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Error bounds for molecular Hamiltonians inverted from experimental data

J. M. Geremia* and Herschel Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 30 August 2002; published 28 February 2003!

Inverting experimental data provides a powerful technique for obtaining information about molecular Hamil-
tonians. However, rigorously quantifying how laboratory error propagates through the inversion algorithm has
always presented a challenge. In this paper, we develop an inversion algorithm that realistically treats experi-
mental error. It propagates the distribution of observed laboratory measurements into a family of Hamiltonians
that are statistically consistent with the distribution of the data. This algorithm is built upon the formalism of
map-facilitated inversion to alleviate computational expense and permit the use of powerful nonlinear optimi-
zation algorithms. Its capabilities are demonstrated by identifying inversion families for theX 1Sg

1 anda 3Su
1

states of Na2 that are consistent with the laboratory data.
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I. INTRODUCTION

In order to predict molecular processes, it is first nec
sary to have quantitative knowledge of the Hamiltonian g
erning the system’s behavior@1#. As such, constructing mo
lecular potential energy surfaces has been a longstan
area of active research. Despite advances inab initio tech-
niques, many of the most powerful methods for determin
molecular potentials extract them from laboratory measu
ments. Data inversion, however, is nontrivial for two re
sons. First, the connection between the Hamiltonian and
associated observables is nonlinear and indirect—the Sc¨-
dinger equation is buried within it. Second, laboratory d
contain experimental error.

Providing a realistic analysis of how laboratory unce
tainty propagates through an inversion algorithm is challe
ing because the experimental error must be treated on
same footing as the data. Inversion is often computation
expensive and it is even more costly to map the experime
error back to a proper characterization of the Hamilton
uncertainty. Furthermore, these issues are complicated b
nonlinear character of the relationship between the molec
Hamiltonian and the data. Consequently, traditional invers
methods have provided only approximate error analyses.
example, Hoet al. @2# addressed error in theX 1Sg

1 and
a 3Su

1 state potentials for Na2 using a Monte Carlo treatmen
of laboratory noise, but resorted to linearization.

In order to rigorously treat experimental error, it is nece
sary toinvert the entire distribution of measured laborato
data, not simply the mean values of the observables. Fro
laboratory perspective, data values that differ within the
perimental precision are indistinguishable. The relative c
fidence in any particular value is described by a probabi
distribution~often Gaussian! that results from the experimen
tal statistics. In order for data inversion to reflect these pr
erties of the measurements, it should similarly provide
family of indistinguishablepotentials whose confidence
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described by a probability distribution. The important featu
of the inversion family is that any potential from within
should reproduce the experimental data to within the labo
tory precision. Similarly, potentials from outside the fami
should correspond to observables that lie outside the exp
mental tolerance. Furthermore, a potential from the invers
family that has a high inversion confidence should cor
spond to a value of the observable that has a high labora
confidence. A family of potentials that meets these crite
will be referred to asconsistent with the data.

This definition ofconsistencyintroduces a new means o
expressing inversion that involves identifying a family th
contains many distinct Hamiltonians. Obtaining an invers
family requires a global and nonlinear inversion algorith
because a Gaussian~or any other! distribution in the data
need not correspond to a Gaussian~or similar! distribution of
inverted potentials. This nonintuitive feature of Hamiltonia
inversions results because the relationship between poten
energy space and its associated observables is nonlinea

The need for global, nonlinear inversion capabiliti
places strict demands on the computational efficiency of
inversion algorithm. Resolving the inversion family can r
quire extracting hundreds of distinct Hamiltonians from t
data to reveal the distribution. It is therefore important
adopt map-facilitated inversion techniques@3–5# that have
been specifically developed for finding solution familie
Functional maps@6# alleviate the expense of repeatedly so
ing the Schro¨dinger equation, making it possible to identif
the full, nonlinear inversion family.

In this paper, we extend the formalism of map-facilitat
inversion to treat a distribution of laboratory data and obt
a full family of consistent potentials. To the best of o
knowledge, this is the first general inversion algorithm
treat quantum-mechanical experimental data in such a m
ner. The inversion algorithm is presented in Sec. II, an
demonstration of the procedure is provided in Sec. III. W
invert the rovibrational spectra of Babaky and Hussein@7#
and Barrowet al. @8# for the X 1Sg

1 state potential of Na2
and the spectrum of Liet al. @9# for the a 3Su

1 state. The
purpose of treating this collection of data is to demonstr
the concept of inverting a distribution, rather than just inve
ing the mean data. We also provide evidence that e

il
A
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propagation can be nonlinear, even when the data are of
laboratory precision.

II. ALGORITHM

This section adapts a recently introduced map-facilita
data inversion method@3,4# in order to invert a full probabil-
ity distribution of laboratory data. The procedure can
separated into two stages. First, a numerical poten
→observable map@6# is learned by solving the Schro¨dinger
equation for a small, but judiciously chosen, collection
representative potentials. Then, the inversion is performe
an optimization over the map, which provides a highly ac
rate proxy for the Schro¨dinger equation. Evaluating the ma
is fast, and it permits the use of global, nonlinear sea
algorithms. The optimization result is the full family of po
tentials consistent with the distribution of the data.

A. Learning the forward map

The direct connection between the potentialV(r ) andF,
for example, the spectrum, can rarely be formulated in clo
form. Mapping the relationship implicitly involves solvin
the Schro¨dinger equation and then computing the relev
observables,

@H01V~r !#uc&5Euc&, ~1a!

Fm5^cuÔmuc&, ~1b!

whereH0 is the portion of the Hamiltonian that is assum
known and not subject to identification. The Hermitian o
eratorsÔm correspond to the laboratory observables~e.g.,
spectral lines! being inverted.

The composition of Eqs.~1a! and~1b! to form a mapping
f between potential-energy spaceV and its corresponding
observables,

f @V#:V→F, VPV, ~2!

is a functional~indicated by the@•# notation! of the input
potential-energy functionV. Evaluating Eq.~2! implicitly re-
quires solving the Schro¨dinger equation and computing th
desired observables according to Eqs.~1a! and ~1b!.

In practice, numerical methods are employed to const
the map, andf @V# must be approximated by replacing th
function input V(r ) with a collection of variables,v
[$v1 , . . . ,vNv

%, that distinguish between different membe
of potential-energy space. This transformation results in
Nv-dimensional functionf (v) or a map, from potentials to
observables. The particular meaning of the potential sp
variablesv i depends on the nature of the Hamiltonian be
inverted. For example, in Sec. III, the variables are the val
of the Na2 potentials at fixed interatomic separations@e.g.,
Eq. ~10!#.

Constructing the map used in the inversion optimization
accomplished by tabulatingf (v) for a representative sampl
of potentials,$v1 , . . . %. Generally, it is impossible to nu
merically resolvef on a full Nv-dimensional grid~as is com-
mon for low dimensional functions! because representing po
02271
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tential space with sufficient flexibility often requiresNv@1.
Consequently, it is necessary to employ a more judicio
procedure for sampling and interpolatingf (v), if lineariza-
tion is to be avoided.

It has recently been demonstrated@6# that the nonlinear
map can be constructed by reformulatingf (v) as a finite
expansion,

f ~v!5 f 01(
i 51

Nv

f i~v i !1(
i , j

Nv

f i j ~v i ,v j !1•••

1 f 1, . . . ,Nv
~v1 , . . . ,vNv

!, ~3!

wheref 0 is a constant term,$ f i(v i)% are single-variable func-
tions,$ f i j (v i ,v j )% are bivariate functions, etc. Expansions
the form in Eq.~3! are referred to as high-dimensional mod
representation. They form a family of multivariate represe
tations used to capture the input→output relationships of
many high-dimensional physical systems@5,6,10–16#. It is
important to note that Eq.~3! is not a Taylor series. It can b
truncated without sacrificing nonlinearity because the l
order terms, although subdimensional, can display arbitr
nonlinearity.

The hierarchy of terms in Eq.~3! can be assigned a
ordering indexL that groups the functions according to d
mensionality.L50 corresponds to the constantf 0 , L51 in-
cludes only the single-variable functions$ f i%, L52 corre-
sponds to the$ f i j %, etc. The physical interpretation of th
expansion functions is that they represent the collective
fects of the potential space variables in order of increas
intervariable cooperation. For example, thef i(v i) terms de-
scribe howv i , alone, affects the value of the physical o
servable. The bivariate functions,f i j (v i ,v j ), reflect the si-
multaneous influence ofv i , v j , and so on. The final term
f 1, . . . ,Nv

, captures any residual dependence of the observ
on all of the variables acting in nonseparable cooperatio

It has been shown that Eq.~3! converges to low order
L!Nv for quantum potential-observable relationships with
properly chosen form for the variablesv i @6#. A low order,
converged map expansion can be truncated after its last
nificant order without sacrificing accuracy or nonlineari
This dramatically reduces the computational labor of m
construction. For example, the complexity of constructing
Lth-order map is given by that of attaining theLth-order
terms. Therefore, the total number of sample points scale
O(SN),O(S2Nv

2), . . . , for L51,2, . . . , respectively, result-
ing in only polynomial sampling complexity inNv . Con-
structing the potential→observable map can be achieve
with feasible computational expense. Specifics for how
individual expansion functions should be evaluated can
found in previous papers@3–6#.

B. Inverting the functional relationship

The objective of the inversion is to identify the family o
potentials that are consistent with the laboratory probabi
distributions, q( lab)@F#5$qi

( lab)@F i #%, i 51, . . . ,M , for
each individual observable in the full data set,F ( lab)

5$F1
( lab) , . . . ,FM

( lab)%. In many cases, the collection of dis
1-2
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tributionsq( lab)@F#, are Gaussian and characterized by th
standard deviations« i

( lab) . In other instances,q( lab)@F#
might be non-normal or possibly only characterized by h
bounds6« i

( lab) .
During the inversion search, rather than investigating

dividual surfaces, every trial solution is a full family of po
tentials,Ṽ5$ṽ1 , . . . ,ṽNs

% @17#, along with its associated se

of observables, f (Ṽ)5$ f i( ṽs)%, i 51, . . . ,M , and s
51, . . . ,Ns @18#. For every trial family, the distributions o
observables,qi@F i ; f i(Ṽ)#, are computed by evaluating th
map over the family members,$ f i( ṽ1), . . . ,f i( ṽNs

)%, and ac-
cumulating the distribution by binning, or other suitab
techniques. In practice, the number of family members,Ns ,
must be large enough to numerically resolveqi@F i ; f i(Ṽ)#.

Minimizing the difference between the data distributio
qi

( lab)@F i #, and map-computed distribution,qi@F i ; f i(Ṽ)#,
over thei 51, . . . ,M distinct observables,

J0~Ṽ!5
1

M (
i 51

M E uqi
( lab)@F i #2qi@F i ; f i~Ṽ!#u2 dF i ,

~4!

produces the inversion family by morphing the family un
the distributions,qi

( lab)@F i # andqi@F i ; f i(Ṽ)#, are the same
~or as close as possible!. However, without further con-
straints, Eq.~4! may insufficiently discriminate between re
alistic potentials~i.e., smooth, asymptotically correct, etc!
and others that, although consistent with the data, are ph
cally unrealistic. It is often impossible to identify realist
potentials based on the data alone.

The choice of characteristics that distinguish a physica
acceptable potential is a matter of judgment, and the in
sion algorithm must provide flexible discrimination. Incorp
rating properties, such as smoothness, without restricting
functional representation of the potential can be acco
plished using regularization methods@19,20#. Regularization
introduces additional operators,

J~Ṽ!5J0~Ṽ!1b(
s51

Ns

iK̂ ṽsi2, ~5!

that reward favorable properties, such as smoothness.K̂ can
take on many forms, but is often a differential operator, p
ticularly the second derivative of the potential with respec
its coordinates~cf., Sec. III!. b is a constant that weights th
importance of regularization relative to that of reproduci
the data. Generally, it is best to makeb small so that mini-
mizing Eq. ~5! first finds families consistent with the dat
J0( ṽ)→0. After the first term has vanished, the regulariz
tion component becomes significant and forces unreal
functions that coincidentally reproduce the data to be ab
doned.

Taking full advantage of the high-speed, nonlinear nat
of f (v) allows Eq. ~5! to be globally minimized. Genetic
algorithms ~GAs! @21# are attractive because they simult
neously propagate multiple families and are relatively ins
02271
ir

d

-

,

si-

y
r-

he
-

r-
o

-
ic
n-

e

-

sitive to starting values. Unlike local searching metho
which can be prone to divergence unless the initial gues
fortunate, GAs are stable with excellent convergence beh
ior because of elitism and population overlap making th
ideal for complex landscapes such as those that arise w
inverting quantum-mechanical data.

C. The inverse solution family

Using a GA to minimize Eq.~5! produces a population o
Np optimized families,$V1* , . . . ,VNp

* %. Each containsNs

potentials,Vp* 5$vp,1* , . . . ,vp,Ns
* %, p51, . . . ,Np , with asso-

ciated distributions,qi@F i ; f i(Vp* )# @22#. Normally, the most
fit member of the GA population,V1* , provides the final,
optimal inversion family, denotedV* , and the remainder o
the population,p52, . . . ,Np is ignored. Section II D will
discuss the algorithm used to decide which GA populat
member best providesV* .

Once the familyV* has been identified, it is useful t
define another set of distributions,pi@v i* #, that describe the
probability of values for each potential space variablev i*
over the inversion family. These new distributions, accum
lated by binning, are implicitly related toq( lab)@F# and
q@F; f (V* )# through the inversion. Thepi@v i* # reflect the
nonlinearity of the potential-observable relationship and
rarely predictable even when the observable distributio
qi

( lab)@F i #, are simple, such as Gaussian or uniform@cf.,
Figs. 2~b! and 2~c! and Figs. 3~b! and 3~c!#. The combined
effect of nonlinearity between the potential and the obse
able and the fact that the inversion must simultaneously
consistent with all of the members of the data set often p
duces complex structure in the distribution. Using linear s
tistics, such as the variance, is generally inappropriate
characterizing thepi@v i* #.

The distributions,pi@v i* #, can be used to identify the bes
estimate of each potential space variablev i by computing the
expectation values,

^v i* &5
1

Ns
(
s51

Ns

vs,i* pi@v i* #, i 51, . . . ,Nv ~6!

over V* . The potential̂ v* & produced by all of the expecta
tion values in Eq.~6! provides the best estimate of the actu
molecular potential. Bounds on the inversion family can
defined as the confidence limits,

,v i* [ inf
v
H vU E

v

^v i* &
pi@v i* #dv i<

e

2J , ~7a!

.v i* [sup
v

H vU Ê
v i* &

v
pi@v i* #dv i<

e

2J , ~7b!

wheree is the desired confidence. Equations~7a! and ~7b!
define the upper and lower bounds,,v* and .v* , of the
inversion family, and the probability of finding the actu
potential between,v* and .v* is «. The uncertainty in the
1-3
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inversion family as a function of its coordinatesr is given by
the distance between its corresponding upper and lower f
ily bounds,

Dv i* 5.v i* 2,v i* , ~8!

where eachDv i* is associated with its corresponding coord
nater i .

D. Full nonlinear inversion algorithm

Combining the concepts in Secs. II A and II B produc
the full map-facilitated inversion algorithm in Fig. 1, and th
labels~a!–~i! described below refer to this figure. As inpu
the algorithm requires~a! the data membersF i

( lab) and their
laboratory distributionsqi

( lab)@F i #, ~b! a computational
means~software treated as a black box by the algorithm! for
solving the forward problem,F@V#, and ~c! the map con-
struction details including the expected domainV, the num-
ber of samples per map variable,Si , and the map orderL.
The starting parameters affect the efficiency of the invers
in two competing ways and must be chosen appropriatel
the domainV is too small, it is possible that potentials th
satisfy the data will remain undetected because they lie
side the map. Similarly, the inversion might fail to reprodu
the data and would need to be repeated over a new regio
potential space. In the alternate extreme, maintaining a
racy over too large a map domain might require increas

FIG. 1. A schematic representation of the nonlinear invers
algorithm that is capable of identifying the full family of potentia
that reproduce the observed data to within its uncertainty. A deta
description of the algorithm is given in Sec. II. The procedu
makes use of high-speed, nonlinear maps to replace the ex
potential-observable relationship in the inversion optimization. T
efficiency of the maps permits the use of global searching meth
such as genetic algorithms.
02271
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the orderL, dramatically adding to the cost of learning th
map. A balance that uses the largest possible domain for
lowest acceptable map order generally provides the best
erating conditions.

After the map~d! is constructed by samplingF@V# over
its domain~in some cases, a previously generated map m
be reused!, the inversion optimizer~e! minimizes Eq.~5!
using f (v) to rapidly compute the distribution of observabl

for each trial family of potentialsṼ it considers. The family
sizeNs ~an algorithmic parameter! is normally on the order
of 103 and must be large to ensure that all the distributio

qi@F i ; f i(Ṽ)#, can be resolved. Other GA parameters such
the number of distinct families evolved by the GA~i.e., the
population size! Np and the mutation and crossover rat
must be set to provide good exploration of Eq.~5!.

The GA gene construction and population operators, s
as mutation and crossover, should account for the fact
each GA individual is a full family of trial Hamiltonians. An
appropriate GA genome simply concatenates

$ṽp,1 , . . . ,ṽp,Ns
% Hamiltonian vectors~for the pth indi-

vidual! into anNs3Nv dimensional augmented vector. Sinc
it is the fitness of the entire Hamiltonian family, rather th
the behavior of individual Hamiltonians, that is being op
mized, mutation and crossover should not mix trial Hamil
nians within a given trial family. The genetic operato
should only mix corresponding Hamiltonians, i.e.,ṽp,s with
ṽp,s8 , s8Þs. Nominal values for the mutation and crossov
rates are given by the ranges,r m5@5%,20%# and r c
5@60%,80%#, respectively. A population size ofNp; 50–
100 individuals, each containing a family ofNs trial poten-
tials, is normally sufficient to provide a global optimizatio

The best member of the optimized population,V* [V1* ,
is the family most consistent with the distribution of labor
tory observables. However, optimization alone does
guarantee that this family represents a successful invers
and two postoptimization tests must be performed. First,Nt
<Ns ~an algorithmic parameter! individual potentials from
the family, V* , are randomly chosen and their associa
spectra are tested~f! for map error by comparing them with
explicit solutions of Eqs.~1a! and ~1b!. Any optimized po-
tential where the map error exceeds a specified tolerance t
fails the map quality test. If the number of family membe
that fail the testing process is greater thanNf ~an algorithmic
parameter!, that member of the GA population is deeme
faulty and abandoned. The map quality test is repeated
the second member of the GA populationV2* and so on, until
finding a member of the optimized family with sufficien
accuracy. If none of theNp families qualify, f (v) is deemed
faulty ~g! and is regenerated over some fractionNr ~an algo-
rithmic parameter, typically a half! of its initial domain. This
voting process~g! provides quality control and allows th
algorithm to adaptively refine its map to ensure an accu
representation ofF@V#, based on the argument thatf (v) is
generally more accurate for smaller domains@6#. A large GA
populationNp and familyNs size helps minimize the effec
of isolated, poor individuals if the map displays high over
accuracy.

n

d

cit
e
ds
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Once map testing is successful, the result is an optimi
family V* that hopefully produces an observable distributi
consistent with that of the laboratory data. However, optim
zation alone will likely only achieveqi@F i ; f i(V* )#
5qi

( lab)@F i #, if the map domainV contains the system’s rea
potential. If the map domain is inadequate, the optimizat
will fail to minimize Eq. ~5! below a specified thresholdeJ .
If this test is not satisfied, the inversion failed and the en
map construction-optimization process is repeated by
centering the domain around the individual potential,vs*
PV* , that best matches the data. Otherwise, the invers
algorithm is complete.

III. THE X 1Sg
¿ AND a 3Su

¿ STATES OF Na2

Na2 has received recent attention in both high-precis
experiments@7–9,23,24# and theoretical@2,25–30# studies.
Quantitative knowledge of the Na2 interaction is necessar
for understanding its Bose-Einstein condensation beha
@31–34# and there has been considerable interest in c
structing high-precision potentials for theX 1Sg

1 anda 3Su
1

states. Toward this end, bothab initio and inversion tech-
niques have been applied to Na2 . Here, we consider this wel
studied system in order to demonstrate the concept of inv
ing a laboratory data probability distribution.

1. Background of Na2 Potentials

Rydberg-Klein-Rees~RKR! @35–37# potentials for both
the X 1Sg

1 and a 3Su
1 states have been obtained by Zem

and Stwalley@38,39#. The RKR surfaces were constructe
using theX 1Sg

1 state spectroscopic constants of Babaky a
Hussein@7# and measurements of several rovibrational ter
by Li et al. @9# for the a 3Su

1 state. Coˆté and Dalgarno@23#
have obtained potentials for bothX 1Sg

1 anda 3Su
1 Na2 ex-

tending the Zemke and Stwalley surfaces by incorpora
the theoretical dispersion coefficients of Marinescuet al.
@29# and an asymptotic exchange term of the form derived
Smirnov and Chibisov@40#.

The potential curves of Na2 were recently re-examine
both experimentally and theoretically. Fa¨rbert and Demtro¨der
@41# have reported the fine and hyperfine structures of
triplet states,a 3Su

1 and a 3Sg
1 , which were also theoreti

cally investigated by Stoofet al. @42# and Mieset al. @43#.
Quality ab initio calculations for the triplet state have be
performed by Gutowski@28# at a higher level of theory than
the older potentials of Konowalow@25,26#. Gutowski’s cal-
culations, which utilized fourth-order Mo” ller-Plesset@MP2-
MP4# and coupled cluster theory@CCSD, CCSD~T!# with
single, double, and noniterative triple excitations, lead him
suggest that theab initio potential might be more accurat
than those derived from experiment@28#. Ho, Rabitz, and
Scoles@2# inverted the rovibrational spectra of Babaky a
Hussein@7#, Barrow et al. @8#, and Li et al. @9# using a re-
producing kernel Hilbert space~RKHS! procedure. The
RKHS results were in excellent agreement with the data
the existing RKR potentials, and helped to resolve the d
crepancy between the experimental andab initio potentials,
but did not agree on the equilibrium bond length.
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A. Na2 inversion

The algorithm presented in Sec. II was employed to
cover theX 1Sg

1 anda 3Su
1 potentials of Na2 from rotation-

ally resolved laser induced fluorescence spectra. In addi
to the rovibrational data, theoretical dispersion coefficie
were included to ensure proper long-range behavior,
regularization was utilized to produce smooth surfaces. T
inversion results and the nonlinear error analysis were c
pared to other proposed potentials for both states in rela
to the error bounds obtained using the inversion algorith

In the context of rovibrational spectra, Eqs.~1a! and~1b!
specifically take the form,

@H01V~r !#cv,J5Ev,Jcv,J , ~9a!

F5$Tv,J%, ~9b!

where V(r ) is the Born-Oppenheimer potential being i
verted and the rovibrational terms,Tv,J5Ev,J1De

0 , are the
laboratory observables. The conventional notation for
quantum numbers has been adopted andDe

0 is the molecular
dissociation energy.

Constructing a map such that Eq.~3! converges to low
order requires a proper representation of the potential-en
space. It has been demonstrated@6# that an appropriate
choice of variablesv for diatomic potentials is given by dis
cretizing V(r ). The values ofV(r ) at a collection ofNv
points,

v i5V~r i !, i 51, . . . ,Nv ~10!

provide the potential space variables for constructing
map. The value of the potential between these points is fo
by interpolating a smooth surface through thev i . Thus, the
variables are the interpolation points used to construct
potential. SinceNv can be made as large as necessary
prevent interpolation errors,f (v) can well approximate the
underlying functional.

B. The X 1Sg
¿ state potential

The inversion data forX 1Sg
1 Na2 consisted of the spec

tral terms,Tv,J for 0<v<62 ~with the exception ofv558,
which was not measured! and J513,15. Accurate spectro
scopic constants,G(v) andB(v), for the lower and interme-
diate, v50, . . .,44, vibrational levels of theX 1Sg

1 state
have been determined by Babaky and Hussein@7# and reli-
able centrifugal distortion constantsD(v) have been deter
mined by Hoet al. @2#. These constants were used to obta
the rovibrational terms,

Tv,J5G~v !1B~v !J~J11!1D~v !@J~J11!#2 ~11!

for v<44. Higher vibrational terms, v
545, . . .,57,59, . . . 62, have been measured by Barro
et al. @8# for J513 and 15. The theoretical values of Mar
nescuet al. @29# for the long-range dispersion coefficient
C655.709 4133106 cm21 Å6, C851.509 8533108 cm21

Å8, and C1054.181 6533109 cm21 Å10 were adopted for
the potential beyond its LeRoy radius of 9.5 Å@44#. Com-
1-5
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bining the spectral terms and the theoretical dispersion c
ficients, provided theM5129 members of the inversio
data,

F i
( lab)5Tv,J

( lab) , i 51, . . .,126, ~12a!

F i
( lab)5$C6 ,C8 ,C10%, i 5127,128,129, ~12b!

wherev50, . . .,57,59, . . . ,62, andJ513,15. The error dis-
tributions, qi

( lab)@F i #, for the rovibrational terms were
Gaussian with a standard deviation of« ( lab)50.01 cm21 @8#,
and the dispersion coefficients were assumed error-free.
value ofDe

0 obtained by Barrowet al. @8#, was used to com-
pute the term values in Eq.~1b! during map construction.

The algorithm in Fig. 1 was started by providing the da
membersF i

( lab) , their error distributionsqi
( lab)@F i #, soft-

ware for computing the rovibrational spectral quantities, a
the initial map parameters. Map construction utilized t
Fourier grid Hamiltonian method of Marston and Balin
Kurti @45#, with 650 grid points, to solve the radial Schr¨-
dinger equation for the necessary rovibrational eigenvalu
The map domain covered a region of potential-energy sp
6500 cm21 in the well and65000 cm21 in the repulsive
wall, centered around the RKHS surface@2#. Each first-order
map function was resolved atSi55 points, and the potentia
was discretized at 100 points,r i , evenly spaced betweenr 1
51.0 Å and r 100516.0 Å. Cubic-spline interpolation wa
used to evaluate the potential between its discretized val

A regularization operator,

K̂v5 (
j 52

Nv21 I v j 1122v j1v j 21

Dr 2 I 2

~13!

involving the three-point second derivative over the rad
coordinate was utilized to ensure smooth potentials, and
regularization parameterb was set to 1310210. Equation~5!
was minimized using a steady-state GA@21# with a popula-
tion of Np550 distributions, each containingNs51000 trial
potentials. A mutation rate ofr m515% and a crossover rat
of r c570% were adopted and the testing parameters w
chosen asNt5500, e t50.01 cm21, Nf55, andeJ51023.

The map-facilitated algorithm produced the best invers
family V* containingNs51000 potentials consistent wit
the Gaussian distributed data. Statistics for the term va
produced byV* are listed in Table I, where in all cases, th
recovered distributions were Gaussian, and show exce
agreement with the experimental quantities. For brevity, o
v<36 is shown in Table I; however, the inversion repr
duced thev.36 distributions with comparable accuracy.

Since the dispersion coefficients were treated as data
of the potentials in the resulting inversion family were al
consistent with the correct long-range behavior of the pot
tial. Trial potentials that did not agree with the dispersi
coefficients were not retained in the solution family. In th
manner, it was possible to construct potentials that were c
sistent with data that reflected both the long- and short-ra
features of the interaction.
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The inversion results for theX 1Sg
1 potential are depicted

in Fig. 2~a! where the «590% confidence familyV*
~shaded region!, the RKR potential of Zemke and Stwalle
~points!, and the RKHS potential of Hoet al. ~dark line! are
in good agreement. Konowalow’sab initio potential is also
plotted ~dotted line! for comparison. On the scale of Fig
2~a!, including the blowup of the well region, the best es
mate of the potential̂v* & defined in Eq.~6!, and the RKHS
curve are essentially indistinguishable; however, both di
from the RKR potential. A comparison of the dissociatio
energy, associated with the well depthDe and the equilib-
rium bond lengthr e predicted by the variousX 1Sg

1 state
potential determinations is provided by Table II. Althoug
there is no overlap with the olderab initio potential, there is
remarkable agreement between the inverted surfaces.
well depth and bond length associated with^v* & are
6022.0249 cm21 and 3.0791 Å, respectively.

The uncertainty in the inverted potential was measu
using the metricsDv i* defined in Eq.~8!, for a confidence
limit of e590%. Although larger in the repulsive wall,Dv i*
was confined to&831022 cm21 in the well and tail re-
gions. The long-range behavior is confined by the dispers
coefficients that were accurately reproduced by all of
members ofV* . A nonlinear relationship between the pote
tial and spectral lines persisted even over the small are
potential-energy space described by the inversion fam
The presence of nonlinear effects was confirmed by b
investigating the expansion functions in Eq.~3! and by in-
specting the the distribution of potentials inV* . Figures 2~b!
and ~c! depict the distribution of potentials,pi(v i* ), and the
expected value,̂v i* &, at two arbitrary points,r 1953.08 Å
andr 2253.32 Å. The non-Gaussian nature of these distrib
tions arises from the underlying nonlinear potential-spectr
relationship.

C. The a 3Su
¿ state potential

The a 3Su
1 state rovibrational termsTv,J reported by Li

et al. @9# for v50, . . . ,12 andJ514 and 16, as well as the
theoretical dispersion coefficients of Marinescu@29# were
used to provide the inversion data set,

F i
( lab)5Tv,J

( lab) , i 51, . . .,26, ~14a!

F i
( lab)5$C6 ,C8 ,C10%, i 527,28,29, ~14b!

containing M529 members. The error distribution
qi

( lab)@F i # in the rovibrational terms were Gaussian with
standard deviation of« ( lab)50.32 cm21 @9# in the ro-
vibrational levels. The dispersion coefficients,C6
55.709 4133106 cm21 Å6, C851.509 8533108 cm21 Å8,
and C1054.181 6533109 cm21 Å10 were assumed error
free. Again, the value ofDe

0 , obtained by Barrowet al. @8#
was used to compute the term values in Eq.~1b! during map
construction.

The algorithm in Fig. 1 was executed using similar op
ating parameters as for theX 1Sg

1 state inversion. The map
was constructed to first,L51, order usingSi56 points in
each dimension over a domain that spanned6150 cm21
1-6
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TABLE I. Comparison of the distribution of rovibrational terms produced by the solution space ofX 1Sg
1 potentials depicted in Fig. 2 and

the experimental values,F ( lab), from Babaky and Hussein@7# with a standard deviation~Std. Dev.! of « i
( lab)50.01 cm21, for J513,15 and

v50, . . . ,36.

J513 qi@F i ; f i(V* )#/cm21 J515 qi@F i ; f i(V* )#/cm21

v F i
( lab)/cm21 Avg. Std. Dev. v F i

( lab)/cm21 Avg. Std. Dev.

0 107.4124 107.4126 0.012 0 116.3657 116.3613 0.011
1 264.9050 264.9072 0.009 1 273.8050 273.8065 0.010
2 420.9406 420.9462 0.010 2 429.7874 429.7844 0.013
3 575.5158 575.5151 0.010 3 584.3111 584.3146 0.010
4 728.6102 728.6181 0.010 4 737.3528 737.3558 0.011
5 880.2126 880.2156 0.011 5 888.9019 888.9019 0.010
6 1030.3076 1030.3092 0.010 6 1038.9426 1038.9436 0.011
7 1178.8820 1178.8827 0.014 7 1187.4614 1187.4612 0.011
8 1325.9218 1325.9258 0.010 8 1334.4445 1334.4453 0.010
9 1471.4157 1471.4173 0.012 9 1479.8816 1479.8877 0.009

10 1615.3421 1615.3438 0.012 10 1623.7496 1623.7497 0.009
11 1757.6877 1757.6827 0.010 11 1766.0361 1766.0361 0.010
12 1898.4330 1898.4378 0.011 12 1906.7213 1906.7272 0.013
13 2037.5616 2037.5626 0.010 13 2045.7891 2045.7897 0.010
14 2175.0518 2175.0572 0.009 14 2183.2174 2183.2174 0.012
15 2310.8845 2310.8852 0.010 15 2318.9876 2318.9856 0.010
16 2445.0336 2445.0333 0.011 16 2453.0725 2453.0725 0.015
17 2577.4776 2566.4762 0.010 17 2585.4511 2585.4571 0.010
18 2708.1937 2708.1937 0.011 18 2716.1012 2716.1015 0.012
19 2837.1507 2837.1536 0.010 19 2844.9899 2844.9859 0.011
20 2964.3270 2964.3270 0.012 20 2972.0974 2972.0974 0.010
21 3089.6885 3089.6888 0.012 21 3097.3877 3097.3837 0.011
22 3213.2067 3213.2087 0.011 22 3220.8331 3220.8335 0.011
23 3334.8516 3334.8513 0.010 23 3342.4040 3342.3922 0.013
24 3454.5862 3454.5842 0.010 24 3462.0623 3462.0540 0.011
25 3572.3771 3572.3723 0.011 25 3579.7751 3579.7602 0.012
26 3688.1852 3688.1822 0.010 26 3695.5029 3695.5022 0.010
27 3801.9731 3801.9741 0.011 27 3809.2086 3809.2032 0.013
28 3913.6954 3913.6884 0.010 28 3920.8460 3920.8509 0.010
29 4023.3122 4023.3182 0.010 29 4030.3761 4030.3664 0.011
30 4130.7757 4130.7757 0.012 30 4137.7507 4137.7432 0.010
31 4236.0362 4236.0334 0.012 31 4242.9193 4242.9142 0.010
32 4339.0452 4339.0435 0.010 32 4345.8342 4345.8197 0.011
33 4439.7482 4439.7482 0.011 33 4446.4402 4446.4500 0.010
34 4538.0920 4538.0834 0.010 34 4544.6847 4544.6732 0.011
35 4634.0131 4634.0131 0.011 35 4640.5025 4640.4975 0.010
36 4727.4566 4727.4564 0.011 36 4733.8403 4733.8355 0.011
il-
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nd
around theab initio potential of Gutowski@28#. 100 radial
points, r i , evenly spaced betweenr 151.0 Å and r 100

516.0 Å were used to resolve thea 3Su
1 surface and 212

grid points were utilized in the discrete Fourier-grid Ham
tonian. The same regularization operator and value ofb used
in the singlet state inversion were adopted.

As in theX 1Sg
1 state inversion, optimization produced a

inversion family containingNs51000 members with observ
able distributions consistent with the experimental resu
The statistics of the term values corresponding to the inv
sion family are compared with the experimental values
Table III where there is excellent agreement. A comparis
02271
s.
r-
n
n

of the dissociation energy, associated with the well depthDe

and the equilibrium bond lengthr e predicted by the various
proposed surfaces is shown in Table II and the bond len
and well depth for̂ v* & are 5.118 Å and 175.28 cm21, re-
spectively. Although there is no direct agreement with theab
initio dissociation energy, there is overlap for the bo
length.

The e590% confidence limits for thea 3Su
1 state poten-

tial are depicted by the shaded region in Fig. 3~a!. The best
estimate of the potential^v* & is shown by the dotted line in
Fig. 3~a! and is very similar to the RKHS potential~dark
solid line!. The inset plot of the well region in Fig. 3~a!
1-7
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FIG. 2. ~a! Global inversion results for theX 1Sg
1 state potential~shaded region of the inset! compared with the RKR results of Zemk

and Stwalley@24# ~points!, RKHS results of Ho, Rabitz, and Scoles@2# ~solid line!; and theab initio results of Konowalowet al. @25,26#
~dotted line!. The shaded region represents the potential-energy space subdomain in which there is a 90% probability of finding
molecular potential, based on inverting the data of Babaky and Hussein@7# and Barrowet al. @8# using the algorithm in this paper. The be
estimate of the potential from the present inversion is indistinguishable from the RKHS surface. The distributions of potentia
variables,q19(v19* ) andq22(v22* ), including the best estimates,^v i* &, for r 1953.08 Å andr 2253.32 Å are shown in~b! and ~c!.
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compares the different proposeda 3Su
1 state potentials.

Again, V* ~shaded region! and the RKHS potential~dark
solid line! overlap; however, they do not coincide with th
RKR surface~points! of Zemke and Stwalley~note that the
RKR point shown is not the well minimum of that potentia!.
The expanded region of the plot in Fig. 3~a! shows that both
ab initio surfaces lie outside of the 90% confidence interv

Figures 3~b! and ~c! show the distribution of potentials
p11(v11* ) and p13(v13* ), at two arbitrary radial points,r 11

55.1 Å and r 1355.54 Å. Again, the relationship betwee
the potential and its spectral lines is nonlinear over the ra
of uncertainty. Except for the tail, where the dispersion
efficients confine the width of the solution family, the inve
sion is of lower precision than for theX 1Sg

1 state. Over
most of the well, the uncertainty in thea 3Su

1 state surface,
measured by the 90% confidence interval,Dv i* , is ;1
cm21.
02271
l.

e
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IV. CONCLUSION

In this paper, we introduced a laboratory data invers
procedure capable of rigorously treating experimental er
The most significant feature of this new procedure is tha
inverts the full probability distribution of laboratory data
The global, map-facilitated algorithm adopted here utiliz
no dynamical models and employed highly accurate map
identify the full family of potentials consistent with the sta
tistics of the data. We also demonstrated that a linear tr
ment of inversion error is inadequate. This is because
nonlinear nature of the potential-observable relationship
torts the input probability distribution of the laboratory dat
A Gaussian distribution of observables generally does
produce a Gaussian distribution of inverted Hamiltonians

The capabilities of the inversion algorithm were demo
strated by extracting potentials for theX 1Sg

1 and a 3Su
1

states of Na2 from laboratory data. The potentials and err
TABLE II. Comparison of the well depthDe and equilibrium bond lengthr e for various X 1Sg
1 and

a 3Su
1 state potentials.

Potential X 1Sg
1 a 3Su

1

r e (Å) De (cm21) r e (Å) De (cm21)

Ab initioa 3.124 5725.04 5.192 177.7
RKRb 3.0795 6022.0255 5.0911 174.45
RKHSc 3.079660.0010 6022.024660.0494 5.089360.0623 174.95961.177
V* d @3.0691,3.0799# @6021.9981,6022.1011# @5.017,5.201# @174.533,175.910#

aX 1Sg
1 state results from Konowalowet al. @25,26# anda 3Su

1 state results from Gutowski@28#.
bX 1Sg

1 anda 3Su
1 state results from Zemke and Stwalley@38,39#.

cX 1Sg
1 anda 3Su

1 state results from Ho, Rabitz, and Scoles@2#.
d90% confidence limits forr e and De obtained from the families in Figs. 2 and 3 using 108 Monte Carlo
sample potentials.
1-8
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TABLE III. Comparison of the distribution of rovibrational terms produced by thea 3Su
1 state inversion

family in Fig. 3 and the experimental values,F i
( lab) , determined by Liet al. @9# with a standard deviation

~Std. Dev.! of « i
( lab)50.32 cm21, for J514,16.

J514 qi@F i ; f i(V* )# / cm21 J516 qi@F i ; f i(V* )# / cm21

v F i
( lab)/cm21 Avg. Std. Dev. v F i

( lab)/cm21 Avg. Std. Dev.

0 5871.7430 5871.7533 0.31 0 5875.2336 5875.2381 0.31
1 5894.3630 5894.3519 0.33 1 5897.5436 5897.4234 0.35
2 5914.9550 5914.9638 0.31 2 5918.0240 5917.9381 0.32
3 5934.1040 5933.9913 0.31 3 5937.0428 5936.9662 0.31
4 5951.4570 5951.4654 0.31 4 5954.3524 5954.4187 0.31
5 5966.9000 5966.8724 0.32 5 5969.5040 5969.4232 0.33
6 5980.4260 5980.4231 0.31 6 5982.8192 5982.8447 0.32
7 5991.7570 5991.7652 0.34 7 5993.8464 5993.8947 0.31
8 6001.5230 6001.5293 0.32 8 6003.7116 6003.6723 0.33
9 6009.6810 6009.6841 0.31 9 6011.4852 6011.4669 0.30

10 6015.8400 6015.7843 0.31 10 6017.4520 6017.4031 0.33
11 6020.3360 6020.2402 0.32 11 6021.6132 6021.5723 0.31
12 6022.9800 6022.8671 0.33 12 6024.0340 6023.9384 0.33
ce
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analyses performed here were compared with the re
RKHS curves of Hoet al., the RKR inverted potentials o
Zemke and Stwalley, and the variousab initio potentials of
Gutowski and Konowalowet al.

The precisionX 1Sg
1 state experimental data produced

high-quality inversion with a tight family of potentials con
sistent with the data. On average, the uncertainty in the
tracted potential was&0.1 cm21. Good agreement wa
02271
nt

x-

found between the previously determined RKHS and R
potentials and the full inversion family identified here. Th
data for the rovibrational levels of thea 3Su

1 state were less
precise, producing a family of potentials with;1 cm21 un-
certainty around the well. All members of the family exact
reproduced the theoretical dispersion coefficients beyond
LeRoy radius of 9.5 Å.

An essential point of our analysis, which was based up
and

a 90%

ables and
FIG. 3. ~a! Global inversion results,V* ~shaded region!, for thea 3Su
1 state potential compared with the RKHS results of Ho, Rabitz,

Scoles@2# ~dark solid line!, the RKR results of Zemke and Stwalley@38# ~points!, and theab initio results of Gutowski@28# ~dark broken
line!, and Konowalowet al. @25,26# ~thin line!. The shaded region represents the portion of potential-energy space in which there is
probability of finding the true potential, based on inverting the data of Liet al. @9#, and the dotted line throughV* is the best estimate of the
potential. The distribution of potentials,q11(v11* ) ~b! and q13(v13* ) ~c!, within the inversion family is shown at the pointsr 1155.1 Å and
r 1355.54 Å. The values,̂v i* &, in ~b! and ~c! show the corresponding best estimate of the potential at their associated points,r i . The
distributions reflect the presence of significant nonlinearities between the full inversion family and its consequent spectral observ
demonstrate the importance of using nonlinear error analysis.
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the concept ofconsistencybetween the data and the family o
inverted molecular potentials, is that no one feature of
surface can be used for comparison. For example, sim
comparing a well depth or equilibrium bond length is
simple means for qualitatively comparing to potentia
However, in order to rigorously declare that two potenti
are different, the two surfaces must produce observables
differ more than the laboratory uncertainty. Furthermore,
entire potential must be used to make such a comparison
is insufficient to compare only several characteristic poin
In this sense, the full laboratory data distribution provid
the appropriate test of the potential.

Although a diatomic system was considered here, m
facilitated inversions have been performed on more comp
systems such as Ar-HCl@4#. The algorithm described in Sec
,

in

ys

,

,

s
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II D could also be used to treat more difficult to calcula
observables, such as the fine and hyperfine structures.
extension, using a map-facilitated algorithm for Na2 , would
require approximately a 100–150 coupled-channel comp
tion, which is quite practical. The power of map facilitatio
is that it permits sophisticated inversion techniques to
applied to computationally expensive molecular systems
observables.
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qi@F i ; f i(Ṽ)#. Everyṽ andṼ is a member of the map domain
V.

@18# Note that anNv dimensional family member,f i( ṽs), should
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