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Calculation of radiative corrections to hyperfine splittings in the neutral alkali metals
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The radiative correction to hyperfine splitting in hydrogen is dominated by the Schwingerd&2m E ,
whereEg is the lowest-order hyperfine splitting. Binding corrections to this term, which enter as powers and
logarithms of Za, can be expected to be increasingly important in atoms with higher nuclear cBarge
Methods that include all orders d@fa, developed first to study highly charged ions, are adapted to the study of
the neutral alkali metals, lithium through francium. It is shown that the use of the Schwinger term alone to
account for radiative corrections to hyperfine splittings becomes qualitatively incorrect for the heavier alkali
metals.
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I. INTRODUCTION +2.62 would result, so the rough agreement of the exact
calculation with the first two terms of th8«a expansion is
The study of radiative corrections in atoms and ions has accidental.
lengthy history. It was realized early on by Wichmann and  The confirmation of this striking effect has unfortunately
Kroll [1] for vacuum polarization and by Brown and Mayers been obscured by nuclear physics uncertainties: the large
[2] for the self-energy that the power series expansialidn  overlap of the electron with the nucleus of a higlien leads
used in the study of the Lamb shift in hydrogen would con-t5 5 Bohr-WeisskopfBW) contribution[9], which comes
verge slowly at higfz, and they studied the Lamb shift to all from the finite distribution of the nuclear magnetization cur-
orders ofZa using exact Dirac-Coulomb propagators. This rent, about twice as large as the quantum electrodynamic
approach has been developed to an extremely precise IeVRhep) correction. In fact, one nuclear calculation of this

over the years by Mohr and collaborators, culminating in gge .t for the ground-state hfs 8°Bi®?* leads to agreement
recent work in which the one-loop self-energy of neutral hy—With experiment only if the QED correction is neglected

drogen has been evaluateq to an accuracy of 1311; 410]. It is possible to greatly reduce the nuclear physics un-
More recently the numerical techniques first applied to th ) . T
certainty by also measuring the ground-state hfs in lithium-

Lamb shift have been extended to the study of radiative corl—.k bi h : de in ReFL1l. In th h
rections to hyperfine splittingéfs) [4], which enter as pow- e bismuth, a point made in Ref11]. n t at.paper, the
ers of @ multiplying the lowest-order hfs enerdge . Mea- measurement of theslhfs of hydrogenlike bismuth was

surements of the ground-state hfs in hydrogenlike ions sucHS€d t0 make an unambiguous prediction of tkeehs of
as 29Bi®2" [5] also make all-order studies of binding correc- lithiumlike bismuth: these results were confirmed in Ref.

tions to the leading Schwinger terf], a/27Eg, of inter-  [12]. The ground-state hfs for lithiumlike bismuth has been

est. As could be expected from the formula that includegneasured in an EBIT experimeftt3], but with a precision
first-order binding correctiongr], too low to detect the radiative corrections.

In this paper, we apply the techniques developed to cal-
5 culate radiative corrections to hfs in lithiumlike bismuth to
+Za2<ln 2— —” (1)  the ground-state hfs of neutral alkali metals. This parallels
2 the approach of a previous padd4], where we extended
techniques for the evaluation of the Lamb shift in highly
which changes sign ne&@=12, the use of the Schwinger charged ions to the same atoms. Whereas in that paper the
term alone, which gives a constant value400.5 in units of  radiative corrections to the Lamb shift were quite small, our
al/m Eg, to describe radiative corrections to hfs is qualita-main result here is that for the heavier alkali metals, a sig-
tively incorrectly for mid- to highZ ions. Indeed, for hydro- pjficant enhancement of the Schwinger correction is present,

genlike bismuth, the inclusion of the leading binding correc-gfficiently large so that it cannot be ignored in accurate
tion in Eq.(1) gives—2.94 in the same units, while the exact ¢5|culations of hfs.

calculations further change the resultt®.23[4]. We note
that were the next term in théa expansior 8] to be used
for hydrogenlike bismuth, a completely incorrect value of

a

v=FEe 2

Il. THEORY
Our calculations are carried out in Furry representation
*Email address: jsapirst@nd.edu QED with a local potential based on density-functional
"Email address: ktcheng@Iinl.gov theory, the Kohn-Sham potential, given by
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TABLE I. One-photon exchange contributions to hfs in the alkali metssxpt is the difference between
theory (Sum and experiment and Breit-QED is the difference betweéh and first-order MBPT: Units

MHz.
Li *Na K Rb B3%¢cs 212y
Nuclear moment 3.25643 2.21752 0.391466 2.75182 2.58203 4.62
Nuclear spin 3/2 3/2 3/2 3/2 712 5
Experiment 803.508  1771.631F  461.720°  6834.683  9192.632  36257°
»(® 725.056 1499.042 343.478 4886.320 6164.831 31467
vEW —0.079 —-0.737 —0.352 —15.062 —43.936 —851
piE 44.631 134.506 53.305 1064.727 1687.852 14600
Sum 769.608 1632.811 396.431 5935.985 7808.747 45216
AExpt 33.896 138.820 65.289 898.698 1383.885 —8959
1st-order MBPT 44,549 134.187 53.255 1065.925 1694.332 14743
Breit-QED 0.082 0.319 0.050 —1.198 —6.480 —143
3Referencd 17].
bReferencq18].
Zoii(D) with R chosen to give the same root-mean-squanes) ra-
Uin=-—"—" (2)  dius as the charge distribution. We take the nuclear moments
from the table of isotopegl5] and the rms radii from the
with compilation of Johnson and Soffl6]. Nuclear moments,
spins, and experimental hfs for the atoms considered here are
1 2[81rpy(r)]*3 tabulated in the first three rows of Table I. The experimental
Zeff(r):Znuc(r)_rJ df’rm(”“g[w} : values are all taken from Ref17] with the exception of
- (3  francium[18].

wherep,(r) is the total charge density. To maintain the cor-
rect asymptotic limit of Z.s(r)—1 for neutral atoms,

Z.s1(r) is set to 1 once the above formula reduces to thatl_he first termy

value at larger. Natural units in whichh=c=1 are used
here.

The matrix element of the hyperfine interaction is defined

as

vijzfd3r%<F>V(F>w,-<F>, 4)

with
axXr

V(r)=—ey-A(r)=—ey- ——Fgu(r). (5)
4ar

The lowest-order hfs of a valence statecan then be ob-
tained fromV,, asEg=v=V, (21+1)/l, wherel is the
nuclear spin and we have used the fact that we consider on
s states here.

The functionFgy(r) models the distribution of nuclear
magnetism. It will be taken to be unity for all calculations

We now define the hyperfine splitting as

p=pO) 4 BW JIE 2B, | VP [ SE (7)

©) in Eq. (7) is the lowest-order hfs with
Few=1, and the second terwF" accounts for the change
when the uniform magnetization distribution described
above is used. They are tabulated in the fourth and fifth rows
of Table |, respectively. The following term'E includes the
effect of one-photon exchange on hfs and is calculated in the
following section. Higher-order correlation corrections with
two- and more-photon exchanges are given/3fi+, which
plays an important role in comparing theory and experiment
that will be discussed in the conclusion. The last two terms,
vacuum polarizationV" and self-energySE contributions to
hfs, are the main focus of this paper and will be treated in
Sec. V.

III. ONE-PHOTON EXCHANGE

ly In this section, we calculate the QED counterpart of first-
order many-body perturbation thediyiBPT), and show that
the result is close to, but for the heavier alkali metals notice-
ably different from, MBPT. The use of a non-Coulomb local

except the lowest-order one. As noted above, uncertainties iﬁotentiaIU(r) leads to a counter potentiElI(r) in perturba-

this distribution play an important role in highly charged
hydrogenlike and lithiumlike bismuth, and we will discuss its

role in the neutral alkali metals in the conclusion. Here we

simply take a uniform distribution,

r<R
r=R,

(r/R)3

Faw(r)= 1 (6)

tion calculations,

U(r):[Znuc(r)_zeff(r)]a/r- 8

First-order correlation diagrams from the counter potential
and one-photon exchange are shown in Fig. 1 and the asso-
ciated formulas are
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i # ~ i#v ™~ i# i#
VlE:_'E” ViU, _'2” U,Vi, +'E” ViilGiava(0) ~ Giaan(SE,a)] +'2” [9vaia(0) — Guaai Eva) Vi
i €y Ej i €T € al €, € al €, €
< Vail8iua(0) = Givwal = 0Eua)] & [Gauio(0) = Gawoi( — FEua) 1V
+2 al lvav lvva va +2 avlv avvl va 1a _2 vag\:\,aav(é‘Eva)
ai €Ea— € ai €Ea— € wa
_2 Vabglsvva(_ 5Eua)’ (9)
ab
|
with 6E, ,=€,— €,, states summed over, the results of first-order MBPT would
be recovered: this exercise is carried out and results are
el VEZ+iolx—y| shown in the ninth row of Table I. The difference between
gijkl(E)EaJ d3x d® Ty i (X) ¥ hi(X) v1E and first-order MBPT is tabulated in the last row of
X_

| Table | as the Breit-QED term. This difference involves a
— - - number of effects, some of which could be incorporated into
Xi(y)v*a(y), (10) an MBPT treatment by inclusion of the instantaneous Breit
interaction, and others which are field theoretic in origin,
andg’(E)=dg/dE. Herev anda refer to the valence and involving both the effect of negative-energy states and retar-
core states, respectively, and the sum avenges over both  dation in the transverse photon exchange term. We do not
positive- and negative-energy states. The excluded dasesseparate the various effects. While quite small for the light
#v andi#a are associated with the last two “derivative” alkali metals, this difference becomes important for the
terms. The indicated summations oveandb in these terms  heavier alkali metals. The fact that the Breit interaction gives
range only over the magnetic quantum number, with thesignificant contributions to hfs for the heavier alkali metals
states otherwise being identical withand a, respectively. has also been noted in Refd9] and[20]. We now turn to
The numerical evaluation of'F is straightforward, and re- the calculation of radiative corrections.
sults are presented in the sixth row of Table I. The sums of
theoretical results up to this point are tabulated in the seventh
row of Table I, while their differences with experiment are IV. RADIATIVE CORRECTIONS

shown in the eighth row aAExpt, which are dominated by  The diagrams representing vacuum polarizathéR) con-

higher-order correlation corrections and should closely aptributions to hfs are shown in Fig. 2. We break this term up
proximate they?+ term. as

The one-photon exchange matrix elemeht is defined
in Fey_nman gauge in on9)._Because we are using a local WWP=,VP(\V) + 1VP(PO). (11)
potential, results are gauge independent and are equivalent to

the Coulomb gauge ones. Were that gauge to be used, trans-

verse photon exchange neglected, and only positive-ener%)“e first term, corresponding to Figild}, is referred to as a
ertex (V) correction. It is given by

14 a v a v
e ex 1 X(1—2X)(3—2x) 3 1 2 2o
--X -X -~ v (V):—f dx fd rp,(r)a-A(r)
3mJo 1-x
N (mr) mr
X T i | 1t ——
v a v a v %(r)e VX(1—x) 1 m (12)
4 a v a v
--X
--X --X % X
--X
14 a v a v
FIG. 1. Feynman diagrams for the one-photon exchange correc- a b c
tions to hyperfine splitting. The dashed line terminated with a cross
indicates a hyperfine interaction and the symigokepresents the FIG. 2. Feynman diagrams for the vacuum polarization correc-
counter potential. Exchange diagrams between the core and valentiens to hyperfine splitting. The dashed line terminated with a cross
electrons are not shown here. indicates a hyperfine interaction.
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TABLE II. Vacuum polarizationVP) and self-energySE) contributions to hfs in the alkali metals. QED
is the sum of VP and SE: Unitsy(7)Eg.

L 2Na 39K %Rb 8Cs 22Fy
vVP(V) 0.025 0.088 0.152 0.301 0.479 0.896
vWP(PO) 0.026 0.103 0.193 0.464 0.904 2.753
VP sum 0.051 0.191 0.345 0.765 1.383 3.649
vg(PO) —0.044 —0.250 —0.490 —1.085 —1.789 —3.741
vse(A) —3.242 —1.293 —0.764 —0.436 —0.428 —0.639
vse(B) —276.505  —234.853  —240.151  —231.345 —229.325 —218.932
vse(C) 8.916 9.011 9.232 9.289 9.380 9.360
vs(D) —0.004 —0.041 —0.076 —0.157 —0.240 —-0.391
vs(E) 271.178 227.228 231.548 221.828 219.201 208.095
SE sum 0.299 —0.198 —0.701 —1.906 —3.201 —6.248
QED 0.350 —0.007 —0.356 -1.141 —1.818 —2.599
yBW —0.047 —-0.212 —0.441 —1.327 —3.068 —11.643

and is tabulated in the first row of Table II. Figure&®?2and . .
2(c) lead to the “perturbed orbital{PO) terms, where the VSE(PO)=J d3xf d3y[ 4, (X)Z(X,Y;€,) ¥ (Y)
perturbed orbital is defined as -
%0 v YO (XY €,) ¥, (V)] (17)
Ui(1)= 2 gi(r) ev_'”ei. 13 where
If the Uehling potential is defined as . L[ dk ek (=) -
3(xy;E)=—ie 2" — < YuSF(X,Y;E—ko) y*.
@? 1 yA(1-y23) ™) Kk°+id a8
Vv = [ ay——— 18
ve(r) 2220 y 1-y2
o The self-energy functiol is defined im=4— e dimensions
e [2mx—r|/V(1-g?] [ Zets(%) to regulate ultraviolet divergences and a self-mass counter-
xf d3x — Vi , (19 term is assumed. The calculation then reduces to the kind of
[x—r] self-energy calculation described in REf4], and results are
o o tabulated in the fourth row of Table II.
the PO contributions to vacuum polarization are The vertex diagram of Fig.(B) is given by
PO = [ Tl U1 i) g, [ €O
Ev——477|af d*xd°yd zj 2" mzﬁv(x)yﬂ

YL Uyp(1) 1, (D], (15 .. L ;
X Se(X,Y; €,~ ko) V(Y)Se(Y.z; €, — Ko) v 14,(2).
and are tabulated in the second row of Table Il. Higher-order (19
corrections to vacuum polarization, known as the Wichmann-

Kroll terms[1], are very small in neutral atoms and will not i 5 spectral decomposition of the two-electron propagators
be considered here. We note that for bath"(V) and  is made and thek integration carried out analytically, an

v/"(PO), the first term in th&« expansion is 3/8(Za)Er  alternative form for the vertex term results
[7], which for Z=3 is 0.0258/wEg, in close agreement

with our results for lithium. The sum of the two vacuum

polarization contributions are tabulated in the third row of X

Table II.

Turning now to the more complicated self-energy calcula- -X
tion, we break it up into six parts,

vSE=1SHPO) + vSHA) + vS5B) + vSH C) + vSH D)

+ vSKE). (16) 2 b ¢

FIG. 3. Feynman diagrams for the self-energy corrections to
The simplest part of this is the PO term, which comes fromhyperfine splitting. The dashed line terminated with a cross indi-
Figs. 3a) and 3c), and can be written as cates a hyperfine interaction.
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_ dko The vertex term can be rendered finite by subtracting
Ev:|% on the same form with the bound-state propagators replaced by
free propagators, E,=[E,—E,(free)]+ E,(free)=AE,
VinnGonmo (Ko) +v5§A). This gives rise to therS{A)=E,(free) term

(20

><[e,}—ko— em(1—id)][e,—ko—€n(1—=18)]" which is evaluated in momentum space,

n

s B ) Poud? d 1 — . 1 I 1 u -
v E(A)——47Tlaf P2 Plf(ZT)nszm l//u(pz)?’ﬂ—_mV(Pz—Pl)—)’ ¥, (P1), (21)

po—k p1—k—m
where the Fourier transform M(F) is given by

- -

- . - uX(g
V(g)=iey ——. (22
87°ql?

Standard manipulations allow tlf'k integration to be performed, with the result

s a |C o 1 1 3 3. 7 /2 g g g 2
VA =5 e L Bem 5| pde | dx | dPpad pa(P2) V(P2 Pt (PINA, /M)
o 1 1 3 3. — > R
+ [ Voo [ ax [ Fpdpu BN, B0, 23
0 0
|
whereC= (4m) " (1+ ¢), whereA, is 1 if the statd has been encircled, 1/2 if a semi-
circle is used to circumvent it, and O otherwise. We have
A =p2E2+p(m2—E2)+pr)2+p(1—x)|52 suppressed a double-pole term associated with the case of
v ! 2 m=n in Eq. (20) that will be combined with those from the
— pAIxp1+(1—X)p,|?, (24)  “side” diagrams, Figs. 8a) and 3c), discussed below. The
calculation ofvS§B) is carried out with finite basis set tech-
and nigues[21], with the main numerical concern being making
the basis set large enough so that all bound states are repre-
- sented accurately. Results are tabulated in the sixth row of
N, =7, {2l 1= p(1=X)] = p1px+miV(a){ps(1—px) Table II.
— Pop(1—X) +m}yH. (25) Turning back to the side diagrams of Figga)3and 3c),

we note that they give rise to the already treated PO terms,

The first term in Eq(23) is ultraviolet divergent and will be Put in addition contribute the term
shown to cancel in the following. The remaining finite parts
of vS§A) are readily evaluated numerically, and results for .
this term are tabulated in the fifth row of Table II. o s o o [ A% eMOTA_

The “subtracted” termAE, is evaluated in coordinate ES_47T'aEFf d*xd%yd*z Wm‘pv(x)
space, with thek, integration done numerically after the
Wick rotation kg—iw. Evaluation of this term will be dis- % (Ve — V7 — b (7
cussed later. Here, we note that the Wick rotation surrounds VuSe(XYie, ~ka) oSty Zi, ko) Y4 (2),
poles when bound-state propagators are present and leads to (27)
the extra expression

m=n which accounts for the change in the self-energy from the
VSEBY=— > Amgv“mv(fv_fm)vm“ shift in the energy due to hfs. As with the vertex term, we
mn €~ €m first subtract a term with the bound-state electron propaga-
m#n tors replaced with free-electron propagators such that
-3 Angvnmv(fv en)an’ (26) —AEst »S¥C). This gives, in momentum space, the contri-
mn €m— €n bution
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alC general sees a highly screened nuclear charge. It is also clear
SR C)=— = 1}EF from this work that while it is a good approximation to use
the Schwinger correction for lithium, by the time sodium is
a 1 3 — = - ) considered, the effect already almost cancels between
+ ZEFL pdf’f d°pi,(P) Yo (P)IN(AS/MT)  yacum polarization and self-energy, and in the case of ce-
sium, the effect is opposite in sign to, and four times larger
@ 1 3= = - than the Schwinger correction.
+ EEFJ’O pdf’f d”pi, (P2)Ns#, (P)(1/As), WhereasEr for a one-electron atom or ion accounts for
all nonradiative corrections, in the many-electron case, both
(28)  the Hartree-Fock potentifi22] and the Kohn-Sham potential
used here tend to understate the hfs significantly in lowest-
order calculations. This complicates the discussion of radia-
tive corrections, which are much smaller than the difference
between theory and experiment. Indeed, as shown in Table I,
even with the first-order correction't included, theory is
still quite different from experiment, as can be seen from the
Ng= 1y, [P(1—p)+m]yo[ P(1—p)+m]y*. (30) te_rmAExpt, which shpuld be roughly equal to the size of the
a higher-order correlation corrections termfc+ neglected
The divergent term in Eq(28) cancels with the divergent here. We have chosen to present our results in terms of
term in Eq.(23) and the finite parts 0§ C) are tabulated @/7Eg. While E¢ is smaller than experiment for the Kohn-
in the seventh row of Table II. Sham potential, we consider it likely that the approximation
We perform a Wick rotation on the “subtracted” term of replacing Ex with the full hfs (i.e., Ep=»®+p'F
AE, which leads to a derivative term when double poles aret ¥**+) is a good one, though proof of this would involve
encircled. There are also double-pole terms from the necomplex higher-order calculations that include correlation
glected vertex term mentioned above, and we combine ther@nd QED together.
into It would clearly be of interest to compare with experiment
and determine whether the radiative corrections calculated
S _ , here are indeed present. In fact, in the one case, lithium,
v E(D)_%: AnGumm (€~ €m)(Vmm=Viw)  BD \yhere accurate wave functions are available, the calculated
2s hfs[23] differs from experiment by only 93 ppm, a factor
tabulated in the eighth row of Table II. of 10 smaller than the Schwinger term, which clearly indi-
A complication in bound-state calculations of radiative cates its presence. However, it should be cautioned that the
corrections is the presence of singularities associated withame calculation also gives a 3s hfs, which disagrees with
the propagator, when represented as a sum over states, bemgoeriment by a factor of 14 times the Schwinger correction.
degenerate in energy with the valence state. As in our previAs for the other alkali metals, calculations of many-body
ous work[12], we regulate this singularity by changing the corrections tdEg are much less precise, making it impossible
valence energy by a factor-16. It is present in the Wick- to detect radiative corrections to hfs in these atoms at the
rotated vertex and side “subtracted” termsE, and AE;, ~ Present moment. Indeed, a many-body treatmeifit-ofising
but cancels in the sum. For this reason we evaluate theg@upled-cluster theory with single-double excitations was
terms together in coordinate space with partial wave exparshown in Ref.[20] to be quite inaccurate, and while the
sions. The combined results are tabulated in the ninth row dnclusion of a set of triple excitations in the same work im-
Table Il as thevSYE) term. The summed self-energy results proved the agreement between theory and experiment to the
shown in the tenth row of Table Il, together with the vacuuml percent level, further extensions of the method are clearly
polarization results shown in the third row, constitute theneeded. It is notable that the highest claimed accuracy for
radiative corrections to the ground-state hfs of the alkali metParity nonconserving transitions in cesi{ig#], a calculation

where
As=p*(€;=p?)+p(M = €+ p?) (29

and

als and are the principal results of this paper. into which extensive efforts have been made, is 0.5 percent,
which is still too large for our purpose. Therefore, the radia-
V. DISCUSSION tive corrections calculated here for the heavier alkali metals,

while relatively large, cannot, with present many-body meth-
We first compare our radiative correction results shown inods, be said to be definitely present.

the eleventh row of Table Il to those obtained for hydrogenic Even when many-body methods improve in accuracy, it
ions[4]. Those results, which were extended dowrZte 1 may still be difficult to detect the radiative corrections cal-
in Ref.[8], showed that the QED correction starts off closeculated here because of the question of the distribution of
to al2wEg, reduces in magnitude until it changes signnuclear magnetism. In the last row of Table Il, the contribu-
aroundZ=10, and then goes more and more negative. Thigions vEW, first shown in Table I in units of MHz, are pre-
behavior persists in the neutral alkali metals considered hersented in units ot/ wEg . It can be seen that they are com-
which is not surprising considering that hfs is a short-parable to the QED corrections calculated here. As our
distance effect that should be sensitive to the overall nucleaterivation of v2" was fairly unsophisticated, it is thus pos-
charge despite the fact that the electronic wave function irsible that the same situation encountered in highly-charged
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bismuth ions discussed in the introduction, where uncertainthe application of the next generation of many-body tech-
ties in the distribution of nuclear magnetism mask QED ef-niques to two or more states of the same atom. Further ex-
fects, will be encountered for the neutral alkali metals. How-perimental work on accurate determinations of hyperfine in-
ever, as pointed out in Refsl1] and[12], having more than tervals of excited states of the alkali metals would be of
one hyperfine interval to compare with theory allows thisconsiderable value for such an approach.

uncertainty to be greatly minimized or even completely
avoided. While the additional hfs in the case?81Bi®?" was

not measured with sufficiently high accuracy to be sensitive
to radiative corrections, for the neutral alkali metals there are
usually several accurately measured excited state hyperfine The work of J.S. was supported in part by NSF Grant No.
intervals. As the many-body techniques used for the accurateHY-0097641. The work of K.T.C. was performed under the
calculation of the ground-state hfs are just as applicable tauspices of the U.S. Department of Energy at the University
excited-state hfs, the most promising method to unambiguef California, Lawrence Livermore National Laboratory un-
ously detect the large radiative corrections calculated here ider Contract No. W-7405-ENG-48.

ACKNOWLEDGMENTS

[1] E. Wichmann and N. Kroll, Phys. Re%01, 343(1956. [12] J. Sapirstein and K.T. Cheng, Phys. Re\63\ 032506(2001).

[2] G.E. Brown and D.F. Mayers, Proc. R. Soc. London, Ser. A[13] P. Beiersdorfer, A.L. Osterheld, J.H. Scofield, J.R. Crespo
251, 105(1959. Lopez-Urritia, and K. Widmann, Phys. Rev. Le80, 3022

[3] U.D. Jentschura, P.J. Mohr, and G. Soff, Phys. Rev. 18#t. (1998.
53(1999. [14] J. Sapirstein and K.T. Cheng, Phys. Re6& 042501(2002.

[4] H. Persson, S.M. Schneider, W. Greiner, G. Soff, and I.[15] In Table of Isotopes8th ed., edited by R.B. Firestone and
Lindgren, Phys. Rev. Lett76, 1433 (1996; S.A. Blundell, V. S. Shirley(Wiley, New York, 1998.
K.T. Cheng, and J. Sapirstein, Phys. Re\b3 1857 (1997); [16] W.R. Johnson and G. Soff, At. Data Nucl. Data Tal88s405
V.M. Shabaev, M. Tomaselli, T. K, A.N. Artemyev, and (1985.
V.A. Yerokhin, ibid. 56, 252 (1997). [17] G.H. Fuller and V.W. Cohen, Nucl. Data, Sect. 3\ 433

[5] I. Klaft, S. Borneis, T. Engel, B. Fricke, R. Grieser, G. Huber, (1969.
T. Kuhl, D. Marx, R. Neumann, S. Schier, P. Seelig, and L. [18] A. Cocet al, Phys. Lett.163B, 66 (1985.

Volker, Phys. Rev. Lett73, 2425(1994). [19] A. Derevianko, Phys. Rev. A5, 012106(2000.
[6] J. Schwinger, Phys. ReV5, 898 (1949. [20] M.S. Safronova, W.R. Johnson, and A. Derevianko, Phys. Rev.
[7] N. Kroll and F. Pollack, Phys. Re84, 594(1951); R. Karplus, A 60, 4476(1999.
A. Klein, and J. Schwingeiipid. 84, 597 (1951). [21] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A
[8] S.A. Blundell, K.T. Cheng, and J. Sapirstein, Phys. Rev. Lett. 37, 307 (1988.
78, 4914(1997). [22] W.R. Johnson, M. Idrees, and J. Sapirstein, Phys. Re85,A
[9] A. Bohr and V.F. Weisskopf, Phys. Rex7, 94 (1950. 3218(1987.
[10] M. Tomaselli, T. Kihl, P. Seelig, G. Holbrow, and E. [23] Zong-Chao Yan, D.K. McKenzie, and G.W.F. Drake, Phys.
Kankeleit, Phys. Rev. G8, 1524(1998. Rev. A54, 1322(1996.
[11] V.M. Shabaev, M.B. Shabaeva, I.I. Tupitsyn, and V.A. Yer- [24] V.A. Dzuba, V.V. Flambaum, and J.S.M. Ginges, e-print
okhin, Hyperfine Interactl14, 129(1998. hep-th/0204134.

022512-7



