}, L=2 corre-
D = ()| O ), (1b)  sponds to the[f;;}, etc. The physical interpretation of the

expansion functions is that they represent the collective ef-
whereH, is the portion of the Hamiltonian that is assumedfects of the potential space variables in order of increasing
known and not subject to identification. The Hermitian op-intervariable cooperation. For example, thév;) terms de-
eratorsO,, correspond to the laboratory observablesy.,  Scribe howv;, alone, affects the value of the physical ob-
spectral linesbeing inverted. servable. The bivariate function§;;(v;,v;), reflect the si-
The composition of Eqg1a) and(1b) to form a mapping Mmultaneous influence af;, v, and so on. The final term,
f between potential-energy spateand its corresponding fi, ., captures any residual dependence of the observable
observables, on all of the variables acting in nonseparable cooperation.
It has been shown that E¢3) converges to low order,
f[VIV=®, VeV, 2 L<N, for quantum potential-observable relationships with a
properly chosen form for the variables [6]. A low order,
converged map expansion can be truncated after its last sig-
nificant order without sacrificing accuracy or nonlinearity.
This dramatically reduces the computational labor of map
onstruction. For example, the complexity of constructing an
th-order map is given by that of attaining theh-order

is a functional(indicated by the -] notation of the input
potential-energy functiol. Evaluating Eq(2) implicitly re-
quires solving the Schdinger equation and computing the
desired observables according to Eds) and(1b).

In practice, numerical methods are employed to construcE

;h(ralcrt-noanp, _‘;’]mdt[\\//] rmust_tﬁe ;psgﬁzicr?gaedo?y ;P;‘;fg;g the terms. Therefore, the total number of sample points scales as
unct input V(r) wi ! vart v O(SN),O(SZNf), ..., forL=1,2, ... respectively, result-

={vq, ... ’”Nu}' that distinguish between different membersing in only polynomial sampling complexity i, . Con-

of pqtentiall-energy space. This transformation re;ults in aQrycting the potentiakobservable map can be achieved
N,-dimensional functiorf(v) or amap from potentials to  yith feasible computational expense. Specifics for how the

observables. The particular meaning of the potential spacggjvidual expansion functions should be evaluated can be
variablesv; depends on the nature of the Hamiltonian beingsoyng in previous papedS—6.

inverted. For example, in Sec. lll, the variables are the values
of the Ng potentials at fixed interatomic separatidesg.,

Eq. (10)]. el ° unctional relationshi _
Constructing the map used in the inversion optimization is  The objective of the inversion is to identify the family of
accomplished by tabulatinf(v) for a representative sample potentials that are consistent with the laboratory probability

of potentials {v,, ...}. Generally, it is impossible to nu- distributions, q3[d]={q"*’[d;]}, i=1,... M, for
merically resolvef on a full N,-dimensional gridas is com- each individual observable in the full data sab("
mon for low dimensional functiondecause representing po- ={®{@ . &8 |n many cases, the collection of dis-

B. Inverting the functional relationship
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tributionsq2”)[ @], are Gaussian and characterized by theirsitive to starting values. Unlike local searching methods,

standard deviations:®” . In other instancesg(@”[d]  which can be prone to divergence unless the initial guess is
might be non-normal or possibly only characterized by hardortunate, GAs are stable with excellent convergence behav-
bounds= {12 ior because of elitism and population overlap making them

During the inversion search, rather than investigating inddeal for complex landscapes such as those that arise when
dividual surfaces, every trial solution is a full family of po- inverting quantum-mechanical data.
tentials,V={v,, ... vy} [17], along with its associated set
of observables, f(V)={f;(v)}, i=1,...M, and s C. The inverse solution family
=1,...Ng [18]. For every trial family, the distributions of Using a GA to minimize Eq(5) produces a population of
observablesg[®; ;f;(V)], are computed by evaluating the Np optimized families,{V7, ...,V }. Each containNs
map over the family membergt;(vy), . . . fi(vy)}, and ac-  potentials Vi ={vy, ... vyn} P=1,... Ny, with asso-
cumulating the distribution by binning, or other suitable ciated distributionsg;[ ®; ;fi(V’,;)] [22]. Normally, the most
techniques. In practice, the number of family membgks,  fit member of the GA populationy? , provides the final,

must be large enough to numerically resotyg®; ; f;(V)]. optimal inversion family, denoted*, and the remainder of
Minimizing the difference between the data distribution, the population,p=2, ... N, is ignored. Section II D will
(labrg,], and map-computed distributiony[ ®; ; f;(V)], discuss the algorithm Esed to decide which GA population
over thei=1, ... M distinct observables, member best provideg™.

Once the familyV* has been identified, it is useful to
- 1 M - define another set of distributiong,[v;* ], that describe the
TV =11 ;1 g{*V[ D] —qi[ @;;i(V)]]2 db, probability of values for each potential space variabfe
(4) over the inversion family. These new distributions, accumu-
lated by binning, are implicitly related tq(#?[®] and
produces the inversion family by morphing the family until a{%;f(V*)] through the inversion. The;[v{] reflect the
the distributionsqi('ab)[(bi] andq[®, :f,(V)], are the same nonlinearity of the potential-observable relationship and are

(or as close as possibieHowever, without further con- rarely predictable even when the observable distributions,

. . . Do (lab)r . i i i
straints, Eq(4) may insufficiently discriminate between re- g L®i], are simple, such as Gaussian or unifofaf.,

alistic potentials(i.e., smooth, asymptotically correct, otc. Figs- 4b) and 2c) and Figs. 8) and 3¢)]. The combined

and others that, although consistent with the data, are physgffect of nonlinearity between the potential and the observ-
cally unrealistic. It is often impossible to identify realistic @P!e and the fact that the inversion must simultaneously be

potentials based on the data alone. consistent with all of the members of the data set often pro-

The choice of characteristics that distinguish a physicallyduces complex structure in the distribution. Using linear sta-
acceptable potential is a matter of judgment, and the inverStics, such as the variance, is generally inappropriate for
sion algorithm must provide flexible discrimination. Incorpo- characterizing the;[v{"].
rating properties, such as smoothness, without restricting the The distributionsp;[v{" ], can be used to identify the best
functional representation of the potential can be accomestimate of each potential space variahléy computing the
plished using regularization methofl9,20. Regularization ~€xpectation values,
introduces additional operators,

1 N
Ny =N 2 Veplofl =L N, (®
ﬂv>=Jo<V>+Bs§1 IKV|2, (5)

overV*. The potentialv*) produced by all of the expecta-

. - tion values in Eq(6) provides the best estimate of the actual
that reward favorable properties, such as smoothiegsan ) : : :
molecular potential. Bounds on the inversion family can be

take on many forms, but is often a differential operator, par-, . ) S
: S L defined as the confidence limits,
ticularly the second derivative of the potential with respect to
its coordinatescf., Sec. ll). B8 is a constant that weights the
importance of regularization relative to that of reproducing <p*=infl v
the data. Generally, it is best to magesmall so that mini- !

mizing Eq. (5) first finds families consistent with the data,
Jo(V)—0. After the first term has vanished, the regulariza- p|
v

: f:””pi[vr]dvisg], (78

tion component becomes significant and forces unrealistic “vi=su
functions that coincidentally reproduce the data to be aban- v
doned.

Taking full advantage of the high-speed, nonlinear naturavhere € is the desired confidence. Equatiof® and (7hb)
of f(v) allows Eg.(5) to be globally minimized. Genetic define the upper and lower boundsy* and ~v*, of the
algorithms (GAs) [21] are attractive because they simulta- inversion family, and the probability of finding the actual
neously propagate multiple families and are relatively insenpotential betweernv* and ~v* is e. The uncertainty in the

LU*)pi[vi*]dvisg], (7h)

Ui
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the orderL, dramatically adding to the cost of learning the
O, p[®;e™ ®[V] V,S, L map. A balance that uses the largest possible domain for the
() e ®) © = lowest acceptable map order generally provides the best op-
Lls Map |2 erating conditions.
[l B . .
% o Construction & S After the map(d) is constructed by sampling[V] over
(e) = & @ its domain(in some cases, a previously generated map might
) 2 . . . . .. .
INVERSION | tiaiv, s=1..N, [ OBSERVABLE be reusey] the inversion optimize(e) minimizes Eq.(5)
i T v ] > usingf(v) to rapidly compute the distribution of observables
_ MAP EVALUATION fv) for each trial family of potential®&/ it considers. The family
OPTIMIZATION ™ corresponding £(v,) MAP size N (an algorithmic parametgis normally on the order
= ' of 10° and must be large to ensure that all the distributions,
5‘; R ai[®@; ;:f;(V)], can be resolved. Other GA parameters such as
S 0 the number of distinct families evolved by the Gie., the
Accum i wiliiior Revureny population sizg N, and the mutation and crossover rates

must be set to provide good exploration of Eg).

The GA gene construction and population operators, such
as mutation and crossover, should account for the fact that
each GA individual is a full family of trial Hamiltonians. An
appropriate  GA genome simply concatenates the

{Vpa: - Vo, Hamiltonian vectors(for the pth indi-

vidual) into anNgX N, dimensional augmented vector. Since
FIG. 1. A schematic representation of the nonlinear inversiorit iS the fitness of the entire Hamiltonian family, rather than
algorithm that is capable of identifying the full family of potentials the behavior of individual Hamiltonians, that is being opti-
that reproduce the observed data to within its uncertainty. A detailethized, mutation and crossover should not mix trial Hamilto-
description of the algorithm is given in Sec. Il. The procedurenians within a given trial family. The genetic operators
makes use of high-speed, nonlinear maps to replace the explicghould only mix corresponding Hamiltonians, i@, with

po_te_ntlal-observable relatlonshlp in the inversion optlml_zatlon. The;«/p ., s'#s. Nominal values for the mutation and crossover
efficiency of the maps permits the use of global searching methodsP:

. . rates are given by the ranges,,=[5%,20% and r.
such as genetic algorithms. =[60%,80%, respectively. A population size ®,~ 50—
100 individuals, each containing a family b trial poten-
rr;i_als, is normally sufficient to provide a global optimization.
The best member of the optimized populatidtf,=V7 ,
is the family most consistent with the distribution of labora-
Av¥="v*—<p*, (8)  tory observables. However, optimization alone does not
guarantee that this family represents a successful inversion,
where each\v? is associated with its corresponding coordi- nd two postoptimization tests must be performed. Fhist,
nater; . <Nj; (an algorithmic parametgiindividual potentials from
the family, V*, are randomly chosen and their associated
spectra are tested) for map error by comparing them with
explicit solutions of Eqs(1a) and (1b). Any optimized po-
Combining the concepts in Secs. Il A and Il B producestential where the map error exceeds a specified tolerance
the full map-facilitated inversion algorithm in Fig. 1, and the fails the map quality test. If the number of family members
labels(a)—(i) described below refer to this figure. As input, that fail the testing process is greater thyn(an algorithmic
the algorithm requirega) the data member®{'@?) and their  parameter, that member of the GA population is deemed
laboratory distributionsq{®®[®;], (b) a computational faulty and abandoned. The map quality test is repeated for
means(software treated as a black box by the algoritiar ~ the second member of the GA populatih and so on, until
solving the forward problem@[V], and(c) the map con- finding a member of the optimized family with sufficient
struction details including the expected dom¥inthe num-  accuracy. If none of thél, families qualify, f(v) is deemed
ber of samples per map variablg,, and the map ordel. faulty (g) and is regenerated over some fractiyn(an algo-
The starting parameters affect the efficiency of the inversiomithmic parameter, typically a halbf its initial domain. This
in two competing ways and must be chosen appropriately. If¥oting processg) provides quality control and allows the
the domainV is too small, it is possible that potentials that algorithm to adaptively refine its map to ensure an accurate
satisfy the data will remain undetected because they lie outepresentation ofo[ V], based on the argument thigtv) is
side the map. Similarly, the inversion might fail to reproducegenerally more accurate for smaller domdiék A large GA
the data and would need to be repeated over a new region pbpulationN, and family N size helps minimize the effect
potential space. In the alternate extreme, maintaining accwf isolated, poor individuals if the map displays high overall
racy over too large a map domain might require increasing@ccuracy.

Map?
@\

{V5 V), pl®; AV

inversion family as a function of its coordinates given by
the distance between its corresponding upper and lower fa
ily bounds,

D. Full nonlinear inversion algorithm
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Once map testing is successful, the result is an optimized A. Na, inversion
family V* that hopefully produces an observable distribution
consistent with that of the laboratory data. However, optimi-. ar theX 1y g anda3s : potentials of Na from rotation-

) o ol . ever, |
Z_a“ﬁ’;‘b) along will - likely oply achpveqi[CDi ’fi(v, )] ally resolved laser induced fluorescence spectra. In addition
=0; [®i], if the map domair contains the system's real (e rovibrational data, theoretical dispersion coefficients
potential. If the map domain is inadequate, the optimizationyere included to ensure proper long-range behavior, and
will fail to minimize Eq. (5) below a specified thresholeh.  reqylarization was utilized to produce smooth surfaces. The
If this test is not satisfied, the inversion failed and the entireyersion results and the nonlinear error analysis were com-
map construction-optimization process is repeated by reyareqd to other proposed potentials for both states in relation

centering the domain around the individual potentidl, o the error bounds obtained using the inversion algorithm.
e V*, that best matches the data. Otherwise, the inversion |n the context of rovibrational spectra, Eq&a and (1b)

The algorithm presented in Sec. Il was employed to re-

algorithm is complete. specifically take the form,
ll. THE XX} AND a®3} STATES OF Na, [Ho+ V()1 3=Ey 3¢, (93)
Na, has received recent attention in both high-precision O={T, ;}, (9b)

experimentg 7—9,23,24 and theoretica[2,25—-3( studies.

Quantitative knowledge of the Nanteraction is necessary where V(r) is the Born-Oppenheimer potential being in-
for understanding its Bose-Einstein condensation behavioverted and the rovibrational ternis, ;=E, ;+ D2, are the
[31-34 and there has been considerable interest in conaboratory observables. The conventional notation for the
structing high-precision potentials for th@lﬁg anda®%;  quantum numbers has been adopted Bfjds the molecular

states. Toward this end, botb initio and inversion tech- dissociation energy.

nigues have been applied to NaHere, we consider this well Constructing a map such that E) converges to low
studied system in order to demonstrate the concept of invererder requires a proper representation of the potential-energy
ing a laboratory data probability distribution. space. It has been demonstratid] that an appropriate
choice of variablew for diatomic potentials is given by dis-
1. Background of Na Potentials crgtizing V(r). The values ofV(r) at a collection ofN,
points,

Rydberg-Klein-ReegRKR) [35—37 potentials for both
the X'X; anda®3 states have been obtained by Zemke vi=V(r), i=1,...N, (10)
and Stwalley[38,39. The RKR surfaces were constructed _ . _ .
using theX 'S/ state spectroscopic constants of Babaky andProvide the potential space variables for constructing the
Hussein 7] and measurements of several rovibrational termgnap. The value of the potential between these points is found
by Li et al. [9] for thea3S state. Cté and Dalgarnd23] by interpolating a smooth surface through the Thus, the
have obtained potentials for bomlzg anda®s. Na, ex- vanabl_es are the interpolation points used to construct the
tending the Zemke and Stwalley surfaces by incorporatin%ment'al.‘ SlnceNU_ can be made as large as necessary to
the theoretical dispersion coefficients of Marinesetal. revent interpolation errord,(v) can well approximate the
[29] and an asymptotic exchange term of the form derived by'nderlying functional.
Smirnov and Chibisoy40].

The potential curves of Nawere recently re-examined B. The X 'Xg state potential
both experimentally and theoretically.fBart and Demtrder The inversion data fok 'S/ Na, consisted of the spec-
[41] have reporte+d the fine +and hyperfme structures of. therg) terms, T, ; for 0<v =62 (with the exception of =58,
triplet statesa s, anda®sy, which were also theoreti- \yhich was not measurgdind J=13,15. Accurate Spectro-
cally investigated by Stooét al. [42] and Miesetal. [43].  scopic constants3(v) andB(v), for the lower and interme-
Quality ab initio calculations for the triplet state have been giate =0, .. .44, vibrational levels of thex 134 state
performed by Gytowskﬁ28] at a higher level of the(?’ry than have been determined by Babaky and Hus§&lrand reli-
the older potentials of Konowaloy25,26. Gutowski's cal-  gpje centrifugal distortion constanB(v) have been deter-

culations, which utilized fourth-order Mer-Plesse{MP2- . o4 by Hoet al. [2]. These constants were used to obtain
MP4] and coupled cluster theofCCSD, CCSDT)] with 16 rovibrational terms

single, double, and noniterative triple excitations, lead him to

suggest that theb initio potential might be more accurate T,,=G(v)+B(v)J(J+1)+D(v)[IJJ+1)]* (11
than those derived from experimef28]. Ho, Rabitz, and '

Scoles[2] inverted the rovibrational spectra of Babaky andfor v=44, Higher vibrational terms, v
Hussein[7], Barrowet al. [8], and Liet al.[9] using a re- =45,...,57,59...62, have been measured by Barrow

producing kernel Hilbert spacéRKHS) procedure. The et al.[8] for J=13 and 15. The theoretical values of Mari-
RKHS results were in excellent agreement with the data andescuet al. [29] for the long-range dispersion coefficients:
the existing RKR potentials, and helped to resolve the disCg=5.70941%10° cm ' A®, Cz=1.509853 1% cm™*!
crepancy between the experimental aidinitio potentials, A8, and C;,=4.18165310° cm * A0 were adopted for
but did not agree on the equilibrium bond length. the potential beyond its LeRoy radius of 9.5[A4]. Com-
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bining the spectral terms and the theoretical dispersion coef- The inversion results for thx 12; potential are depicted
ficients, provided theM =129 members of the inversion in Fig. 2(a) where the e=90% confidence familyV*
data, (shaded region the RKR potential of Zemke and Stwalley
(pointg, and the RKHS potential of Het al. (dark line are
(pi('ab)le()'fjb), i=1,...,126, (129  in good agreement. Konowalowah initio potential is also
' plotted (dotted ling for comparison. On the scale of Fig.
2(a), including the blowup of the well region, the best esti-
mate of the potentialv* ) defined in Eq(6), and the RKHS
, curve are essentially indistinguishable; however, both differ
wherev =0, o 5’5759 +++,62, and)=13,15. The error dis-  from the RKR potential. A comparison of the dissociation
tributions, q{*”[®;], for the rovibrational terms were energy, associated with the well defffy and the equilib-
Gaussian with a standard deviatione$®”=0.01cm * [8],  rjum bond lengthr, predicted by the variouX 'S state
and the dlgper3|_on coefficients were assumed error-free. Thg,iential determinations is provided by Table II. Although
value of D, obtained by Barrovet al.[8], was used to com-  there is no overlap with the oldawb initio potential, there is
pute the term values in E¢lb) during map construction.  remarkable agreement between the inverted surfaces. The
The algorithm in Fig. 1 was started by providing the datayg|| depth and bond length associated with*) are
members®{®” | their error distributionsy{*”[®;], soft-  §022.0249 cm® and 3.0791 A, respectively.
ware for computing the rovibrational spectral quantities, and The uncertainty in the inverted potential was measured
the initial map parameters. Map construction utilized theysing the metricfAv* defined in Eq.(8), for a confidence
Fourier grid Hamiltonian method of Marston and B_alint- limit of e=90%. Although larger in the repulsive wally *
Kurti [45], with 650 grid points, to solve the radial Schro ;< confined to=8x 102 cm~* in the well and tail re-
dinger equation_ for the necessary rovibrational eigenvalue%g)ns' The long-range behavior is confined by the dispersion
The mapidlo.maln covered a region of potential-energy SpaC&efficients that were accurately reproduced by all of the
+500 cm ! in the well and+=5000 cm! in the repulsive

) members oV*. A nonlinear relationship between the poten-
wall, centered around the RKHS surfd@. Each first-order o ang spectral lines persisted even over the small area of

map function was resolved &=5 points, and the potential qential-energy space described by the inversion family.
was discretized at 100 points,, evenly spaced between  The presence of nonlinear effects was confirmed by both
=1.0 A andri4=16.0 A, Cubic-spline interpolation was jnyestigating the expansion functions in B§) and by in-
used to evaluate the potential between its discretized Value§pecting the the distribution of potentials\ift . Figures 2b)

A regularization operator, and (c) depict the distribution of potentialg;(v;'), and the
expected value(v}), at two arbitrary pointsy,=3.08 A
andr,,=3.32 A. The non-Gaussian nature of these distribu-
tions arises from the underlying nonlinear potential-spectrum
relationship.

P3P =(Cq,Cq,Cqof, 1=127,128,129, (12b)

N, -1 2

Rv= >

=2

vj+1—2vj+vj,l‘
Ar? ‘

(13

involving the three-point second derivative over the radial
coordinate was utilized to ensure smooth potentials, and the
regularization parametgd was set to X 10~ 1%, Equation(5) The a323 state rovibrational term3, ; reported by Li
was minimized using a steady-state G2{] with a popula- et al.[9] for v=0, ...,12 and)=14 and 16, as well as the
tion of N,=50 distributions, each containifg;=1000 trial  theoretical dispersion coefficients of Marinesi29] were
potentials. A mutation rate of,,=15% and a crossover rate used to provide the inversion data set,

of r,=70% were adopted and the testing parameters were

C. The a®%] state potential

chosen adN,=500, ¢,=0.01 cmi %, N;=5, ande;=10"3. pl=T1lab =1, .. 26, (143
The map-facilitated algorithm produced the best inversion (lab) _
family V* containingNs=1000 potentials consistent with ©1"”={C6,Cq,C1of, 1=27,28,29,  (14b

the Gaussian distributed data. Statistics for the term values o o
produced byv* are listed in Table I, where in all cases, the C‘()I”g?'”'”g_ M=29 members. The error distributions
recovered distributions were Gaussian, and show excelleft [ Pi] in the rovibrational terms were Gaussian with a
agreement with the experimental quantities. For brevity, onlystandard deviation ofs2”=0.32 cmi* [9] in the ro-
v=<36 is shown in Table I; however, the inversion repro-Vibrational levels. The dispersion coefficientsCg
duced thev>36 distributions with comparable accuracy. ~ =5-70941310° cm™* A®, Cg=1.50985% 10> cm* A%,
Since the dispersion coefficients were treated as data, &ind C10=4.18165310° cm™* A% were assumed error-
of the potentials in the resulting inversion family were alsofree. Again, the value ob?, obtained by Barrovet al. [8]
consistent with the correct long-range behavior of the potenwas used to compute the term values in Bdp) during map
tial. Trial potentials that did not agree with the dispersionconstruction.
coefficients were not retained in the solution family. In this ~ The algorithm in Fig. 1 was executed using similar oper-
manner, it was possible to construct potentials that were corating parameters as for thélig state inversion. The map
sistent with data that reflected both the long- and short-rang&as constructed to first,=1, order usingS;=6 points in
features of the interaction. each dimension over a domain that spannefi50 cm *
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TABLE |. Comparison of the distribution of rovibrational terms produced by the solution spacéiag potentials depicted in Fig. 2 and
the experimental valued(2®), from Babaky and Husse{iY] with a standard deviatiotStd. Dev) of £{'®”=0.01 cm%, for J=13,15 and
v=0,...,36.

J=13 q[@;;fi(v*)lem™ J=15 qi[®@;;fi(v*)l/em™
v oaP/em1 Avg. Std. Dev. v d{13P/em* Avg. Std. Dev.
0 107.4124 107.4126 0.012 0 116.3657 116.3613 0.011
1 264.9050 264.9072 0.009 1 273.8050 273.8065 0.010
2 420.9406 420.9462 0.010 2 429.7874 429.7844 0.013
3 575.5158 575.5151 0.010 3 584.3111 584.3146 0.010
4 728.6102 728.6181 0.010 4 737.3528 737.3558 0.011
5 880.2126 880.2156 0.011 5 888.9019 888.9019 0.010
6 1030.3076 1030.3092 0.010 6 1038.9426 1038.9436 0.011
7 1178.8820 1178.8827 0.014 7 1187.4614 1187.4612 0.011
8 1325.9218 1325.9258 0.010 8 1334.4445 1334.4453 0.010
9 1471.4157 1471.4173 0.012 9 1479.8816 1479.8877 0.009
10 1615.3421 1615.3438 0.012 10 1623.7496 1623.7497 0.009
11 1757.6877 1757.6827 0.010 11 1766.0361 1766.0361 0.010
12 1898.4330 1898.4378 0.011 12 1906.7213 1906.7272 0.013
13 2037.5616 2037.5626 0.010 13 2045.7891 2045.7897 0.010
14 2175.0518 2175.0572 0.009 14 2183.2174 2183.2174 0.012
15 2310.8845 2310.8852 0.010 15 2318.9876 2318.9856 0.010
16 2445.0336 2445.0333 0.011 16 2453.0725 2453.0725 0.015
17 2577.4776 2566.4762 0.010 17 2585.4511 2585.4571 0.010
18 2708.1937 2708.1937 0.011 18 2716.1012 2716.1015 0.012
19 2837.1507 2837.1536 0.010 19 2844.9899 2844.9859 0.011
20 2964.3270 2964.3270 0.012 20 2972.0974 2972.0974 0.010
21 3089.6885 3089.6888 0.012 21 3097.3877 3097.3837 0.011
22 3213.2067 3213.2087 0.011 22 3220.8331 3220.8335 0.011
23 3334.8516 3334.8513 0.010 23 3342.4040 3342.3922 0.013
24 3454.5862 3454.5842 0.010 24 3462.0623 3462.0540 0.011
25 3572.3771 3572.3723 0.011 25 3579.7751 3579.7602 0.012
26 3688.1852 3688.1822 0.010 26 3695.5029 3695.5022 0.010
27 3801.9731 3801.9741 0.011 27 3809.2086 3809.2032 0.013
28 3913.6954 3913.6884 0.010 28 3920.8460 3920.8509 0.010
29 4023.3122 4023.3182 0.010 29 4030.3761 4030.3664 0.011
30 4130.7757 4130.7757 0.012 30 4137.7507 4137.7432 0.010
31 4236.0362 4236.0334 0.012 31 4242.9193 4242.9142 0.010
32 4339.0452 4339.0435 0.010 32 4345.8342 4345.8197 0.011
33 4439.7482 4439.7482 0.011 33 4446.4402 4446.4500 0.010
34 4538.0920 4538.0834 0.010 34 4544.6847 4544.6732 0.011
35 4634.0131 4634.0131 0.011 35 4640.5025 4640.4975 0.010
36 4727.4566 4727.4564 0.011 36 4733.8403 4733.8355 0.011

around theab initio potential of Gutowski28]. 100 radial  of the dissociation energy, associated with the well dépth
points, r;, evenly spaced between;=1.0A and r,p, and the equilibrium bond length, predicted by the various
=16.0 A were used to resolve tte®S | surface and 212 proposed surfaces is shown in Table Il and the bond length
grid points were utilized in the discrete Fourier-grid Hamil- and well depth foxv*) are 5.118 A and 175.28 cm, re-
tonian. The same regularization operator and valyé néed  spectively. Although there is no direct agreement withabe
in the singlet state inversion were adopted. initio dissociation energy, there is overlap for the bond
As in theX '3 state inversion, optimization produced an length.
inversion family containing\s=1000 members with observ- ~ The e=90% confidence limits for tha 3% state poten-
able distributions consistent with the experimental resultstial are depicted by the shaded region in Figg)3The best
The statistics of the term values corresponding to the inverestimate of the potentigh*) is shown by the dotted line in
sion family are compared with the experimental values inFig. 3@ and is very similar to the RKHS potentiétlark
Table Il where there is excellent agreement. A comparisorsolid line). The inset plot of the well region in Fig.(8
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FIG. 2. (a) Global inversion results for thx 12g state potentia{shaded region of the ingetompared with the RKR results of Zemke
and Stwalley{24] (pointy, RKHS results of Ho, Rabitz, and Scolgg (solid line); and theab initio results of Konowalowet al. [25,26]
(dotted ling. The shaded region represents the potential-energy space subdomain in which there is a 90% probability of finding the true
molecular potential, based on inverting the data of Babaky and Huisgeamd Barrowet al. [8] using the algorithm in this paper. The best
estimate of the potential from the present inversion is indistinguishable from the RKHS surface. The distributions of potential space
variables,q,o(v}g) andqg,y(v3,), including the best estimateg;}), for r,g=3.08 A andr,,=3.32 A are shown irb) and(c).

compares the different proposeal®s, state potentials. IV. CONCLUSION

Again, V* (shaded regionand the RKHS potentia{dark

- o ) In this paper, we introduced a laboratory data inversion
solid line) overlap; however, they do not coincide with the pap y

X procedure capable of rigorously treating experimental error.
RKR surface(pointy of Zemke and Stwalleynote that the = The most significant feature of this new procedure is that it

RKR point shown is not the well minimum of that potential = jyyerts the full probability distribution of laboratory data.
The expanded region of the plot in FigaBshows that both  The global, map-facilitated algorithm adopted here utilized
ab initio surfaces lie outside of the 90% confidence interval.,q dynamical models and employed highly accurate maps to
Figures 8b) and (c) show the distribution of potentials, jgentify the full family of potentials consistent with the sta-
p1i(vi) and piviy), at two arbitrary radial pointsry; tistics of the data. We also demonstrated that a linear treat-
=5.1 A andr3=5.54 A. Again, the relationship between ment of inversion error is inadequate. This is because the
the potential and its spectral lines is nonlinear over the rangfonlinear nature of the potential-observable relationship dis-
of uncertainty. Except for the tail, where the dispersion co+orts the input probability distribution of the laboratory data.
efficients confine the width of the solution family, the inver- A Gaussian distribution of observables generally does not
sion is of lower precision than for th¥ 'S & state. Over produce a Gaussian distribution of inverted Hamiltonians.
most of the well, the uncertainty in tree®> " state surface, The capabilities of the inversion algorithm were demon-
measured by the 90% confidence interval , is ~1 strated by extracting potentials for thélE;r and a3y’

cm L, states of Na from laboratory data. The potentials and error

TABLE Il. Comparison of the well deptib, and equilibrium bond length, for variouleEér and
ad®y ! state potentials.

Potential X2y ady;
re (A) De (cm™ ) re (A) De (cm™ )
Ab initio® 3.124 5725.04 5.192 177.7
RKRP 3.0795 6022.0255 5.0911 174.45
RKHS® 3.0796+ 0.0010 6022.02460.0494 5.08930.0623 174.9581.177
y*d [3.0691,3.079p  [6021.9981,6022.1011  [5.017,5.201  [174.533,175.91D

ax 12; state results from Konowaloet al.[25,26 anda 33, state results from Gutowsk28].

PX 134 anda®3 state results from Zemke and Stwallg8,39.

°X 'Yy anda®% state results from Ho, Rabitz, and Scoles

990% confidence limits for, and D, obtained from the families in Figs. 2 and 3 usindg® Monte Carlo
sample potentials.
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TABLE Ill. Comparison of the distribution of rovibrational terms produced byai&. | state inversion
family in Fig. 3 and the experimental valuab{'®® | determined by Liet al.[9] with a standard deviation
(Std. Dev) of £{??=0.32 cn ¢, for J=14,16.

J=14 qi[®;;fi(V*)]/cm? J=16 qi[®;;fi(V*)]/cm?
v ®em? Avg. Std. Dev. v ®{@®jem ! Avg. Std. Dev.
0 5871.7430 5871.7533 0.31 0 5875.2336 5875.2381 0.31
1 5894.3630 5894.3519 0.33 1 5897.5436 5897.4234 0.35
2 5914.9550 5914.9638 0.31 2 5918.0240 5917.9381 0.32
3 5934.1040 5933.9913 0.31 3 5937.0428 5936.9662 0.31
4 5951.4570 5951.4654 0.31 4 5954.3524 5954.4187 0.31
5 5966.9000 5966.8724 0.32 5 5969.5040 5969.4232 0.33
6 5980.4260 5980.4231 0.31 6 5982.8192 5982.8447 0.32
7 5991.7570 5991.7652 0.34 7 5993.8464 5993.8947 0.31
8 6001.5230 6001.5293 0.32 8 6003.7116 6003.6723 0.33
9 6009.6810 6009.6841 0.31 9 6011.4852 6011.4669 0.30
10 6015.8400 6015.7843 0.31 10 6017.4520 6017.4031 0.33
11 6020.3360 6020.2402 0.32 11 6021.6132 6021.5723 0.31
12 6022.9800 6022.8671 0.33 12 6024.0340 6023.9384 0.33

analyses performed here were compared with the recerfibund between the previously determined RKHS and RKR
RKHS curves of Hoet al,, the RKR inverted potentials of potentials and the full inversion family identified here. The
Zemke and Stwalley, and the varioab initio potentials of  data for the rovibrational levels of tre®s | state were less
Gutowski and Konowalovet al. precise, producing a family of potentials withl cm* un-

The precisionX 12g state experimental data produced acertainty around the well. All members of the family exactly
high-quality inversion with a tight family of potentials con- reproduced the theoretical dispersion coefficients beyond the
sistent with the data. On average, the uncertainty in the ex-eRoy radius of 9.5 A.
tracted potential wass0.1 cm . Good agreement was An essential point of our analysis, which was based upon
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I A IR i
4 12 16 -175.0 -1745 -174.0
Vi, (em™)

FIG. 3. (a) Global inversion result3/* (shaded region for thea3Ej state potential compared with the RKHS results of Ho, Rabitz, and
Scoles[2] (dark solid ling, the RKR results of Zemke and Stwall€¥8] (pointg, and theab initio results of Gutowskj28] (dark broken
line), and Konowalowet al.[25,26 (thin line). The shaded region represents the portion of potential-energy space in which there is a 90%
probability of finding the true potential, based on inverting the data @t lal.[9], and the dotted line throughi* is the best estimate of the
potential. The distribution of potentialg,,(v3,) (b) andg.s(v}y) (c), within the inversion family is shown at the pointg;=5.1 A and
r15=5.54 A. The values(v}), in (b) and(c) show the corresponding best estimate of the potential at their associated pairthie
distributions reflect the presence of significant nonlinearities between the full inversion family and its consequent spectral observables and
demonstrate the importance of using nonlinear error analysis.
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the concept otonsistencypetween the data and the family of 11 D could also be used to treat more difficult to calculate
inverted molecular potentials, is that no one feature of thebservables, such as the fine and hyperfine structures. This
surface can be used for comparison. For example, simplgxtension, using a map-facilitated algorithm for,Navould
comparing a well depth or equilibrium bond length is arequire approximately a 100—150 coupled-channel computa-
simple means for qualitatively comparing to potentials.tion, which is quite practical. The power of map facilitation
However, in order to rigorously declare that two potentialsis that it permits sophisticated inversion techniques to be
are different, the two surfaces must produce observables thapplied to computationally expensive molecular systems and
differ more than the laboratory uncertainty. Furthermore, theobservables.

entire potential must be used to make such a comparison—it

is ins_ufficient to compare only several c_har_acte_ristic po_ints. ACKNOWLEDGMENTS
In this sense, the full laboratory data distribution provides
the appropriate test of the potential. The authors acknowledge Dr. Tak-San Ho for beneficial

Although a diatomic system was considered here, mapeonversations and for providing previously tabulated data for
facilitated inversions have been performed on more complethe RKHS andab initio potentials used here for comparison.
systems such as Ar-H@#]. The algorithm described in Sec. This work was supported by the DOE.

[1] R. Levine and R.B. Bernsteimlolecular Reaction Dynamics [20] K.J. Miller, Math. Anal.1, 52 (1970.
and Chemical Reactivit§Oxford University Press, New York, [21] D. Goldberg,Genetic Algorithms in Search, Optimization, and

1987). Machine Learning/Addison-Wesley, Reading, MA, 1989
[2] T.-S. Ho, H. Rabitz, and G. Scoles, J. Chem. PAyI® 6218  [22] f;(v*) is the map-predicted value df; for a single optimized
(2000. potentialv*, and f;(V*) is the map-predicted family of ob-
[3] J. Geremia and H. Rabitz, Phys. Rev6A 022710(2001). servables with a different value ob; for eachvy in V*.
[4] J. Geremia and H. Rabitz, J. Chem. Phi/s5 8899(2002. gi[ ®; ;f;(V*)] is the distribution of observables produced by
[5] J. Geremia, E. Weiss, and H. Rabitz, Chem. P67, 209 the optimal family,V*.
(2001. [23] R. Cae and A. Dalgarno, Phys. Rev. 30, 4827 (1994).
[6] J. Geremia, C. Rosenthal, and H. Rabitz, J. Chem. Piiys. [24] K.M. Jones, S. Maleki, S. Size, P.D. Lett, C.J. Williams, H.
9325(2001). Richling, H. Knockel, E. Tiemann, P.L.G.H. Wang, and W.C.
[7] O. Babaky and K. Hussein, Can. J. Ph§g, 912 (1988. Stwalley, Phys. Rev. A4, R1006(1996.
[8] R.F. Barrow, J. Verges, C. Effantin, K. Hussein, and J.D. Din-[25] D.D. Konowalow, M.E. Rosenkrantz, and M.L. Olson, J.
can, Chem. Phys. LetL04, 179 (1984. Chem. Phys72, 2612(1980.
[9] L. Li, S.F. Rice, and R.W. Field, J. Chem. Phy&2, 1178 [26] D.D. Konowalow and M.E. Rosenkrantz, J. Phys. Ch&@).
(1985. 1099 (1982.

[10] O. Alis and H. Rabitz, Trans. J. Math. Che@b, 197 (1999. [27] S. Magnier, P. Millie, O. Dulieu, and F. Masnou-Seeuws, J.
[11] H. Rabitz, O. Alis, J. Shorter, and K. Shim, Comput. Phys. Phys. Chem98, 7113(1993.

Commun.11, 117 (1999. [28] M. Gutowski, J. Phys. Chenil10 4695(1999.
[12] J.I. Shorter and H. Rabitz, Geophys. Res. L&, 3485 [29] M. Marinescu, H.R. Sadeghpour, and A. Dalgarno, Phys. Rev.
(2000. A 49, 982 (1994.
[13] J. Shorter, P. Ip, and H. Rabitz, J. Phys. ChemB6\ 7192  [30] G. Hadinger, S. Magnier, and M. Aubert-Frecon, J. Mol. Spec-
(1999. trosc. 175, 441 (1996.
[14] H. Rabitz and K. Shim, J. Chem. Phyi1, 10640(1999. [31] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman,
[15] K. Shim and H. Rabjtz, Phys. Rev. 88, 1940(1998. and E.A. Cornell, Scienc269, 198 (1995.
[16] H. Rabitz anciK. Shim, J. Chem. Phykl1, 10640(1999. [32] C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Phys.
[17] The notation,v, represents aindividual trial potential with Rev. Lett.75, 1687(1995.
corresponding map-predicted observablésyy):{fi(v)}, i [33] C.C. Bradley, C.A. Sackett, and R.G. Hulet, Phys. Rev. Lett.
=1,... M, for M members of the data se¥. represents a 78, 985(1997.
family of trial potentials, V={v,, ... vy}, and f(V)  [34] K.B. Davis, M.-O. Mrwes, M.R. Andrews, N.J. van Druten,
:{f(\~/s)}, s=1,... N, is the associatetamily of observ- D.S. Durfee, D.M. Kurn, and W. Ketterle, Phys. Rev. L&8,
ables produced by the potentials% f;(V) is the map pre- 3969(1995.

dicted family of ®{3® and displays a distribution, [35] R. Rydberg, Z. Phys73, 376(193).
ai[®; ;f,(V)]. Everyv andV is a member of the map domain, [36] O. Klein, Z. Phys.76, 226 (1932.

V. [37] A.L.G. Rees, Proc. Phys. Soc. Londb8, 998 (1947).

[18] Note that anN, dimensional family member;(Vvs), should  [38] W.T. Zemke and W.C. Stwalley, J. Chem. Phy€0 2661
not be confused with the first-order map functiofgp;). (1994.

[19] A. Tihkonov and V. ArseninSolutions of Ill-posed Problems [39] W.T. Zemke and W.C. Stwalley, J. Chem. Phy41, 4962
(Winston, Washington/Wiley, New York, 19Y.7 (1999.

022711-10



ERROR BOUNDS FOR MOLECULAR HAMILTONIANS . . . PHYSICAL REVIEW A 67, 022711 (2003

[40] B.M. Smirnov and M.l. Chibisov, Sov. Phys. JETR, 624 [43] F.H. Mies, E. Tiesinga, and P. Julienne, Phys. Rev61]A

(1965. 022721(2000.

[41] A. Farbert and W. Demirder, Chem. Phys. Let264, 255  [44] R.J. LeRoySpecialist Periodical Reports, Molecular Spectros-
(1997. copy (Chemical Society, London, 19¥3vol. 1.

[42] H. Stoof, J. Koelman, and B.J. Verhaar, Phys. Re2834688 [45] C.C. Marston and G. Balint-Kurti, J. Chem. Phyl, 3571
(1988. (1989.

022711-11



