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Characterization of high-energy photoionization in terms of the singularities of the atomic
potential. I. Photoionization of the ground state of a two-electron atom
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We describe single and double photoionization of two-electron atoms by photoabsorption at high incident
photon energiesv ~but still v!mc2) using a unified approach based on asymptotic Fourier transform~AFT!
theory modified by Coulombic interactions. Within this approach the matrix elements for photoabsorption
processes at high energies can be understood in terms of the singularities of the many-body Coulomb potential.
These singularities (e-e ande-N) result in the singularities of the wave functions and the singularities of the
e-g interaction, which determine the asymptotic behavior of the matrix element. Within our unified approach
we explain the dominant contributions, including both the dominant contributions to the total cross section for
single ionization and for ionization with excitation, and the dominant contributions to the double ionization
spectrum, as a Fourier transform asymptotic in a single large momentum~dependent on the process and the
region of the spectrum!. These dominant contributions are connected, through AFT, with either thee-N
singularity or thee-e singularity. The AFT results are modified by Coulombic interactions. We include these
modifications, for the cases of single ionization and of double ionization in the shake-off region at high
energies, and extract a slowly convergent factor~Stobbe factor!. In this way we obtain rapid convergence of the
cross sections to their high-energy behaviors. This also allows us to discuss the convergence of ratios of cross
sections.

DOI: 10.1103/PhysRevA.67.022709 PACS number~s!: 32.80.Fb
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I. INTRODUCTION

In this sequence of papers@1,2# we are exploring the un
derstanding of high-energy nonrelativistic photoionizati
processes, which follows from the theory of asymptotic Fo
rier transforms~AFT!. Basically, the AFT of a function is
determined by its singularities. In our case this means
the high-energy behavior of cross sections follows from
Coulomb singularities of the basic electron-nucleus a
electron-electron interactions. In our first paper we introdu
the ideas of AFT~also using the simpler case of photoio
ization of an electron bound in a screened Coulombic cen
potential, for illustration!, and we explore correlation issue
focusing on photoionization of the ground state of a tw
electron atom. In the second paper@2# we examine further
issues that arise in the consideration of high-energy ph
ionization of a many-electron atom.

Here we consider high-energy photoabsorption in tw
electron atoms, including correlation. We will discuss bo
single ionization, including also ionization with excitatio
@3# to any bound state, and double ionization. Our main c
cern is with total cross sections and with the spectrum@4# of
double ionization. In recent years, the study of single-pho
absorption resulting in single or multiple ionization has
tracted much attention@5–17#, resulting in a better under
standing of electron correlation effects in complex syste
and in photoabsorption processes involving these syste
We show here that the issues of the high-energy@18# ioniza-
tion by photoabsorption can be studied from a unified po
of view. The idea is based on the close relation betw
high-energy photoabsorption matrix elements and the AFT
1050-2947/2003/67~2!/022709~26!/$20.00 67 0227
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functions with singularities~by singularity we mean a poin
where a function is not differentiable!. Due to the fact that
high photon energyv necessarily means at least one lar
outgoing electron momentum, the study of the photoabso
tion matrix element at high energies is equivalent to
study of the asymptotics of Fourier transforms~FTs!. Ac-
cording to the AFT theory, the asymptotic Fourier transfo
of a function with singularities is determined by the behav
of the function in the vicinity of these singularities@19,20#.

The study of the asymptotics of the FTs that arise in o
problems is based on the theory of generalized functi
@19#. By definition @20#, f (x1 , . . . ,xn), a function ofn vari-
ables infinitely differentiable and such that

Rl
] f

]xa1]xa2
•••]xan

→0, R→`, ~1!

for any l, m and any choice of the indicesa1 ,a2 , . . . ,an

(a11a21•••1an5m), where R[(x1
21x2

21•••1xn
2)1/2,

is called a good function.~In the terminology of Ref.@20#,
these are calledx functions.! The theorem~Ref. @19#, Theo-
rem 2, p. 15! says that the FT,g(p1 , . . . ,pn), of a good
function f (x1 , . . . ,xn) is a good function@19,20#. We will
call this the AFT theorem. Note this means that asympt
cally, the FT@g(p1 , . . . ,pn)#, of a good function decrease
faster than any power ofp[(p1

21p2
21¯1pn

2)1/2.
The functions that appear in our photoionization mat

elements, even considering photoionization of a particle i
potential, are well localized~due to the fact that the boun
state is localized!, but they are not differentiable everywher
Namely, they are differentiable everywhere except at coa
©2003 The American Physical Society09-1
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SURIĆ, DRUKAREV, AND PRATT PHYSICAL REVIEW A67, 022709 ~2003!
cence points, where they are singular@21#, i.e., nondifferen-
tiable. These coalescence points result from the singular
of the potential of the many-electron Hamiltonian. A slo
asymptotic decrease for largep, such as 1/pn, of the FT of a
well-localized function comes only from the singularities
that function.

In the vicinity of a singularity the functions~whose FT is
calculated! may be written in terms of simpler functionsf S
(S standing for ‘‘simpler’’!, whose FT we know, and a re
mainderO, whose FT is asymptotically negligible. This w
call the partitioning (f S1O) of the functions. According to
the generalized-function theory, the FT of a generaliz
function with singularities is approximated by the FT
these simpler functionsf S , while the size of the FT of the
remainderO gives a measure of the accuracy of the appro
mation. The point is that by takingf S more accurately in the
vicinity of the singularity, one can in principle achieve arb
trary accuracy~see Ref.@19#, Theorem 19, p. 52!. A special
partitioning, i.e., the expansion of wave functions around
origin ~which is the position of thee-N singularity! in terms
of polynomials has been used previously in both single
double ionizations@22–25#. Here and in Paper II, using AFT
theory, we are generalizing these approaches. We may p
tion ~in fact, using Coulombic functions, which are muc
better functions near the singular point than polynomia!
around singular points which, in general, do not have to b
the origin, and we consider all singularities.

There is, however, a point of difference between o
asymptotic matrix elements and asymptotic FT. Namely,
ter pulling out the fast oscillating terms of the plane wav
the function left in the integrand still depends on the lar
momentum variablep ~coming from the final-state wav
function!, throughpr dependence~as, for example, in con
fluent hypergeometric functions in the Coulomb case!. For
this reason it might be more appropriate to talk about a g
eralization of FT. However, in the largep limit the Coulomb
functions that depend onpr are expandable in uniformly
convergent series in powers ofpr. Although all these powers
of pr must be included, as we discuss, we are able to ar
that FT theorems apply to each power separately~a power of
p is pulled out from each integral and nop’s appear any
more! and, due to uniform convergence, also to the full fun
tion @26#. When the final state cannot be explicitly dete
mined, this argument also applies to partitioning of the fi
state in terms of full Coulombic functions. The Coulomb
modification of the FT results, as we demonstrate in S
II B, in a slowly converging factor called the Stobbe fact
By explicitly pulling out the Stobbe factor, fast convergen
is achieved. The Stobbe factor is a common factor, indep
dent of initial state, and so this allows us to discuss also
convergence of ratios of cross sections.

Our objectives are:~1! To obtain the leading contribution
@i.e., the leading inverse power (1/plarge) in large momenta#
in the high-energy matrix elements that determine the cr
sections we are discussing, by using the AFT approach.~2!
To show that the leading contributions can be identified
identifying the kinematical regions in which the matrix el
ment is an AFT in just one large momentumplarge ~there
must be at least one large momentum!, which is associated
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~through the AFT theorem! with a singularity of the poten-
tial, and to find what knowledge of the singularity structu
of the wave functions is needed in order to obtain form
dependent high-energy results in leading order.~3! To in-
clude terms needed to obtain fast convergence~at least as
1/p2) of our results to the exact photoabsorption results.
particular, we study how the Stobbe factor appears in co
lated systems in photoabsorption situations when one e
tron takes almost all of the energy~single ionization with
excitation and double ionization in the shake-off region!.

The potential energy of the two-electron atom,

V~r1 ,r2!52
Za

r 1
2

Za

r 2
1

a

r 12
, ~2!

wherer 125ur12r2u is singular~nondifferentiable! at thee-N
coalescences (r150 for any r2, andr250 for any r1), and
at the electron-electron (e-e) coalescence@r1250 for any
R5(r11r2)/2]. We call these coalescences as double c
lescences~points where two of the three particles mee!.
There is also a triple coalescence point where all three
ticles meet (r15r250). The functions that appear in ou
photoionization matrix elements are singular, i.e., nondiff
entiable, at the coalescence points@21,27,28#. The properties
of wave functions in the vicinity of double coalescen
points ~which are of primary importance for the domina
contributions we are studying! are well understood@21,27#,
and they can be obtained from the Schro¨dinger equation.
They are known as coalescence properties, and in the ca
s states they are often called Kato cusp conditions. We
using this term, Kato cusp conditions, more generally,
denoting the exact behavior of the wave functions at a tw
particle singularity.~There will also be singularities in the
e-g interaction operator, depending on the form that we ta
as we note below.!

The leading contribution, at high energies, to the mat
element in any kinematic situation is determined by the s
gularities, in variables associated with the AFT, of the pot
tial energy. The AFT results from the oscillating terms of t
final state wave function, which oscillate rapidly in any k
nematics. As indicated, we are not considering here gen
kinematics, but the kinematics which gives the domina
contributions to the total cross sections~for single and
double ionization!, and ~in the case of double ionization!
which gives the dominant contributions to the spectrum.
the case of the total cross section for high-energy ioniza
of a two-electron atom, the relevant fast oscillating ter
come from the plane waves of the final state, as in the o
electron case. However, when the spectrum for double
ization is considered, in some regions the dominant con
butions may come from the spherical waves@29#, too. In
these dominant kinematics, which determine the spectrum
double ionization and the total cross section, there is a sin
fast oscillating term linked to just one of the two types
double singularities, through a single AFT, rather than w
the triple singularity through a double AFT.

In the case of single ionization of a two-electron atom,
argue here~using the AFT theorem! that the dominant con-
tribution to the total cross section is associated with thee-N
9-2
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CHARACTERIZATION OF HIGH- . . . . I. . . . PHYSICAL REVIEW A 67, 022709 ~2003!
coalescence, as in the one-electron case, whether or no
atom is in its ground state. However, while the domina
contribution to the single-ionization total cross section~when
summed over all final bound states, so that excitations
not distinguished! of the ground state of a two-electron ato
does not involve final-state electron-electron interactio
~and involve initial-state correlation only in a normalizatio
factor!, regardless of the form used, the dominant contri
tions in the case of single ionization of a higher state
generally involve final-state electron–electron interacti
This final-state electron-electron interaction leads to pre
tions of an energy dependence of the cross sections for s
ionization, which are different from the independent parti
approximation~IPA! predictions, as we will note in Sec. IV
below and discuss further in Paper II.

In the case of double ionization of the ground state o
two-electron atom, the leading contributions to the spectr
and to the total cross section are associated with one o
two singularities~either withe-e or with e-N coalescences!,
and both singularities contribute. However, as in the sin
ionization case, we demonstrate that the high-energy dou
ionization total cross section of the ground state of a tw
electron atom does not involve final-state electron-elect
interaction, regardless of the form used. It does now invo
initial-statee-e interaction beyond normalization~due to the
e-e singularity!.

The leading contributions to the spectrum are, as
show, single AFT in just one large momentum. The kinem
ics of these leading contributions are such that the sec
Fourier transform is not in an asymptotic region. There
three such kinematic regions. The single large momen
may be the momentump1 of one electron~associated with
the variabler1 for which the potential has a singularity a
r150, thee-N singularity!, while the momentump2 of the
other electron is small. This region is known as the shake
region. The single large momentum can also be the rela
momentump of the two electrons~associated with the rela
tive distancer12 for which the potential has a singularity a
r1250, thee-e singularity!, while the total momentumP is
small ~quasifree region!. Also, the large momentum can b
the total momentump, but with electron momentap1 andp2
nearly perpendicular. This is the final-state-interaction
gion, in which case the large momentum is associated w
the variabler1 ~or r2) and thee-N singularity. The high-
energy total cross section is determined by the contributi
from the shake-off and the quasifree region, and the
oscillating terms come from the plane-wave parts of the tw
electron final state. In the final-state-interaction regi
which does not contribute to the total cross section in
leading order, the fast oscillating term comes from the pr
uct of a plane wave and a spherical wave. The search
dominant contributions to the total cross section and
spectrum therefore reduces to the search for the kinema
regions in which the matrix element is an AFT in just o
large momentum, which is associated with a variable
which the potential has just one singularity (e-e or e-N).
The fast oscillating terms of these single AFT come fro
plane waves and spherical waves. There is no region of
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spectrum in which the leading contribution would have a f
oscillating term coming only from spherical waves.

The rest of the paper is organized in the following wa
We first ~Sec. II! apply the AFT approach to the simpler ca
of photoionization of an electron bound in a screened C
lombic central potential~IPA potential!, including identifica-
tion of the slowly convergent Stobbe factor. Then~Sec. III!
we describe the general matrix element~in V, L, and A
forms! for single and double ionization, from any state of
correlated He-like system, which will be used throughout
paper, discussing the approximations appropriate for the c
sidered energies and atoms. We proceed to discuss ioniz
of the ground state of a two-electron atom. We first~Sec. IV!
consider single ionization, including ionization with excit
tion. In discussing double ionization from the ground sta
we first ~Sec. V! identify the three kinematical regions o
observables, which give the leading contributions to the th
regions of the spectrum. We then discuss these leading
tributions to the spectrum in the three regions separa
@contributions due to shake off~Sec. VI!, quasifree case~Sec.
VII !, and final-state interaction~Sec. VIII!#, and we discuss
the procedures and conditions for obtaining these contr
tions. In the cases of single ionization~Sec. IV! and of
double ionization in the shake-off region~Sec. VI!, we also
include modifications~due to Coulombic interaction! of the
asymptotic Fourier-transform results. Finally~Sec. IX!, we
discuss the resulting double-ionization cross section and
ratio of double-to-single ionization.

II. ONE-ELECTRON CASE

Here, using our AFT approach, we consider photoioni
tion of an electron bound in a screened Coulombic cen
potential. We will be able to understand the adequacy of
use of various forms of matrix elements@length (L), velocity
(V), or acceleration~A! forms# when using approximate
wave functions of various qualities in the vicinity of th
singularity at the origin. We will demonstrate that nonre
tivistic IPA high-energy photoabsorption is determined@up to
correctionsO(1/p2).O(1/v), p being the outgoing electron
momentum#, by the initial-state normalization and by th
point Coulomb singularity. The result, as we demonstrate
form independent, but whether information about the sin
larity comes from the interaction~as inA form! or from the
initial and final states~as inL andV forms! is form depen-
dent. In this way, we are able to identify the necessary c
ditions for all three forms to give correctly the high-ener
result in the IPA case. We also explicitly obtain the order
the error resulting from the error in the description of t
wave functions in the vicinity of the singularity. We wil
consider this on two levels of accuracy~depending on the
accuracy in the description of the wave functions in the
cinity of the singularity!, both in single and double ioniza
tion. First, we will obtain the leading-order results in 1/p,
using a simple description of the wave functions in the
cinity of the singularity. Then we will use a description th
completely includes the stronge-N interaction. The Coulom-
bic modification of the FT results in a slowly convergin
factor, the Stobbe factor, which we obtain to all orders.

For a single electron in a potential, the matrix element
photoionization by photoabsorption, in the lowest order
9-3
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SURIĆ, DRUKAREV, AND PRATT PHYSICAL REVIEW A67, 022709 ~2003!
the quantum electrodynamic electron-photon interaction,

M5E Cp
(2)* ~r !I ~r !C i~r !d3r , ~3!

where C i(r )5Rnl(r )Yl
m( r̂ ) is the initial bound state, nor

malized to unit integrated probability density,Cp
(2)(r )

5eip•rFp
(2)(r ) is the final electron continuum state, norma

ized on the momentum scale@to asymptotically approach
1/(2p)3/2 amplitude distorted plane wave of momentump],
and I (r ) is the interaction operator, given in the three co
monly used forms~neglecting retardation@30# for simplicity!
as

I V52 i @e•“#, I L5 imve•r , I A5
i

v
e•“V~r !. ~4!

V(r ) is an IPA potential energy of the typeV(r )
52(Za/r )S(r ), whereS(r ) is a screening function that fo
small r we assumed can be described as a polynomial ir,
S(r )5(11s1r 1s2r 21•••), i.e., the potential has only
Coulombic divergence and is differentiable except atr50.
The singularity of the potential energy results in singularit
in the wave functionsCp and C i . These functions are no
differentiable at the origin. Thee-g interaction operator in
the L andV forms is, in this sense, regular, while inA form,
it is singular due to the presence of the singular V~r! in it Eq.
~4!. The largep behavior of the Fourier transform of a slow
varying function ofr picks out its behavior near the coale
cence point~sincepr;1, largep corresponds to smallr ),
and it only depends on the singular parts of the functi
Thus we begin by partitioning the functionsC i(r ) and
Fp

(2)(r ) in the vicinity of the coalescence pointr50. The
small r behavior of these slowly varying portions of the i
tegrand will determine the asymptotic FT.

Accurate evaluation of the matrix element at high en
gies requires knowledge of~in general! both initial- and
final-state electron wave functions at the singular point, o
general at all singular points, if one goes beyond IPA. Ho
ever, how much of this knowledge is actually needed in
given calculation depends on the form of the matrix elem
used for that calculation. As we will demonstrate in cons
ering the leading-order result, withA form we only need
knowledge about the normalization of the initial-state wa
function at thee-N coalescence. With other forms (V and
L), we generally need further information about both t
initial and final states. The exception is fors-state ionization
usingV form, for which we need only the normalization an
the slope of the initial-state function at the coalescence.

A. Partitioning in terms of polynomials—leading-
order

Born results

The partitioning f S1O in terms of polynomials of the
initial ~bound! state of quantum numbers (n,l ,m) in an IPA
potential with Coulombic singularity is
02270
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IPAr lF12
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r 1l2r 21l3r 31O~r 4!GYl

m~ r̂ !,

~5!

where a5mZa. In the simple functionf S @in which the
terms are alternately regular and singular, with the first te
r lYl

m( r̂ ) being regular#, the first two terms are determine
solely by the Coulomb singularity of the potential, and the
fore they are known independent of screening, except for
overall normalization factorNi

IPA ~which depend on the
choice of IPA potential!. Higher-order terms in thef S of Eq.
~5! do depend on the screening of the IPA potential, wh
affects thel i coefficients. This fact that the two first terms
the parentheses of Eq.~5! are determined by the Coulom
singularity, is well known, and it is a special case of t
general behavior of wave functions at coalescence point
many-electron-atoms@21,27#. Namely, in the description of a
many-electron atom wave function in the vicinity of any co
lescence~which includes any electron-electron coalescen!
in terms of the relative coordinate of the two coalescing p
ticles, the first two terms are determined by the singularity
the corresponding part of the Coulomb potential, up to
overall factor @31#, and there is a remainder that vanish
more rapidly than linearly in the coordinate.

These two terms, and the normalization constant, are
that we need from the initial-state wave function~we also
need information from the final state! in order to determine
the leading contribution in 1/p for high-energy photoabsorp
tion in V andA forms.

In the final-state electron wave function the situation
very similar, except that in the limit of high momenta th
normalization is not affected by screening. Namely, acco
ing to Refs.@32–35#, the wave function of a high-energ
continuum electron state of momentump in the vicinity of
the Coulomb singularity of the IPA potential is essentia
Coulombic. As shown in Ref.@35#, using analytic perturba-
tion theory, the corrections to the Coulombic wave functi
in the vicinity of the nucleus (r !1/a, wherea5mZa char-
acterizes the unscreened nuclear charge!, due to screening
decrease with electron momentum asO(1/p2) relative to the
Coulomb functions. This means that in the vicinity of th
Coulomb singularity (r !1/a) the wave function represent
ing the outgoing electron~which we need! of momentump
@a can be written, following Refs.@33,35#, as a Coulomb
solution plus a remainder,

Cp
(2)~r !5Np

Ceip•rH 1F1F2 i
a

p
,1,2 ipr ~11cosq!G

1OS 1

p2
;pr,cosq,si D J , ~6!

where O(1/p2;pr,cosq,si) denotes the remainder, whic
vanishes faster than 1/p ~denoted inO by 1/p2). Note that
we are not assumingpr to be small. In fact, the distance
that contribute in our high-energy matrix elements will
pr;1. The functional dependence ofO is also shown; the
remainder contains all information on screening, symboliz
9-4
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by the coefficientssi characterizing the small-distance b
havior of the screened potential. According to analytic p
turbation theory@33,35#, an even more accurate continuu
wave function of Coulombic shape, in the regionr !1/a, is
obtained by shifting the electron momentum in Eq.~6! from
momentump to pC , by an amount determined by the param
eters of the screened potential, and by replacing norma
tion Np

C ~if momentum scale normalization is used! by
Apc /pNpC

C . However, although such a Coulombic functio

is more accurate, its error still decreases as 1/p2 with large
momentump. Therefore we do not need it at this mome
here, but we will use it in Sec. II B.

This result, Eq.~6!, is important for our approach becau
it means~as we show below! that the terms in the partition
ing of the final state in the vicinity of the coalescence, wh
contribute to the high-energy matrix element, are not affec
by screening. We show this to the leading order in 1/p, fur-
ther simplifying f S in the partitioning of Eq.~6!. Due to the
fact that the distances involved in the process arer;1/p,
and since we are considering high energies for whichp
@(mZa), when we write our wave functions in terms of th
scaled variablepr, the terms that will be important for ou
discussion here involve terms up to linear in the param
a/p5mZa/p, with further terms contributing in higher or
ders in 1/p. We write

Cp
(2)~r !5Np

Ceip•rF12 i
a

p
g(2)@ i ~pr1p•r !#

1OS 1

p2
;pr,cosq,si D G , ~7!

where cosq5p̂• r̂ . O now includes all contributions of orde
a2/p2 and higher from the full Coulomb function of Eq.~6!,
and

g(2)~ i j!52
1

2p i RG
e2 i jtlnS t21

t D dt

t
5E

0

1

@e2 i jt21#
dt

t
.

~8!

The contourG is a counterclockwisely oriented closed co
tour encircling the cut@0,1#. By inserting Eqs.~7! and~5! in
Eq. ~3!, using the series expansion form of Eq.~8! for
g(2)( i j), expanding inj5pr1p•r , we obtain a series o
integrals of functions that contain powers ofr and angular
functions.

The functiong(2)( i j), Eq. ~8!, determines all contribu-
tions of ordera/p to the full Coulombic wave function for
pr;1. It is therefore equivalent to the first Born term in th
perturbation expansion of the Coulomb continuum state.
functiong(2)( i j) is generally needed in calculating the lea
ing contribution to the high-energy matrix element. Ho
ever, it containsp dependence throughpr which, at first
sight, may not look good, if one wants to view this hig
energy matrix element as a FT. However, we can expand
function in powers ofpr @by expanding the exponentia
function in the integral representation, Eq.~8!#, apply the FT
theorem to each term, and then sum the series. Since t
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series are uniformly convergent, this is the same as integ
ing without expansion~see, e.g., Ref.@36#, p. 158!, which we
do.

To achieve a convergent integration of each term in
series, which will then separately satisfy the requirements
the FT theorem, a factore2«r is introduced; after the inte
gration is performed, the limit«→0 is taken. This procedure
is consistent with the definition of the FT of generaliz
functions@19#. For the AFT theorem, we must understand t
singularities of the integrand. The singularity properties
the wave functions are immediately identifiable in these
ries, which involve powers ofr and angular functions such a
powers ofp̂• r̂5cosq and spherical harmonics. For examp
r and cosq are singular at the origin~as functions ofx, y, and
z) but their product is not (r cosq5z), nor are their squares
~Note also thatr lYl

m is regular.!
The leading contribution in any form to the high-ener

matrix element can be obtained, using only the first t
terms inf S of the partitioning of initial@Eq. ~5!# and of final
state@Eq. ~7!#, while neglecting some of these first two term
may lead to erroneous results in some forms. Higher-or
terms in the expansion give higher-order contributions
1/p. Therefore the form-independent high-energy matrix
ement~to the leading order in 1/p) for photoabsorption in an
IPA model is obtained from

M5Ni
IPANp

C* lim
«→0

E e2 ip•r2«rF11 i
a

p
g(2)*

3@ i ~pr1p•r !#G I ~r !r lF12
a

l 11
r GYl

md3r , ~9!

whereI (r ) may take forms like Eqs.~4!, which also contains
different powers ofr and angular functions. Integrals tha
appear in Eq.~9! are elementary, and even when theg func-
tion is involved they are easily performed using Eq.~8!. For
example, whenl 50, the integrals involved are

E e2(«1 ip•r )r ne• r̂d3r 5
2p~n12!! e•p̂

~ ip !n13
Cn , ~10!

where C215 ip, Cn50 for any odd positiven, and Cn5
22/(n11) for evenn>22, and

E e2(«1 ip•r )g(2)* @ i ~pr1p•r !#r ne• r̂d3r 5
2pe•p̂

~ ip !n13
Dn ,

~11!

where D225 ip22, D2152p2/22 ip22, Dn52(n
12)!(12 ip)/(n11) for nonnegative evenn, and Dn

54n! (k50
(n21)/2(2k12)/(n22k) for odd n.0.

Expression~9! gives the leading order in 1/p for largep,
and this term is form independent. We may look at this e
pression and compare it with a pure Coulombic poten
case to see what determines high-energy photoabsorptio
an IPA model with a Coulombic singularity. We see from E
~9! that the only difference from the pure Coulombic case
in the initial-state normalization, which depends on the I
9-5
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SURIĆ, DRUKAREV, AND PRATT PHYSICAL REVIEW A67, 022709 ~2003!
potential. All other terms are determined by the Coulom
singularity. Therefore at high energies, information ab
screening persists only in the initial-state normalization@34#.

In a matrix element form in which the interaction opera
is regular~such asV andL forms, and we denote them asI V

R

andI L
R) rather than singular~as inA form, I A

S), the contribu-
tion from the term in the integrand, which involves the fir
terms of the simple functionsf S of both the partitionings of
C i and of F (2), vanishes for anyl ~while in A form, this
term gives the leading nonvanishing contribution!. The lead-
ing nonvanishing contributions in such forms (L or V) in-
volve the product of the first term fromF (2) ~which is regu-
lar and denoted by asRf) with the second term inC i
~singular,Si), and the product of the second term fromF (2)

~singular,Sf) with the first term inC i ~regular,Ri). These
two contributions are of the same order in 1/p. In summary,
in leading order in 1/p one obtains the leading nonvanishin
contribution from

M5E e2 ip•r2«r@Rf1Sf #F I L
R

I V
R

I A
S
G @Ri1Si #

⇒E e2 ip•r2«rF RfI L
RSi1SfI L

RRi

Rf I V
RSi1SfI V

RRi

Rf I A
SRi

G . ~12!

Note that the results, Eqs.~9! and ~12!, reflect that it is the
singularity region that is important. This means that if o
wants to improve results, one needs to partition function
terms of functions that better describe behavior in the vic
ity of the singularity@37#. Partitioning of the wave functions
in terms of functions that are more accurate in the vicinity
the singularity provides more accurate results.

B. Partitioning in terms of Coulombic functions—the
Stobbe factor

The ratio of the first correction to the leading contributi
is of the order of 1/p, and it gives a very slow convergenc
of the photoionization matrix elements and cross sections
fact, it converges aspa/p;pAEK /v, where EK is the
K-shell binding energy. Due to this slow convergence, a
also due to the possibility of considering largeZ, we may
include thee-N interaction completely in both the initial an
final states, by performing the partitioning of the wave fun
tions in the vicinity of the singularity in terms of Coulomb
functions. Formally, this means that we write for the initia
state wave function

C i
IPA~r !5

Ni
IPA

Ni
C

C i
C~r !1O@r l 12#, ~13!

whereC i
C(r ) is a normalized Coulombic wave function wit

the same quantum numbers asC i
IPA(r ), andO@r l 12# repre-

sents the difference between the Coulombic and scree
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wave functions. The terms represented byO are small in the
vicinity of the singularity, as we discuss below.

For the final state we take the Coulombic part of Eq.~6!,
but with shifted energy and with corrected normalizati
@33,35#. As already mentioned, according to Refs.@33,35#,
the exact IPA wave function is Coulombic in the vicinity o
the e-N singularity except for correctionsO(1/p2). A fairly
accurate function~containing the dominant but not all term
of relative order 1/p2) is obtained by using shifted momen
tum pC rather than the true momentump. Momentump char-
acterizes the electron at large distances from the nucleu
we want to describe the screened wave function in the vic
ity of the nucleus by a Coulombic function, we should us
according to Refs.@33,35#, shifted momentumpC . In addi-
tion, if the function is normalized on the momentum sca
the normalization is affected, and it is given byNp

IPA

5ApC /pNpC

C . The final state is, therefore, described by

Cp
(2)~r !5ApC

p
CpC

(2)~r !1OS 1

p2D , ~14!

where the shifted momentumpC is given by Ref.@33#,

p2

2m
2

pC
2

2m
5uEB

Cu2uEB
IPAu, ~15!

whereEB
C (EB

IPA) is the hydrogenlike~IPA! binding energy
of the state that is ionized.

We thus arrive at the following approximation for the IP
matrix element:

M5
Ni

IPA

Ni
C
ApC

p E CpC

C(2)* ~r !I A~r !C i
C~r !d3r F11OS 1

p2D G
[

Ni
IPA

Ni
C
ApC

p
MC~pC!F11OS 1

p2D G . ~16!

From Eq.~16!, it immediately follows that at high energies

ds IPA5S Ni
IPA

Ni
C D 2

dsCF11OS 1

p2D G , ~17!

where dsC is the differential cross section obtained fro
Coulombic H-like wave functions calculated at shifted m
mentumpC , and whereO designates how rapidly the erro
decreases at high energies. The error in Eq.~17! is deter-
mined by the errors in the wave functions. According to t
results presented in Ref.@33#, the difference between
screened and Coulombic functions@when un-normalized
functions, i.e., the same first coefficient in the expansion
taken, are compared# is very small~and for a potential with a
polynomial expansion for smallr decreases as 1/p2). This
means that dominant terms of the relative order 1/p2 are
included; only small terms of relative order 1/p2 remain in
O(1/p2).

An important point, relevant for later discussion, is t
relatively fast convergence of the ratios of photoabsorpt
9-6
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CHARACTERIZATION OF HIGH- . . . . I. . . . PHYSICAL REVIEW A 67, 022709 ~2003!
cross sections to the results for ratios predicted by low
order results~Born results inA form!. The most slowly con-
verging factor in the cross sections is exp(2pa/p) ~Stobbe
factor!, and it is included indsC. This factor comes from the
final-state Coulombic interaction, which means that in pa
tioning wave functions around the coalescence, we get
factor by collecting all Coulombic interaction in the fin
state for each term in the partition of the initial state,
argued in Ref.@38#. The factor is therefore present for an
state. The fact that the dominant slowly convergent facto
the same for all states explains the much more rapid con
gence of ratios of cross sections.

Our comparison of the results obtained with Eq.~17! for
He with exact IPA results@39# shows agreement within abou
1% already around 1 keV. This illustrates the fast conv
gence of this procedure, especially when compared with
lowest-order result, which gives about 50% disagreemen
the same energy range. The shapes of the wave functio
the distances involved are basically Coulombic. We will e
ploy and generalize this important point in our subsequ
approach. High-energy photoabsorption is essentially C
lombic. This means that the high-energy behavior~we are
talking here about the keV range! of cross sections is deter
mined by the properties of functions near the singular
which is Coulombic. Screening effects enter, of course,
in a simple way, as a constant factor, in these IPA examp
By straightforward generalization of these findings in hig
energy many-body calculations, one can significantly s
plify calculations involvinge-e correlation, as we show in
following sections, in considering photoabsorption by a tw
electron systems.

III. MATRIX ELEMENT FOR SINGLE AND DOUBLE
IONIZATION AND TWO-ELECTRON WAVE FUNCTIONS

In our study, we are assuming nonrelativistic electro
We are neglectingL-S coupling and we factorize the two
electron wave functions into a spin part~which, in a two-
electron system, can be a symmetric triplet or an antisy
metric singlet! and a coordinate part. Further, sincev!m,
we neglect the interaction of radiation with electron sp
This means that the initial state and final state are either b
spin singlets~symmetric coordinate part! or both spin triplets
~antisymmetric coordinate part!.

Within this description, the matrix element for single
double photoionization by photoabsorption on a two-elect
atom ~in the lowest order of electron-photon interaction!,
where at least one electron of momentump1 is ejected, is

M5E Cp1 ,l~r1 ,r2!I 2e~r1 ,r2!C i~r1 ,r2!d3r 1d3r 2 .

~18!

Here C i(r1 ,r2) is the coordinate part of the initial-stat
wave function.Cp1 ,l(r1 ,r2) is the coordinate part of the

two-electron wave function in the final state, wherel de-
notes the quantum numbers of the remaining bound elec
in the case of single ionization, or it denotes the moment
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p2 of the other electron in the case of double ionization.I 2e

is the photon-electron interaction, which inV, L, andA forms
of the matrix element are

I V
2e52 i @eik•r1e•“11eik•r2e•“2#, ~19a!

I L
2e5 imS v2

k2

2mD ~e•r1eik•r11e•r2eik•r2!

2~eik•r1e•r1k•“11eik•r2e•r2k•“2!, ~19b!

I A
2e5

1

v2
k2

2m

F iZaS e• r̂1

r 1
2

eik•r11
e• r̂2

r 2
2

eik•r2D
2 ia

e• r̂12

r 12
2 ~eik•r12eik•r2!2

1

m
~eik•r1k•“1e•“1

1eik•r2k•“2e•“2!G , ~19c!

wheree is photon polarization andk is photon momentum.
Note that, as in the one-electron case, theA form of the
electron-photon interaction is singular, and note that th
singularities correspond to and result from the singularit
of the potential energy. In Eqs.~19!, we have shown retarda
tion included to all orders. Whenv!m and thus uku
!plarge , we may neglect retardation entirely~put k50 in
the interaction term! for the leading contributions determine
by thee-N singularity. This means that we may neglect r
tardation both in evaluating the leading contribution to t
single-ionization total cross section and, in the case
double ionization, when calculating the shake-off and
final-state-interaction contributions to the spectrum, negle
ing the~retardation-dependent! quasifree contribution. With-
out retardation@30#, the two-electron forms are just the sum
of the one-electron forms, Eq.~4!,

I L,V,A
2e 5I L,V,A

1e ~r1!1I L,V,A
1e ~r2!, ~20!

which, e.g., inA form, is

I A
2e5

iZa

v S e• r̂1

r 1
2

1
e• r̂2

r 2
2 D . ~21!

Note that, neglecting retardation, the electron-photon in
action inA form does not contain thee-e singularity. Thee-e
singularity is present in the wave functions but, neglect
retardation, this singularity would not give contributions
leading order in any form, as we will see subsequently.
the leading contributions due to thee-e singularity ~which
gives the leading contribution in the quasifree region of
spectrum!, we need to include retardation at least to fi
order, as we do in Sec. VII inV andA forms.

In calculating the dominant contributions~to the total
cross section and spectrum!, the inclusion of lowest-order
retardation is needed in calculating the quasifree contribu
to the double-ionization spectrum, which also contributes
9-7
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SURIĆ, DRUKAREV, AND PRATT PHYSICAL REVIEW A67, 022709 ~2003!
the total double-ionization cross section. Other domin
contributions to the total cross section~the shake-off contri-
bution! can be treated neglecting retardation because, as
discuss in Sec. IX, the retardation correction to the shake
contribution is of relative orderO(k2/plarge

2 );O(v2/c2) in
comparison to the nonretarded term in the shake off reg
@40,41#.

In our analysis, we start with exact initial- and final-sta
wave functions. Our procedure of evaluating the leading c
tributions at high energies through expansion in terms
simpler functions around singular points allows us to iden
the information from the two-electron wave functions need
to obtain the leading contributions inV, L, or A forms. We
may then use approximate wave functions that contain s
information.

We write the exact final-state two-electron wave functi
in the form

Cp1 ,l~r1 ,r2!5
1

A2
@Cp1

(2)~r1!Cl
(2)~r2!Dp1 ,l~r1 ,r2!

1z~r1↔r2!#, ~22!

where z51 for symmetric states andz521 for antisym-
metric states,Cp

(2)(r )5eip•rFp
(2)(r ) represents an outgoin

electron in a pure Coulombic potential of a nucleus w
chargeZ, l denotesp2 when double ionization is considere
and denotes (n,l ,m) quantum numbers of a bound electro
in a pure Coulombic potential with chargeZ when single
ionization is considered. The third factorDp1 ,l(r1 ,r2) con-

tains all final-statee-e interactions. The form, Eq.~22!, is
convenient because, in our calculations, we will argue t
we may use the approximate 3C function @10,42#, which is a
product of three Coulomb one-particle functions, i.e.,D is
approximated by a Coulomb function in thee-e interaction;
we will argue that 3C functions suffice for the high-energ
situations considered here. Namely, as we argue in Appe
B, the 3C function is accurate, neglecting terms of the ord
Zma2/Ef , whereEf is the total energy of the two electron
in the final state and, therefore, the 3C function contains
accurately terms of orderZma/plarge in the e-N interaction
and terms of orderma/plarge in the e-e interaction (plarge

.A2mEf).
By substituting Eq.~22! into Eq. ~18! and using the sym-

metry of the initial state~which is the same as the symmet
of the final state!, the matrix element can be written in th
form, asymmetric in final electron states@43#,

M5A2E Cp1

(2)* ~r1!Cl
(2)* ~r2!Dp1 ,l* ~r1 ,r2!I 2e

3~r1 ,r2!C i~r1 ,r2!d3r 1d3r 2 . ~23!

We use Eq.~23! to study the leading contributions to th
matrix element for high-energy single and double ionizat
of the two-electron system with the Coulombic interaction
Eq. ~2!.
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IV. SINGLE IONIZATION AND e-N COALESCENCE

In high-energy single ionization@3# of a two-electron
atom, there is one fast emerging electron, and we theref
as in the ionization in a potential case, are concerned wi
single asymptotic Fourier transform with respect to a va
able that can be taken as the electron-nucleus coordinate~we
are here assuming a nucleus of infinite mass!. The difference
from ionization in a potential is that there is another variab
We wish to examine the role of thee-N coalescence and th
e-e correlations in determining the high-energy behavior
the cross section.

In this section we discuss the total cross section for i
ization from the ground state of the atom@44#. It is helpful to
realize that the role of thee-N coalescence ande-e correla-
tions, which we will describe here for single ionization,
the same as in double ionization in the shake-off regi
discussed in Sec. VI.~In both situations, one electron take
almost all photon energy.! We will partition exact wave func-
tions in terms of Coulombic wave functions starting from t
full matrix element@Eq. ~24!#. We obtain a factorization of
the matrix element@Eq. ~27!#, into an absorption factor and
correlation factor, accurate to the order used in the partiti
ing. We then discuss the convergence of the obtained co
lation factor to the high-energy limit. We will use this later
Sec. IX to discuss the convergence of the cross sections
the end of this section we briefly note the form depende
of the obtained results.

The cross section for single ionization in general depe
on both initial- and final-state electron-electron interactio
But when the initial state is the ground state, as we are c
sidering here, high-energy ionization with excitation in
bounds states~also including the case without excitation o
the remaining electron! is determined by initial-state correla
tion only. For this reason the sudden approximation~which
does not include thee-e interaction in the final state! is ap-
plicable in calculating high-energy ionization from th
ground state of a He-like system with excitations intos states
~and also in the shake-off double ionization total cross s
tion! @22,45–47#. Excitations to non-s states, as demon
strated below, do depend on final-state interaction. Howe
at high energies the total cross section for single ionization
the ground state~when the final state of the bound electron
not observed, i.e., summing over all final states!, is domi-
nated by contributions involving only excitations intos
states, and therefore it is determined only by initial st
correlation. We show this inV, L, andA forms.

We consider the dominant contribution to the matrix e
ment for single ionization using Eq.~23!, neglecting retarda-
tion in order to simplify our expressions, yet without losin
generality for the energies considered (v!m). The three
forms of the matrix element are obtained by substituting E
~20! for I 2e(r1 ,r2) into Eq. ~23!, with l5(n,l ,m) the quan-
tum numbers of the final-state bound electron. The ma
element for single ionization with excitation into the boun
(n,l ,m) state is thus

Mnlm
1 5A2E e2 ip1•r1Fp1

(2)* ~r1!Cnlm* ~r2!Dp1 ,nlm
(2)* ~r1 ,r2!

3@ I 1e~r1!1I 1e~r2!#C i~r1 ,r2!d3r 1d3r 2 . ~24!
9-8
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The procedure of evaluation of the leading contribution
the single-ionization matrix element is the same as in
one-electron case. Due to the large photon energy, the
going electron momentump1 must be large. The term ex
(2ip1•r1) is fast oscillating unlessp1r 1&1. The dominant
contribution for largep1 is obtained in the vicinity of the
e-N coalescencer150. Note that this connection distin
guishesI 1e(r1) ~which is in the variabler1) from I 1e(r2).
The matrix element Eq.~24! is the sum of two termsM 1

5Md
11Mex

1 , a direct term, (Md
1) involving I 1e(r1), and an

exchange term (Mex
1 ) involving I 1e(r2). The leading contri-

butions that concern us are obtained fromMd
1 . However,

when approximate wave functions are used in Eq.~24!, the
termMex

1 may give spurious contributions~in L andV forms!
of leading order. In order to see this, we will keep track~in
our discussion! of bothMd

1 ~direct term! andMex
1 ~exchange

term!.
To obtain the dominant contributions to the total cro

sections, we write the integrands aroundr150 in terms of
simpler functions, as discussed in the Introduction and
Sec. II. In the vicinity of the Coulombic singularity, we rep
resent the exact wave function~except for its normalization!
in terms of a Coulombic function for that electron plus
remainder. This representation is sufficient to give a fast c
vergence of the cross sections, as we demonstrate@48#. This
means that for small enoughr 1 and fixedr 2,

C i~r1 ,r2!5
1

Ni
C

C i~0,r2!C i
C~r1!1O~r 1

2 ; r̂1 ,r2!, ~25!

whereC i
C(r1) is a hydrogenlike bound-state wave functio

satisfying the same Kato condition at the coalescence as
original function. O(r 1

2 ; r̂1 ,r2) means that the remainde
vanishes faster thanr 1 ~e.g., liker 1

2), and it is a function of

anglesr̂1 and of r2, too.
The partitioning, Eq.~25!, of the exact two-electron wav

function is obtained with the following arguments. When o
electron approaches the nucleus@r 1!r 0, wherer 0 is the size
of the atom,r 051/(mZa)[1/a], while the other is at large
distances@r 2@r 1, andr 2 is not much smaller thanr 0], then
the ground-state wave function can be written asC i(r1 ,r2)
5C i(0,r2)(12ar1)Y0

0( r̂1)1O(r 1
2 ; r̂1 ,r2), which is just the

statement of thee-N Kato cusp condition. We have the
replaced (12ar1)Y0

0 with a Coulombic wave function
C i

C/Ni , which for smallr 1 has the same behavior (12ar1

1•••)Y0
0 independent of energy for anys state~we can take

the K-shell function!. We will use partition equation~25! in
integrations over all distancesr 2, and therefore also ove
r 2&r 1, for which partition equation~25! is not correct. How-
ever, the regionr 2&r 1 for r 1!r 0 of the functionC i(r1 ,r2)
corresponds to the triple coalescence point, which give
negligible contribution to the observables we are discuss
We will use partitioning similar to Eq.~25! throughout the
paper, in the vicinity of both coalescences and for b
initial- and final-state wave functions@49#. Note that we are
assuming functions that satisfy the Kato conditions at
nucleus exactly. Some problems with approximate functi
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which do not satisfy Kato conditions at the nucleus, whi
have been used in some calculations, are noted below,
they are discussed further in Appendix A in connection w
the form dependence of results.

For the final state, the same procedure leads to a partit
ing similar to Eq.~25!,

C f~r1 ,r2!5C f~0,r2!Cp
C~r1!1OS 1

p1
2D , ~26!

whereO(1/p1
2), in analogy with the IPA case discussed

Sec. II, denotes the remainder that vanishes faster thana/p1
asp1 increases. In analogy with the IPA case, we expect t
the contribution of theseO(1/p1

2) andO(r 1
2) of Eqs.~25! and

~26! will be small.
Writing C f(r1 ,r2) in the form of Eqs.~22!, and using

Eqs. ~25! and ~26!, we obtain a factorization of the high
energy matrix element, Eq.~24!,

Mnlm
1 5McorrMabs

C 1OS 1

p1
2D . ~27!

Here Mabs
C is the Coulombic photoabsorption matrix el

ment, determined by the singularity at the nucleus, wh
includes retardation and a Stobbe factor,

Mabs
C 5E Cp1

C ~r1!I 1e~r1!C i
C~r1!d3r 1 . ~28!

Mcorr contains initial- and final-state correlations that rema
important at high energies:

Mcorr5
A2

Ni
CE Cnlm

(2)* ~r2!Dp1 ,l~0,r2!C i~0,r2!d3r 2 .

~29!

The results@Eqs. ~27!–~29!# are obtained from Eq.~24! by
performing the partition in terms of simpler functions d
scribing thee-N singularity in bothMd

1 andMex
1 . Neglect-

ing the terms denoted byO(r 1
2) in Eq. ~25! andO(1/p1

2) in
Eq. ~26!, the exchange term vanishes regardless of the fo
used. This is due to orthogonality ofCp

C(r1) and C i
C(r1)

@50#. Our discussion proceeds neglecting termsO(1/p1
2) in

Eq. ~27!.
First we discuss what the results@Eqs. ~27!–~29!# mean.

The absorption part@Eq. ~28!# describes the absorption pro
cess that is determined, at high energies, by the Coulom
shape~hydrogenlike! of the wave functions at the coales
cence. However, due to initial-state and final-statee-e inter-
action, these wave functions have normalizations~the wave-
function normalization is defined through the expans
described earlier! that are different from the normalization o
H-like functions. These normalizations enter photoabsorpt
at high energies throughMcorr . The initial-state correlation
entersMcorr throughC i(0,r2), which means that correlation
is important between the electrons when one electron i
the e-N coalescence while the other electron is at some
9-9
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sition r2. The point is that at the position from which th
electron is removed~at high energies!, the shape of the wave
function for that electron is Coulombic, and its value is a
fected by a constant factor~normalization! associated with
the position of the second electron.

Mabs
C is the single-electron Coulombic photoabsorpti

matrix element@51# which is known. We therefore need on
to evaluateMcorr . We are interested in obtaining cross se
tions accurate neglecting the order 1/p2. For this purpose, we
may use 3C functions@42# for the final two-electron state, a
is argued in Appendix B. The 3C functions have been suc
cessfully applied to double-ionization calculations of He
high energies~around 1 keV and above! @10#.
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The advantage of using 3C functions for the final state is
that the integration in Eq.~29! can be performed analytically
which simplifies our discussion. Expression~27! itself is ac-
curate withinO(1/p1

2), where, as in the IPA case, we expe
theseO(1/p1

2) terms in Eq.~27! to be small. However, we
cannot demonstrate how large these terms are by using
3C functions, which lack terms of the order 1/p1

2, which
might be large even in the keV region~as we will discuss in
Sec. VI in connection with double ionization!.

Denoting byRnl(r 2) the radial component of the hydro
genlike state Cnlm(r2) and writing C(0,r2)
5(1/A4p)Ri(r 2) ~we are taking into account that this is
spherically symmetric function!, we obtain that
Mcorr5
A2

Ni
C 5 E Rn0~r 2!Ri~r 2!r 2

2dr21
im a

p1
X~a!1OS 1

p1
2D , l 50,

2 i
ma

p1

A4p

l ~ l 11!
Yl

m* ~ p̂1!E Rnl~r 2!Ri~r 2!r 2
2dr21OS 1

p1
2D , lÞ0.

~30!
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In Eq. ~30! X(a) denotes a real quantity accurately given
3C functions, which~due to the imaginary factorim a/p1)
contributes as 1/p2 to the cross section~and for this reason
we do not show it explicitly!; O(1/p1

2) denotes all terms tha
decrease faster than 1/p1, which 3C functions cannot repro
duce correctly. Equation~30! explicitly shows the leading
terms ofMcorr . We will use these results in Sec. IX in dis
cussing the total cross section for single ionization.

We see from Eqs.~30! and~27! that the total cross sectio
for single ionization from the ground state of a He-like ato
at high energies, involves onlyl 50 bound states of the re
maining electron. This is a well-known result used in t
study of high-energy ionization with excitation and~through
the completeness relation! in obtaining shake-off double ion
ization of two-electron atoms from the ground sta
@22,23,45#. Also, we see that this result, forl 50, does not
depend on the final-state interaction.~We show in Appendix
A that final-state interaction is not important at high energi
regardless of the form used.! Further, we see that excitation
to anylÞ0 state have just one additional power of 1/p1, i.e.,
excitations, in high-energy single ionization, tolÞ0 states
decrease as 1/p4 for all l. This is an important result that tell
us that final-state interactions can move an electron from
l 50 state to anlÞ0 state, with negligible transfer of energ
with just one additional power of 1/p1. This fact and its
consequences are further discussed in Paper II, in exami
single ionization from higher states and the modification
high-energy IPA results@52#.

Let us note the form dependence of the results. We h
not yet fixed the form of photoabsorption matrix element. W
restrict for the moment the discussion to the dependenc
the result, Eq.~27!, for which the exchange term vanishes
,

,

n

ng
f
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e
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any form, and afterwards discuss the form dependence o
exchange term. The forms@Eq. ~20!#, which neglect retarda-
tion, are similar to the one-electron forms@Eq. ~4!#, except
that energies involved in Eq.~20! are two-electronE11E2
2Ei5v ~whereE1 is outgoing electron energy,E2 is final-
state bound electron energy, andEi is initial state binding
energy!, while in one-electron forms the energies involve
are one-electron ones,E12EK5v, whereEK is, for the case
of ground-state ionization which we consider here, bind
energy of aK-shell electron. The difference in the fast ele
tron energy~in the two and in the one electron case! is just
E22Ei1EK.a2/2m. Since the absorption factorMabs

C in
Eq. ~27! is invariant in one electron forms, we conclude th
the result Eq.~27! varies with forms Eq.~20! as O(a2/p1

2)
~i.e., varies within the order of neglected terms!. This is just
additional confirmation that our results are form invariant
the order we consider.

The contribution of the exchange termMex
1 is also of an

order which we have neglected in Eq.~27!, as we discuss in
Appendix A. There we show thatMex

1 can however be a
source of spurious contributions, which may dominate
contribution described by Eq.~27!, when approximate func-
tions are used. This we discuss in Appendix A, including a
the dicsussion ofMex

11 in the shake-off region, which is
closely related to single ionization with excitation, and f
which spurious contributions have been observed in num
cal calculations of double ionization@22,45# ~see Sec. VI!.

Since the exchange term can be neglected in high-en
single ionization of the ground state of a He-like system, a
since the remaining~direct term! matrix element has the
same form as in the one-electron case, we may utilize
discussion of the Stobbe factor of Sec. II. This we do
Sec. IX.
9-10
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V. IDENTIFYING THE THREE REGIONS OF THE
DOUBLE-IONIZATION SPECTRUM

We now turn our attention to double ionization of th
ground state of a He-like atom. In general, if both ioniz
electrons are of high-energy, the matrix element will cor
spond to a double AFT, giving an asymptotic 1/plarge

7 behav-
ior (plarge;A2mv). However, there will be kinematic situ
ations in which the matrix element reduces to a single A
If our interest is the resulting electron spectrum~integrated
over electron angles!, in all regions of the spectrum singl
AFT contributions will dominate. There are three situatio
that need to be distinguished@53–55#: ~1! the end points of
the spectrum, in which one electron is fast and the other
is slow ~shake off!, and a single AFT contribution is assoc
ated withe-N coalescence, giving a contribution in the m
trix element 1/plarge

3 ~as in single ionization of the groun
state!, which results in a 1/v7/2 contribution to the spectrum
~2! the middle of the spectrum, with electrons having nea
equal and opposite momenta~total momentump11p2;0)
~quasifree region!, and an AFT associated with thee-e coa-
lescence giving a contribution (1/plarge

3 )(k/plarge), wherek
is the photon momentum~this contribution is not allowed in
dipole approximation!, which results in a 1/v5/2 contribution
to the spectrum;~3! the remainder of the spectrum, wit
electrons having perpendicular momenta, in which case
AFT is associated with thee-N coalescence and gives a m
trix element of the order 1/plarge

6 , which results in a 1/v13/2

contribution to the spectrum.
These dominant contributions to the spectrum can

identified, as we will demonstrate for each region separa
in Secs. VI, VII, and VIII, by identifying the singularities
and by identifying kinematics in which only one large m
mentum in the system is associated with just one two-part
coalescence~singularity!. By minimizing the dimension of
the asymptotic FT, one singles out the dominant contri
tions. In order to understand what this means, let us cons
the ordinary AFT of a functionf (r1 ,r2) with singularities at
r150, atr250, and atr125r12r250 ~we choose the sam
singularities as the functions in our photoabsorption ma
element have; we continue to call these singularities tw
particle coalescence points in view of our physical picture
the process!, i.e., we consider

F~p1 ,p2!5E e2 ip1•r12 ip2•r2f ~r1 ,r2!d3r 1d3r 2 , ~31!

in the asymptotic region ofE5p1
21p2

2→`. Minimizing the
dimension of AFT means finding kinematics in which on
one momentum will be large forE→`, associated with a
two-particle coalescence. Some evident choices arep1 large
(p2 small! or p2 large (p1 small!. We then check whethe
that large momentum~let us sayp1) is associated with a
singularity~through thep1•r1 phase!. Since it is, we will get
a single AFT.@This would correspond to the SO region, i.e
the edge region of the spectrum.# However, these are not th
only choices. Another choices becomes apparent by rew
ing the argument of the oscillating term in Eq.~31!
as ip1•r11 ip2•r25 ip12•r121 iP•R, where r125r12r2 ,
02270
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R5(r11r2)/2, p125(p12p2)/2, and P5p11p2. We may
have kinematic situations in whichp12 is large (P is small!
or P is large (p12 is small!, and so we can examine wheth
that large momentum is associated with a two-particle sin
larity. Large relative momentump12 is associated with a two
particle coalescence, sincer12 is a two-particle singularity
that is distinct from the singularities inr1 and r2. @This
would correspond to the QF region, i.e., the central region
the spectrum.# But large P is not associated with a two
particle coalescence. It is associated with a singularity aR
50 and that singularity is present only when bothr150 and
r250; it is a three-particle coalescence. With the kind of
shown in Eq.~31!, in the kinematics in which total momen
tum is large, and with a function with singularities as w
have assumed, the AFT is not a single AFT.

In order to argue that the only single AFT, obtained w
plane waves and three-particle Coulombic singularities,
those in the kinematics:~1! p1 large,p2 small; ~2! p2 large,
p1, small; and~3! p12 large,P small, one may start from the
assumption that there is another kinematical situation
which some momentumq is large whileQ is small, whereq
and Q are linearly independent. Then we can expressp1
5bq1cQ and p25b8q1c8Q. With this, the plane-wave
phasew5p1•r11p2•r2 becomesw5(br11b8r2)•q1(cr1
1c8r2)•Q. Now, as explained above, we examine wheth
the large momentumq is associated with a two-particle coa
lescence. This requiresbr11b8r2 to be r1 , r2, or r12 ~this
determinesb andb8) as these are the only such coalescenc
from which one finds thatq ~the large momentum! is p1 , p2,
or p12.

In the high-energy photoabsorption matrix element in
gral, which we view as a generalized AFT, there are a
other kinds of oscillations~in addition to the plane waves! as
we will discuss below, which have other oscillatory beha
iors, i.e., spherical waves. There are kinematic situation
which the oscillatory term of the spherical wave wou
modify the plane-wave oscillatory terms in such a way th
we get a single AFT even in the kinematical region whe
both p1 and p2 are large. The kind of AFT we get in th
final-state-interaction~FSI! region ~which we consider in
Sec. VIII! and which can also lead to a single AFT is

F~p1 ,p2 ,q!5E e2 ip1•r12 ip2•r21 iqr 12f ~r1 ,r2!d3r 1d3r 2 ,

~32!

wherer 125ur12r2u, andq is a parameter in this example~in
the real calculation in Sec. VIII it is relative momentum!. We
will take bothp1 andp2 as large. In such a situation, withou
the modifying term exp(iqr12), we obtained the double AFT
However, with the modifying oscillatory term we may get
single AFT. If q!p1 ,p2, then the additional oscillating term
will not modify the fast oscillating terms exp(2ip1•r1
2 ip2•r2). However, if q.p1 ~or q.p2), it will strongly
modify ~nearly cancel! the oscillations exp(2ip1•r1) @or
exp(2ip2•r2)] in the region in which p1•r1.qr12 ~or
p2•r2.qr12). We will show later~Sec. VIII! how this can-
cellation of spherical wave and plane wave occurs in the
region. In double ionization, this type of modification of th
9-11
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plane-wave oscillations comes with an additional 1/plarge
2

factor ~which is associated with the scattering amplitud!.
Although this contribution dominates the contribution fro
two singularities~three-particle coalescence!, it is smaller
~higher powers in 1/plarge) than the contributions from the
edge and the central region.

These types of single AFT are the only ones that appea
determining dominant contributions to the spectrum, ass
ing that it is correct to write matrix elements as Born ter
~including first order ine-e ande-N interactions! and a re-
mainder that vanishes faster than the Born terms for la
momenta. Then these are the only oscillating factors,
glecting higher-order terms in Born expansion. Given th
oscillations, the question is what are the kinematics in wh
these oscillations reduce to single AFT. For the plane-w
oscillations we saw that the dominant contributions~single
AFT! are obtained only in SO and QF kinematics. W
modified oscillations@Eq. ~32!# there are also two kinemati
regions in which it reduces to single AFT. One is for o
thogonal outgoing electron momenta that give the domin
contribution in the FSI region of the spectrum. The other
for nearly equal and nearly parallel outgoing electron m
menta that contribute in the quasifree region. Since the m
fied AFT, Eq.~32!, comes with an additional 1/plarge

2 factor
~unlike the QF contribution determined by the plane-wa
oscillations!, it is negligible and we do not discuss it here

VI. THE SHAKE-OFF CONTRIBUTION TO DOUBLE
IONIZATION AND THE e-N COALESCENCE

In the edge region of the spectrum for double ionizatio
the momentum of one electron is very large while the m
mentum of the other electron is small (p1;plarge5A2mv,
while p2&a, or vice versa!. The shake-off mechanism pro
vides the dominant contribution in this region, called t
shake-off~SO! contribution. Here, double ionization can b
described in terms of the sudden approximation, and
cross section factorizes as in a two-step process@56#. In the
first step, photoabsorption occurs with the ejection o
single electron. The nucleus and the electron are involve
the absorption process and have to be close to each oth
order to exchange a large momentum~much larger then the
average momentum of the bound electrons!, as required by
energy and momentum conservation. Afterwards, the nuc
and the electron have nearly equal and opposite momen
while the electron~having much smaller mass! takes almost
all the photon energy and is moving at high velocity. T
nucleus has very low velocity~and the second electron is st
associated with it!. In the second step, the second electron~in
a state that reflects the initial state correlation! shakes off,
taking generally a small amount of energy and momentu
reflecting the momentum distribution of that electron in t
initial state. The leading contribution in this region of th
spectrum is, therefore, associated with the kinematics
which the fast electron momentum~sayp1) and the nucleus
momentum are nearly equal and opposite. The other elec
shakes off. The SO contribution, like single ionization, is
FT in just one large momentump1, and it is determined by
the e-N coalescence.
02270
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The evaluation of the SO contribution follows the sam
procedure that we used in calculating the dominant~shake-
up! contribution to the cross sections for single ionizati
and ionization with excitation, Sec. IV. In both cases, t
singularity that determines the dominant contribution is
e-N singularity, and the second electron~the electron not
involved in the absorption! takes a small portion of the pho
ton energy and is left in one of the eigenstates of the o
electron nuclear point Coulomb Hamiltonian, i.e., in bo
cases the electron shakes~up or off!. The entire discussion o
the dominant contribution in the edge region, the results
different forms~such as the importance of the final-statee-e
interaction inL form!, the needed quality of approximat
wave functions, and the possible sources of spurious co
butions can all simply be taken from the discussion of sin
ionization with excitation in Sec. IV. However, since the
issues have been widely discussed in double ionization
some of them have not been fully resolved~e.g., the impor-
tance of the final-statee-e interaction in the SO region inL
form @57#!, we briefly repeat the arguments and point to t
understanding of these issues provided by the AFT appro
In addition, at the end of this section, we discuss how larg
the SO region and we discuss, using the AFT approach,
contributions of the triple-coalescence singularity. The
considerations will be used in Sec. VIII, in which we discu
the importance of the final-state interaction away from
SO region.

As in Sec. IV, we start with the matrix element

M 115A2E e2 ip1•r12 ip2•r2Fp1

(2)* ~r1!Fp2

(2)* ~r2!Dp1 ,p2

(2)*

3~r1 ,r2!@ I 1e~r1!1I 1e~r2!#C i~r1 ,r2!d3r 1d3r 2 ,

~33!

neglecting retardation, and writing explicitly plane-wave o
cillating terms of both outgoing electrons. In the edge regi
one momentum~say p1) is large while the other is small
Therefore the fast oscillating term exp(ip1•r1), from the
plane wave of the final state associates~through the FT theo-
rem! this large momentum with the coalescence~singularity!
r150.

We now write the integrand of the matrix element integ
around this coalescence in terms of simpler functions~parti-
tioning in terms of Coulomb functions and a remainder; as
the other cases Coulombic functions are sufficiently accu
for our purposes!. Using the same reasoning that led to Eq
~27!–~29! for single ionization with excitation from the
ground state, by using Eqs.~25! and~26! ~but with the other
electron now also being in the continuum!, we obtain a fac-
torization of the matrix element in the edge region of t
ground-state double-ionization spectrum

MSO
115McorrMabs

C 1OS 1

p1
2D , ~34!

whereO(1/p1
2) represents the order of terms that we are n

neglecting.Mabs
C is the Coulombic photoabsorption matr
9-12
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element determined by the singularity at the nucleus~which
includes retardation and a Stobbe factor!,

Mabs
C 5E Cp1

(2)* C~r1!I 1e~r1!C i
C~r1!d3r 1 , ~35!

while Mcorr contains initial- and final-state correlation im
portant at high energies:

Mcorr5
A2

Ni
CE Cp2

(2)* ~r2!Dp1 ,p2

(2)* ~0,r2!C i~0,r2!d3r 2 .

~36!

As in Sec. IV, the functionsC i
C andCp1

C are single-electron

Coulomb functions used in partitioning of the exact wa
function in the vicinity of the nucleus taken, so that Ka
conditions at the nucleus are satisfied.

Note that the only difference from the single-ionizatio
case~Sec. IV! is in the final state of the second electro
which is here a slow continuum electron, instead of a bou
electron, in the field of the nuclear charge. As in Sec. IV,
are interested in obtaining cross sections accurate, negle
the order 1/p2. For this purpose we may use 3C functions
@42# for the final two-electron state. As argued in Append
B, the 3C functions are accurate neglecting terms of ord
1/p1

2, which is consistent with the accuracy of Eq.~34!. The
3C functions have been successfully applied to doub
ionization calculations of He at high energies~around 1 keV
and above! @10#. In the limit p1→`, p2;a, the function
Dp1 ,p2

(0,r2) approaches 11O(1/p1) and Mcorr approaches
the shake-off limit,

Mcorr5
A2

Ni
CE Cp2

(2)* ~r2!C i~0,r2!d3r 2 . ~37!

We will discuss the convergence of the cross section tow
this SO limit in Sec. IX. We note that, as in the ionizatio
excitation case, the first correction to the shake-off limit@Eq.
~37!# is a relative 1/p1

2 correction in the cross section. Th
slowly converging term~the Stobbe factor that converges
pma/p1) obtained fromMabs is not affected by the correla
tion factor.

Let us note the form dependence of the result@Eq. ~34!#,
which is determined by the form dependence of the abs
tion factorMabs, as in single ionization~Sec. IV!. The forms
@Eq. ~20!#, that neglect retardation are similar to the on
electron forms@Eq. ~4!# except that energies involved in Eq
~20! are two-electronE11E22Ei5v, while in one-electron
forms the energies involved are one-electronE12EK5v,
whereEK is, for the case of ground-state ionization that w
consider here, the binding energy of aK-shell electron. The
difference in the fast electron energy~in the two- and in the
one-electron cases! is just E22Ei1EK.a2/2m, since also
E2.a2/2m in the SO region. Since the absorption fact
Mabs

C in Eq. ~35! is invariant in one-electron forms, we con
clude that calculations of the leading term in Eq.~34! vary
with the forms@Eq. ~20!# by amountsO(a2/p1

2), as would be
expected.
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The discussion of the form dependence of the excha
term @which vanishes at the level of accuracy obtained w
Eqs.~25! and ~26!, as already explained in Sec. IV# follows
the discussion of Sec. IV. The discussion in Appendix A
applicable in the SO region here, too. We may just repeat
conclusion that if thee-N coalescence is treated incorrect
in the initial or final state, a spurious contribution appea
While the relative contribution of this spurious contributio
in A form and~for the ground state! in V form is negligible,
it may be the dominant contribution~a spurious 1/p2 contri-
bution! in L form. However~see Appendix A!, in the SO
region, if the wave functions satisfy the Katoe-N cusp con-
ditions ~as, for example, an uncorrelated product of the C
lombic wave functions does!, there is no spurious 1/p2 con-
tribution. ~This was also shown by Åberg@22# for double
ionization in the SO region!. Of particular importance is the
finding ~Appendix A! that an exact initial-state wave func
tion with uncorrelated final-state wave functions gives t
correct high-energy result, Eq.~33! @58#. The finding is im-
portant because it demonstrates that the sudden approx
tion ~which neglects the final-statee-e interaction, and which
has been widely used in obtaining the high-energy doub
to-single ionization ratio! is form invariant. However, the
needed representation of the fast electron is form depend
i.e., the fast electron cannot, in general, simply be rep
sented by plane waves.

The leading contribution in the SO region of double io
ization of He is of the same order 1/plarge

3 as the leading
shake-up contribution for single ionization of He, since t
leading contribution is determined by the leading contrib
tion of the absorption factorMabs

C , which is the same, in
high-energy limit, in both shake processes. The leading c
tributions in both cases are a FT in just one large momen
associated with the samee-N singularity and the fast oscil
lating term comes from the plane-wave part of the final sta

We may now look at what happens to the SO contributi
Eq. ~33!, in which final-state interaction is neglected an
which is connected to thee-N coalescence, when the othe
momentum (p2 in this case! also becomes large~here we
assume no specific kinematics!, i.e., whenp1@p2@a. This
analysis helps us understand how large is the SO region
it will help in understanding the importance of the final-sta
interaction in situations wherep2@a, which we now ne-
glect, but will consider in Sec. VIII. Whenp2@a, the corre-
lation factorMcorr @Eq. ~36!# becomes an asymptotic FT i
p2, too. The fast oscillating term exp(ip2•r2) connects the
leading contribution to the coalescencer250. By expanding
C(0,r2) andF(r2) aroundr250, we obtain

Mcorr;E e2(hr 21 ip2•r2)F12 i
a

p2
g~r2!1OS a2

p2
2D GC~0,0!

3@11a8r 21O~r 2
2!#d3r 2;

1

plarge
4

, ~38!

where nowaÞa8. ~We will see in the paragraph below tha
this is correct for initial state. This is then sufficient to s
that the result@Eq. ~38!# decreases at least as 1/plarge

4 or
9-13
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SURIĆ, DRUKAREV, AND PRATT PHYSICAL REVIEW A67, 022709 ~2003!
faster.! From Eq.~38!, we see that the correlation factor ad
four more powers and, together with the absorption fac
that decreases asymptotically as 1/p1

3, results in matrix ele-
ment which decreases as 1/plarge

7 .
The contribution@Eq. ~38!# comes from the configuration

region in which both electrons are in the vicinity of th
nucleus. We may therefore call this contribution a trip
coalescence contribution. However, due to the order in wh
the limits were taken, we haver 1!r 2!1/a. We may ask
what is the contribution from the triple coalescence wh
both electrons are at a similar, but small distances from
nucleus. The answer is that such a contribution is again
the order 1/plarge

7 . The argument is as follows. At the triple
coalescence point, the ground-state wave function can be
panded in terms of hypergeometric coordinates@28#,

C~r ,q,w!5 (
k50

`

r k(
p50

[k/2]

ckp~q,w!~ ln r !p512a~r 11r 2!

1
ma

2
r 121O~r 2!, ~39!

where r 5Ar 1
21r 2

2 is the hyper-radius,q and w are hyper-
angles, andO(r 2) denotes terms that decrease faster thar
when r is vanishing~in fact, these terms vanish at least
r 2 ln r). We see that the leading terms in this expansion
in fact, just powers inr 1 , r 2, andr 12. If we use theA form
of the matrix element~which is singular inr 1 , r 2, andr 12,
and the singularity is described by the powers of these c
dinates!, the leading contribution of AFT of Eq.~39! comes
from a product of powers~of coordinates! and therefore is a
power in 1/plarge in any kinematics. Product of powers~of
different coordinates! can then be integrated independen
@59#. We point out again that the triple singularity is n
reached in all kinematics when the final-state interaction
negligible, but only in kinematics in which all momenta (p1 ,
p2 relative momentump12 and total momentumP) are large.
In such cases, there is a 1/plarge

7 contribution from the triple
coalescence.

We will now demonstrate, in the next two sections, th
due to final-state interaction~in the intermediate region!, and
due to ther1250 singularity ~in the central region of the
spectrum!, the leading contributions away from the edge
gion are also connected with just one singularity@unlike in
Eq. ~38!# and are of a lower power than 1/plarge

7 .

VII. THE QUASIFREE CONTRIBUTION TO DOUBLE
IONIZATION AND THE e-e COALESCENCE

As in our earlier examples, another kinematic situat
when a double FT reduces to a single AFT occurs when t
momentum of the two outgoing electrons (P5p11p2) is
small (P;a). In this case the relative momentum of the tw
electrons is large (p125plarge). The two electrons leave th
atom with nearly equal and opposite momentum, and
nucleus is a passive spectator not receiving energy or
mentum@53#. While a photon cannot be absorbed by one f
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electron, it can be absorbed by two free electrons, altho
not in dipole approximation.

With these momenta, the plane-wave oscillating term
the final-state wave function exp(ip1•r11 ip2•r2) can be
written, using coordinatesr12 and R, as exp(ip12•r12
1 iP•R). The matrix element is a FT in just one large m
mentump12, associated with the coordinater12 in which the
potential energy is singular atr1250 ~singularity when two
electrons meet!. The modifications of the fast plane-wav
oscillations can, in principle, contribute~just as in the SO
region discussed in the preceding section!, but these modifi-
cations always come with additional powers in 1/plarge .
Here we are interested in the leading contribution.

To evaluate the leading contribution to the spectrum in
equal energy sharing region of the spectrum, we may s
from the exact nonrelativistic matrix element, Eq.~23!. We
again represent the integrand near the coalescence (r1250)
in terms of simpler functions and a remainder. As simp
functions we again use Coulombic functions or pieces
Coulombic functions, for initial and final states, which sa
isfy the Kato condition at the singularity. This is sufficie
for our purposes ifV form or A form of the matrix element is
considered.~For L form, one needs better knowledge of th
wave functions in the vicinity of the coalescence.! The e-g
interaction is expanded in powers ofr12. It is hence more
convenient to express the wave functions and the elect
photon interaction operator in terms of the coordinatesr12
andR. We will keep retardation to first order in its expansio
around the singularity atr1250 ~and we will see that we ge
no contribution in zero order!. For the final-state wave func
tion, we again use the 3C function which is, as argued in
Appendix B, accurate neglecting terms of orderZma/Ef .
The functionsCpi

(2)5exp(ipi•r i)Fpi

(2)(r i) ( i 51,2) are regu-

lar atr1250, except at the triple coalescence, which we ha
argued gives contributions of higher powers in 1/plarge .
Note also that, due topi@a, we can expandFpi

(2)(r i) in

a/pi , or use theg function as explained in Sec. II, i.e., w
can make the approximationFpi

(2)(r i)5Ni@12(a/pi)gi #.

For the term containing thee-e interaction, we use the
approximate form Dp1 ,p2

(r1 ,r2)5ND@11(ma/2p12)g#,

which correctly describes ther12 singularity to this order.
Thegi functions fromFpi

(2)(r i) contribute in higher order in

1/plarge , while theg function from thee-e interaction term
is important for the proper description of the coalescen
and it will be needed for a proper treatment inV form.

The leading contribution can thus be obtained from

MQF
115A2NfE e2(«r 121 ip12•r121 iP•R)

3F12 i
n

p12
g(2)* @ i ~p12r 121p12•r12!#1OS n2

p12
2 D G

3I 2e~r12,R!C̃~0,R!@11nr 121O~r 12
2 !#d3r 12d

3R,

~40!

whereC̃(r12,R)5C(r1 ,r2) andn5ma/2. In Eq. ~40!, we
9-14
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use the partition C̃(r12,R)5C̃(0,R)@11nr 121O(r 12
2 )#

@28#, which follows from the Kato conditions. The neglecte
terms vanish faster thanr 12 for r 12→0. The central region of
the spectrum, in which the matrix element for double ioniz
tion is dominated by the contribution of Eq.~40!, is ~at non-
relativistic energies! determined by the condition@53#

uE12E2u
v

<S v

mD 1/2

, ~41!

obtained from free-electron kinematics~i.e., assuming ab-
sorption of a photon by two free electrons at rest!.

In A form, the electron-photon interaction operator@Eq.
~19!# may be expressed inr12,R coordinates and expande
around the singularityr1250. Keeping first order in retarda
tion and the leading~singular! term in r 12, we obtain

I A
2e52

ia

v

e• r̂12k•r12

r 12
2

. ~42!

Note that in obtaining Eq.~42! we have neglected som
terms that are of first order in retardation, but are regu
These neglected terms, due to singular terms in wave fu
tions, will lead to contributions in higher powers in 1/p12.

The leading contribution to the matrix element in the ce
tral region come from the singular term, Eq.~42!, combined
with the the first terms~the unit terms, i.e., the ‘‘12s’’ ! in
the expansion of the wave functions. The leading contri
tion in the QF region@53,54# is

MQF5Nfpn
e•p̂12

p12
3

k•p̂12

p12
E C̃~0,R!eiP•Rd3R. ~43!

Here the factork•p̂12/p12 comes from first-order retardation
If one neglects retardation@puts the singular term in Eq.~42!
identically to zero#, the leading contribution in the centra
region would be of order 1/p12

7 ~the first nonvanishing
k-dependent contribution involves three more powers
r 12), i.e., of the same order as the contribution from the tri
coalescence.

In V form, the electron-photon interaction operator, E
~19! ~written in terms ofr12,R coordinates, expanded aroun
the coalescencer1250, and taken to first order in retarda
tion! is

I V
2e52 i @e•“R1~k•r12!e•“12#. ~44!

As explained earlier in connection with thee-N coalescence
contributions ~single-ionization and double-ionization S
contribution!, the plane-wave approximation for the fa
electrons gives the correct leading contribution fors states
~but not for higher states!. We show here that when thee-e
coalescence is important, as in the central region, such
approximate wave function may give spurious contributio
in the same order as the leading contribution@Eq. ~43!#.
These spurious contributions can be present in this o
even when retardation is neglected.
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By substitutingI V
2e into the matrix element, Eq.~40!, the

term k•r12e•“12 ~together with the first singular term from
the initial state ‘‘nr 12’’ and the regular term ‘‘1’’ from the
final state! give the leading contribution, Eq.~43!. However,
there are two terms~one term being the product ofe•“R
from I V , the singular term ‘‘g’’ from final state, and the unit
term from the initial state, and the other term the product
e•“R from I V , the unit term ‘‘1’’ from final state, and the
singular term from the initial state ‘‘nr 12’’ ! of the order
e•P/p12

4 , which do not contain retardation, and which canc
with each other. Therefore if an approximate initial-sta
wave function or an approximate final-state wave function
used, a term proportional toe•P/p12

4 may appear, resulting in
a spurious structure in the central region even in dipole
proximation. For example, such structure in dipole appro
mation was obtained in Ref.@60# using approximate initial-
state wave functions withV form. Other examples of
appearance of spurious contributions in the central region
discussed in Ref.@61#. This may happen, for example,
uncorrelated final-state wave functions are used, or if
initial-state wave function does not have proper expans
around the coalescence~i.e., if it does not satisfy thee-e
Kato cusp condition!.

The QF and the SO contributions are similar in the f
lowing sense. Each of them corresponds to an AFT in j
one large momentum. Each is associated with a corresp
ing singularity through a fast oscillating term from the plan
wave parts of the final-state wave function. These are
only such contributions since the potential only has these
singularities. The difference between the QF and SO mec
nisms is in the different pair of particles involved in th
coalescence.

VIII. THE FINAL-STATE-INTERACTION
CONTRIBUTION TO DOUBLE IONIZATION

AND THE e-N COALESCENCE

While the end points and the center of the spectru
dominant in determining the total cross section, are due
spectively to the shake off and the quasifree mechanisms
main part of the spectrum is determined in another way.
the momentum of the second electron increases, the p
ability amplitude to have this electron produced through
shake-off mechanism~which is, as we discussed, equivale
to the sudden approximation that neglects final-state inte
tion!, with momentump2@a, decreases as 1/p2

4, as dis-
cussed in Sec. VI, Eq.~38!. In this situation, however, the
influence of the final-state interaction becomes importa
and it dominates over the shake-off mechanism.@This inter-
mediate region of the spectrum is called the final-sta
interaction ~FSI! region.# We can see this already startin
from Eqs.~34!, ~35!, and~36!, derived with the assumption
that p2!p1 @62#. We increasep2 and look for the dominant
kinematics in the region of the spectrump1@p2@a ~Sec.
VIII A !. Note that due to the assumptionp2!p1 ~which we
will later remove! we are looking only a small part of th
spectrum, next to the edge. But this helps us see how
evolves into the FSI region. We will then remove the a
sumption p2!p1 ~in Sec. VIII B! and we will look at
9-15
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the rest of the FSI region, in whichp1 andp2 are of compa-
rable size.

A. FSI when p1šp2ša

We first look at what happens to our SO result@Eqs.~35!
and ~36!# as the momentum of the slower electron also
comes large, i.e., whenp1@p2@a. We need to look only at
the correlation factor@Eq. ~36!#, which we now write, mak-
ing explicit the plane-wave oscillating term@43# as

Mcorr5
A2

Ni
CE e2 ip2•r2Fp2

(2)* ~r2!Dp1 ,p2
~0,r2!C i~0,r2!d3r 2 .

~45!

In the limit p1@p2@a, the fast oscillating plane-wave term
exp(2ip2•r2), unless modified by oscillating terms from
Fp2

Dp1 ,p2
, results in 1/p2

n13 powers for singular terms con

taining r 2
n , and it therefore gives at most a 1/p2

4 contribution
@63#. The powers come from ther250 singularity. In order
to find terms that are larger than 1/p2

4, one needs to look a
the oscillating terms inFp2

Dp1 ,p2
which can modify the

fast oscillating plane-wave term so that it becomes
smooth function at least for some kinematics. Sin
exp(2ip2•r2)Fp2

is fast oscillating everywhere forp2@a,
the needed modification can come only from fast oscillatio
of Dp1 ,p2

. We can represent these oscillations accurate

first order in thee-e interaction by employing the 3C model,
as demonstrated in Appendix B. In the 3C model the fast
oscillations of the functionDp1 ,p2

occur for large values o

its argument,p12•r121p12r 12@1, ~see Appendix B!. In the
asymptotic region@accurate to the leading order inn
5ma/2 (e-e interaction!#, neglecting terms that decreas
faster than 1/r 12, we have

Dp12 ,nlm~r1 ,r2!5e2 i (n/p12)ln(p12r 121p12•r12)1
f p12

~ p̂12• r̂12!

r 12

3e2 i (p12r 121p12•r12)1 i (n/p12)ln(2p12r 12),

~46!

where f p12
is thee-e scattering amplitude,

f p12
~ p̂12• r̂12!5

n

p12
2 ~11p̂12• r̂12!

3ei (n/p12)ln[(1/2)(11p̂12• r̂12)1 ip22ih0] ,

~47!

and whereh05argG(11 in/p12).
In the configuration regions in which the functionDp1 ,p2

is not asymptotic, the final-state interaction gives just a c
rection to the SO contribution, which is small. Restricting
integration within the asymptotic region forDp1 ,p2

, and in-
serting Eq.~46! into Eq. ~45!, we obtain
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Mcorr5
A2

Ni
CE e2 ip2•r2Fp2

(2)* ~r2!Fei (n/p12)ln(p12r 22p12•r2)

1
f p12

~2p̂12• r̂2!

r 2
e1 i (p12r 22p12•r2)1 i (n/p12)ln(2p12r 2)G

3C i~0,r2!d3r 2 . ~48!

The first term in the parentheses, involving only a logari
mic phase, is slowly oscillating and it therefore will no
modify the fast oscillating plane-wave exp(2ip2•r2), hence
only giving small contributions. Note also that spheric
waves fromFp2

together with spherical waves fromDp1 ,p2

give already a 1/plarge
4 factor, due to the 1/plarge

2 factor con-
tained in both spherical waves; we therefore do not cons
such oscillating terms. We proceed, keeping only the sec
term. The integration only includes the regions in which t
function D has asymptotic behavior, and these regions
defined by the requirement thatp2r 2(12p̂2• r̂2)@1. We will
calculate just the leading contribution, to determine its 1p2
dependence, and therefore we approximateFp2

(r2)

.1/(2p)3. We are calculating

Mcorr5
A2

~2p!3Ni
CE e2 i (P/2)•r21 ip12r 21 i (n/p12)ln(2p12r 2)

3
f p12

~2p̂12• r̂2!

r 2
C i~0,r2!d3r 2 , ~49!

where P5p11p2. Note the modified oscillating term. In
the asymptotic region the e-e scattering function
f p12

(2p̂12• r̂2), given by Eq.~47!, is a smooth function, i.e.
in the asymptotic region it is away from its singularity
p̂12• r̂251.

We now perform the radial integration overr 2, i.e., we
are calculating

r~P• r̂2 ,p12!5E e2 i (P/2)•r21 ip12r 2
1

r 2
C~0,r2!r 2

2dr2 ,

~50!

where we have dropped the slowly oscillating logarithm
term that only contributes with additional powers inn/p12.
For large momenta~both p1@a and p2@a), the function
r(P• r̂2 ,p12) has a maximum atP• r̂2/22p1250.

In order to get some impression of the behavior of t
function, we can use some realistic examples forC(0,r2). If
we use a model~Hylleraas! in which C(0,r2) can be ex-
pressed, to a good accuracy, asC(0,r2)5C exp(2lr2) @64#
@l.ma(Z20.53)#, we get

r~P• r̂2 ,p12!5
C

~l2 ip121 i ~P/2!• r̂2!2
, ~51!

which has the kind of behavior we have discussed. We
now left with the angular integration in Eq.~49! over angles
9-16
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that do not include singularity off p12
(2p̂12• r̂2), so that this

function is slowly changing. Using a peaking approximati
we can make the following estimate for the integral in E
~49!. For arbitrary kinematics, in the limitp1@a and p2

@a, @we write Mcorr5A2I /„(2p)3Ni
C
…],

uI u<U f p12
~2p̂12• r̂2

max!E m~P• r̂2 ,p12!dV2U
5U f p12

~2p̂12• r̂2
max!

4pC

~l2 ip12!
21~P/2!2U , ~52!

where r̂2
max denotes that direction, among all directions s

isfying P• r̂2/22p1250, in which f p12
has maximal value.

As illustrated by Eq.~52!, in general there will be two
additional powers in 1/plarge , except when the kinematics i
such thatP/25p12. In such a caser̂2

max5P̂ and we obtain
that the dominant contribution toMcorr for the kinematics
P/25p12, which gives the leading contribution to the spe
trum, for p1@p2@a, is

Mcorr5
A2

~2p!3Ni
C

f p12
~2p̂12•P̂!m~p12,D!, ~53!

where

m~p12,D!5E r~P• r̂2 ,p12!dV25
2p i

p12
E eiDr 2C~0,r 2!dr2 ,

~54!

and whereD5p122(P/2). In obtaining Eq.~54!, the angular
integration was performed using the fact thatC(0,r 2) is
angle independent for the ground state; only the leading
der in 1/p12 is being kept.

The correlation part of the matrix element, in the dom
nant kinematics, factorizes further into a final-statee-e inter-
action part~represented by the freee-e scattering amplitude!
and an initial-state correlation represented by the func
m(p12,D). This means that the dominant contribution to t
matrix element for photoabsorption in the limitp1@p2@a,
in the dominant kinematics (P/25p12, which is equivalent
to saying thatp1 is orthogonal top2), is

MFSI5
A2

~2p!3Ni
C

f p12
* ~2p̂12•P̂!m~p12,D!Mabs, ~55!

where Mabs is the absorption part given by Eq.~35!. The
result @Eq. ~55!# has been obtained for the situationp1@p2
@a, in which exchange can be neglected in the leading
der. In a more symmetric situation the same factorization
in Eq. ~55! is obtained@55#, as we also show below, exce
that thee-e scattering is represented by the fulle-e scatter-
ing amplitude for electrons in the spin-singlet state, which
f p12

(2p̂12•P̂)1 f p12
(p̂12•P̂).
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B. The rest of the FSI region

We now remove the assumptionp2!p1. We demonstrate
that in the limitsp1@a and p2@a, but with no restrictions
on the relative size ofp1 andp2, the dominant contribution
to the spectrum~but away from the quasifree region,p1
.p2) comes from the kinematics in which the outgoing ele
tron momenta are perpendicular~which implies that bothP
andp12 are large!, and we show that the leading contributio
in that kinematics is

MFSI5
A2

~2p!3Ni
C

@ f p12
* ~2p̂12•P̂!

1 f p12
* ~ p̂12•P̂!#m~p12,D!Mabs. ~56!

The arguments follow exactly those leading to Eq.~55!.
However, in obtaining Eq.~55! we have already started from
a partitioning in the vicinity of one singularity~the singular-
ity connected with the momentum of the faster electro!.
Now we just need to clarify the roles of the singularitiesr1
50 andr250.

We are looking at the regions where not only bothp1 and
p2 are large but alsop12 and P are large. We substitute th
asymptotic expansion for the final-state wave function a
the asymptotic behavior of the final-statee-e interaction@Eq.
~46!# into Eq. ~18! ~with l[p2). We use the argument from
Sec. V that without modification of the plane-wave oscill
tions the intermediate region is determined by the triple c
lescence, and that such modification comes from thee-e in-
teraction term. We obtain for the leading contribution@43#,

MFSI52
A2

~2p!3E e2 i (P•R1 ip12•r122p12r 122p12•r12)

3
f p12
* ~ p̂12• r̂12!

r 12
@ I 1e~r1!

1I 1e~r2!#C~r1 ,r2!d3r 1d3r 2 , ~57!

where we have written the plane-wave oscillating factors
terms ofP andp12 for convenience for combining them wit
the oscillating terms of the scattering wave. We ha
dropped the logarithmic phases that do not contribute in
leading order. Note that the integral containing thee-g inter-
action I (r2) can be obtained from the integral containin
I (r1) by interchangingp1 and p2. We explicitly show only
the contributions containingI (r1). For thee-g interaction,
we are assumingV form or A form, since we are neglecting
e-N interaction in the final state~we are not treating the
final-statee-N coalescence correctly!, and inL form this will
lead to spurious contributions as discussed in Sec. VI.

The evaluation of the leading contribution follows th
procedure of the partitioning around thee-N coalescence.
The leading contributions to Eq.~57! come from two re-
gions: ~1! a region in whichr 1 is small andr 2 is large (r 1
.1/plarge , r 2.1/a), and ~2! a region in whichr 2 is small
and r 1 is large. These two regions that we denote as (0,r 2)
9-17
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and (r 1,0) are disconnected, and we can simply add the c
tributions in the two regions to get the leading contributi
to MFSI .

MFSI5
A2

~2p!6Ni
C

@ I (0,r 2)1I (r 1,0)#1~p1↔p2!, ~58!

where the contribution from ther150 singularity is

I (0,r 2)5E e2 i (P/2)•r12 ip12r 1cosq122 i (P/2)•r21 ip12r 2I ~r1!

3
f p12
* ~2p̂12• r̂2!

r 2
C i

C~r1!C~0,r2!d3r 1d3r 2 , ~59!

and the contribution from ther250 singularity is

I (r 1,0)5E e2 i (P/2)•r22 ip12r 2cosq122 i (P/2)•r11 ip12r 1I ~r1!

3
f p12
* ~ p̂12• r̂1!

r 1
C i

C~r2!C~r1,0!d3r 1d3r 2 , ~60!

and wheren5ma/2. The integrations in these expressio
are restricted to the regions in which thee-e interaction is in
the asymptotic region. Note that the expansion ofr 12 around
r150 ~the same is true forr250) gives two terms that we
should keep, i.e., at ther150 singularity the two terms are
p12r 125p12r 22p12r 1cosq121O(r 1 /r 2)•••, where q12 is
the angle betweenr1 and r2. We cannot neglect the term
p12r 1cosq12 sincePr1 andp12r 1 are of the same magnitude

We can now perform the analysis that led to Eq.~55!.
Terms likep12r 1cosq12 in the phase of the oscillating facto

e2 i (P/2)•r12 ip12r 1cosq12,

which we did not have in the situation wherep1@p2@a,
make no change in the argument. In the dominant reg
(P/25p12), they give a phaseP•r1/2, which together
with the already existing phase termP•r1/2, gives the
correct phaseP•r1 with the total absorption momentum
@2 i (P/2)•r12 ip12r 1cosq1252 iP•r1#. Namely, after pho-
ton absorption, one electron has the whole total momen
P, which is then distributed between electrons throughe-e
scattering. In the dominant kinematics (P/25p12), which
can be established as in the asymmetric situation, and w
is the same for bothI (0,r 2) and I (r 1,0) , we get

I (0,r 2)5E e2 iP•r1I ~r1!C i
C~r1!d3r 1E e2 i (P/2)•r21 ip12r 2

3
f p12
* ~2p̂12• r̂2!

r 2
C~0,r2!d3r 2 , ~61!
02270
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I (r 1,0)5E e2 i (P/2)•r2C i
C~r2!d3r 2E e2 i (P/2)•r11 ip12r 1I ~r1!

3
f p12
* ~ p̂12• r̂1!

r 1
C~r1,0!d3r 1 . ~62!

Equation ~61! is just the expression we considered in t
asymmetric case. The contribution, Eq.~62!, can be ne-
glected since both integrals appearing in it are of higher
der in 1/plarge than the corresponding integrals in Eq.~61!.

As discussed here, and in Refs.@53–55#, a more equal
energy sharing between electrons occurs primarily due to
subsequent final-state interaction rather than through
shake-off mechanism. The final-state interaction mechan
of double ionization can be viewed~like shake-off! as a two-
step process. In the first step photoabsorption occurs, a
the case of the shake-off mechanism. But in the second
the fast electron interacts with~scatters off! the second elec-
tron ~final-state correlation!, leading to double ionization and
establishing a more equal energy sharing between the
electrons. In both the shake-off and the final-state-interac
mechanisms, an electron and the nucleus are involved
photoabsorption. However, the double ionization in t
shake-off mechanism is a consequence of initial-state co
lation, while in the final-state interaction mechanism t
double ionization is a consequence of final-state correlat
In this FSI region the leading contribution is associated w
the kinematics in which the two-electron momenta are nea
orthogonal to each other. This leading contribution, cal
the FSI contribution, is determined by thee-N coalescence.
The matrix element is again a single FT in just one lar
momentum associated with just one singularity. We sho
note that the contribution of the final-state interaction mec
nism to the total cross section for double ionization, at h
energies, is negligible in comparison to the contribution
the shake-off mechanism.

As discussed in Sec. V, the dominant contributions in
three regions of the spectrum are a consequence of the
tence of the singularities. There we have shown that the
dinary AFT ~of a function with the same singularities as
the photoabsorption matrix element! in the intermediate re-
gion, away from both the edge region~in which the dominant
contribution is determined by thee-N singularity! and the
central region~the quasifree region in which the domina
contribution is determined by thee-e singularity!, is deter-
mined by the triple singularity atr 15r 250, corresponding
to a double AFT. However, our matrix element differs fro
the ordinary AFT in that the plane-wave fast oscillating b
havior can be modified due to spherical waves. What mat
here is the modification resulting from the final state sphe
cal wave due to thee-e interaction term, which results in a
single AFT in a large momentum associated with just o
(e-N) singularity, giving a contribution that dominates in th
spectrum in comparison to the contribution from the trip
coalescence. Within the assumption of a perturbative exp
sion for the final-state two-electron continuum wave fun
tion, there are no other contributions of the same order as
contribution@Eq. ~56!# in this region of the spectrum.
9-18
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IX. GROUND-STATE IONIZATION TOTAL CROSS
SECTIONS AND DOUBLE-TO-SINGLE IONIZATION

RATIOS RSO AND R

The total cross section for single or double ionization
photoabsorption of a high-energy photon of momentumk by
a two electron atom is

s5
~2p!2a

m2v
(
l
E d3p1

1

2 (
e

uM u2d~v2uEBu2e12el!,

~63!

where the nonrelativistic transition matrix element in t
lowest order in the photon-electron interaction is given
Eq. ~18!. The symbol(l means summation over hydroge
like discrete statesn when single photoionization is consid
ered and means*d3p2 when double photoionization is con
sidered.@Bound states are normalized to unity. The sing
electron continuum is normalized asymptotically to
amplitude 1/(2p)3/2 and the two-electron continuum is no
malized asymptotically on an amplitude 1/(2p)3.#

Substituting Eq.~30! into Eq. ~63! we obtain an expres
sion for the single-ionization total cross section at high p
ton energies~but v!m), within the 3C model, involving
excitations to all subshells. However, since the 3C model
neglects terms of the orderZ(ma)2/p2, we neglect, for sim-
plicity, all terms from the correlation factor that vanish
1/p2, i.e., we take only excitations tol 50 bound states
Also, we neglect binding energiesEn of the final-state bound
electron compared to the kinetic energy of the outgoing e
tron. Thus, we obtain a common absorption factor for
excitations. This leads to factorization of the cross section
single-ionization of He, and we obtain an expression for
single ionization total cross section at high photon energ
~but with v!m),

s15
1

~N1
C!2 F(

n
U E Fn* ~r !C i~r ,0!d3rU2Gs1s

C ~v!, ~64!

wheres1s
C (v) is the photoabsorption cross section from t

ground state of hydrogenlike He. The cross sections1s
C (v)

in Eq. ~64!, resulting from the absorption matrix element, E
~30!, includes both retardation and the slowly convergi
Stobbe factor.

We now calculate the double-ionization total cross s
tions. This means integration in Eq.~63! over the whole
spectrum of final electron energies. But, before doing th
we may consider restricting ourselves to just the SO reg
and we define the SO total cross sectionsSO

21 . This is an
observable, which has been measured@65# by counting only
the events where momentum is transferred to the nuc
(e-N coalescence is involved in photoabsorption!. As in
single-ionization case, we neglect all terms from the corre
tion factor which vanish as 1/plarge

2 , i.e., we take Eq.~37!
for the correlation factor. Also, we neglect the kinetic ener
of the slow electron,E2;a2/2m, compared to the kinetic
energy of the fast electron. As in single ionization, we obt
a common factors1s

C (v) for all contributing E2;a2/2m.
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This leads to factorization of thesSO
21 cross section. When

calculating the SO double-ionization total cross sectionsSO
21 ,

we can simply use Eq.~64!, replacing the summation ove
discrete statesn by summation over continuum states. Alte
natively ~due to the above simplifications!, as has been don
in Ref. @45#, we may employ the completeness relation f
the statesF. We obtain

sSO
115

1

~N1
C!2 F E uC i~r ,0!ud3r

2(
n

U E Fn* ~r !C i~r ,0!d3rU2Gs1s
C ~v!. ~65!

Our analysis of SO double ionization and single ioniz
tion gave a factorization of the matrix elements into abso
tion and correlation factors, which leads to a similar fact
ization of cross sections. This factorization is accura
neglecting terms that vanish as 1/plarge

2 . Since the SO
double-ionization cross section and single-ionization cr
section have the same factors1s

C (v) ~which include retarda-
tion and the slowly converging Stobbe factor! at high ener-
gies, it cancels in the ratio. The cancellation of retardat
was demonstrated in numerical calculations@40# that were
consistent with the shake-off assumption. The shake-off r
RSO5sSO

21/s1 therefore involves only the correlation fac
tors. At high energies@22,45–47,66#,

RSO5

E uC i~r1,0!u2d3r1

(
n

U E Fn* ~r1!C i~r1,0!d3r1U2 21. ~66!

The cross sectionss1, sSO
21 , and also the ratioRSO ap-

proach their asymptotic forms, Eqs.~64!–~66!, faster than
1/plarge ~in fact, the 3C model gives an approach a
1/plarge

2 ). Various numerical calculations@see, e.g.,@10#, and
references therein#, are consistent with such a conclusio
These calculations agree that, in the case of He, the con
SO ratio,RSO51.67%, which can be obtained even in th
lowest-order Born approximation, is reached within few p
cent at 5 keV and approaches a constant as 1/plarge

2 . In con-
trast, at such an energy the lowest-order Born approxima
for cross sections is still more than 25% away from the c
rect value~as we obtain in our IPA calculations! and the error
decreases only as 1/plarge . Fast convergence of the ratio
due to cancellations of the Stobbe factors.

The contribution of the FSI region to the total cross se
tion is negligible in the high-energy limit. The double
ionization cross section in the FSI region obtained from E
~56! @55# is

ds21~v!

dE1
5ks1s

C ~v!
dsee

1 ~v,E1!

dE1
, ~67!

factorized as the product of the cross sections1s
C (v) for

single photoabsorption~which reflects the mechanism of ab
9-19
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sorption of the photon! anddsee
1 (v,e1)/de1, the cross sec-

tions for single ionization by electron impact@55#,

dsee
1 ~v,E1!

dE1
5

2pa2

2v F 1

v2E1
1

1

E1
G2

, ~68!

wherek in Eq. ~67! is

k5

E 1

r 2
uC i~0,r !u2d3r

4pE uC i~0,r !u2d3r

. ~69!

By integrating Eq.~67! over the whole energy region, bu
excluding the SO region~integrate fromE0 to v2E0 where
E0 defines the SO region;E0, is several timesa2/2m), in
which Eq.~67! is not valid, one obtains

sFSI
21 .

2pa2

vE0
s1s

C ~v!, ~70!

which shows that the FSI contribution to the total cross s
tion is negligible at high energiesv.

The full total cross section for double ionizations21 in-
cludes both the SO and the QF contributions. The ma
element, Eq.~18!, can be approximated byMSO and byMQF
in the two different dominant kinematical regions. The ov
lap ~interference term! of these two contributions is negli
gible. In fact, this interference term is much smaller than
contribution of the final-state interaction term, which h
also been neglected here. We may therefore proceed fol
ing Ref. @54#, substituting Eq.~43! in Eq. ~63! for the He
double-ionization total cross section (l5p2). We perform
the integration over all outgoing electron energy and m
menta in order to obtain thesQF

21 contribution to the total
double-ionization cross section. Neglecting the binding
ergy EB and the energy of the center of mass of the t
electrons,P2/(4m), in comparison to their energyp2/m in
the center-of-mass frame, we obtain the leading contribu
sQF

21 to the total cross section for double ionization by ph
toabsorption through the quasifree mechanism

sQF
215

29p2ma3v

15~mv!7/2 E uC i~r1 ,r1!u2d3r1 . ~71!

The dominant contributions to the total cross sections21 for
double ionization of the ground state of a He-like atom
photoabsorption, at high but nonrelativistic energies,
given by summing Eqs.~65! and ~71!.

Taking the single-ionization total cross section to t
same order~or to all orders! in retardation@30# as in calcu-
lating sQF

21 , the ratioR5s21/s1 is obtained as

R5RSO1CZ

v

m
, ~72!

for v!m, where the constantRSO is the shake-off result for
the ratio and
02270
-

ix

-

e

w-

-

-

n
-

e

CZ5
8A2

5Z2

E uC i~r1 ,r1!u2d3r1

(
n

U E Fn* ~r1!C i~r1,0!d3r1U2 . ~73!

Herem is the electron mass,Fn(r1) is a bound-state hydro
genlike electron wave function~in a potential of chargeZ),
and the summation is over all bound states. We may estim
the magnitude of the constantCZ by using approximate
ground-state wave functions in Eq.~73!. For the function
C i(r1 ,r2)5exp@2Z(r11r2)1ur12r2u/2#, ~here we use
atomic units! @28#, both thee-e ande-N Kato conditions are
exactly fulfilled. Then Eq. ~73! gives CZ5@(2Z
21)/(2Z)#3A2/(5Z2). ~The binding energy of He given by
this simple wave function is 77.7 eV.! In the case of He, this
gives CZ50.030. Since for He,RSO50.0167, this means
that atv515 keV, the ratioR50.0176, which is about 5%
above the constant shake-off ratio@67#. In this energy region,
the deviation will increase linearly withv. We note that in
order to observe this linear rise, one should not restrict o
self, as in Ref.@65#, to counting only the events in which th
momentum is transferred to the nucleus. Observing even
which the momentum is transferred to, another electron
required. To our knowledge, such measurement has not b
performed.

X. CONCLUSIONS

We have described within a unified nonrelativistic a
proach single and double photoionization of two-electron
oms by photoabsorption at high photon energiesv ~but still
v!m). We have demonstrated that high-energy ionizat
by photoabsorption can be understood in terms of the sin
larities of the many-body Hamiltonian. In particular, the S
and the QF contribution to the double-to-single ratioR, Eq.
~72!, are explained in terms of thee-N singularity ~SO! and
e-e singularity~QF! which both contribute to the double ion
ization total cross section. Our discussion was not depen
on the choice of the form~lengthL, velocity V, acceleration
A, etc.! of the photoionization matrix element.

Since photoabsorption at high photon energies require
least one large outgoing electron momentum, we have arg
that the analysis is equivalent to the analysis of the asy
totics of Fourier transforms. Based on Fourier-transfo
theory, we have shown that a slow asymptotic decrease
large momentump, such as 1/pn, is connected with the sin
gularities of thee-N and e-e Coulomb potentials. We have
demonstrated how this slow asymptotic decrease can be
tained by writing the wave functions and interactions
terms of simpler functions~plus remainders whose contribu
tions decrease faster! around singularities. Our approac
clarifies which singularities need to be considered for do
nant contributions and demonstrates that this is determ
by the kinematics of the outgoing electron momenta. W
this approach we can identify the dominant terms, and av
omitting any of them, and we can also avoid the uncontrol
introduction of spurious contributions. We have illustrat
9-20
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how both of these problems have arisen in the use of
proximate wave functions.

We have applied our approach to study the high-ene
total cross section for single ionization and the total cr
section and spectrum for double ionization of the grou
state of a two-electron atom. We have demonstrated tha
approach, as well as the final results, are gauge and f
independent. However, the dependence of the final result
the quality of initial- and final-state wave functions at sing
larities varies with gauge and form. We have found that
celeration form, which places the singularities of the Ham
tonian in thee-g interaction, has the least requirement on t
quality of wave functions at the singularity, in all situation
considered. In the case of total cross sections for single
ization and for the shake-off limit for the double ionizatio
of the ground state, acceleration form requires only
proper normalization of the initial state at thee-N singulari-
ties ~which are three-dimensional manifolds, not just point!.
In contrast, velocity form requires knowledge of both no
malization and slope at the singularities, while length fo
requires even more detailed knowledge of the ground-s
wave function at the singularities.

Within our unified approach, we have explained the dom
nant contributions to the total cross sections~for single and
double ionization! and the dominant contributions to th
double-ionization spectrum, as a FT asymptotic in a sin
large momentum~dependent on the process and the region
the spectrum!. These dominant contributions are connect
through AFT, with either thee-N singularity or thee-e sin-
gularity. The asymptotic Fourier transform results are mo
fied by Coulombic interactions. We have included the
modifications, for the cases of single ionization and dou
ionization in the shake-off region at high energies, and in t
way we have obtained rapid convergence of the cross
tions with increasing energy. This has allowed us to disc
also the convergence of ratios of cross sections. We h
discussed the importance of final-statee-e ande-N interac-
tion. We have discussed the importance of retardation cor
tions as well as the cancellation of retardation contributio
in the shake-off double-to-single ratio.
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APPENDIX A: FORM DEPENDENCE OF THE MATRIX
ELEMENT IN THE SHAKE REGION

Here we discuss the form dependence of the matrix
ment for ionization of a two-electron atom in the regio
where one electron takes almost all the photon energy w
the other just shakes~either shakes up or shakes off!. The
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discussion is valid for both single ionization with excitatio
and for the SO region of double ionization. In particular, w
consider the exchange part of the matrix elementMex ,
which can be a source of spurious contributions that do
nate the contribution from the direct terms discussed in S
IV and V, when approximate functions are used. We a
show that an exact initial-state wave function with uncor
lated Coulombic final-state wave functions gives an accu
high-energy result in the shake regions, regardless of
form used.

The exchange term is

Mex
1 5A2E e2 ip1•r1Fp1

(2)* ~r1!Cl* ~r2!

3Dp1 ,l* ~r1 ,r2!I 1e~r2!r 1C i~r1 ,r2!d3r 1d3r 2 ,

~A1!

where l denotes the quantum numbers of the remain
bound electron in the case of single ionization, or it deno
the momentump2 of the other electron in the case of doub
ionization. According to the AFT theorem, the dominant co
tributions to this part of the matrix element, at high energi
come from singularities. The fast oscillating terms com
from the plane wave, and in some configuration regions a
from thee-e interaction term, Eq.~46!, modifying the plane
wave oscillating term. While the plane wave oscillating te
connects the dominant contribution with ther150 singular-
ity, the oscillating term from thee-e interaction can modify
these fast oscillations in such a way so as to give additio
contributions from ther250 singularity.

Since the modification of the plane wave, due to thee-e
interaction, comes with two additional powers in 1/p1

2 @see
Eq. ~47!#, such contribution would not modify our result, Eq
~27!. For the discussion of the final-state interaction mod
cation of the plane-wave oscillating term, see Sec. VIII. W
here discuss the form dependence of the contributions f
the plane-wave oscillating term (r150 singularity! to Eq.
~A1!. This is of interest because contributions from ther1
50 singularity to the exchange term with approximate wa
functions ~which do not satisfy Kato condition, and whic
have been used in some calculations of photoabsorption! can
lead to spurious contributions.

The leading contributions from ther150 singularity to
the exchange terms can be obtained by characterizing w
functions near the singularity. We will show that if one us
an approximate initial-state wave function that does not s
isfy the Kato cusp condition, then one can get an errone
leading-order result. We suppose that initial sta
near r150 is C i(r1 ,r2)5C i(0,r2)(12a8r 1)Y0

0( r̂1)

1O(r 1
2 ; r̂1 ,r2), where a8Þa5mZa @see Eq.~25! for the

partitioning and characterization of exact wave function n
r150]. For the final state we take an equivalent partitioni
in terms of Coulombic functions and explicitly keep only th
leading terms shown in Eq.~7!. We obtain
9-21
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Mex
1 5A2NfE e2(«r 11 ip1•r1)F11 i

a

p1
g(2)*

3@ i ~p1r 11p1•r1!#1OS 1

p1
2D GCnlm* ~r2!

3F12 i
ma

p1
g(2)* F i

2
~p1r 22p1•r2!G

1OS 1

p1
2D G I 1e~r2!C~0,r2!

3@12a8r 11O~r 1
2!#d3r 1d3r 2 . ~A2!

The leading contributions to the matrix element at high
ergies are determined by the leading singular terms in
variabler1. Following the procedure explained in Sec. II, w
obtain powers 1/p1

n13 from singular terms involving power
r 1

n in Eq. ~A2!, when we integrate overr1 @see Eqs.~10! and
~11!#.

In all forms, the powers in 1/p1 of Eq. ~A2! are deter-
mined by thep1 dependence of the interaction term@see Eq.
~20!, in A form the interaction term contains the power 1v
;1/p1

2, in V form it contains no powers, and inL form it
containsv;p1

2] and the leading power from the integral

E e2(«r 11 ip1•r1)S 11 i
a

p1
g(2)* @ i ~p1r 11p1•r1!#

1OS 1

p1
2D D @11a8r 11O~r 1

2!#d3r 1;~a2a8!
1

p1
4

.

~A3!

This spurious contribution, arising in the exchange term fr
asymmetric description of thee-N singularity (a8Þa) ap-
pears in all forms, but inA form it is of the order 1/p1

6, in V
form it is of the order 1/p1

4, and in theL form it is of the
order 1/p1

2. In L form, this spurious contribution would b
the leading contribution to the matrix element. With wa
functions that satisfy thee-N Kato cusp condition, these con
tributions, however, cancel; and, in fact, leave inA form a
1/p1

7 power contribution from the exchange term, inV form a
1/p1

4 power, and inL form a 1/p1
3 power, at high energies

Therefore the contribution of the exchange term is ma
festly of higher order inA andV forms, while inL form it is
of the same order as the leading contribution for ionizat
with excitation intos states, 1/p1

3. Even this 1/p1
3 contribu-

tion is obviously a spurious contribution that must vanish.
order to show this explicitly, one needs more detailed kno
edge of the wave functions at the coalescence. Howeve
we show now, neglecting final-state interaction and assum
exact initial-state wave function, we get no spurious terms
the order 1/p1

3 ~i.e., of the same order as the dominant ter!
when considering ionization with excitation into a bounds
state, i.e., we need no final-statee-e interaction even inL
02270
-
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form. An exact initial-state wave function with uncorrelate
Coulombic final-state wave functions gives an accurate hi
energy result in the shake regions.

We assume that the initial state is exact and that fi
states are uncorrelated Coulombic states with the correcte-N
singularity. As we have shown above, theV form result for
ground state ionization does not depend on final-statee-e
interaction. Therefore we may analyze the behavior of
difference between the approximateV-form andL-form ma-
trix elements when final state interaction is neglected. If
difference vanishes, we can conclude thatL-form result also
does not depend on final-state interaction. This differe
can be obtained by using the relationp11p25Im@H,(r1
1r2)#, whereH is the exact nonrelativistic Hamiltonian fo
a two-electron atom. We now get

DMS5MS
V2MS

L5 imE e2 ip1•r1Fp1

(2)* ~r1!Cp2
~r2!

a

r 12

3@e•r11e•r2#C i~r1 ,r2!. ~A4!

Due to the fact that the function 1/r 12, as well ase•r1, are
regular atr 150 for all r 2Þ0, thee-N singularity that deter-
mines the leading contributions toDMS comes from the
initial- and final-state wave functions. As in the singl
ionization case, the leading singular power isr 1, which
would result in a leading contribution toDMS of order 1/p1

4.
This would be sufficient for showing that the difference d
creases faster than the matrix element~which decreases a
1/p1

3), but, in fact, such terms cancel and the leading con
bution toDMS is of order 1/p1

5. ThereforeMV and ML are
the same at high energies even with approximate unco
lated Coulombic final-state wave functions~which have the
correcte-N singularity!.

APPENDIX B: THE 3 C FUNCTION

Here we argue that the 3C function, used in our discus
sions, is accurate neglecting terms of the orderZ(ma)2/Ef ,
whereEf.plarge

2 /2m is the total energy of the two electron
in the final state, and that the 3C function contains accu-
rately terms of the orderZma/plarge in the e-N interaction
and terms of the orderma/plarge in thee-e interaction. With
such accuracy of the 3C functions we obtained photoabsorp
tion matrix elements, determining the spectrum of dou
ionization, accurately neglecting terms of order 1/plarge

2 .
We write the exact solution of the Schro¨dinger equation,

describing two electrons in the final state with momentap1
andp2, in the forms

C f~r1 ,r2!5Cp1

(2)~r1!Cp2

(2)~r2!Dp1 ,p2
~r1 ,r2!

5ei (p1•r11p2•r2)Fp1

(2)~r1!Fp2

(2)~r2!Dp1 ,p2
~r1 ,r2!

5Fp1

(2)~r1!Fp2

(2)~r2!df~r1 ,r2!, ~B1!

where Cp
(2)(r )5eip•rFp

(2)(r ) represents an outgoing elec
tron in a pure Coulombic potential of a nucleus with char
9-22
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Z. The factorDp1 ,p2
(r1 ,r2) contains all final-statee-e inter-

action. The 3C model means that the final-state correlation
approximately described by

Dp1 ,p2
~r1 ,r2!5GS 12 i

n

p12
De1

2 pn/2p12F1

3F i
n

p12
,1,2 i ~p12r 121p12•r12!G ,

~B2!

where n5ma/2 and p125(p12p2)/2 ~with p250 when
single ionization is considered!.

We are here discussing the quality of the 3C function in
terms of the function df5exp@i(p1•r11p2•r2)Dp1 ,p2

#,

which in the limit Z→0 ~neglectinge-N interaction! de-
scribes two electrons with Coulombic interaction. In this d
cussion, our approach is similar to Ref.@10#. However, we
are able to show explicitly, without making any assumpti
on theDp1 ,p2

function, that the terms that are neglected

3C are of the orderZ(ma)2/Ef and higher. In contrast, in
Ref. @10# it is assumed that the functionDp1 ,p2

depends only
on the relative coordinate of the two electrons, and it is o
argued that forplarge@Z, the exact function approaches 3C.
We are going a step further.

We now substitute the form, Eq.~B1! ~with df), into the
Schrödinger equation

S 2
1

2m
¹1

22
1

2m
¹2

22
Za

r 1
2

Za

r 2
1

a

r 12
DC f~r1 ,r2!

5EfC f~r1 ,r2!. ~B3!

SinceFp(r ) is the Coulomb wave function, i.e.,

Fp~r !5Np 1F1F2 i
a

p
,1,2 i ~pr1p•r !G , ~B4!

wherea5mZa, we obtain the equation for the functiondf ,

F2
1

4m
¹R

22
1

m
¹12

2 1
a

r 12
2Ef Gdf~r12,R!

5F i
2a

m
~p1K11p2K2!2

a

m
@~M11M2!•“R

12~M12M2!•“12#Gdf~r12,R!. ~B5!

The functiondf and Eq.~B5! are written in terms of the
~more convenient! relative coordinater12 and the coordinate
of the center of massR of the two electrons,

Ki5
11p̂1• r̂1

2
Hi , M i5

p̂i1 r̂ i

2
Hi . ~B6!

Hi is the ratio of confluent hypergeometric functions,
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Hi5

1F1F12 i
a

pi
,2,2 i ~pir i1pi•r i !G

1F1F2 i
a

pi
,1,2 i ~pir i1pi•r i !G , ~B7!

which appear after dividing the equation byFp1
•Fp2

. For

pi.a, Hi , and thereforeKi andMi , are bounded, i.e.,uHi u,
uKi u, uM i u<2 for all distances and angles. This can be sho
by writing

Hi5

1F1F12 i
a

pi
,2,2 ixG

1F1F2 i
a

pi
,1,2 ixG

5
i

xF e2 ix
1F1F i

a

pi
,2,ixG

1F1F2 i
a

pi
,1,2 ixG 21G , ~B8!

and noting that the numbers in brackets are of unit am
tude, which means that forx.1, uHu,2. Then it is easy to
see numerically thatuHu,2 for anyx if a,p. However, for
a.p ~as may happen for the slow electron in the SO regio!,
the upper bound onH rises. In numerical calculation, we fin
that maximum ofH appears atar(11p̂• r̂ )51.445 which
results in a maximum of the size of 2/x;2a/1.445p @this
also follows from Eq.~B8!#. This means that even forp
several times smaller thana, the size ofH is not much bigger
than 2. Due to the boundedness of these functions, we
discuss the order of the approximation made by neglec
some terms in Eq.~B5!.

In the situations we are considering in this paper, the
ergy Ef is large:Ef@a2/(2m). We ask the order of the ap
proximation made by neglecting thee-N interaction com-
pletely @putting the right-hand side of Eq.~B5! to zero, i.e.,
a50]. Equivalently, we are asking the order of the appro
mation made by using the 3C function for a two-electron
system withEf large@note that witha50, Eq.~B5! becomes
the equation for the free two-electron system#.

We assume that for largeEf , the functiondf does not
differ very much from its first-order approximationdf

0 .
Without any detailed analysis of the neglected terms, we m
easily estimate that the order of the approximation made
putting a50 in Eq. ~B5! is given by the ratio of the ne
glected ~bounded! right side ~which is of the order
aplarge /m, if we take for simplicity the value ofK ’s and
M ’s to be 1! and the bounded term on the left side~which is
Ef.plarge

2 /2m). The order of the approximation isa/plarge ,
which would mean that some terms of this magnitude mi
have been neglected. It also means that the first-order
proximationdf

0 for the functiondf is the wave function of
the free two-electron system.@This conclusion was reache
in Ref. @10#, using the same comparison of the terms, b
with additional assumptions as explained above.# This accu-
racy of df

0 , and therefore of the 3C function used in our
9-23
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work, would not be sufficient to justify our conclusion
However, making a more detailed analysis, we now sh
that the order of the neglected terms is in factan/m, and not
aplarge /m as it seems at first sight. Therefore, the order
the approximation is, in fact,an/plarge

2 , and hence the use o
the 3C function in our discussions is justified.

We write the exact functiondf as

df5df
01v f , ~B9!

where the first-order approximation is the free two-elect
wave function

df
0~r12,R!5Np12

ei (P•R1p12•r12)

31F1F i
n

p12
,1,2 i ~p12r 121p12•r12!G , ~B10!

and v f includes all higher-order corrections. Sincev f is
small, we assume that the next higher-order corrections
be obtained by an iterative procedure using Eq.~B9! with
Eq. ~B5!. In lowest order, we neglect the right-hand side
Eq. ~B5! and obtaindf

0 . Then, in a next iteration we put o
the right sidedf5df

0 and calculatedf
1 .

By insertingdf
0 for df on the right side of Eq.~B9!, we

obtain

F2
1

4m
¹R

22
1

m
¹12

2 1
a

r 12
2Ef Gdf

1~r12,R!

52
4an

m
M12•~M12M2!df

0~r12,R!, ~B11!

whereM12, defined similarly toM i ,
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f

n

an

f

M125
p̂121 r̂12

2

1F1F11 i
n

p12
,2,2 i ~p12r 121p12•r12!G

1F1F i
n

p12
,1,2 i ~p12r 121p12•r12i !G ,

~B12!

is also bounded,uM12u<2 if p12.n. The corrections todf
0 ,

in the second iteration, are given by the inhomogeneous t
on the right side of the Eq.~B11!, and we see that this term
is of the orderan/m. All terms proportional to the moment
of electrons cancel and the leading correction todf

0 involves
both the interaction with the nucleus and the interaction
tween the two electrons. By neglecting this inhomogene
term in Eq. ~B11! @which leads again todf

0], we, in fact,
neglect terms of the orderan/plarge

2 in the functiondf . This
neglect is valid in all situations considered in this wor
However in the SO region, when one of the electrons~e.g.,
p2) is slow, the coefficient of these neglected terms can
large ~due to the large size ofH2 if p2!a). This can influ-
ence the accuracy of calculation if a situationp2!a is con-
sidered. However, when the total cross section is conside
~as in this work!, the contribution from momentap2!a is
suppressed by its small phase-space factor.

Therefore, all terms of ordera/plarge ~first order ine-N
interaction! and all terms of ordern/plarge ~first order ine-e
interaction! are correctly represented by the 3C function, as
we expected, knowing that these terms must be Coulom
~as if the third particle was not present! at the coalescence o
the two particles. We have used this result in Secs. IV a
V–VII. This result also means that the spherical wav
present in the 3C function are accurate including the firs
order ina/plarge andn/plarge . We need this accuracy of th
spherical waves~including first order inn/plarge) in consid-
ering the FSI region in Sec. VIII.
.
ett.
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