PHYSICAL REVIEW A 67, 022709 (2003

Characterization of high-energy photoionization in terms of the singularities of the atomic
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We describe single and double photoionization of two-electron atoms by photoabsorption at high incident
photon energies (but still w<mc®) using a unified approach based on asymptotic Fourier transfaF)
theory modified by Coulombic interactions. Within this approach the matrix elements for photoabsorption
processes at high energies can be understood in terms of the singularities of the many-body Coulomb potential.
These singularitiese-e ande-N) result in the singularities of the wave functions and the singularities of the
e-y interaction, which determine the asymptotic behavior of the matrix element. Within our unified approach
we explain the dominant contributions, including both the dominant contributions to the total cross section for
single ionization and for ionization with excitation, and the dominant contributions to the double ionization
spectrum, as a Fourier transform asymptotic in a single large mome(atependent on the process and the
region of the spectrujn These dominant contributions are connected, through AFT, with eithee-e
singularity or thee-e singularity. The AFT results are modified by Coulombic interactions. We include these
modifications, for the cases of single ionization and of double ionization in the shake-off region at high
energies, and extract a slowly convergent fa¢8iobbe factor In this way we obtain rapid convergence of the
cross sections to their high-energy behaviors. This also allows us to discuss the convergence of ratios of cross
sections.
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I. INTRODUCTION functions with singularitiegby singularity we mean a point
where a function is not differentiableDue to the fact that
In this sequence of papef§,2] we are exploring the un- high photon energyn necessarily means at least one large
derstanding of high-energy nonrelativistic photoionizationoutgoing electron momentum, the study of the photoabsorp-
processes, which follows from the theory of asymptotic Foution matrix element at high energies is equivalent to the
rier transforms(AFT). Basically, the AFT of a function is study of the asymptotics of Fourier transforr#Ts). Ac-
determined by its singularities. In our case this means thaording to the AFT theory, the asymptotic Fourier transform
the high-energy behavior of cross sections follows from thePf @ function with singularities is determined by the behavior
Coulomb singularities of the basic electron-nucleus andf the function in the vicinity of these singulariti¢$9,20.
electron-electron interactions. In our first paper we introduce The St“?'y of the asymptotics of the FTs th"?‘t arise n our
the ideas of AFT(also using the simpler case of photoion- problems IS bf"‘SEd on the theory of gene_rahzed fun_c'uons
ization of an electron bound in a screened Coulombic centra{llg]' B_y qulnltlon[ZO], f.(xl‘ - Xn), afunction ofn vari-
. . : S ables infinitely differentiable and such that

potential, for illustration, and we explore correlation issues,
focusing on photoionization of the ground state of a two-

electron atom. In the second pagé] we examine further R! of -0, R0, (1)
issues that arise in the consideration of high-energy photo- IXHLIXY2- - - IXn
ionization of a many-electron atom.

Here we consider high-energy photoabsorption in two<for any |, m and any choice of the indices;,a», ... ,a,

electron atoms, including correlation. We will discuss both(a;+ ay+ - - - +ay=m), where R=(x3+x5+-- - +x2)?
single ionization, including also ionization with excitation is called a good function(In the terminology of Ref[20],

[3] to any bound state, and double ionization. Our main conthese are calleg functions) The theoremRef.[19], Theo-
cern is with total cross sections and with the spectfdhof  rem 2, p. 1% says that the FTg(p,, ... .p,), of a good
double ionization. In recent years, the study of single-photoriunction f(x,, ... X,) is a good functior{19,20. We will
absorption resulting in single or multiple ionization has at-call this the AFT theorem. Note this means that asymptoti-
tracted much attentiof5—17], resulting in a better under- cally, the FT[g(p;, ... .pn)], of a good function decreases
standing of electron correlation effects in complex systemgaster than any power qu(p?r p§+-~+pﬁ)1/2.

and in photoabsorption processes involving these systems. The functions that appear in our photoionization matrix
We show here that the issues of the high-en¢ig}] ioniza-  elements, even considering photoionization of a particle in a
tion by photoabsorption can be studied from a unified poinfpotential, are well localizeddue to the fact that the bound
of view. The idea is based on the close relation betweestate is localized but they are not differentiable everywhere.
high-energy photoabsorption matrix elements and the AFT oNamely, they are differentiable everywhere except at coales-
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cence points, where they are singylat], i.e., nondifferen-  (through the AFT theorejmwith a singularity of the poten-
tiable. These coalescence points result from the singularitietal, and to find what knowledge of the singularity structure
of the potential of the many-electron Hamiltonian. A slow of the wave functions is needed in order to obtain form in-
asymptotic decrease for largesuch as 3", of the FT of a  dependent high-energy results in leading ord8y. To in-
well-localized function comes only from the singularities of clude terms needed to obtain fast converge(ateleast as
that function. 1/p?) of our results to the exact photoabsorption results. In

In the vicinity of a singularity the functionevhose FT is  particular, we study how the Stobbe factor appears in corre-
calculatedd may be written in terms of simpler functioig  lated systems in photoabsorption situations when one elec-
(S standing for “simpler”, whose FT we know, and a re- tron takes almost all of the enerdgingle ionization with
mainderO, whose FT is asymptotically negligible. This we €xcitation and double ionization in the shake-off region
call the partitioning {s+O) of the functions. According to ~ The potential energy of the two-electron atom,
the generalized-function theory, the FT of a generalized
function with singularities is approximated by the FT of Vit r ):_Z_a_z_aJri @
these simpler functiong, while the size of the FT of the 12 riro g
remaindelO gives a measure of the accuracy of the approxi-
mation. The point is that by takinfg more accurately in the wherer ;,=|r;—r,| is singular(nondifferentiabl¢ at thee-N
vicinity of the singularity, one can in principle achieve arbi- coalescences (=0 for anyr,, andr,=0 for anyr,), and
trary accuracysee Ref[19], Theorem 19, p. 52 A special  at the electron-electrone{e) coalescencégr,,=0 for any
partitioning, i.e., the expansion of wave functions around theR=(r,+r,)/2]. We call these coalescences as double coa-
origin (which is the position of the-N singularity) in terms  lescences(points where two of the three particles meet
of polynomials has been used previously in both single andhere is also a triple coalescence point where all three par-
double ionization$22—29. Here and in Paper Il, using AFT ticles meet (;=r,=0). The functions that appear in our
theory, we are generalizing these approaches. We may pariphotoionization matrix elements are singular, i.e., nondiffer-
tion (in fact, using Coulombic functions, which are much entiable, at the coalescence poif?§,27,28. The properties
better functions near the singular point than polynomials of wave functions in the vicinity of double coalescence
around singular points which, in general, do not have to be aboints (which are of primary importance for the dominant
the origin, and we consider all singularities. contributions we are studyingre well understoof21,27),

There is, however, a point of difference between ourand they can be obtained from the Salinger equation.
asymptotic matrix elements and asymptotic FT. Namely, afThey are known as coalescence properties, and in the case of
ter pulling out the fast oscillating terms of the plane wave,s states they are often called Kato cusp conditions. We are
the function left in the integrand still depends on the largeusing this term, Kato cusp conditions, more generally, as
momentum variablep (coming from the final-state wave denoting the exact behavior of the wave functions at a two-
function), throughpr dependencéas, for example, in con- particle singularity.(There will also be singularities in the
fluent hypergeometric functions in the Coulomb gaseéor  e-y interaction operator, depending on the form that we take,
this reason it might be more appropriate to talk about a genas we note below.
eralization of FT. However, in the largelimit the Coulomb The leading contribution, at high energies, to the matrix
functions that depend opr are expandable in uniformly element in any kinematic situation is determined by the sin-
convergent series in powers pf. Although all these powers gularities, in variables associated with the AFT, of the poten-
of pr must be included, as we discuss, we are able to argugal energy. The AFT results from the oscillating terms of the
that FT theorems apply to each power separdielyower of  final state wave function, which oscillate rapidly in any ki-
p is pulled out from each integral and s appear any nematics. As indicated, we are not considering here general
more and, due to uniform convergence, also to the full func-kinematics, but the kinematics which gives the dominant
tion [26]. When the final state cannot be explicitly deter- contributions to the total cross sectiorifor single and
mined, this argument also applies to partitioning of the finaldouble ionization and (in the case of double ionizatipn
state in terms of full Coulombic functions. The Coulombic which gives the dominant contributions to the spectrum. In
modification of the FT results, as we demonstrate in Secthe case of the total cross section for high-energy ionization
II B, in a slowly converging factor called the Stobbe factor. of a two-electron atom, the relevant fast oscillating terms
By explicitly pulling out the Stobbe factor, fast convergencecome from the plane waves of the final state, as in the one-
is achieved. The Stobbe factor is a common factor, indeperelectron case. However, when the spectrum for double ion-
dent of initial state, and so this allows us to discuss also th&ation is considered, in some regions the dominant contri-
convergence of ratios of cross sections. butions may come from the spherical waJ&8], too. In

Our objectives are(l) To obtain the leading contribution these dominant kinematics, which determine the spectrum in
[i.e., the leading inverse power (i44¢) in large momenth  double ionization and the total cross section, there is a single
in the high-energy matrix elements that determine the crosfast oscillating term linked to just one of the two types of
sections we are discussing, by using the AFT approéh. double singularities, through a single AFT, rather than with
To show that the leading contributions can be identified bythe triple singularity through a double AFT.
identifying the kinematical regions in which the matrix ele-  In the case of single ionization of a two-electron atom, we
ment is an AFT in just one large momentumy,q. (there  argue hergusing the AFT theoreinthat the dominant con-
must be at least one large momenjunvhich is associated tribution to the total cross section is associated withethé
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coalescence, as in the one-electron case, whether or not tepectrum in which the leading contribution would have a fast
atom is in its ground state. However, while the dominantoscillating term coming only from spherical waves.

contribution to the single-ionization total cross sectioen The rest of the paper is organized in the following way.
summed over all final bound states, so that excitations aré/e first(Sec. 1) apply the AFT approach to the simpler case

not distinguisheiof the ground state of a two-electron atom Of Photoionization of an electron bound in a screened Cou-
does not involve final-state electron-electron interaction%oranC central potentiallPA potentia), including identifica-

. L ) . ..~ "tion of the slowly convergent Stobbe factor. Th&ec. IlI)
(and involve initial-state correlation only in a 'normallzatllon we describe the general matrix elemeitt V, L, and A
facton, regardless of the form used, the dominant contributomg for single and double ionization, from any state of a
tions in the case of single ionization of a higher state docgrrelated He-like system, which will be used throughout the
generally involve final-state electron—electron interaCtiOn.paper, discussing the approxima’[ions appropriate for the con-
This final-state electron-electron interaction leads to predicsidered energies and atoms. We proceed to discuss ionization
tions of an energy dependence of the cross sections for singt# the ground state of a two-electron atom. We fi&tc. IV)
ionization, which are different from the independent particleconsider single ionization, including ionization with excita-

approximation(IPA) predictions, as we will note in Sec. IV tion. In discussing double ionization from the ground state,
below and discuss further in Paper II. we first (Sec. V) identify the three kinematical regions of

observables, which give the leading contributions to the three

In the case of double ionization of the ground state of a > £ ih A We then di th leadi
two-electron atom, the leading contributions to the spectrurﬁeglons ot the spectrum. We then diScuss these leading con-

and to the total cross section are associated with one of t ftibutions to the spectrum in the three regions separately

. o . : . ontributions due to shake gfBec. V), quasifree casESec.
two singularities(either withe-e or with e-N coalescencgs  v|) and final-state interactiofSec. V)], and we discuss

and both singularities contribute. However, as in the singlghe procedures and conditions for obtaining these contribu-
ionization case, we demonstrate that the high-energy doublgions. In the cases of single ionizatid$ec. IV) and of
ionization total cross section of the ground state of a two-double ionization in the shake-off regigBec. VI, we also
electron atom does not involve final-state electron-electroiinclude modificationgdue to Coulombic interactiorof the
interaction, regardless of the form used. It does now involveasymptotic Fourier-transform results. Finallgec. 1X), we
initial-statee-e interaction beyond normalizaticalue to the  discuss the resulting double-ionization cross section and the
e-e singularity). ratio of double-to-single ionization.

The leading contributions to the spectrum are, as we
show, single AFT in just one large momentum. The kinemat-
ics of these leading contributions are such that the second Here, using our AFT approach, we consider photoioniza-
Fourier transform is not in an asymptotic region. There araion of an electron bound in a screened Coulombic central
three such kinematic regions. The single large momentumotential. We will be able to understand the adequacy of the
may be the momenturp, of one electron(associated with use of various forms of matrix elemerjtength (), velocity
the variabler, for which the potential has a singularity at (V), or acceleration(A) forms] when using approximate
r;=0, thee-N singularity), while the momentunp, of the  wave functions of various qualities in the vicinity of the
other electron is small. This region is known as the shake-of§ingularity at the origin. We will demonstrate that nonrela-
region. The single large momentum can also be the relativévistic IPA high-energy photoabsorption is determirag to
momentump of the two electrongassociated with the rela- correctionsO(1/p?)=0(1/w), p being the outgoing electron
tive distancer 1, for which the potential has a singularity at momentunj, by the initial-state normalization and by the
r1,=0, thee-e singularity, while the total momentun® is  point Coulomb singularity. The result, as we demonstrate, is
small (quasifree region Also, the large momentum can be form independent, but whether information about the singu-
the total momentunp, but with electron momentg, andp, larity comes from the interactiofas inA form) or from the
nearly perpendicular. This is the final-state-interaction rednitial and final stategas inL andV forms) is form depen-
gion, in which case the large momentum is associated witllent. In this way, we are able to identify the necessary con-
the variabler, (or r,) and thee-N singularity. The high- ditions for all three forms to give correctly the high-energy
energy total cross section is determined by the contributiongesult in the IPA case. We also explicitly obtain the order of
from the shake-off and the quasifree region, and the fasthe error resulting from the error in the description of the
oscillating terms come from the plane-wave parts of the twowave functions in the vicinity of the singularity. We will
electron final state. In the final-state-interaction region,consider this on two levels of accura¢gepending on the
which does not contribute to the total cross section in theaccuracy in the description of the wave functions in the vi-
leading order, the fast oscillating term comes from the prodeinity of the singularity, both in single and double ioniza-
uct of a plane wave and a spherical wave. The search faion. First, we will obtain the leading-order results i/
dominant contributions to the total cross section and theising a simple description of the wave functions in the vi-
spectrum therefore reduces to the search for the kinematicalnity of the singularity. Then we will use a description that
regions in which the matrix element is an AFT in just one completely includes the stroregN interaction. The Coulom-
large momentum, which is associated with a variable forbic modification of the FT results in a slowly converging
which the potential has just one singularitg-¢ or e-N). factor, the Stobbe factor, which we obtain to all orders.

The fast oscillating terms of these single AFT come from For a single electron in a potential, the matrix element for
plane waves and spherical waves. There is no region of thghotoionization by photoabsorption, in the lowest order of

Il. ONE-ELECTRON CASE
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the quantum electrodynamic electron-photon interaction, is

|v|=f WL (O W(nder, ©)

where \I’i(r)=Rn|(r)Y{“(F) is the initial bound state, nor-
malized to unit integrated probability densitgi{(r)
=e'P'®{7)(r) is the final electron continuum state, normal-
ized on the momentum scaleo asymptotically approach a
1/(27)%? amplitude distorted plane wave of momentpin

and|(r) is the interaction operator, given in the three com-

monly used formgneglecting retardatiof80] for simplicity)
as

IV:_i[G'V], ||_=ima)6-r,

Ia i;G-VV(r). 4

V(r) is an IPA potential energy of the type&/(r)
=—(Zalr)S(r), whereS(r) is a screening function that for
smallr we assumed can be described as a polynomia) in
S(r)y=(1+s;r+s,r?+---), i.e., the potential has only a
Coulombic divergence and is differentiable except at0.

PHYSICAL REVIEW A67, 022709 (2003

Vi) =N"r 1=

F+Nor 2+ Agr3+0(r*) YD),
(5

where a=mZa. In the simple functionfg [in which the
terms are alternately regular and singular, with the first term

r'Y{“(F) being regulal, the first two terms are determined
solely by the Coulomb singularity of the potential, and there-
fore they are known independent of screening, except for the
overall normalization factom!"* (which depend on the
choice of IPA potentigl Higher-order terms in thég of Eq.

(5) do depend on the screening of the IPA potential, which
affects the\; coefficients. This fact that the two first terms in
the parentheses of E¢b) are determined by the Coulomb
singularity, is well known, and it is a special case of the
general behavior of wave functions at coalescence points of
many-electron-atom£1,27]. Namely, in the description of a
many-electron atom wave function in the vicinity of any coa-
lescencgwhich includes any electron-electron coalesceénce
in terms of the relative coordinate of the two coalescing par-
ticles, the first two terms are determined by the singularity of
the corresponding part of the Coulomb potential, up to an
overall factor[31], and there is a remainder that vanishes
more rapidly than linearly in the coordinate.

The singularity of the potential energy results in singularities  These two terms, and the normalization constant, are all

in the wave functionsl, and ¥;. These functions are not
differentiable at the origin. The-vy interaction operator in
theL andV forms is, in this sense, regular, while Aaform,

it is singular due to the presence of the singulén \h it Eq.
(4). The largep behavior of the Fourier transform of a slowly
varying function ofr picks out its behavior near the coales-
cence point(sincepr~1, largep corresponds to smatl),
and it only depends on the singular parts of the function
Thus we begin by partitioning the function®;(r) and
dbé_)(r) in the vicinity of the coalescence point=0. The
smallr behavior of these slowly varying portions of the in-
tegrand will determine the asymptotic FT.

that we need from the initial-state wave functiome also
need information from the final staten order to determine
the leading contribution in p/for high-energy photoabsorp-
tion in V and A forms.

In the final-state electron wave function the situation is
very similar, except that in the limit of high momenta the
normalization is not affected by screening. Namely, accord-
ing to Refs.[32-35, the wave function of a high-energy
continuum electron state of momentymin the vicinity of
the Coulomb singularity of the IPA potential is essentially
Coulombic. As shown in Ref.35], using analytic perturba-
tion theory, the corrections to the Coulombic wave function

Accurate evaluation of the matrix element at high ener-n the vicinity of the nucleusr(<1/a, wherea=mZa char-

gies requires knowledge dfin general both initial- and

acterizes the unscreened nuclear chardee to screening,

final-state electron wave functions at the singular point, or ijecrease with electron momentum@gl/p?) relative to the
general at all singular points, if one goes beyond IPA. How-Coulomb functions. This means that in the vicinity of the
ever, how much of this knowledge is actually needed in acoulomb singularity (<1/a) the wave function represent-
used for that calculation. As we will demonstrate in consid-s.53 can be written, following Refd.33,35, as a Coulomb

ering the leading-order result, witA form we only need

solution plus a remainder,

knowledge about the normalization of the initial-state wave

function at thee-N coalescence. With other form&/(and

L), we generally need further information about both the

initial and final states. The exception is festate ionization
usingV form, for which we need only the normalization and
the slope of the initial-state function at the coalescence.

A. Partitioning in terms of polynomials—leading-
order
Born results

The partitioningfs+ O in terms of polynomials of the
initial (bound state of quantum numbers,(,m) in an IPA
potential with Coulombic singularity is

) a
\Pé‘)(r)=N§e'p"| 1|:1[ —i E,]_,—ipr(l-i-COSﬁ)

1
+O(—2;pr,cosﬂ,si) , (6)
p

where O(1/p?;pr,cosd,s) denotes the remainder, which
vanishes faster than f/(denoted inO by 1/p?). Note that
we are not assumingr to be small. In fact, the distances
that contribute in our high-energy matrix elements will be
pr~1. The functional dependence 6fis also shown; the
remainder contains all information on screening, symbolized
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by the coefficientss; characterizing the small-distance be- series are uniformly convergent, this is the same as integrat-
havior of the screened potential. According to analytic pering without expansioitsee, e.g., Ref36], p. 158, which we
turbation theory{33,35, an even more accurate continuum do.

wave function of Coulombic shape, in the regioi1/a, is To achieve a convergent integration of each term in the
obtained by shifting the electron momentum in E). from  series, which will then separately satisfy the requirements of
momentunp to pc, by an amount determined by the param-the FT theorem, a factaee™*" is introduced; after the inte-
eters of the screened potential, and by replacing normalizagration is performed, the limi— 0 is taken. This procedure
tion Ng' (if momentum scale normalization is uselly is consistent with the definition of the FT of generalized
‘/pc/pNS . However, although such a Coulombic function functions[19]. For the AFT theorem, we must understand the
is more acwcurate, its error still decreases a€ With large singularities of the integrand. The singularity properties of

momentump. Therefore we do not need it at this momentthe wave functions are immediately identifiable in these se-
here. but we. will use it in Sec. Il B ries, which involve powers afand angular functions such as

This result, Eq(6), is important for our approach because Powers ofp-r=cosd and spherical harmonics. For example,
it means(as we show belowthat the terms in the partition- I and cosd are singular at the origifas functions ok, y, and
ing of the final state in the vicinity of the coalescence, whichz) but their product is notr(cosd=2), nor are their squares.
contribute to the high-energy matrix element, are not affectedNote also that'Y{" is regulan
by screening. We show this to the leading order ip, Xur- The leading contribution in any form to the high-energy
ther simplifying f5 in the partitioning of Eq(6). Due to the =~ matrix element can be obtained, using only the first two
fact that the distances involved in the process rarel/p,  terms infs of the partitioning of initial[Eq. (5)] and of final
and since we are considering high energies for which state[Eq.(7)], while neglecting some of these first two terms
>(mZa), when we write our wave functions in terms of the may lead to erroneous results in some forms. Higher-order
scaled variablepr, the terms that will be important for our terms in the expansion give higher-order contributions in
discussion here involve terms up to linear in the parametet/p. Therefore the form-independent high-energy matrix el-
a/p=mZalp, with further terms contributing in higher or- ement(to the leading order in pj) for photoabsorption in an

ders in ]_p We write IPA model is obtained from
. —ip-r—e . a _
W (r)=NCeP | 1-i 2gi(pr+p-1)] M=N"ANG* "mfe R i
p e—0
1 x[i(pr+p-r)]|1(r)r' -2 Y"d3r,  (9)
+0| —;pr,cosd.s; | |, (7 pr=p [+12 | '
p

. ) o wherel (r) may take forms like Eq€4), which also contains
where cosi=p-r. O now includes all contributions of order (ifferent powers ofr and angular functions. Integrals that
a2/p2 and hlgher from the full Coulomb function of E(:ﬁ), appear in Eq(g) are e|ementary’ and even when mmnc_
and tion is involved they are easily performed using E8). For

1 t—1\ dt L d example, wher =0, the integrals involved are
o) =—5— ﬂg e—iﬂm(—) —=f [e'8—1]—. .
2@ Jr t )t 0 t o R 2m(n+2)ep
(8) f e P e rd¥r= ——— =
(ip)n+3

whereC_;=im, C,=0 for any odd positiven, and C,,=
—2/(n+1) for evenn=-2, and

C,, (10

The contourl” is a counterclockwisely oriented closed con-
tour encircling the cuf0,1]. By inserting Eqs(7) and(5) in
Eq. (3), using the series expansion form of E@®) for
g(7(i&), expanding iné=pr+p-r, we obtain a series of -
integ_rals of functions that contain powers o&ind angular f e~ C+PIg* i (pr+p-r)]r"e. fdr = 2'7TE~p Ny
functions. (ip)"*+3

The functiong(~)(i£), Eq. (8), determines all contribu- (11)
tions of ordera/p to the full Coulombic wave function for
pr~1. Itis therefore equivalent to the first Born term in thewhere D_,=im—2, D_;=—7?2—im—2, D,=2(n
perturbation expansion of the Coulomb continuum state. The-2)!(1—im)/(n+1) for nonnegative evem, and D,
functiong~)(i £) is generally needed in calculating the lead- =4n! ={* P2k +2)/(n—2k) for oddn>0.
ing contribution to the high-energy matrix element. How- Expression9) gives the leading order in f/for largep,
ever, it containsp dependence throughr which, at first and this term is form independent. We may look at this ex-
sight, may not look good, if one wants to view this high- pression and compare it with a pure Coulombic potential
energy matrix element as a FT. However, we can expand thisase to see what determines high-energy photoabsorption in
function in powers ofpr [by expanding the exponential an IPA model with a Coulombic singularity. We see from Eq.
function in the integral representation, E8)], apply the FT  (9) that the only difference from the pure Coulombic case is
theorem to each term, and then sum the series. Since thesethe initial-state normalization, which depends on the IPA
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potential. All other terms are determined by the Coulombwave functions. The terms represented®wre small in the
singularity. Therefore at high energies, information aboutvicinity of the singularity, as we discuss below.
screening persists only in the initial-state normalizafid4. For the final state we take the Coulombic part of Ej,

In a matrix element form in which the interaction operatorbut with shifted energy and with corrected normalization
is regular(such asv andL forms, and we denote them % [33,35. As already mentioned, according to Ref33,35,
andlf) rather than singulafas inA form, |§), the contribu-  the exact IPA wave function is Coulombic in the vicinity of
tion from the term in the integrand, which involves the first the e-N singularity except for correction®(1/p?). A fairly
terms of the simple functions of both the partitionings of —accurate functiorfcontaining the dominant but not all terms
¥, and of ®(7), vanishes for any (while in A form, this  of relative order 13?) is obtained by using shifted momen-
term gives the leading nonvanishing contribujiohhe lead-  tum pc rather than the true momentymMomentump char-

ing nonvanishing contributions in such forms 6r V) in- acterizes the electron at large distances from the nucleus. If
volve the product of the first term frod () (which is regu- ~We want to describe the screened wave function in the vicin-
lar and denoted by aRf) with the second term |rﬂ}| |ty of the nucleus by a Coulombic fUnCtion, we should use,

(singular,S), and the product of the second term frdmh~)  according to Refs[33,35, shifted momentunpc. In addi-

(singular,S;) with the first term in¥; (regular,R;). These tion, if the function is normalized on the momentum scale,
two contributions are of the same order iplin summary, the normalization is affected, and it is given by, ™"
in leading order in 1g one obtains the leading nonvanishing = \/pc/pNgc. The final state is, therefore, described by

contribution from

_ Pc_ - 1
IR wi(r)= \/Fxlflgc>(r)+o(E : (14)
M:fe“p"‘“[Rﬁsf] V| [R+S]
S where the shifted momentupy. is given by Ref[33],
A
2 2
p Pc
RIS +S(ITR >~ 2m = Esl—[Eg ", (15)
= | e Prer| RIS +SITR | 12
f mv S v 12 whereES (Ex?) is the hydrogenlikgIPA) binding energy
RilaRi of the state that is ionized.

o We thus arrive at the following approximation for the IPA
Note that the results, Eq$9) and (12), reflect that it is the  matrix element:

singularity region that is important. This means that if one

wants to improve results, one needs to partition functions in NIPA p
terms of functions that better describe behavior in the vicin-M = '—C\/—Cf ‘I’gé_)*(r)lA(r)‘lfiC(r)d3r 1+0| -
ity of the singularity[37]. Partitioning of the wave functions N; P p
in terms of functions that are more accurate in the vicinity of NIPA 1
the singularity provides more accurate results. _ Ic /EM S(pe)| 140 _2) _ (16)
N; p p
B. Partitioning in terms of Coulombic functions—the o . ) )
Stobbe factor From Eq.(16), it immediately follows that at high energies,
The ratio of the first correction to the leading contribution IPA)\ 2
is of the order of 18, and it gives a very slow convergence do'PA= ( '_C) do€l 1+0 - 1 17
of the photoionization matrix elements and cross sections. In N; p

fact, it converges asra/p~wVEx/w, where E is the

K-shell binding energy. Due to this slow convergence andvheredo™ is the differential cross section obtained from
also due to the possibility of considering largewe may Coulombic H-like wave functions calculated at shifted mo-

include thee-N interaction completely in both the initial and Mentumpc, and whereO designates how rapidly the error

final states, by performing the partitioning of the wave func-décreases at high energies. The error in €q) is deter-
tions in the vicinity of the singularity in terms of Coulombic Mined by the errors in the wave functions. According to the

functions. Formally, this means that we write for the initial- "esults presented in Refl33], the difference between

C

state wave function screened and Coulombic functiodsvhen un-normalized
functions, i.e., the same first coefficient in the expansion is
IPA taken, are comparéds very small(and for a potential with a
WIPA(r) = vwic(rHO[r'“], (13)  polynomial expansion for small decreases as [i7). This

[ means that dominant terms of the relative ordgy?lare

included; only small terms of relative orderpf/remain in
Where\lfic(r) is a normalized Coulombic wave function with O(1/p?).

the same quantum numbers\Hg:A(r), andO[r'*?] repre- An important point, relevant for later discussion, is the
sents the difference between the Coulombic and screene@latively fast convergence of the ratios of photoabsorption
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cross sections to the results for ratios predicted by lowestp, of the other electron in the case of double ionizatids.
order resultgBorn results inA form). The most slowly con- s the photon-electron interaction, which\tiL, andA forms
verging factor in the cross sections is expfa/p) (Stobbe of the matrix element are
facton, and it is included irdo©. This factor comes from the
final-state Coulombic interaction, which means that in parti-
tioning wave functions around the coalescence, we get this
factor by collecting all Coulombic interaction in the final 2o . k? r er
state for each term in the partition of the initial state, as I=im| o= 5 -)(er €71+ e 1,772)
argued in Ref[38]. The factor is therefore present for any , _
. . __(aiker ik-r
state. The fact that the dominant slowly convergent factor is (e" e rk-Vi+e 2 k- Vy), (19D
the same for all states explains the much more rapid conver- A
gence of ratios of cross sections. 2e 1 . €T aikery er
Our comparison of the results obtained with Etj7) for A= K2 {'Za 2 1 22 rz ek
He with exact IPA resultg39] shows agreement within about w— =— 1 2
1% already around 1 keV. This illustrates the fast conver- 2m
gence of this procedure, especially when compared with the e 1
lowest-order result, which gives about 50% disagreement in —ia 12(eik-r1_eik-rz)_ —(ek"1k.-V,e V,
the same energy range. The shapes of the wave functions at &) m
the distances involved are basically Coulombic. We will em-
ploy and generalize this important point in our subsequent
approach. High-energy photoabsorption is essentially Cou-
lombic. This means that the high-energy behaviee are
talking here about the keV rangef cross sections is deter- wheree is photon polarization anl is photon momentum.
mined by the properties of functions near the singularityNote that, as in the one-electron case, thdorm of the
which is Coulombic. Screening effects enter, of course, butlectron-photon interaction is singular, and note that these
in a simple way, as a constant factor, in these IPA examplessingularities correspond to and result from the singularities
By straightforward generalization of these findings in high-of the potential energy. In Eq§19), we have shown retarda-
energy many-body calculations, one can significantly simtion included to all orders. Wheno<m and thus |K|
plify calculations involvinge-e correlation, as we show in <Plarge; WE May neglect retardation entirefgut k=0 in
following sections, in considering photoabsorption by a two-the interaction termfor the leading contributions determined
electron systems. by the e-N singularity. This means that we may neglect re-
tardation both in evaluating the leading contribution to the
single-ionization total cross section and, in the case of
double ionization, when calculating the shake-off and the
final-state-interaction contributions to the spectrum, neglect-
In our study, we are assuming nonrelativistic electronsing the (retardation-dependenguasifree contribution. With-
We are neglectind.-S coupling and we factorize the two- out retardatiod30], the two-electron forms are just the sums
electron wave functions into a spin pdwhich, in a two-  of the one-electron forms, E¢),
electron system, can be a symmetric triplet or an antisym- le
metric singlet and a coordinate part. Further, sinee<m, 1PV A= VAT ) T 1S A(T2), (20
we neglect the interaction of radiation with electron spin.
This means that the initial state and final state are either bo
spin singletgsymmetric coordinate paror both spin triplets
(antisymmetric coordinate part |26
Within this description, the matrix element for single or A w
double photoionization by photoabsorption on a two-electron
atom (in the lowest order of electron-photon interaclion Note that, neglecting retardation, the electron-photon inter-
where at least one electron of momentpmis ejected, is action inA form does not contain the-e singularity. Thee-e
singularity is present in the wave functions but, neglecting
retardation, this singularity would not give contributions in
M =f \prl,)\(rl,rz)lZe(rl,rz)llfi(rl,rz)dsrld3r2. leading (_)rder in any _form, as we will see subs_equen_tly. For
(18) the leading co_ntr|but|or_15 o!ue to theee smgularlty (yvhmh
gives the leading contribution in the quasifree region of the
spectrum, we need to include retardation at least to first
Here W;(rq,r,) is the coordinate part of the initial-state order, as we do in Sec. VII iN andA forms.
wave function.W, ,(rq,rp) is the coordinate part of the |y calculating the dominant contributiongo the total
two-electron wave function in the final state, whevede-  cross section and spectryynthe inclusion of lowest-order
notes the quantum numbers of the remaining bound electroretardation is needed in calculating the quasifree contribution
in the case of single ionization, or it denotes the momentunto the double-ionization spectrum, which also contributes to

|\2/e:—i[eik'rle~Vl+eik'r2€'V2], (193

+e'*12k.V,e-V,) |, (199

Ill. MATRIX ELEMENT FOR SINGLE AND DOUBLE
IONIZATION AND TWO-ELECTRON WAVE FUNCTIONS

tWh|ch e.g., inA form, is

iZa

r% rs

(21)

€ €'r2>
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the total double-ionization cross section. Other dominant IV. SINGLE IONIZATION AND e-N COALESCENCE
contributions to the total cross sectithe shake-off contri-

zytlon) c_ansbe t:iattid netgledctl'ng retardatt_lon tbiﬁausﬁ’fs W om, there is one fast emerging electron, and we therefore,
ISCUSS I S€C. 1A, the retardation correction to the Shake-0f jn the jonization in a potential case, are concerned with a

contribution is of relative ordeO(kzlp,z?rge)~o(02/c2) N single asymptotic Fourier transform with respect to a vari-
comparison to the nonretarded term in the shake off regiople that can be taken as the electron-nucleus coordiwate
[40,41]. are here assuming a nucleus of infinite ma$he difference

In our analysis, we start with exact initial- and final-statefrom ionization in a potential is that there is another variable.
wave functions. Our procedure of evaluating the leading conwe wish to examine the role of treeN coalescence and the
tributions at high energies through expansion in terms ok-e correlations in determining the high-energy behavior of
simpler functions around singular points allows us to identifythe cross section.
the information from the two-electron wave functions needed In this section we discuss the total cross section for ion-
to obtain the leading contributions M, L, or A forms. We ization from the ground state of the atg##]. It is helpful to
may then use approximate wave functions that contain suctealize that the role of the-N coalescence anete correla-

In high-energy single ionizatiof3] of a two-electron

information. tions, which we will describe here for single ionization, is
We write the exact final-state two-electron wave functionthe same as in double ionization in the shake-off region,
in the form discussed in Sec. ViIn both situations, one electron takes

almost all photon energyWe will partition exact wave func-
tions in terms of Coulombic wave functions starting from the
full matrix element[Eq. (24)]. We obtain a factorization of
the matrix elemenitEq. (27)], into an absorption factor and a
correlation factor, accurate to the order used in the partition-
+{(riera)], (22 ing. We then discuss the convergence of the obtained corre-
lation factor to the high-energy limit. We will use this later in
where {=1 for symmetric states anf=—1 for antisym- S€C. IX to discuss the convergence of the cross sections. At
metric statesW )(r)zelp-rq)é )(r) represents an outgoing the end of this section we briefly note the form dependence

electron in a pure Coulombic potential of a nucleus with ©f the obtained re_sults. . S
chargez, \ denotes, when double ionization is considered The cross section for single ionization in general depends

and denotesr(,l,m) quantum numbers of a bound electron on both initial- and final-state electron-electron interaction.
in a pure Codlt’)mbic potential with charge when single But when the initial state is the ground state, as we are con-

ionization is considered. The third factBr, ,(r;,r,) con- sidering here, h|gh_-energy lonization V.V'th excitation into
. Il final . : h fl' . bounds states(also including the case without excitation of
tains all final-statee-e interactions. The form, Eq22), is  q remaining electraris determined by initial-state correla-

convenient because, in our calculations, we will argue thaf;, only. For this reason the sudden approximatiahich
we may use the approximaté€3unction[10,42, whichisa 4565 not include the-e interaction in the final staids ap-

product of three Coulomb one-particle functions, iB.jS  pjicaple in calculating high-energy ionization from the
approximated by a Coulomb function in teee interaction; 4,5 nd state of a He-like system with excitations isiates
we will argue that & functions suffice for the high-energy (anq also in the shake-off double ionization total cross sec-
situations considered here. Namely, as we argue in Append%n) [22,45-47. Excitations to nors states, as demon-
B, thg 3 function is accurate, neglecting terms of the ordergyateq helow, do depend on final-state interaction. However
Zma /E_f, whereE; is the total energy of the_ two elect.rons at high energies the total cross section for single ionization of
in the final state and, therefore, the&CJunction contains  he ground statévhen the final state of the bound electron is
accurately terms of ordétma/piarge in thee-N interaction 6t observed, i.e., summing over all final statds domi-
and terms of ordema/pjarge in the e-e interaction Plarge  nated by contributions involving only excitations in®
=V2mE). states, and therefore it is determined only by initial state
By substituting Eq(22) into Eq. (18) and using the sym-  correlation. We show this iV, L, andA forms.
metry of the initial statéwhich is the same as the symmetry  \we consider the dominant contribution to the matrix ele-
of the final statg the matrix element can be written in the ment for single ionization using E¢23), neglecting retarda-
form, asymmetric in final electron statps3], tion in order to simplify our expressions, yet without losing
generality for the energies considered<¢m). The three

1 .
wpl,ml,rz)=ﬁ[\lf§)3<rl>\v§ J(r2)Dp, a(r1.12)

forms of the matrix element are obtained by substituting Egs.
M= \/EJ ‘I’E)*(rl)‘l’g\f)*(rz)Dﬁl,x(rl,fz)lze (20) for 12%(r,r,) into Eq.(23), with A=(n,l,m) the quan-
tum numbers of the final-state bound electron. The matrix
X (ry,r)Wi(ry,r,)d3rd%,. (23)  element for single ionization with excitation into the bound

(n,I,m) state is thus
We use EQq.(23) to study the leading contributions to the ,
matrix element for high-energy single and double ionization M jm= \/Ef ef'pl'rlq)éz)*(rl)‘l’:lm(b)DE{,)rflm(fl,rz)
of the two-electron system with the Coulombic interaction of
Eq. (2). X[IE(r) +118(rp) 1Wi(rq,r,)d3r 1d%r . (24)
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The procedure of evaluation of the leading contribution towhich do not satisfy Kato conditions at the nucleus, which
the single-ionization matrix element is the same as in thédiave been used in some calculations, are noted below, and
one-electron case. Due to the large photon energy, the outhey are discussed further in Appendix A in connection with
going electron momenturp; must be large. The term exp the form dependence of results.

(=ips-rq) is fast oscillating unlesp,r;=1. The dominant For the final state, the same procedure leads to a partition-
contribution for largep, is obtained in the vicinity of the ing similar to Eq.(25),

e-N coalescencea;=0. Note that this connection distin-

guishesl *®(r;) (which is in the variabler;) from 18(r,). .

The matrix element Eq(24) is the sum of two terméa * Wi(ry,r) =W(0r2)Wy(ry)+0
=M +M/,, adirect term, K1) involving 1 *%(r,), and an
exchange termNl ) involving 11€(r,). The leading contri-

butions that concern us are obtained frmﬂ: However,  gec |1 denotes the remainder that vanishes fasterahan

when a+pprOX|m.ate wave functions are used in @4), the 555 increases. In analogy with the IPA case, we expect that

termM, may give spurious contributiori L andVforms) e contribution of thes®(1/p2) andO(r?) of Egs.(25) and

of leading order. In order to see this, we will keep traok (26) will be small.

our discussionof bothM J (direct term andM ;, (exchange Writing W(ry,r,) in the form of Eqgs.(22), and using

term). . . o Egs. (25 and (26), we obtain a factorization of the high-
To obtain the dominant contributions to the total CroSSenergy matrix element, Eq24),

sections, we write the integrands aroung=0 in terms of

simpler functions, as discussed in the Introduction and in

Sec. II. In the vicinity of the Coulombic singularity, we rep- M/m=McorMSp st O

resent the exact wave functigexcept for its normalization

in terms of a Coulombic function for that electron plus a

remainder. This representation is sufficient to give a fast conHere M$, is the Coulombic photoabsorption matrix ele-

vergence of the cross sections, as we demongi&le This  ment, determined by the singularity at the nucleus, which

ik (26)
1

whereO(l/pf), in analogy with the IPA case discussed in

. (27)

"2
1

means that for small enough and fixedr,, includes retardation and a Stobbe factor,
1 - c _ C 1 c 3
‘Ifi(rl,rz)=F\I’i(o,rz)\lfic(rl)ﬂLO(rf;rl,rz), (25) Mabs_f W (r) 17 8(r) Wi(r)dry. (28)

c . . Mg, contains initial- and final-state correlations that remain
whereW [ (r,) is a hydrogenlike bound-state wave function important at high energies:

satisfying the same Kato condition at the coalescence as the

original function. O(r%;r,,r,) means that the remainder 2 B
vanishes faster than, (e.g., liker?), and it is a function of Mcorr:NCJ' Wik (r2)Dp, A(0r2)Wi(0r)dr 5.
anglesr, and ofr,, too. 29)

The partitioning, Eq(25), of the exact two-electron wave
function is obtained with the following arguments. When oneThe resultd Egs. (27)—(29)] are obtained from Eq(24) by
electron approaches the nuclg¢ug<ro, wherer, is the size  performing the partition in terms of simpler functions de-
of the atom,=1/(mZa)=1/a], while the other is at large scribing thee-N singularity in bothM ;] andM/,. Neglect-
distancegr,>rq, andr, is nqt much smalle_r thany], then ing the terms denoted W(ri) in Eq. (25) and O(l/p%) in
the ground-state wave function can be writterlagry,rz)  Eq. (26), the exchange term vanishes regardless of the form
=W;(0ry)(1—ary)Yy(ry) +O(rf;ry,r,), which is just the  used. This is due to orthogonality o 5(ry) and W (ry)
statement of thee-N Kato cusp condition. We have then [50]. Our discussion proceeds neglecting tef@&l/p?) in
replaced (- arl)Yg with a Coulombic wave function Eq. (27).
\I/iC/Ni , which for smallr, has the same behavior {lar, First we discuss what the resu[t&gs. (27)—(29)] mean.
+---)Y$ independent of energy for amsystate(we can take The absorption paftEq. (28)] describes the absorption pro-
the K-shell function. We will use partition equatiof25) in  cess that is determined, at high energies, by the Coulombic
integrations over all distances, and therefore also over shape(hydrogenlike of the wave functions at the coales-
r,=r,, for which partition equatioii25) is not correct. How- cence. However, due to initial-state and final-stt inter-
ever, the regiom,=<r, for ry<r, of the function¥;(r,,r,)  action, these wave functions have normalizatiths wave-
corresponds to the triple coalescence point, which gives function normalization is defined through the expansion
negligible contribution to the observables we are discussingdescribed earligithat are different from the normalization of
We will use partitioning similar to Eq(25) throughout the H-like functions. These normalizations enter photoabsorption
paper, in the vicinity of both coalescences and for bothat high energies through,,, . The initial-state correlation
initial- and final-state wave functiorjg49]. Note that we are entersM,,, throughW¥;(0,,), which means that correlation
assuming functions that satisfy the Kato conditions at thds important between the electrons when one electron is at
nucleus exactly. Some problems with approximate functionshe e-N coalescence while the other electron is at some po-
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sition r,. The point is that at the position from which the  The advantage of using@functions for the final state is
electron is removedat high energies the shape of the wave that the integration in Eq29) can be performed analytically,
function for that electron is Coulombic, and its value is af-Which simplifies our discussion. Expressi@YV) itself is ac-
fected by a constant factgnormalization associated with curate WithinO(llpf), where, as in the IPA case, we expect
the position of the second electron. theseO(l/pf) terms in Eq.(27) to be small. However, we
MS, . is the single-electron Coulombic photoabsorptioncannot demonstrate how large these terms are by using the
matrix elemen{51] which is known. We therefore need only 3C functions, which lack terms of the orderpf[ which
to evaluateM .,,, . We are interested in obtaining cross sec-might be large even in the keV regigas we will discuss in
tions accurate neglecting the ordepa/For this purpose, we Sec. VI in connection with double ionizatipn
may use & functions[42] for the final two-electron state, as Denoting byR,,(r,) the radial component of the hydro-
is argued in Appendix B. The@ functions have been suc- genlike state V,n(r,) and writing W(0r,)
cessfully applied to double-ionization calculations of He at=(1/\/4m)Ri(r,) (we are taking into account that this is a

high energiegaround 1 keV and aboy¢10]. spherically symmetric functionwe obtain that
5 ima 1
f Rno(r2)Ri(ra)radro+ ——X(a)+0| — |, =0,
B \/E P1 p1 30
corr Nic ma \/E . ,
—|EmY| (pl)J Rn|(r2)Ri(r2)r2dl’2+O p_% y |¢0

In Eqg. (30) X(a) denotes a real quantity accurately given byany form, and afterwards discuss the form dependence of the
3C functions, which(due to the imaginary factdm a/p;)  €xchange term. The forni&g. (20)], which neglect retarda-
contributes as p? to the cross sectiofand for this reason, tion, are similar to the one-electron forrfigq. (4)], except

we do not show it explicitly, O(1/p?) denotes all terms that that energies involved in Eq20) are two-electrore; +E,
decrease faster thanpl/ which 3C functions cannot repro- _, Ei=w (whereE, is outgoing electron energ, is final-

; - : state bound electron energy, akg is initial state binding
duce correctly. Equa_tlorQSO) explicitly shqws the Iee_ldm_g energy, while in one-electron forms the energies involved
terms ofM ., . We will use these results in Sec. IX in dis-

- ) 4 T oeL. are one-electron onelg; — Ex= w, whereEy is, for the case
cussing the total cross section for single ionization. of ground-state ionization which we consider here, binding
We see from Eq930) and(27) that the total cross section energy of ak-shell electron. The difference in the fast elec-
for single ionization from the ground state of a He-like atom,tron energy(in the two and in the one electron case just
at high energies, involves only=0 bound states of the re- E,—E;+Ex=a?2m. Since the absorption factdv$, in
maining electron. This is a well-known result used in theEq.(27) is invariant in one electron forms, we conclude that
study of high-energy ionization with excitation aftirough  the result Eq(27) varies with forms Eq(20) as O(a%/p?)
the completeness relatipm obtaining shake-off double ion- (i.e., varies within the order of neglected tedmiEhis is just
ization of two-electron atoms from the ground stateadditional confirmation that our results are form invariant to
[22,23,49. Also, we see that this result, fobr=0, does not the order we consider.
depend on the final-state interactigiVe show in Appendix The contribution of the exchange ter,, is also of an
A that final-state interaction is not important at high energiesprder which we have neglected in E&7), as we discuss in
regardless of the form usédzurther, we see that excitations Appendix A. There we show tha¥l}, can however be a
to anyl # 0 state have just one additional power gb;l/i.e.,  source of spurious contributions, which may dominate the
excitations, in high-energy single ionization, lt¢0 states contribution described by E¢27), when approximate func-
decrease as fif for all . This is an important result that tells tions are used. This we discuss in Appendix A, including also
us that final-state interactions can move an electron from athe dicsussion oM 2" in the shake-off region, which is
| =0 state to ahn#0 state, with negligible transfer of energy, closely related to single ionization with excitation, and for
with just one additional power of ftf. This fact and its which spurious contributions have been observed in numeri-
consequences are further discussed in Paper I, in examinirgal calculations of double ionizatidi22,45 (see Sec. VI
single ionization from higher states and the modification of Since the exchange term can be neglected in high-energy
high-energy IPA resultf52]. single ionization of the ground state of a He-like system, and
Let us note the form dependence of the results. We havsince the remaininddirect term) matrix element has the
not yet fixed the form of photoabsorption matrix element. Wesame form as in the one-electron case, we may utilize the
restrict for the moment the discussion to the dependence afiscussion of the Stobbe factor of Sec. Il. This we do in
the result, Eq(27), for which the exchange term vanishes in Sec. IX.
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V. IDENTIFYING THE THREE REGIONS OF THE R=(r,+1)/2, Pro=(p1—pa)/2, andP=p,+p, We may
DOUBLE-IONIZATION SPECTRUM have kinematic situations in whigh,, is large P is smal)

We now turn our attention to double ionization of the OF P IS large (12 is smal), and so we can examine whether
ground state of a He-like atom. In general, if both ionizedthat large momentum is associated with a two-particle singu-
electrons are of high-energy, the matrix element will correJ&1ty. Large relative momenturpy, is associated with a two-
spond to a double AFT, giving an asymptoti<p|149e behav- parthle goglescence, SINeE; 1S a't.vvo-pamcle smgularny
iOF (Plarge~ \/M). However, there will be kinematic situ- that is distinct from the smgularme_s in, and r. [Th|§
ations in which the matrix element reduces to a single AFTWOUICI correspond to the QF region, i.e., the central region of

If our interest is the resulting electron spectriimtegrated the .spectrur‘r]. But Iarge'P IS not. assocllated \.N'th a .tWO'
over electron anglesin all regions of the spectrum single particle coalescence._ It is associated with a singulariti® at
AFT contributions will dominate. There are three situations:0 a.nq t'hat smgularlty Is present only when bo;h:Q and
that need to be distinguish¢B3-55: (1) the end points of ro=0; itis a three-particle coalescence. With the kind of FT
the spectrum, in which one electron is fast and the other Ontghovyn Iln Eq.(31)(,j|n _ttf;]e k|?em?t|cs "ld\]Nh!Ch tlotq:_momen-
is slow (shake off, and a single AFT contribution is associ- um IS large, and with a function with singuiarities as we

ated withe-N coalescence, giving a contribution in the ma- ha\llr? :%Sgrr?girtzz'?ﬁ; [[igc())tn? SslinnglleeéAFF-q' obtained with
trix element 1p|3a,ge (as in single ionization of the ground 9 y sing '

state, which results in a 17 contribution to the spectrum: plane waves and three-particle Coulombic singularities, are

(2) the middle of the spectrum, with electrons having nearlythose in the kinematic1) p, large, p, small; (2) p, large,

equal and opposite momentetal momentump; + p,~0) P, small_; andr(IS) plhz Iarg_e,P Smi”’ OE.e may _sta}rt f_rom_the .
(quasifree region and an AFT associated with tleee coa- assumption that there Is another kinematical situation in
I - ributi 34‘ K/ herek which some momenturg is large whileQ is small, whereg
s the photon momentihis contibation s kot allowed i Q e linearly independent. Then we can expregs

; S ) ) o =bg+cQ and p,=b’g+c'Q. With this, the plane-wave
dipole approximatioy) which results in a 1> contribution q+cQ P2=b'g+c'Q b

; ... phasep=p;-r;+p,-r, becomesp=(br;+b’r,)-q+(cry
to the spectrumy3) the remainder of the spectrum, with +¢'r,)-Q. Now, as explained above, we examine whether

electrons having perpendicular momenta, in which case Ahe large momenturg is associated with a two-particle coa-
AFT is associated with the-N coalescence and gives a ma- lescence. This requirdsr,+b'r, to bery, ry, of Iy, (this
. 1 2 1, 12y 12

: : : 1312
trix element of the order Bf o, which results in a 15 determines andb’) as these are the only such coalescences,

contribution to the spectrum. f . . X
. oo rom which one finds thad (the large momentuiris p;, p,,
These dominant contributions to the spectrum can b & ( 9 s Py, P2

identified, as we will demonstrate for each region separately
in Secs. VI, VI, and VI, by identifying the singularities
and by identifying kinematics in which only one large mo-

mentum in the_ system s assoqiqte_d .With just one tw_o-particlgve will discuss below, which have other oscillatory behav-
coalescencésingularity. By minimizing the dimension of iors, i.e., spherical waves. There are kinematic situations in

the asymptotic FT, one singles out the dominant Contr'bui/vhich the oscillatory term of the spherical wave would

(?'F]odify the plane-wave oscillatory terms in such a way that
we get a single AFT even in the kinematical region where
r1=0, atr,=0, and ary,=r,—r,=0 (we choose the same )" and p, are large. The kind of AFT we get in the
singularities as the functions in our photoabsorption matri inal-state-interaction(FS|) region (which we consider in
element have; we continue to call these singularities tWogg VIIl) and which can also lead to a single AFT is
particle coalescence points in view of our physical picture of

the process i.e., we consider

12-

In the high-energy photoabsorption matrix element inte-
gral, which we view as a generalized AFT, there are also
other kinds of oscillationgin addition to the plane wavgsas

the ordinary AFT of a functiori(r,,r,) with singularities at

F(Plapz-Q):f e_ipl'rl_ipz'rzﬂquzf(rlyrz)dsrldsrzv
F(p1,p2)= f e Prrimibeof(py ro)d%r,d3r,,  (3) (32)

wherer 1,=|r,—r,|, andq is a parameter in this exampli&
in the asymptotic region dE= p§+ p%—wo. Minimizing the  the real calculation in Sec. VIl it is relative momenturive
dimension of AFT means finding kinematics in which only will take bothp; andp, as large. In such a situation, without
one momentum will be large foE—o0, associated with a the modifying term exp{r,,), we obtained the double AFT.
two-particle coalescence. Some evident choicepararge  However, with the modifying oscillatory term we may get a
(p, smal) or p, large (p; small. We then check whether single AFT. Ifg<<p4,p,, then the additional oscillating term
that large momentuntlet us sayp,) is associated with a will not modify the fast oscillating terms exp(p;i-r;
singularity (through thep; - r, phase. Since it is, we will get  —ip,-r,). However, ifg=p; (or g=p,), it will strongly
a single AFT[This would correspond to the SO region, i.e., modify (nearly cancel the oscillations exptip;-ry) [or
the edge region of the spectrunlowever, these are not the exp(—ip,-ry)] in the region in whichp;-r;=qrq, (or
only choices. Another choices becomes apparent by rewrifp,-r,=qrq,). We will show later(Sec. VIII) how this can-
ing the argument of the oscillating term in E¢31) cellation of spherical wave and plane wave occurs in the FSI
as ipy-rqitipy-ry=iprip+iP-R, where ri,=r;—r,, region. In double ionization, this type of modification of the
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plane-wave oscillations comes with an add|t|ona;b|;,/e The evaluation of the SO contribution follows the same
factor (which is associated with the scattering ampht).lde procedure that we used in calculating the dominahtake-
Although this contribution dominates the contribution from up) contribution to the cross sections for single ionization
two singularities(three-particle coalescengeit is smaller  and ionization with excitation, Sec. IV. In both cases, the
(higher powers in y,arge) than the contributions from the singularity that determines the dominant contribution is the
edge and the central region. e-N singularity, and the second electrétine electron not
These types of single AFT are the only ones that appear ifnvolved in the absorptiontakes a small portion of the pho-
determining dominant contributions to the spectrum, assumton energy and is left in one of the eigenstates of the one-
ing that it is correct to write matrix elements as Born termselectron nuclear point Coulomb Hamiltonian, i.e., in both
(including first order ine-e ande-N interaction$ and a re-  cases the electron shakep or off). The entire discussion of
mainder that vanishes faster than the Born terms for largéhe dominant contribution in the edge region, the results in
momenta. Then these are the only oscillating factors, nedifferent forms(such as the importance of the final-state
glecting higher-order terms in Born expansion. Given thesénteraction inL form), the needed quality of approximate
oscillations, the question is what are the kinematics in whictwave functions, and the possible sources of spurious contri-
these oscillations reduce to single AFT. For the plane-wavéutions can all simply be taken from the discussion of single
oscillations we saw that the dominant contributideiigle  ionization with excitation in Sec. IV. However, since these
AFT) are obtained only in SO and QF kinematics. With issues have been widely discussed in double ionization and
modified oscillation§Eq. (32)] there are also two kinematic some of them have not been fully resolvg., the impor-
regions in which it reduces to single AFT. One is for or-tance of the final-state-e interaction in the SO region ih
thogonal outgoing electron momenta that give the dominanform [57]), we briefly repeat the arguments and point to the
contribution in the FSI region of the spectrum. The other isunderstanding of these issues provided by the AFT approach.
for nearly equal and nearly parallel outgoing electron mo-In addition, at the end of this section, we discuss how large is
menta that contribute in the quasifree region. Since the modithe SO region and we discuss, using the AFT approach, the
fied AFT, Eq.(32), comes with an additional pfar . factor  contributions of the triple-coalescence singularity. These
(unlike the QF contribution determined by the plane -waveconsiderations will be used in Sec. VIII, in which we discuss

oscillations, it is negligible and we do not discuss it here. the importance of the final-state interaction away from the
SO region.

As in Sec. IV, we start with the matrix element
VI. THE SHAKE-OFF CONTRIBUTION TO DOUBLE

IONIZATION AND THE e-N COALESCENCE

. L . \/_f —ipy-ry—ipy- rZCD( )*(l‘l)@( )*(I_Z)DE)_)F:c
In the edge region of the spectrum for double ionization, o

the momentum of one electron is very large while the mo- 1le 1e 3, 43

. X(rq,ro)[178(r)+1-%(r5)JW¥i(r,,r,)d°r,d°r,,
mentum of the other electron is smafly(~ pjarge= vV2Mw, (. r2)l () (r2)] 1) dTadr
while p,=<a, or vice versa The shake-off mechanism pro- (33

vides the dominant contribution in this region, called the

shake-off(SO) contribution. Here, double ionization can be neglecting retardation, and writing explicitly plane-wave os-
described in terms of the sudden approximation, and théillating terms of both outgoing electrons. In the edge region,
cross section factorizes as in a two-step pro¢Bé In the ~one momentun{say p;) is large while the other is small.
first step, photoabsorption occurs with the ejection of alherefore the fast oscillating term exp{-r;), from the
single electron. The nucleus and the electron are involved iplane wave of the final state associatiésough the FT theo-
the absorption process and have to be close to each other figm) this large momentum with the coalescertsiagularity)
order to exchange a large moment@much larger then the r;=0.

average momentum of the bound electypras required by We now write the integrand of the matrix element integral
energy and momentum conservation. Afterwards, the nucleuground this coalescence in terms of simpler functiguasti-

and the electron have nearly equal and opposite momenturfipning in terms of Coulomb functions and a remainder; as in
while the electror(having much smaller magsakes almost the other cases Coulombic functions are sufficiently accurate
all the photon energy and is moving at high velocity. Thefor our purposes Using the same reasoning that led to Egs.
nucleus has very low velocityand the second electron is still (27)—(29) for single ionization with excitation from the
associated with Jt In the second step, the second election  ground state, by using Eq&5) and(26) (but with the other

a state that reflects the initial state correlatishakes off, electron now also being in the continuyrnwe obtain a fac-
taking generally a small amount of energy and momentumtorization of the matrix element in the edge region of the
reflecting the momentum distribution of that electron in theground-state double-ionization spectrum

initial state. The leading contribution in this region of the
spectrum is, therefore, associated with the kinematics in
which the fast electron momentufsayp,) and the nucleus M&G =MeorrMgpst O = |,
momentum are nearly equal and opposite. The other electron 1
shakes off. The SO contribution, like single ionization, is a

FT in just one large momentuiy, and it is determined by WhereO(l/pl) represents the order of terms that we are now
the e-N coalescence. neglecting. Mabs is the Coulombic photoabsorption matrix

(34)
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element determined by the singularity at the nucleusich The discussion of the form dependence of the exchange
includes retardation and a Stobbe fagtor term [which vanishes at the level of accuracy obtained with
Egs.(25) and(26), as already explained in Sec. J¥ollows

the discussion of Sec. IV. The discussion in Appendix A is
applicable in the SO region here, too. We may just repeat the
conclusion that if thee-N coalescence is treated incorrectly
while Mo, contains initial- and final-state correlation im- in the initial or final state, a spurious contribution appears.

Mebs= f W )W) d, (39

portant at high energies: While the relative contribution of this spurious contribution
¥ in A form and(for the ground stajein V form is negligible,
== (—)* (—)* _ 3 it may be the dominant contributicia spurious 1g° contri-
Meorr N,Cf W, 7 (12)Dp, p,(0r2)Wi(0r2)d7r. bution) in L form. However(see Appendix A in the SO

(36) region, if the wave functions satisfy the KageN cusp con-
ditions (as, for example, an uncorrelated product of the Cou-
As in Sec. IV, the functionsﬂfiC andllfg1 are single-electron lombic wave functions dogsthere is no spurious fif con-

Coulomb functions used in partitioning of the exact wavetribution. (This was also shown by Abe_@z] for double
function in the vicinity of the nucleus taken, so that Kato ionization in the SO region Of particular importance is the
conditions at the nucleus are satisfied. finding (Appendix A that an exact initial-state wave func-
Note that the only difference from the single-ionization tion with uncorrelated final-state wave functions gives the
case(Sec. V) is in the final state of the second electron, correct high-energy result, E3) [58]. The finding is im-
which is here a slow continuum electron, instead of a boundportant because it demonstrates that the sudden approxima-
electron, in the field of the nuclear charge. As in Sec. IV, wefion (which neglects the final-stagee interaction, and which
are interested in obtaining cross sections accurate, neglectifs been widely used in obtaining the high-energy double-
the order 152. For this purpose we may useC3functions  to-single ionization ratipis form invariant. However, the
[42] for the final two-electron state. As argued in Appendix _needed representation of the fa_st electron |s_form dependent,
B, the 3C functions are accurate neglecting terms of order-€-, the fast electron cannot, in general, simply be repre-
1/p?, which is consistent with the accuracy of E§4). The ~ Sented by plane waves. , _
3C functions have been successfully applied to double- 'N€ leading contribution in the SO region of double ion-
ionization calculations of He at high energi@sound 1 kev  ization of He is of the same Of‘?'efF‘férge as the leading
and abovi [10]. In the limit p,—, p,~a, the function shake-up contribution for single ionization of He, since the
Dpl,pz(oirZ) approaches + O(1/p;) andM.,,, approaches leading contribution is determined by the leading contribu-

the shake-off limit, tion of the absorption factoM§,., which is the same, in

high-energy limit, in both shake processes. The leading con-

N2 tributions in both cases are a FT in just one large momentum
Mcorr=—cj \Iffj;)*(rz)\lfi(o,rz)d%z_ (37  associated with the sameeN singularity and the fast oscil-

N; lating term comes from the plane-wave part of the final state.

o . We may now look at what happens to the SO contribution,
We will discuss the convergence of the cross section towargq. (33), in which final-state interaction is neglected and

this SO limit in Sec. IX. We note that, as in the ionization- \yhich is connected to the-N coalescence, when the other
excitation case, the first correction to the shake-off lil&d.  ,omentum 0, in this casg also becomes largéhere we
(37)] is a relative 167 correction in the cross section. The assume no specific kinematicge., whenp,>p,>a. This
slowly converging ternithe Stobbe factor that converges as analysis helps us understand how large is the SO region and
mmal/p,) obtained fromM s is not affected by the correla- t will help in understanding the importance of the final-state
tion factor. interaction in situations wherp,>a, which we now ne-

Let us note the form dependence of the repill. (34)],  glect, but will consider in Sec. VIIl. Whep,>a, the corre-
which is determined by the form dependence of the absorpgtion factorM,,, [Eq. (36)] becomes an asymptotic FT in
tion factorM s, as in single ionizatioSec. IV). The forms 1, 150, The fast oscillating term expg-r,) connects the
[Eq. (20)], that neglect retardation are similar to the one-jgaqding contribution to the coalescense=0. By expanding
electron formg Eq. (4)] except that energies involved in Eq. W(0yr,) andd(r,) aroundr,=0, we obtain
(20) are two-electrorkE; + E,— E;= w, while in one-electron

2
whereEy is, for the case of ground-state ionization that we Mcorr~J e‘(’”2+‘92'r2){1—i 3g(r2)+O a_z) (0,0
consider here, the binding energy oKashell electron. The P2 P2
difference in the fast electron ener@n the two- and in the 1
one-electron casgss just E,— E;+ Ex=a?/2m, since also ><[1+a’r2+0(r§)]d3r2~ —. (39)
M$,sin Eq. (35) is invariant in one-electron forms, we con-
clude that calculations of the leading term in E84) vary  where nowa#a’. (We will see in the paragraph below that
with the forms[Eq. (20)] by amount€O(a?/p?), as would be this is correct for initial state. This is then sufficient to say
expected. that the resulfEqg. (38)] decreases at least aspflalrge or

forms the energies involved are one-electi®p— Ex = w,
E,=a?%2m in the SO region. Since the absorption factor large
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faster) From Eq.(38), we see that the correlation factor adds electron, it can be absorbed by two free electrons, although
four more powers and, together with the absorption factonot in dipole approximation.
that decreases asymptotically ap3l/results in matrix ele- With these momenta, the plane-wave oscillating term of
ment which decreases ay, .. the final-state wave function expg-ri+ip,-r,) can be
The contributionEq. (38)] comes from the configuration Written, using coordinatesr;, and R, as expipiyriz
region in which both electrons are in the vicinity of the +iP-R). The matrix element is a FT in just one large mo-
nucleus. We may therefore call this contribution a triple-mentump,,, associated with the coordinatg, in which the
coalescence contribution. However, due to the order in whictpotential energy is singular aj,=0 (singularity when two
the limits were taken, we have,<r,<1/a. We may ask electrons megt The modifications of the fast plane-wave
what is the contribution from the triple coalescence wherpscillations can, in principle, contributgust as in the SO
both electrons are at a similar, but small distances from théegion discussed in the preceding sectidut these modifi-
nucleus. The answer is that such a contribution is again ofations always come with additional powers impl/ye-
the order 1¢|7&rge_ The argument is as follows. At the triple- Here we are interested in the leading contribution.
coalescence point, the ground-state wave function can be ex- To evaluate the leading contribution to the spectrum in the

panded in terms of hypergeometric coording28, equal energy sharing region of the spectrum, we may start
from the exact nonrelativistic matrix element, Eg3). We
o k2] ggain reprisetnt tlhe ifntegrand ne:r the coe}l%scerqge (Q.) |
P _ k InryP=1— " in terms of simpler functions and a remainder. As simple
(r.9.¢) kZO ' pzo Y 3 0)(InT) a(rytre) functions we again use Coulombic functions or pieces of

Coulombic functions, for initial and final states, which sat-
isfy the Kato condition at the singularity. This is sufficient
for our purposes i¥/ form or A form of the matrix element is
considered(For L form, one needs better knowledge of the
wave functions in the vicinity of the coalescenc&he e-y

Ma

T3

r+0(r?), (39

wherer = \/rzlJrrz2 is the hyper-radiusy and ¢ are hyper-

| O(r2) denotes t that d faster th interaction is expanded in powers of,. It is hence more
angies, an (_r ). enotes terms that decrease faster han ., enjent to express the wave functions and the electron-
whenr is vanishing(in fact, these terms vanish at least as

2] Wi that the leading t i thi . ephoton interaction operator in terms of the coordinatgs
r=in . ve see that the feading terms in this expansion are, g e will keep retardation to first order in its expansion
in fact, just powers iy, r,, andrq,. If we use theA form

. J2 . around the singularity at;,»=0 (and we will see that we get
of the matrix elementwhich is singular inry, r,, andr,, g Y ali=0 ( g

) o . no contribution in zero orderFor the final-state wave func-
aﬂd the smgularl_ty IS desc;nbgd by the powers of these COO%ion, we again use the@ function which is, as argued in
;jmates, the leading contribution c_)f AFT of Eq39) comes Appendix B, accurate neglecting terms of ordma/E; .
rom a product of powergof coordinatesand therefore is a The functions® ) = exolp.- 1 b )(r ) (i=12 i

: - - : P plp;- 1)@y, ’(ri) (i=1,2) are regu
power in 1pj,.qe in any kinematics. Product of powe(sf i ) i i
different coordinatescan then be integrated independently 1ar atri,=0, except at the triple coalescence, which we have
[59]. We point out again that the triple singularity is not argued gives contributions of higher powers(lgp,;/g?.
reached in all kinematics when the final-state interaction idNote also that, due t@;>a, we can expandb, ’(r;) in
negligible, but only in kinematics in which all momentay(  a/p;, or use theg function as explained in Sec. Il i.e., we
p, relative momentunp,, and total momentur®) are large. can make the approximatiorbéi’)(ri)= Ni[1—(a/p;)gi].
In such cases, there is a4 contribution from the triple  For the term containing the-e interaction, we use the
coalescence. approximate form Dy o (r1,rz)=Np[1+(ma/2p;))g],

We will now demonsirate, in the next two sections, thatWhich correctly describes the;, singularity to this order
due to final-state interactiotin the intermediate regionand . _ 2 =0 L L
o gion Theg; functions fromCIbf)i )(r;) contribute in higher order in

due to ther,,=0 singularity (in the central region of the _ _ _ _
spectrum, the leading contributions away from the edge re-1/Piarge, While theg function from thee-e interaction term
gion are also connected with just one singulafitylike in IS important for the proper description of the coalescence,

Eq. (38)] and are of a lower power thanpf/, . and it will be needed for a proper treatment\rform.
g The leading contribution can thus be obtained from

VIl. THE QUASIFREE CONTRIBUTION TO DOUBLE MEE = V2N, [ e(erotipirntiPR)
IONIZATION AND THE e-e COALESCENCE QF

As in our earlier examples, another kinematic situation 2
when a double FT reduces to a single AFT occurs when total X
momentum of the two outgoing electron®=p;+p,) is
small (P~a). In this case the relative momentum of the two 26 = 2\143. 43
electrons is largef{;,= Parge) - The two electrons leave the XIH(r2, RIW(OR)[L+ w145+ O(r1p) Jdr 1 4°R,
atom with nearly equal and opposite momentum, and the (40
nucleus is a passive spectator not receiving energy or mo-

mentum[53]. While a photon cannot be absorbed by one freewhere¥ (r,,,R)=W(r,,r,) and v=ma/2. In Eq.(40), we

. V — .
1=i—gU ¥ [i(pyaf 1o+ P12 112 ]+ O -
P12 P12
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use the partition ¥ (ry,,R)=T(OR)[1+vr,+0(r2)] By substitutingl &° into thg matrix _elem_ent, Ed40), the
[28], which follows from the Kato conditions. The neglected t€rmMK-r,€- V1, (together with the first singular term from
terms vanish faster than, for r;,—0. The central region of the initial state “vry,” and the regular term *1” from the
the spectrum, in which the matrix element for double ioniza-final state give the leading contribution, E¢43). However,
tion is dominated by the contribution of EGL0), is (at non-  there are two termgone term being the product of- Vg

relativistic energiesdetermined by the conditiof53] from Iy, the singular term §” from final state, and the unit
term from the initial state, and the other term the product of
|E1—E,| w12 e- Vg from |, the unit term “1” from final state, and the
— =\m (4)  singular term from the initial state #ty,") of the order

e-P/p?,, which do not contain retardation, and which cancel

obtained from free-electron kinemati¢se., assuming ab- With each other. Therefore if an approximate initial-state
sorption of a photon by two free electrons at yest wave function or an approximate final-state wave function is
In A form, the electron-photon interaction operaféig. ~ used, a term proportional © P/p7, may appear, resulting in
(19] may be expressed in,,R coordinates and expanded @ spurious structure in the central region even in dipole ap-
around the singularity;,=0. Keeping first order in retarda- Proximation. For example, such structure in dipole approxi-

tion and the leadingsingulad term inr,, we obtain mation was obtained in Ref60] using approximate initial-
state wave functions withv form. Other examples of

appearance of spurious contributions in the central region are
5 ) (42)  discussed in Ref[61]. This may happen, for example, if
EP) uncorrelated final-state wave functions are used, or if the
initial-state wave function does not have proper expansion
Note that in obtaining Eq(42) we have neglected some around the coalescendee., if it does not satisfy the-e
terms that are of first order in retardation, but are regularkato cusp condition
These neglected terms, due to singular terms in wave func- The QF and the SO contributions are similar in the fol-
tions, will lead to contributions in higher powers inpl4. lowing sense. Each of them corresponds to an AFT in just
The leading contribution to the matrix element in the cen-one large momentum. Each is associated with a correspond-
tral region come from the singular term, H¢2), combined  ing singularity through a fast oscillating term from the plane-
with the the first termgthe unit terms, i.e., the “+s”) in  wave parts of the final-state wave function. These are the
the expansion of the wave functions. The leading contribuonly such contributions since the potential only has these two

2e ia €'r12k'r12
AT L

w

tion in the QF regior]53,54 is singularities. The difference between the QF and SO mecha-
A A nisms is in the different pair of particles involved in the
€ k- ~ . coalescence.
MQF=wa—2” plzf T(OR)ePRIR. (43
pi, P12

VIIl. THE FINAL-STATE-INTERACTION
CONTRIBUTION TO DOUBLE IONIZATION

Here the factok- p;,/p1, comes from first-order retardation. AND THE e-N COALESCENCE

If one neglects retardatidiputs the singular term in E¢42)
identically to zerg, the leading contribution in the central ~ While the end points and the center of the spectrum,
region would be of order b{z (the first nonvanishing dominant in determining the total cross section, are due re-
k-dependent contribution involves three more powers imspectively to the shake off and the quasifree mechanisms, the
ryy), i.e., of the same order as the contribution from the triplemain part of the spectrum is determined in another way. As
coalescence. the momentum of the second electron increases, the prob-
In V form, the electron-photon interaction operator, Eq.ability amplitude to have this electron produced through the
(19) (written in terms ofr ;,,R coordinates, expanded around shake-off mechanisrtwhich is, as we discussed, equivalent
the coalescence;,=0, and taken to first order in retarda- to the sudden approximation that neglects final-state interac-
tion) is tion), with momentump,>a, decreases as ij, as dis-
cussed in Sec. VI, Eg38). In this situation, however, the
|\2,e=—i[e-VR+(k-r12)e-V1ﬂ. (44) influence of the final-state interaction becomes important,
and it dominates over the shake-off mechanifhhis inter-
As explained earlier in connection with tieeN coalescence mediate region of the spectrum is called the final-state-
contributions (single-ionization and double-ionization SO interaction (FSI) region] We can see this already starting
contribution), the plane-wave approximation for the fast from Egs.(34), (35), and(36), derived with the assumption
electrons gives the correct leading contribution $ostates  thatp,<p; [62]. We increase, and look for the dominant
(but not for higher statesWe show here that when tleee  kinematics in the region of the spectrum>p,>a (Sec.
coalescence is important, as in the central region, such avilll A ). Note that due to the assumptipp<<p; (which we
approximate wave function may give spurious contributionswill later remove we are looking only a small part of the
in the same order as the leading contributidty. (43)]. spectrum, next to the edge. But this helps us see how SO
These spurious contributions can be present in this ordezvolves into the FSI region. We will then remove the as-
even when retardation is neglected. sumption p,<p; (in Sec. VIIIB) and we will look at
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the rest of the FSI region, in whighy andp, are of compa-
rable size.

A. FSI when p;>p,>a
We first look at what happens to our SO reggs.(35)

and (36)] as the momentum of the slower electron also be-

comes large, i.e., whep,>p,>a. We need to look only at
the correlation factofEq. (36)], which we now write, mak-
ing explicit the plane-wave oscillating terfd3] as

V2
N?

Meorr= J' efipz-rzq)é;)* (I’2)Dpl,pz(O,rz)llfi(O,rz)d3r2.

(49)

In the limit p;>p,>a, the fast oscillating plane-wave term
exp(—=ip,-ry), unless modified by oscillating terms from
®,,Dp, p,» results in 1p5*3 powers for singular terms con-
tainingr}, and it therefore gives at most apglcontribution
[63]. The powers come from the,=0 singularity. In order
to find terms that are larger thanpy one needs to look at

the oscillating terms ind, D, . which can modify the

PHYSICAL REVIEW A67, 022709 (2003

2 :
l:l/_;f e P22 ¥ (ry)

— i(vIp1p)In(p1oro— P12 r
M corr = e (MP1IN(P12 2~ P12:T2)

fo (P12 T2)
plz—e+i(p12’2_plz'f2)+i(v/plz)ln(2p12rz)
ra

XWi(0r,)d3r,. (48)
The first term in the parentheses, involving only a logarith-
mic phase, is slowly oscillating and it therefore will not
modify the fast oscillating plane-wave expi(,-r,), hence
only giving small contributions. Note also that spherical
waves from(l)pz together with spherical waves frompl,p2

give already a ﬂf‘arge factor, due to the b‘,zarge factor con-
tained in both spherical waves; we therefore do not consider
such oscillating terms. We proceed, keeping only the second
term. The integration only includes the regions in which the
function D has asymptotic behavior, and these regions are
defined by the requirement thpsr,(1—p,-r,)>1. We will
calculate just the leading contribution, to determine ifs,1/
dependence, and therefore we approximaiepz(rz)

fast oscillating plane-wave term so that it becomes &=1/(2m)°. We are calculating

smooth function at
exp(—ipz-rz)q)pz is fast oscillating everywhere fqu,>a,

the needed modification can come only from fast oscillations
We can represent these oscillations accurate to

of D .
P1.P2
first order in thee-e interaction by employing the@ model,
as demonstrated in Appendix B. In the€3model the fast
oscillations of the functiorD, , occur for large values of
its argumentp,- 1o+ Pt 122>1, (see Appendix B In the
asymptotic region[accurate to the leading order im

least for some kinematics. Since

RC

= @ 1(P12)-ro+ipyaro+i(v/p1)In(2p1o2)
(2m)3Nf

corr

fo (—P12T2)
% P12

‘Ifi(O,rZ)d3r2,
)

(49

where P=p;+p,. Note the modified oscillating term. In
the asymptotic region thee-e scattering function

=mal/2 (e-e interaction], neglecting terms that decrease fplz(_E)lZ' r,), given by Eq.(47), is a smooth function, i.e.,

faster than ¥/;,, we have

fp, (P12 T12)
ri2
X @ (P12 12+ P12 112 +i(#/P19)IN(2P150 1)

Dy, nim(T1.72) = e 1(MP1IN(P1F 12t P12 T12)
129

(46)
wherefp12 is the e-e scattering amplitude,
o Pz 12 -
pAP12 1) ==~
v pA1+P1oT1)
><ei(V/pl?)|n[(1/2)(1+,312.F12)+iw—2i ol
(47)

and whereng=argl'(1+iv/p4y).
In the configuration regions in which the functidS]])l'p2

is not asymptotic, the final-state interaction gives just a cor-
rection to the SO contribution, which is small. Restricting to

integration within the asymptotic region fdilplvpz, and in-

serting Eq.(46) into Eq. (45), we obtain

in the asymptotic region it is away from its singularity at
P12 r2=1. o _ .

We now perform the radial integration oves, i.e., we
are calculating

° ; ' 1
p(P-T5,p1o)= e*I(P/2)~r2+|p12r2r_\P(0’r2)r%dr2,
2
(50

where we have dropped the slowly oscillating logarithmic
term that only contributes with additional powershp,.
For large momentdboth p;>a and p,>a), the function
p(P-T,,p1,) has a maximum a®-r,/2—p;,=0.

In order to get some impression of the behavior of this
function, we can use some realistic examplesWg0,r,). If
we use a mode(Hylleraag in which ¥ (0r,) can be ex-
pressed, to a good accuracy,H$0,r,) = C exp(—Ar,) [64]
[A=ma(Z—0.53)], we get

C
(N—ipot+i(PI2)-15)?

p(P-Ty,p10) = (51)

which has the kind of behavior we have discussed. We are
now left with the angular integration in E(49) over angles
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that do not include singularity dfplz(—f)lz- r,), so that this B. The rest of the FSI region

function is slowly changing. Using a peaking approximation ~We now remove the assumptigp<p,. We demonstrate
we can make the following estimate for the integral in Eq.that in the limitsp;>a andp,>a, but with no restrictions
(49). For arbitrary kinematics, in the limip;>a and p, on the relative size op, andp,, the dominant contribution

>a, [we write Mo = v21/((27)3NO)], to the spectrum(but away frqm _the quasifree reg_iop,l
=p,) comes from the kinematics in which the outgoing elec-

tron momenta are perpendiculavhich implies that botHP
andp, are large, and we show that the leading contribution
in that kinematics is

=

fpo(~ P12 Fg]ax)j 1(P-T5,p12)dQ,

A 47C |
= fp~Pr PP — . 62 L2 e
Piz (A—ip1)?+(P/2)? Mesi= o manel pud ~Piz P)
wherer'® denotes that direction, among all directions sat- +5 (P12 P)1s(P12,4)Mgps. (56)

isfying P-r,/2—p;,=0, in Whichfplz has maximal value.

As illustrated by Eq.52), in general there will be two The arguments follow exactly those leading to HE§5).
additional powers in Bi,4e, €XCept when the kinematics is However, in obtaining Eq55) we have already started from
such thatP/2=p,,. In such a case]®=P and we obtain 2 partitioning in the vicinity of one singularitithe singular-
that the dominant contribution th,,,, for the kinematics 'Y connected with the momentum of the faster electron
P/2=p,,, which gives the leading contribution to the spec—NOW we just need to clarify the roles of the singularitigs

trum, for p;>p,>a, is =0 andr,=0. _
We are looking at the regions where not only bpthand

2 p, are large but alsp,, and P are large. We substitute the
corr=————F . (—P1 P) ie(Prz,A), (53 ~ asymptotic expansion for the final-state wave function and
(27)3NE P12 the asymptotic behavior of the final-state interaction[Eq.
(46)] into Eq.(18) (with A\=p,). We use the argument from
where Sec. V that without modification of the plane-wave oscilla-
tions the intermediate region is determined by the triple coa-
2 i A lescence, and that such modification comes frometieein-
M(plz,A):J p(P- Fz:plz)dﬂzzp—f €22y (0r,)dr,, teraction term. We obtain for the leading contribut{@r3],
12

(54)
Meg=— \/E @ 1(P-R+ip1or1p=Pagl1o= P12 T12)
and whereA = p,,— (P/2). In obtaining Eq(54), the angular (2m)3
integration was performed using the fact thB{(Oyr,) is SN
angle independent for the ground state; only the leading or- lez(p12'r12) 1o
der in 1p,, is being kept. Xr—lzﬂ (rq)

The correlation part of the matrix element, in the domi-

nant kinematics, factorizes further into a final-state inter- +118(r) JW (rq,rp)d3 1 d3r,, (57)

action part(represented by the freze scattering amplitude

and an initial-state correlation represented by the functionvhere we have written the plane-wave oscillating factors in

#(P12,A). This means that the dominant contribution to theterms ofP andp,, for convenience for combining them with

matrix element for photoabsorption in the lini{>p,>a,  the oscillating terms of the scattering wave. We have

in the dominant kinematicsR/2=p;,, which is equivalent dropped the logarithmic phases that do not contribute in the

to saying thap, is orthogonal tap,), is leading order. Note that the integral containing ¢ae inter-
action I(r,) can be obtained from the integral containing

N I(r,) by interchangingp; andp,. We explicitly show only

(= P12 P)u(P12,A)Myaps, (55 the contributions containing(r,). For thee-y interaction,
we are assuminy form or A form, since we are neglecting
e-N interaction in the final statéwe are not treating the

where Mgy is the absorption part given by EB5). The  final-statee-N coalescence correcilyand inL form this will

result[Eq. (55)] has been obtained for the situatippi>p,  lead to spurious contributions as discussed in Sec. VI.

>a, in which exchange can be neglected in the leading or- The evaluation of the leading contribution follows the

der. In a more symmetric situation the same factorization agrocedure of the partitioning around tleeN coalescence.

in Eq. (55) is obtained 55], as we also show below, except The leading contributions to Eq57) come from two re-

that thee-e scattering is represented by the falle scatter-  gions: (1) a region in whichr, is small andr, is large ¢,

ing amplitude for electrons in the spin-singlet state, which is~ 1Pjarge, T2=1/a), and(2) a region in whichr, is small

fo(— P12 P)+ o (P12 P). andr, is large. These two regions that we denote as,}0,

— *
MFSI_(Z’]T)3Ninp12
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and (r4,0) are disconnected, and we can simply add the con- , . .
tributions in the two regions to get the leading contribution |(r1,0)=j e_'(P/Z)'rz‘I’ic(rz)d3er e (PRt (py)
f;n( P12'T1)
N XT\I’(rl,O)d3r1. (62)
MFSIZW[I(OJZ)"_I(rl,O)]+(p1‘_’p2)a (58)
Equation (61) is just the expression we considered in the
where the contribution from the;=0 singularity is asymmetric case. The contribution, E2), can be ne-
glected since both integrals appearing in it are of higher or-
der in 1pj,.4e than the corresponding integrals in EG1).
|(o’r2):f e 1(P2):r1=ip12r1€08d 15— i(PI2) To+iPazta) (1 ) As discussed here, and in Ref§3-55, a more equal
energy sharing between electrons occurs primarily due to the
£ (“Puyin) subsequent final-_state inter_action rat_her tha_m through _the
pp ~ P12'T2 wC W(0r)d3 - d3 59 shake-off mechanism. The final-state interaction mechanism
ry (r)W(0rz)d*ryd’r2, (59 of double ionization can be viewstike shake-off as a two-
step process. In the first step photoabsorption occurs, as in
the case of the shake-off mechanism. But in the second step
the fast electron interacts willscatters off the second elec-
tron (final-state correlation leading to double ionization and
| :f @ 1(P12)- 11D 1 50089151 (PI2) Ty izt 1 ) establishing a more equal energy sharing between the two
(11.0) ! electrons. In both the shake-off and the final-state-interaction

and the contribution from the,=0 singularity is

. o~ n mechanisms, an electron and the nucleus are involved in
fo (P12 T1) c 3 3 photoabsorption. However, the double ionization in the
XK—————Wy(r))¥(r,,00d°r,d>r,, (600  shake-off mechanism is a consequence of initial-state corre-

lation, while in the final-state interaction mechanism the
. ] . ~double ionization is a consequence of final-state correlation.
and wherev=ma/2. The integrations in these expressions|n, this FS| region the leading contribution is associated with
are restricted to the regions in which tee interaction is in  the kinematics in which the two-electron momenta are nearly
the asymptotic region. Note that the expansiom@faround  orthogonal to each other. This leading contribution, called
r;=0 (the same is true for,=0) gives two terms that we the FS| contribution, is determined by teeN coalescence.
should keep, i.e., at the =0 singularity the two terms are The matrix element is again a single FT in just one large
P12l 127 P1a 2= P1af 108912+ O(r 1 /15) - -, where 935 IS momentum associated with just one singularity. We should
the angle between; andr,. We cannot neglect the term note that the contribution of the final-state interaction mecha-
P1of 1€0S97, sincePr; andpy,ry are of the same magnitude. nism to the total cross section for double ionization, at high
We can now perform the analysis that led to E§5.  energies, is negligible in comparison to the contribution of
Terms likep,r ;€089;, in the phase of the oscillating factor, the shake-off mechanism.
As discussed in Sec. V, the dominant contributions in the
@ 1(PI2)-Ty=ipyarycosdy, three regions of the spectrum are a consequence of the exis-
tence of the singularities. There we have shown that the or-
. ) . o dinary AFT (of a function with the same singularities as in
which we did not have in the situation whepg>p,>a,  the photoabsorption matrix elemgmn the intermediate re-
make no change in the argument. In the dominant regiolion away from both the edge regiéin which the dominant
(P/2=py;), they give a phaseP-ry/2, which together coniripution is determined by the-N singularity and the
with the already existing phase terf-r,/2, gives the  ceniral region(the quasifree region in which the dominant
correct phaseP-r; with the total absorption momentum c,ntribution is determined by the-e singularity), is deter-
[—i(P/2)-r,—ipaaricosdp=—iP-ri]. Namely, after pho-  mined by the triple singularity at,=r,=0, corresponding
ton absorption, one electron has the whole total momentuny, 5 double AFT. However, our matrix element differs from
P, which is then distributed between electrons throegh  the ordinary AFT in that the plane-wave fast oscillating be-
scattering. In the dominant kinematic®/@=p;;), which  hayior can be modified due to spherical waves. What matters
can be established as in the asymmetric situation, and whiofere is the modification resulting from the final state spheri-
is the same for both, ) andl( o), we get cal wave due to the-e interaction term, which results in a
single AFT in a large momentum associated with just one
(e-N) singularity, giving a contribution that dominates in the

r

'(o,rz):J e‘ip"ll(rl)\PiC(rl)d3r1J e 1(P2)-ra+ipyary spectrum in comparison to the contribution from the triple
coalescence. Within the assumption of a perturbative expan-
* (=Dt sion for the final-state two-electron continuum wave func-
o, {~P12:T2) . o
12 V(0 Fz)d3r2 (61) tion, there are no other contributions of the same order as the
) contribution[Eq. (56)] in this region of the spectrum.
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IX. GROUND-STATE IONIZATION TOTAL CROSS This leads to factorization of the3g cross section. When
SECTIONS AND DOUBLE-TO-SINGLE IONIZATION calculating the SO double-ionization total cross sectig,
RATIOS Rso AND R we can simply use Eq64), replacing the summation over

discrete statem by summation over continuum states. Alter-
natively (due to the above simplificationsas has been done
in Ref. [45], we may employ the completeness relation for
the statesb. We obtain

The total cross section for single or double ionization in
photoabsorption of a high-energy photon of momentuby
a two electron atom is

(2m)%a f 1
o= d3p, = M[28(w—|Eg|—e;—€,),
mzw ; p12 2& | | ( | B| 1 )\) O_;rar: = j |‘I’i(r,0)|d3l’
(63) (N1)
2
where the nonrelativistic transition matrix element in the - U O (NWi(r,00d°%| |o5(w). (65
lowest order in the photon-electron interaction is given by n

Eqg. (18). The symbol¥, means summation over hydrogen- ) o _ o
like discrete statea when single photoionization is consid- _ Our analysis of SO double ionization and single ioniza-
ered and meangd®p, when double photoionization is con- tion gave a factorization of the matrix elements into absorp-
sidered.[Bound states are normalized to unity. The Smg|e_tion and correlation factors, which leads to a similar factor-
electron continuum is normalized asymptotically to anization of cross sections. This factorization is accurate,
amplitude 1/(2r)¥2 and the two-electron continuum is nor- Neglecting terms that vanish aspﬂa/rg?. Since the SO
malized asymptotically on an amplitude 143.] double-ionization cross section and single-ionization cross
Substituting Eq(30) into Eq. (63) we obtain an expres- Section have the same fact@_fs(w) (which include retarda-
sion for the single-ionization total cross section at high photion and the slowly converging Stobbe fagtat high ener-
ton energiegbut w<m), within the 3C model, involving  dies, it cancels in the ratio. The cancellation of retardation
excitations to all subshells. However, since thé gnodel ~Was demonstrated in numerical calculatidag] that were
neglects terms of the ord@(ma)?/p?, we neglect, for sim-  consistent with the shake-off assumption. The shake-off ratio
plicity, all terms from the correlation factor that vanish asRso=0 gé_/ o therefore involves only the correlation fac-
1/p?, i.e., we take only excitations tb=0 bound states. tors. At high energie$22,45-47,66
Also, we neglect binding energi&s, of the final-state bound

electron compared to the kinetic energy of the outgoing elec- f W, (r1,0)|2d%

tron. Thus, we obtain a common absorption factor for all b 1

excitations. This leads to factorization of the cross section for Rso= 2 -1 (66)
single-ionization of He, and we obtain an expression for the En: f D} (r)Wi(ry,00d%

single ionization total cross section at high photon energies

(but with »<m), The cross sections™*, o35, and also the rati®so ap-

proach their asymptotic forms, Eq&4)—(66), faster than
oS w), (64) 1/p|zarge (in fact, the 33 model g_ives an approach as

1/pjarge) - Various numerical calculatiorjsee, e.g.10], and

references there]n are consistent with such a conclusion.
Wheregfs(w) is the photoabsorption cross section from theThese calculations agree that, in the case of He, the constant
ground state of hydrogen"ke He. The cross SeCﬁ‘@E(w) SO ratiO,RSO:1.67%, which can be obtained even in the
in Eq. (64), resulting from the absorption matrix element, Eq. lowest-order Born approximation, is reached within few per-

(30), includes both retardation and the slowly convergingcent at 5 keV and approaches a constant p§ 34 . In con-
Stobbe factor. trast, at such an energy the lowest-order Born approximation

We now calculate the double-ionization total cross secfor cross sections is still more than 25% away from the cor-
tions. This means integration in E¢63) over the whole rectvalue(as we obtain in our IPA calculationand the error
spectrum of final electron energies. But, before doing thatdecreases only asfq.. Fast convergence of the ratio is
we may consider restricting ourselves to just the SO regiondue to cancellations of the Stobbe factors.
and we define the SO total cross sectiogl,. This is an The contribution of the FSI region to the total cross sec-
observable, which has been measU&%] by counting only ~ tion is negligible in the high-energy limit. The double-
the events where momentum is transferred to the nucled§nization cross section in the FSI region obtained from Eq.
(e-N coalescence is involved in photoabsorpiioAs in  (56) [55]is
single-ionization case, we neglect all terms from the correla- - N
tion factor which vanish as ff, 4., i.e., we take Eq(37) do” (@) ¢ doed w,Eq)
for the correlation factor. Also, we neglect the kinetic energy dE,; 1s dE; '
of the slow electronE,~a?/2m, compared to the kinetic
energy of the fast electron. As in single ionization, we obtainfactorized as the product of the cross sectigfy(w) for
a common factoroi(w) for all contributing E,~a?/2m. single photoabsorptiofwhich reflects the mechanism of ab-

1 2

(NT)?

+ _

> f OX(r)W,(r,0)d%r

(67)
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sorption of the photonanddo_(w,e;)/de;, the cross sec- 5 3
tions for single ionization by electron impa@&s), 8.2 f [Wi(ry,ry)|?dn
doedw,Ey) _2ma?[ 1 il ’ 68) Y U D (ry)Wi(ry,00d%n
dEl 2(1) w— El El ! n

where in Eq. (67) is Herem s the electron massp,(r,) is a bound-state hydro-

1 genlike electron wave functiofin a potential of charg&),
J —2|\I'i(0,r)|2d3r and the summation is over all bound states. We may estimate
r the magnitude of the constai@, by using approximate
- ' (69) ground-state wave functions in E¢73). For the function
47Tj |W;(0,r)|?d3r Wi(ry,r)=exd —Z(r+ry)+|r;—r,//2], (here we use
atomic unitg [28], both thee-e ande-N Kato conditions are
By integrating Eq.(67) over the whole energy region, but exactly fulfilled. Then Eq. (73) gives Cz=[(2Z
excluding the SO regiofintegrate fromE, to w—E, where ~ —1)/(22)]13\/2/(52?). (The binding energy of He given by
E, defines the SO regiorE,, is several timesa?/2m), in  this simple wave function is 77.7 eéMn the case of He, this
which Eq.(67) is not valid, one obtains gives C;=0.030. Since for HeRso=0.0167, this means
that atw= 15 keV, the ratioR=0.0176, which is about 5%
above the constant shake-off rafté¥]. In this energy region,
the deviation will increase linearly witw. We note that in
order to observe this linear rise, one should not restrict one-
which shows that the FSI contribution to the total cross secself, as in Ref[65], to counting only the events in which the
tion is negligible at high energies. momentum is transferred to the nucleus. Observing events in
The full total cross section for double ionizatietf ™ in-  which the momentum is transferred to, another electron is
cludes both the SO and the QF contributions. The matrixequired. To our knowledge, such measurement has not been
element, Eq(18), can be approximated W soand byMqe  performed.
in the two different dominant kinematical regions. The over-
lap (interference termof these two contributions is negli-
gible. In fact, this interference term is much smaller than the X. CONCLUSIONS
contribution of the final-state interaction term, which has

also been neglected here. We may therefore proceed follow- We have described within a unified nonrelativistic ap-
ing Ref. [54], substituting Eq.(43) in Eq. (63) for the He proach single and double photoionization of two-electron at-

double-ionization total cross sectiom €p,). We perform 025 by \p;cotﬁabsodrptlon a;[ hlgz |t3r:10ttc;1r_1 inergmeébu_t S.t'" i
the integration over all outgoing electron energy and mo-" m). We have demonstrate at high-energy lonization

menta in order to obtain theré*F contribution to the total by photoabsorption can be understood in terms of the singu-

double-ionization cross section. Neglecting the binding enjarltles of the many-body Hamiltonian. In particular, the SO

ergy Es and the energy of the center of mass of the tWOand the QF contribution to the double-to-single ré&ioEq.

electrons,P?/(4m), in comparison to their energy’/m in (72), are explained in terms of theN singularity (SO and

the center-of-mass frame, we obtain the leading contributiof]. < singularity (QF) which both contribute to the double ion-

) o2 ization total cross section. Our discussion was not dependent
aé} to the total cross section for double ionization by pho b

toab tion th h th i hani “on the choice of the fornilengthL, velocity V, acceleration
oabsorption through the quasiiree mechanism A, etc) of the photoionization matrix element.

Since photoabsorption at high photon energies requires at
J |W,(ry,ry)|2dr,. (71) least one large _ou_tgoing_electron momentum, we have argued
that the analysis is equivalent to the analysis of the asymp-
totics of Fourier transforms. Based on Fourier-transform
The dominant contributions to the total cross sectidi for  theory, we have shown that a slow asymptotic decrease for
double ionization of the ground state of a He-like atom bylarge momentunp, such as X", is connected with the sin-
photoabsorption, at high but nonrelativistic energies, areyularities of thee-N ande-e Coulomb potentials. We have
given by summing Eqg65) and(71). demonstrated how this slow asymptotic decrease can be ob-
Taking the single-ionization total cross section to thetained by writing the wave functions and interactions in
same ordefor to all order$ in retardation[30] as in calcu-  terms of simpler functiongplus remainders whose contribu-
lating aé*F, the ratioR=0?"/o" is obtained as tions decrease fasdelmround singularities. Our approach
clarifies which singularities need to be considered for domi-
nant contributions and demonstrates that this is determined
by the kinematics of the outgoing electron momenta. With
this approach we can identify the dominant terms, and avoid
for o<m, where the constamRs is the shake-off result for omitting any of them, and we can also avoid the uncontrolled
the ratio and introduction of spurious contributions. We have illustrated

K

2ma’
oFsi= g, T1s(®), (70

- 2%°7°malw

ot = —
QF 15(m(1))7/2

w
R= RSOJF Cza, (72)
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how both of these problems have arisen in the use of apdiscussion is valid for both single ionization with excitation

proximate wave functions. and for the SO region of double ionization. In particular, we
We have applied our approach to study the high-energyonsider the exchange part of the matrix elem®ht,,

total cross section for single ionization and the total crossyhich can be a source of spurious contributions that domi-

section and spectrum for double ionization of the grounchate the contribution from the direct terms discussed in Secs.

state of a two-electron atom. We have demonstrated that th§/ and v, when approximate functions are used. We also

approach, as well as the final results, are gauge and forghoy that an exact initial-state wave function with uncorre-

independent. However, the dependence of the final results Qjteq coulombic final-state wave functions gives an accurate

the quality of initial- and final-state wave functions at Singu'high-energy result in the shake regions, regardless of the
larities varies with gauge and form. We have found that aC%orm used

celeration form, which places the singularities of the Hamil-

tonian in thee-y interaction, has the least requirement on the

quality of wave functions at the singularity, in all situations

considered. In the case of total cross sections for single ion-

ization and for the shake-off limit for the double ionization M= \/Ef e_ipl'rl(bf)_)*(rl)\p;':(rz)

of the ground state, acceleration form requires only the .

roper normalization of the initial state at theN singulari- * 1le 3r 43

Fies?which are three-dimensional manifolds, notjugt points XD A(M ) Wi(r, 1) AT d s,

In contrast, velocity form requires knowledge of both nor- (A1)

malization and slope at the singularities, while length form

requires even more detailed knowledge of the ground-state

wave function at the singularities. where A denotes the quantum numbers of the remaining
Within our unified approach, we have explained the domi-hound electron in the case of single ionization, or it denotes

nant contributions to the total cross sectidfar single and e momentunp, of the other electron in the case of double

double ionizatiop and the dominant contributions to the j,nization. According to the AFT theorem, the dominant con-
double-ionization spectrum, as a FT asymptotic in a singl«-“{:

The exchange term is

X ributions to this part of the matrix element, at high energies,
large momentuntdependent on the process and the region o P g g

th frum Th dominant contributions ar nnected ome from singularities. The fast oscillating terms come
€ spectid ese dominant o utions are connectety,m, the plane wave, and in some configuration regions also

throu_gh AFT, with enhgr th@'!\l singularity or thee-e sin- . from thee-e interaction term, Eq(46), modifying the plane

gularity. The asymptotic Fourier transform results are modi- L . L

fied by Coulombic interactions. We have included thesaVave oscillating term. While the plane wave oscillating term
onnects the dominant contribution with thg=0 singular-

modifications, for the cases of single ionization and doubl& o . . X
ionization in the shake-off region at high energies, and in thid®y: the oscillating term from the-e interaction can modify
way we have obtained rapid convergence of the cross se nese fas_,t oscillations in such away so as to give additional
tions with increasing energy. This has allowed us to discus§entributions from the,=0 singularity.

also the convergence of ratios of cross sections. We have Since the modification of the plane wave, due to éhe
discussed the importance of final-state ande-N interac-  Interaction, comes with two additional powers ipi/see
tion. We have discussed the importance of retardation corre&d: (47)], such contribution would not modify our result, Eq.

tions as well as the cancellation of retardation contributiond2?)- For the discussion of the final-state interaction modifi-
in the shake-off double-to-single ratio. cation of the plane-wave oscillating term, see Sec. VIII. We

here discuss the form dependence of the contributions from
the plane-wave oscillating ternr (=0 singularity to Eq.
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APPENDIX A: FORM DEPENDENCE OF THE MATRIX near r;=0 is ‘I’i(rl,rz)=‘I'i(0,r2)(l—a’r1)Y8(?1)

ELEMENT IN THE SHAKE REGION -
+0(r3;ry,r,), wherea’ #a=mZa [see Eq.(25) for the

Here we discuss the form dependence of the matrix elepartitioning and characterization of exact wave function near
ment for ionization of a two-electron atom in the regionr,;=0]. For the final state we take an equivalent partitioning
where one electron takes almost all the photon energy whilén terms of Coulombic functions and explicitly keep only the
the other just shakegither shakes up or shakes)offhe leading terms shown in Ed7). We obtain
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a form. An .exgct initial-state wave.functi.on with uncorrelatgd
1+i—g)* Coulombic final-state wave functions gives an accurate high-
P1 energy result in the shake regions.
1 We assume that the initial state is exact and that final
; * states are uncorrelated Coulombic states with the coertt
X[i(pary+ pl'rl)]+o( 2) ]q’“'m(rZ) singularity. As we have shown above, tkiform result for
ground state ionization does not depend on final-staée
ma i interaction. Therefore we may analyze the behavior of the
1-i Eg [i(plrz_ P1- rz)} difference between the approximateform andL-form ma-
trix elements when final state interaction is neglected. If the
1 difference vanishes, we can conclude thdbrm result also
—2)]|1e(r2)\lf(0,r2) does not depend on final-state interaction. This difference
1 can be obtained by using the relatign+p,=Im[H,(r;
+r,)], whereH is the exact nonrelativistic Hamiltonian for
a two-electron atom. We now get

M;rxz \/ENfJ e (eritipy-ry)

1

X

+0

X[1—a'r;+0(r3)]d% ,d%,. (A2)

The leading contributions to the matrix element at high en- o
ergies are determined by the leading singular terms in the AMs:M\s/—M§=imf e*ipl-f@é—)*(rl)q;p (ry)—
variabler,. Following the procedure explained in Sec. Il, we ! 2 Tn

obtain powers 17 "2 from singular terms involving powers X[€ 11+ €1, ]W(ry,ry). (A4)
r in Eq. (A2), when we integrate over, [see Eqs(10) and
(1D]. Due to the fact that the functionrds, as well ase-r,, are

In all forms, the powers in Py of Eq. (A2) are deter-  yeqylar atr, =0 for all r,#0, thee-N singularity that deter-
mined by thep, dependence of the interaction tefsee Eq.  mines the leading contributions tAMg comes from the
(20), in A form the interaction term contains the powewl/ njtial- and final-state wave functions. As in the single-
~1/p, in V form it contains no powers, and in form it jonization case, the leading singular powerris which
containsw~p3] and the leading power from the integral  would result in a leading contribution thM  of order 1p*.

This would be sufficient for showing that the difference de-
~a - creases faster than the matrix elemémhich decreases as
1+i Eg [i(psratpi-ra)] 1/p3), but, in fact, such terms cancel and the leading contri-

bution to AMg is of order 1p3. ThereforeM" andM" are
1 the same at high energies even with approximate uncorre-
[1+a'r,+ O(rf)]d3r1~(a—a’)—4. lated Coulombic final-state wave functiofshich have the
P1 correcte-N singularity).

f e~ (eri+ipi-ry)

1ol =
p?

(A3)
APPENDIX B: THE 3 C FUNCTION

This spurious contribution, arising in the exchange term from
asymmetric description of the-N singularity @' #a) ap- ~Here we argue that theGfunction, used in our discus-
pears in all forms, but i form it is of the order %, in vV SIONS, Is accurate neglecting terms of the ordena)?/E;,
form it is of the order 185, and in theL form it is of the =~ WhereE;=piyq/2m s the total energy of the two electrons
order 1p2. In L form, this spurious contribution would be N the final state, and that theC3function contains accu-
the leading contribution to the matrix element. With wave"ately terms of the ordeZma/pia g in the e-N interaction
functions that satisfy the-N Kato cusp condition, these con- @nd terms of the ordena/pj, 4. in thee-e interaction. With
tributions, however, cancel:; and, in fact, leaveAiform a  Such accuracy of the@functions we obtained photoabsorp-
1/pz power contribution from the exchange term\riorm a fuor? m_atnx elements, determ_mmg the spectrum of double
1/p* power, and inL form a 1p° power, at high energies. 'ONiZation, accurately neglecting terms of ordeptje-
Therefore the contribution of the exchange term is mani- We_ vynte the exact 50'9“0” Of. the Scluiluger equation,
festly of higher order ilA andV forms, while inL form it is descrlbmg two electrons in the final state with momepia
of the same order as the leading contribution for ionizatior?"dP2: in the forms
with excitation intos states, 3#5. Even this 13 contribu- - -
tion is obviously a spurious contribution that must vanish. In Vi(r1.12) =Wy “(r) Wy (rz)Dp, p,(r1.r2)
order to show this explicitly, one needs more detailed knowl-
edge of the wave functions at the coalescence. However, as
we show now, neglecting final-state interaction and assuming
exact initial-state wave function, we get no spurious terms of
the order mi (i.e., of the same order as the dominant term
when considering ionization with excitation into a bousd where W{(r)=e'P'®{7)(r) represents an outgoing elec-
state, i.e., we need no final-stadee interaction even irL  tron in a pure Coulombic potential of a nucleus with charge

= ei(pl'r1+p2"2)¢EJI)(F1)‘D§3;)(V2)Dplvpz(rlJz)

=@ (r)®F (ro)di(ry,ro), (B1)

1
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Z. The factoerlypz(rl,rz) contains all final-state-e inter- a _
action. The & model means that the final-state correlation is 1Fq) 11 E’Z’_'(piri“L Pi-ri)
approximately described by Hi= } : (B7)

.a .
1F1[—|a,1,—|(piri+Pi'ri)

14
— wvl2pqp
—) e F.

Dplypz(rl,l’z):lﬂ( 1—i p12

which appear after dividing the equation Hy, - @, . For

v _ pi>a, H;, and therefor&; andM;, are bounded, i.e|H],
x| p—12717—|(p12f 12t P12 12) |, |Ki|, IM;|=<2 for all distances and angles. This can be shown
by writin
(B2) y g
where v=ma/2 and pi,=(p1—pP2)/2 (with p,=0 when 1F1[1—ii,2,—ix
single ionization is considergd Ho— Pi
We are here discussing the quality of th€ 3unction in ! .a
terms of the function di=exgi(py-r1+p2-r2)Dy, p, ], 1Fq| i El IX
which in the limit Z—0 (neglectinge-N interaction de-
scribes two electrons with Coulombic interaction. In this dis- = iE 2ix
cussion, our approach is similar to RgL0]. However, we [ S
' ;. . Ny [ =—| g% ! -1 (B8)
are able to show explicitly, without making any assumption X € a '
on the Dpl’Pz function, that the terms that are neglected in 1Fql —i 51 iX
I

3C are of the ordeZ(ma)?/E; and higher. In contrast, in
Ref.[10] it is assumed that the functidd, ,, depends only 504 noting that the numbers in brackets are of unit ampli-
on the relative coordinate of the two electrons, and it is onlytude, which means that for>1, |[H|<2. Then it is easy to
argued that fop,re>Z, the exact function approache€3  see numerically thgH|<2 for anyx if a<p. However, for
We are going a step further. . _ a>p (as may happen for the slow electron in the SO region
We now substitute the form, E¢B1) (with dy), into the  the upper bound oHl rises. In numerical calculation, we find
Schralinger equation that maximum ofH appears a@r(1+p-r)=1.445 which
results in a maximum of the size ofx2t2a/1.44% [this

_LVZ_L Z_Z_a_z_aJrﬂ W(ryr) also follows from Eq.(B8)]. This means that even fqu
2m't 2m? r; rp v ’ several times smaller thax the size oH is not much bigger
_ than 2. Due to the boundedness of these functions, we can
=EfWi(ry,rp). (B3)

discuss the order of the approximation made by neglecting
some terms in Eq(B5).

In the situations we are considering in this paper, the en-
a ergy E; is large:E;>a?/(2m). We ask the order of the ap-
—i—,1,—i(pr+p-r)}, (B4)  proximation made by neglecting theN interaction com-

p pletely [putting the right-hand side of E@B5) to zero, i.e.,
a=0]. Equivalently, we are asking the order of the approxi-

Since®(r) is the Coulomb wave function, i.e.,

Dy(r)=Nyq1F;

wherea=mZa, we obtain the equation for the functiell,  mation made by using theG function for a two-electron
system withE; large[note that witha=0, Eq.(B5) becomes

[_ ivz_ ivz 4 i—E }d (r15.R) the equation for the free two-electron sysiem
Aam 'R m 127, “fFV12 We assume that for largg;, the functiond; does not

differ very much from its first-order approximatiod?.
2a a . . :
= [i ——(p1K1+ poKo) — —[(M;+M,)- Vg Without any detailed analysis of the neglected terms, we may
m m easily estimate that the order of the approximation made by
putting a=0 in Eq. (B5) is given by the ratio of the ne-
+2(M1—M2)-V1ﬂ}df(r12,R). (B5) glected (bounded right side (which is of the order
apiarge/m, if we take for simplicity the value oK’s and
M’s to be 1 and the bounded term on the left sigighich is
Ei= p,zarge/Zm). The order of the approximation &p,ge »
which would mean that some terms of this magnitude might
have been neglected. It also means that the first-order ap-
proximationd? for the functiond; is the wave function of

The functiond; and Eq.(B5) are written in terms of the
(more convenientrelative coordinate ;, and the coordinate
of the center of masR of the two electrons,

._1+ Pi-fa M'_pi"'ri H. (B6) the free two-electron systerfiThis conclusion was reached
2 e o2 in Ref. [10], using the same comparison of the terms, but
with additional assumptions as explained abpViis accu-
H, is the ratio of confluent hypergeometric functions, racy of d?, and therefore of the G function used in our
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work, would not be sufficient to justify our conclusions.
However, making a more detailed analysis, we now show Pt T 1F1
that the order of the neglected terms is in faefm, and not M= 122 = -
aPjarge/M as |t'se(=':m.s at first S|zght. Therefore, the order of 1F1[i—,1,—i(p12r12+ DioT12)
the approximation is, in facgv/pi,4., and hence the use of P12
the 3C function in our discussions is justified. (B12)

We write the exact functiod; as is also boundedM .| <2 if p;,>». The corrections tal?,

- V -
1+i—2,—i(paf 12t P12 rlZ)}
P12

in the second iteration, are given by the inhomogeneous term

_ A0
de=di+or, (B9 on the right side of the EqB11), and we see that this term

] o is of the orderav/m. All terms proportional to the momenta
where the first-order approximation is the free two-electronyf gjectrons cancel and the leading correctionifanvolves

wave function both the interaction with the nucleus and the interaction be-
0 3 {(P-R+ 1y 1) tween the two electrons. By neglecting this inhomogeneous
di(ri2,R)=Np e i term in Eq.(B11) [which leads again tal?], we, in fact,
” neglect terms of the orderv/pfarge in the functiond; . This
X F i =1~ i(Pyof 10+ P12 T 1) |, (B10)  heglect is valid in all situations considered in this work.
P12 However in the SO region, when one of the electréag.,

) . . . ) p,) is slow, the coefficient of these neglected terms can be
and v includes all higher-order corrections. Slnoe_ IS Jarge (due to the large size df, if p,<a). This can influ-
small, we assume that the next higher-order corrections cag,ce the accuracy of calculation if a situatips<a is con-
be obtained by an iterative procedure using EBP) with  gjgered. However, when the total cross section is considered
Eq. (BS). In lowest ogder, we neglect the right-hand side of 55 i this work, the contribution from momentp,<a is
Eq. (BS) and obtaindy . Then, in a next iteration we put on g nnressed by its small phase-space factor.

the right sid_edfzod? and caIcuIatgjfl. . Therefore, all terms of ordea/py,,q. (first order ine-N
By insertingd; for d¢ on the right side of Eq(B9), we interaction and all terms of ordep/pj,4 (first order ine-e
obtain interaction are correctly represented by th€ 3unction, as

we expected, knowing that these terms must be Coulombic
(as if the third particle was not presgat the coalescence of

the two particles. We have used this result in Secs. IV and
V-=VII. This result also means that the spherical waves

1 a
- _VZR_ _V§2+ r_12_ E¢ d%("121R)

= My (Mg =M1 5. R), B11 present in the @ function are accurate _mcludlng the first
m M1z (Mi=M)dr(rsz,R),  (B1D) order ina/pjarge aNdv/Piarge - We need this accuracy of the
spherical wavesincluding first order inv/pjage) in consid-

whereM 1,, defined similarly toM;, ering the FSI region in Sec. VIII.
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