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Calculation of radiative corrections to hyperfine splittings in the neutral alkali metals
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The radiative correction to hyperfine splitting in hydrogen is dominated by the Schwinger term,a/2p EF ,
whereEF is the lowest-order hyperfine splitting. Binding corrections to this term, which enter as powers and
logarithms of Za, can be expected to be increasingly important in atoms with higher nuclear chargeZ.
Methods that include all orders ofZa, developed first to study highly charged ions, are adapted to the study of
the neutral alkali metals, lithium through francium. It is shown that the use of the Schwinger term alone to
account for radiative corrections to hyperfine splittings becomes qualitatively incorrect for the heavier alkali
metals.
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I. INTRODUCTION

The study of radiative corrections in atoms and ions ha
lengthy history. It was realized early on by Wichmann a
Kroll @1# for vacuum polarization and by Brown and Maye
@2# for the self-energy that the power series expansion inZa
used in the study of the Lamb shift in hydrogen would co
verge slowly at highZ, and they studied the Lamb shift to a
orders ofZa using exact Dirac-Coulomb propagators. Th
approach has been developed to an extremely precise
over the years by Mohr and collaborators, culminating in
recent work in which the one-loop self-energy of neutral h
drogen has been evaluated to an accuracy of 1 Hz@3#.

More recently the numerical techniques first applied to
Lamb shift have been extended to the study of radiative c
rections to hyperfine splittings~hfs! @4#, which enter as pow-
ers of a multiplying the lowest-order hfs energyEF . Mea-
surements of the ground-state hfs in hydrogenlike ions s
as 209Bi821 @5# also make all-order studies of binding corre
tions to the leading Schwinger term@6#, a/2pEF , of inter-
est. As could be expected from the formula that includ
first-order binding corrections@7#,

n5EFF a

2p
1Za2S ln 22

5

2D G , ~1!

which changes sign nearZ512, the use of the Schwinge
term alone, which gives a constant value of10.5 in units of
a/p EF , to describe radiative corrections to hfs is quali
tively incorrectly for mid- to high-Z ions. Indeed, for hydro-
genlike bismuth, the inclusion of the leading binding corre
tion in Eq.~1! gives22.94 in the same units, while the exa
calculations further change the result to22.23 @4#. We note
that were the next term in theZa expansion@8# to be used
for hydrogenlike bismuth, a completely incorrect value
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12.62 would result, so the rough agreement of the ex
calculation with the first two terms of theZa expansion is
accidental.

The confirmation of this striking effect has unfortunate
been obscured by nuclear physics uncertainties: the la
overlap of the electron with the nucleus of a high-Z ion leads
to a Bohr-Weisskopf~BW! contribution @9#, which comes
from the finite distribution of the nuclear magnetization cu
rent, about twice as large as the quantum electrodyna
~QED! correction. In fact, one nuclear calculation of th
effect for the ground-state hfs of209Bi821 leads to agreemen
with experiment only if the QED correction is neglecte
@10#. It is possible to greatly reduce the nuclear physics
certainty by also measuring the ground-state hfs in lithiu
like bismuth, a point made in Ref.@11#. In that paper, the
measurement of the 1s hfs of hydrogenlike bismuth was
used to make an unambiguous prediction of the 2s hfs of
lithiumlike bismuth: these results were confirmed in R
@12#. The ground-state hfs for lithiumlike bismuth has be
measured in an EBIT experiment@13#, but with a precision
too low to detect the radiative corrections.

In this paper, we apply the techniques developed to c
culate radiative corrections to hfs in lithiumlike bismuth
the ground-state hfs of neutral alkali metals. This parall
the approach of a previous paper@14#, where we extended
techniques for the evaluation of the Lamb shift in high
charged ions to the same atoms. Whereas in that pape
radiative corrections to the Lamb shift were quite small, o
main result here is that for the heavier alkali metals, a s
nificant enhancement of the Schwinger correction is pres
sufficiently large so that it cannot be ignored in accur
calculations of hfs.

II. THEORY

Our calculations are carried out in Furry representat
QED with a local potential based on density-function
theory, the Kohn-Sham potential, given by
©2003 The American Physical Society12-1
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TABLE I. One-photon exchange contributions to hfs in the alkali metals.DExpt is the difference between
theory ~Sum! and experiment and Breit-QED is the difference betweenn1E and first-order MBPT: Units
MHz.

7Li 23Na 39K 87Rb 133Cs 212Fr

Nuclear moment 3.25643 2.21752 0.391466 2.75182 2.58203 4.6
Nuclear spin 3/2 3/2 3/2 3/2 7/2 5
Experiment 803.504a 1771.631a 461.720a 6834.683a 9192.632a 36257b

n (0) 725.056 1499.042 343.478 4886.320 6164.831 3146
nBW 20.079 20.737 20.352 215.062 243.936 2851
n1E 44.631 134.506 53.305 1064.727 1687.852 14600
Sum 769.608 1632.811 396.431 5935.985 7808.747 4521
DExpt 33.896 138.820 65.289 898.698 1383.885 28959
1st-order MBPT 44.549 134.187 53.255 1065.925 1694.332 1474
Breit-QED 0.082 0.319 0.050 21.198 26.480 2143

aReference@17#.
bReference@18#.
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U~r !52
Ze f f~r !a

r
, ~2!

with

Ze f f~r !5Znuc~r !2r E dr8
1

r .
r t~r 8!1

2

3 F81rr t~r !

32p2 G1/3

,

~3!

wherer t(r ) is the total charge density. To maintain the co
rect asymptotic limit of Ze f f(r )→1 for neutral atoms,
Ze f f(r ) is set to 1 once the above formula reduces to t
value at larger. Natural units in which\5c51 are used
here.

The matrix element of the hyperfine interaction is defin
as

Vi j [E d3r c̄ i~rW !V~rW !c j~rW !, ~4!

with

V~rW !52egW •AW ~rW !52egW •
mW 3rW

4pr 3
FBW~r !. ~5!

The lowest-order hfs of a valence statev can then be ob-
tained fromVvv asEF5n (0)5Vvv(2I 11)/I , whereI is the
nuclear spin and we have used the fact that we consider
s states here.

The functionFBW(r ) models the distribution of nuclea
magnetism. It will be taken to be unity for all calculation
except the lowest-order one. As noted above, uncertaintie
this distribution play an important role in highly charge
hydrogenlike and lithiumlike bismuth, and we will discuss
role in the neutral alkali metals in the conclusion. Here
simply take a uniform distribution,

FBW~r !5H ~r /R!3 r ,R

1 r>R,
~6!
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with R chosen to give the same root-mean-square~rms! ra-
dius as the charge distribution. We take the nuclear mom
from the table of isotopes@15# and the rms radii from the
compilation of Johnson and Soff@16#. Nuclear moments,
spins, and experimental hfs for the atoms considered here
tabulated in the first three rows of Table I. The experimen
values are all taken from Ref.@17# with the exception of
francium @18#.

We now define the hyperfine splitting as

n5n (0)1nBW1n1E1n2E11nVP1nSE. ~7!

The first termn (0) in Eq. ~7! is the lowest-order hfs with
FBW51, and the second termnBW accounts for the chang
when the uniform magnetization distribution describ
above is used. They are tabulated in the fourth and fifth ro
of Table I, respectively. The following termn1E includes the
effect of one-photon exchange on hfs and is calculated in
following section. Higher-order correlation corrections wi
two- and more-photon exchanges are given inn2E1, which
plays an important role in comparing theory and experim
that will be discussed in the conclusion. The last two term
vacuum polarizationnVP and self-energynSE contributions to
hfs, are the main focus of this paper and will be treated
Sec. IV.

III. ONE-PHOTON EXCHANGE

In this section, we calculate the QED counterpart of fir
order many-body perturbation theory~MBPT!, and show that
the result is close to, but for the heavier alkali metals noti
ably different from, MBPT. The use of a non-Coulomb loc
potentialU(r ) leads to a counter potentialŨ(r ) in perturba-
tion calculations,

Ũ~r !5@Znuc~r !2Ze f f~r !#a/r . ~8!

First-order correlation diagrams from the counter poten
and one-photon exchange are shown in Fig. 1 and the a
ciated formulas are
2-2
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gi jkl ~E![aE d3x d3y
eiAE21 iduxW2yW u

uxW2yW u
c̄ i~xW !gmck~xW !

3c̄ j~yW !gmc l~yW !, ~10!

and g8(E)5dg/dE. Herev and a refer to the valence and
core states, respectively, and the sum overi ranges over both
positive- and negative-energy states. The excluded casi
Þv and iÞa are associated with the last two ‘‘derivative
terms. The indicated summations overw andb in these terms
range only over the magnetic quantum number, with
states otherwise being identical withv and a, respectively.
The numerical evaluation ofn1E is straightforward, and re
sults are presented in the sixth row of Table I. The sums
theoretical results up to this point are tabulated in the seve
row of Table I, while their differences with experiment a
shown in the eighth row asDExpt, which are dominated by
higher-order correlation corrections and should closely
proximate then2E1 term.

The one-photon exchange matrix elementn1E is defined
in Feynman gauge in Eq.~9!. Because we are using a loc
potential, results are gauge independent and are equivale
the Coulomb gauge ones. Were that gauge to be used, t
verse photon exchange neglected, and only positive-en

FIG. 1. Feynman diagrams for the one-photon exchange cor
tions to hyperfine splitting. The dashed line terminated with a cr
indicates a hyperfine interaction and the symbol^ represents the
counter potential. Exchange diagrams between the core and va
electrons are not shown here.
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states summed over, the results of first-order MBPT wo
be recovered: this exercise is carried out and results
shown in the ninth row of Table I. The difference betwe
n1E and first-order MBPT is tabulated in the last row
Table I as the Breit-QED term. This difference involves
number of effects, some of which could be incorporated i
an MBPT treatment by inclusion of the instantaneous B
interaction, and others which are field theoretic in orig
involving both the effect of negative-energy states and re
dation in the transverse photon exchange term. We do
separate the various effects. While quite small for the lig
alkali metals, this difference becomes important for t
heavier alkali metals. The fact that the Breit interaction giv
significant contributions to hfs for the heavier alkali meta
has also been noted in Refs.@19# and @20#. We now turn to
the calculation of radiative corrections.

IV. RADIATIVE CORRECTIONS

The diagrams representing vacuum polarization~VP! con-
tributions to hfs are shown in Fig. 2. We break this term
as

nVP5nVP~V!1nVP~PO!. ~11!

The first term, corresponding to Fig. 2~b!, is referred to as a
vertex ~V! correction. It is given by

nVP~V!5
ea

3p
E

0

1

dx
x~122x!~322x!

12x
E d3rcv

†~rW !aW •AW ~rW !

3cv~rW !e2
(mr)

Ax(12x) F11
mr

Ax~12x!
G ~12!

c-
s

nce
FIG. 2. Feynman diagrams for the vacuum polarization corr

tions to hyperfine splitting. The dashed line terminated with a cr
indicates a hyperfine interaction.
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TABLE II. Vacuum polarization~VP! and self-energy~SE! contributions to hfs in the alkali metals. QED
is the sum of VP and SE: Units (a/p)EF .

7Li 23Na 39K 87Rb 133Cs 212Fr

nVP(V) 0.025 0.088 0.152 0.301 0.479 0.896
nVP(PO) 0.026 0.103 0.193 0.464 0.904 2.753
VP sum 0.051 0.191 0.345 0.765 1.383 3.649
nSE(PO) 20.044 20.250 20.490 21.085 21.789 23.741
nSE(A) 23.242 21.293 20.764 20.436 20.428 20.639
nSE(B) 2276.505 2234.853 2240.151 2231.345 2229.325 2218.932
nSE(C) 8.916 9.011 9.232 9.289 9.380 9.360
nSE(D) 20.004 20.041 20.076 20.157 20.240 20.391
nSE(E) 271.178 227.228 231.548 221.828 219.201 208.095
SE sum 0.299 20.198 20.701 21.906 23.201 26.248
QED 0.350 20.007 20.356 21.141 21.818 22.599
nBW 20.047 20.212 20.441 21.327 23.068 211.643
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nn
t

t
m
o

la

om

ter-
d of

ors
n

to
di-
and is tabulated in the first row of Table II. Figures 2~a! and
2~c! lead to the ‘‘perturbed orbital’’~PO! terms, where the
perturbed orbital is defined as

c ṽ~rW ![(
i

iÞv

c i~rW !
Viv

ev2e i
. ~13!

If the Uehling potential is defined as

UVP~r ![
a2

4p2E
0

1

dy
y2~12y2/3!

12y2

3E d3x
e2 [2muxW2rWu/A(12g2)]

uxW2rWu
¹W x

2FZe f f~x!

x
G , ~14!

the PO contributions to vacuum polarization are

nVP~PO!5E d3r @cv
†~rW !UVP~r !c ṽ~rW !

1c ṽ
†
~rW !UVP~r !cv~rW !#, ~15!

and are tabulated in the second row of Table II. Higher-or
corrections to vacuum polarization, known as the Wichma
Kroll terms @1#, are very small in neutral atoms and will no
be considered here. We note that for bothnVP(V) and
nVP(PO), the first term in theZa expansion is 3/8a(Za)EF
@7#, which for Z53 is 0.0258a/pEF , in close agreemen
with our results for lithium. The sum of the two vacuu
polarization contributions are tabulated in the third row
Table II.
Turning now to the more complicated self-energy calcu
tion, we break it up into six parts,

nSE5nSE~PO!1nSE~A!1nSE~B!1nSE~C!1nSE~D !

1nSE~E!. ~16!

The simplest part of this is the PO term, which comes fr
Figs. 3~a! and 3~c!, and can be written as
02251
r
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nSE~PO!5E d3xE d3y@c̄v~xW !S~xW ,yW ;ev!c ṽ~yW !

1c̄ ṽ~xW !S~xW ,yW ;ev!cv~yW !#, ~17!

where

S~xW ,yW ;E!52 ie2E dnk

~2p!n

eikW•(xW2yW )

k21 id
gmSF~xW ,yW ;E2k0!gm.

~18!

The self-energy functionS is defined inn542e dimensions
to regulate ultraviolet divergences and a self-mass coun
term is assumed. The calculation then reduces to the kin
self-energy calculation described in Ref.@14#, and results are
tabulated in the fourth row of Table II.

The vertex diagram of Fig. 3~b! is given by

Ev524p iaE d3xd3yd3zE dnk

~2p!n

eikW•(xW2zW)

k21 id
c̄v~xW !gm

3SF~xW ,yW ;ev2k0!V~yW !SF~yW ,zW;ev2k0!gmcv~zW !.

~19!

If a spectral decomposition of the two-electron propagat
is made and thed3k integration carried out analytically, a
alternative form for the vertex term results

FIG. 3. Feynman diagrams for the self-energy corrections
hyperfine splitting. The dashed line terminated with a cross in
cates a hyperfine interaction.
2-4
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Ev5 i(
mn

E dk0

2p

3
Vmngvnmv~k0!

@ev2k02em~12 id!#@ev2k02en~12 id!#
. ~20!
rts
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e

nd
d

02251
The vertex term can be rendered finite by subtract
the same form with the bound-state propagators replace
free propagators, Ev5@Ev2Ev(free)#1Ev(free)5DEv
1nSE(A). This gives rise to thenSE(A)5Ev(free) term
which is evaluated in momentum space,
nSE~A!524p iaE d3p2d3p1E dnk

~2p!n

1

k21 id
c̄v~pW 2!gm

1

p” 22k”2m
V~pW 22pW 1!

1

p” 12k”2m
gmcv~pW 1!, ~21!

where the Fourier transform ofV(rW) is given by

V~qW !5 iegW •
mW 3qW

8p3uqW u2
. ~22!

Standard manipulations allow thednk integration to be performed, with the result

nSE~A!5
a

2p FC

e
21GEF2

a

2pE0

1

rdrE
0

1

dxE d3p2d3p1c̄v~pW 2!V~pW 22pW 1!cv~pW 1!ln~Dv /m2!

1
a

4pE0

1

rdrE
0

1

dxE d3p2d3p1c̄v~pW 2!Nvcv~pW 1!~1/Dv!, ~23!
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whereC5(4p)e/2G(11e),

Dv5r2E21r~m22E2!1rxpW 1
21r~12x!pW 2

2

2r2uxpW 11~12x!pW 2u2, ~24!

and

Nv5gm$p” 2@12r~12x!#2p” 1rx1m%V~qW !$p” 1~12rx!

2p” 2r~12x!1m%gm. ~25!

The first term in Eq.~23! is ultraviolet divergent and will be
shown to cancel in the following. The remaining finite pa
of nSE(A) are readily evaluated numerically, and results
this term are tabulated in the fifth row of Table II.

The ‘‘subtracted’’ termDEv is evaluated in coordinate
space, with thek0 integration done numerically after th
Wick rotation k0→ iv. Evaluation of this term will be dis-
cussed later. Here, we note that the Wick rotation surrou
poles when bound-state propagators are present and lea
the extra expression

nSE~B!52 (
mn

mÞn

Am

gvnmv~ev2em!Vmn

en2em

2 (
mn

mÞn

An

gvnmv~ev2en!Vmn

em2en
, ~26!
r

s
s to

whereAi is 1 if the statei has been encircled, 1/2 if a sem
circle is used to circumvent it, and 0 otherwise. We ha
suppressed a double-pole term associated with the cas
m5n in Eq. ~20! that will be combined with those from th
‘‘side’’ diagrams, Figs. 3~a! and 3~c!, discussed below. The
calculation ofnSE(B) is carried out with finite basis set tech
niques@21#, with the main numerical concern being makin
the basis set large enough so that all bound states are r
sented accurately. Results are tabulated in the sixth row
Table II.

Turning back to the side diagrams of Figs. 3~a! and 3~c!,
we note that they give rise to the already treated PO ter
but in addition contribute the term

Es54p iaEFE d3xd3yd3zE dnk

~2p!n

eikW•(xW2zW)

k21 id
c̄v~xW !

3gmSF~xW ,yW ;ev2k0!g0SF~yW ,zW;ev2k0!gmcv~zW !,

~27!

which accounts for the change in the self-energy from
shift in the energy due to hfs. As with the vertex term, w
first subtract a term with the bound-state electron propa
tors replaced with free-electron propagators such thatEs

5DEs1nSE(C). This gives, in momentum space, the cont
bution
2-5
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nSE~C!52
a

2pFC

e
21GEF

1
a

2p
EFE

0

1

rdrE d3pc̄v~pW !g0cv~pW !ln~Ds /m2!

1
a

4p
EFE

0

1

rdrE d3pc̄v~pW 2!Nscv~pW !~1/Ds!,

~28!

where

Ds5r2~ev
22pW 2!1r~m22ev

21pW 2! ~29!

and

Ns5gm@p” ~12r!1m#g0@p” ~12r!1m#gm. ~30!

The divergent term in Eq.~28! cancels with the divergen
term in Eq.~23! and the finite parts ofnSE(C) are tabulated
in the seventh row of Table II.

We perform a Wick rotation on the ‘‘subtracted’’ term
DEs which leads to a derivative term when double poles
encircled. There are also double-pole terms from the
glected vertex term mentioned above, and we combine th
into

nSE~D !5(
m

Amgvmmv8 ~ev2em!~Vmm2Vvv! ~31!

tabulated in the eighth row of Table II.
A complication in bound-state calculations of radiati

corrections is the presence of singularities associated
the propagator, when represented as a sum over states,
degenerate in energy with the valence state. As in our pr
ous work@12#, we regulate this singularity by changing th
valence energy by a factor 12d. It is present in the Wick-
rotated vertex and side ‘‘subtracted’’ termsDEv and DEs ,
but cancels in the sum. For this reason we evaluate th
terms together in coordinate space with partial wave exp
sions. The combined results are tabulated in the ninth row
Table II as thenSE(E) term. The summed self-energy resu
shown in the tenth row of Table II, together with the vacuu
polarization results shown in the third row, constitute t
radiative corrections to the ground-state hfs of the alkali m
als and are the principal results of this paper.

V. DISCUSSION

We first compare our radiative correction results shown
the eleventh row of Table II to those obtained for hydroge
ions @4#. Those results, which were extended down toZ51
in Ref. @8#, showed that the QED correction starts off clo
to a/2pEF , reduces in magnitude until it changes si
aroundZ510, and then goes more and more negative. T
behavior persists in the neutral alkali metals considered h
which is not surprising considering that hfs is a sho
distance effect that should be sensitive to the overall nuc
charge despite the fact that the electronic wave function
02251
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general sees a highly screened nuclear charge. It is also
from this work that while it is a good approximation to us
the Schwinger correction for lithium, by the time sodium
considered, the effect already almost cancels betw
vacuum polarization and self-energy, and in the case of
sium, the effect is opposite in sign to, and four times larg
than the Schwinger correction.

WhereasEF for a one-electron atom or ion accounts f
all nonradiative corrections, in the many-electron case, b
the Hartree-Fock potential@22# and the Kohn-Sham potentia
used here tend to understate the hfs significantly in low
order calculations. This complicates the discussion of rad
tive corrections, which are much smaller than the differen
between theory and experiment. Indeed, as shown in Tab
even with the first-order correctionn1E included, theory is
still quite different from experiment, as can be seen from
termDExpt, which should be roughly equal to the size of t
higher-order correlation corrections termn2E1 neglected
here. We have chosen to present our results in terms
a/pEF . While EF is smaller than experiment for the Kohn
Sham potential, we consider it likely that the approximati
of replacing EF with the full hfs ~i.e., EF5n (0)1n1E

1n2E1) is a good one, though proof of this would involv
complex higher-order calculations that include correlat
and QED together.

It would clearly be of interest to compare with experime
and determine whether the radiative corrections calcula
here are indeed present. In fact, in the one case, lithi
where accurate wave functions are available, the calcula
2s hfs@23# differs from experiment by only 93 ppm, a facto
of 10 smaller than the Schwinger term, which clearly ind
cates its presence. However, it should be cautioned that
same calculation also gives a 3s hfs, which disagrees w
experiment by a factor of 14 times the Schwinger correcti
As for the other alkali metals, calculations of many-bo
corrections toEF are much less precise, making it impossib
to detect radiative corrections to hfs in these atoms at
present moment. Indeed, a many-body treatment ofEF using
coupled-cluster theory with single-double excitations w
shown in Ref.@20# to be quite inaccurate, and while th
inclusion of a set of triple excitations in the same work im
proved the agreement between theory and experiment to
1 percent level, further extensions of the method are cle
needed. It is notable that the highest claimed accuracy
parity nonconserving transitions in cesium@24#, a calculation
into which extensive efforts have been made, is 0.5 perc
which is still too large for our purpose. Therefore, the rad
tive corrections calculated here for the heavier alkali met
while relatively large, cannot, with present many-body me
ods, be said to be definitely present.

Even when many-body methods improve in accuracy
may still be difficult to detect the radiative corrections ca
culated here because of the question of the distribution
nuclear magnetism. In the last row of Table II, the contrib
tions nBW, first shown in Table I in units of MHz, are pre
sented in units ofa/pEF . It can be seen that they are com
parable to the QED corrections calculated here. As
derivation ofnBW was fairly unsophisticated, it is thus pos
sible that the same situation encountered in highly-char
2-6
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bismuth ions discussed in the introduction, where uncert
ties in the distribution of nuclear magnetism mask QED
fects, will be encountered for the neutral alkali metals. Ho
ever, as pointed out in Refs.@11# and@12#, having more than
one hyperfine interval to compare with theory allows th
uncertainty to be greatly minimized or even complete
avoided. While the additional hfs in the case of209Bi821 was
not measured with sufficiently high accuracy to be sensi
to radiative corrections, for the neutral alkali metals there
usually several accurately measured excited state hype
intervals. As the many-body techniques used for the accu
calculation of the ground-state hfs are just as applicable
excited-state hfs, the most promising method to unamb
ously detect the large radiative corrections calculated her
. A
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er,
.

et

.

r-

02251
n-
-
-

e
e
ne
te
to
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is

the application of the next generation of many-body te
niques to two or more states of the same atom. Further
perimental work on accurate determinations of hyperfine
tervals of excited states of the alkali metals would be
considerable value for such an approach.
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