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Exact density matrix for a two-electron model atom and approximate proposals
for realistic two-electron systems

C. Amovilli* and N. H. Marck?®
1Dipartimento di Chimica e Chimica Industriale, Universita Pisa, Via Risorgimento 35, 56126 Pisa, Italy
2Department of Physics, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
30xford University, Oxford, England
(Received 20 June 2002; published 28 February 2003

Moshinsky introduced an exactly soluble model of a two-electron atom consisting of twé qyarticles
interacting via harmonic forces and moving in a harmonic-oscillator potential. Here, the exact ground-state
densityp(r) is related to th€also analytically knownHartree-Fock densityy(r). The generalization to the
off-diagonal matrixy(r,r") is then effected, this being related to the idempoteng(r,r')/2. This exact
information on this “model atom” prompts us to propose an approximate form(pfr’) for the He-like ions,
the H, molecule and, in general, all two-electron system.,r') is constructed solely from the exaefr)
and its Hartree-Fock counterpart. Some detailed treatment of the two-electron Hookean atom with spring
constantk= 1/4 (atomic unit$ is also presented.
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I. INTRODUCTION soluble model of Moshinskj6]. In this model the two par-
ticles with opposite spins are tied to an origin by a harmonic
A good deal of interest is now focussing on the low-orderforce field while they interact through a harmonic potential
density matrices in the description of the ground-state propu(r,) = (1/2)xr2,, where, in an obvious notatiom;,=|r,
erties of finite systems such as atoms, molecules, and clus-r,|, rather than bye?/r,, to be treated later in this paper.
ters. One reason for this is the proof by Holas and Matdh In units in which the interparticle spring constastis
that the exact exchange-correlation potentigl(r) of the  measured relative to that of the external confining potential
density-functional theory2] can be written explicitly in  (k.,=1), the exact ground-state energy is known td &
terms of the one-particle density matriXr,r’) and the di- . u
agonal elementy(r,,r,) of the two-particle density matrix Eex=3[1+(1+2x)"7] (2
(see also Refl3]). Second, the proposal of Goedecker and

Umrigar [4], while not without some difficulties, is already while its Hartree-Fock counterpart is

recognized as a successful step forward in developing a Ene=3(1+ )2 3)
density-matrix-functional approach to the ground-state prob-
lem of a correlated electronic assempsy. Since the aim of this work is about correlation energy

The present proposal lies in this same general area. Hovwgefined by
ever, we have had in mind the essential philosophy underly-
ing the Mdler-Plesset perturbation theory, namely to con- €=Eex— Enr, (4)
struct a treatment that has the Hartree-F@dk) solution as
its zero-order term. Of course, for two-electron systems suc
as He-like atomic ions with atomic numbé&; or the H
molecule, the HF one-particle density mat(dOM) has the
form

}ve note that it is readily demonstrated from E@~(4) that
€ is of orderx? as « tends to zero.
Below, we shall proceed in the spirit of a/Mer-Plesset-
like perturbation theoryfyMPPT) by regardinge as the(di-
mensionless, by suitable choice of uhiexpansion param-
Yar(r,r)=pH2(r)pH2(r'). (1)  eter to be employed. If we first focus on the diagonal element
of the one-particle density matrix/(r,r'), namely, the

The outline of the paper is as follows. In Sec. Il the harmo“icground-state electron densipfr)=y(r:r), from the above
model of Moshinsky is set out and applied to obtain they,qdel it is known that

correlation kinetic energy. This then motivates a proposal for

the correlated one-particle density mattixr,r'). The ap- pre(r) =Nue exd — (1+ x) Y72, (5
proximation employed in constructing(r,r") is then tested

in Sec. Il on the two-electron Hookean atom. Sections IVWhereas the exact ground-state density has a different expo-
and V present results for He-like atomic ions and for the H nent, but remains Gaussian in shape:

molecule, respectively, while Sec. VI constitutes a summary

and proposals for possible future studies. p(r)=Nexr{ _ @rz}, (6)
Il. THE MOSHINSKY MODEL
where
Before turning to discuss the “real” two-electron systems,
inevitably by approximate methods, let us begin with the a=3[1+(1+2k)¥? (7
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with Ny and NV being normalization costants. wherete=|V pue|%8pue , we readily obtain
Here, because of the special forms of the two densities, it
is possible to relate(r) and pye(r) by the use of scaling, 2 9
" 2a—1 3(a—1
namely, by writing oo (1) = p(F) ( . 2) 24 (4a )
o
p(r)=N3pye(\r). (8) ( )
1+«
Then is readily obtained from Eqg5) and (6) as —prr() — re. (15
2(1+2k)Y?
A= \/ ( ) =1+0(k?. (90  Thus, from the virial theorem
[1+(142k)Y2)(1+ k)2
Such a result is clearly in the spirit of the MPPT, equations f toon(r)dr=1e (16)
(8) and(9) can be expanded in an infinite series in the cor- corr 27

relation energye, pye(r) being the leading term.

We proceed next to effect the off-diagonal generalizationyheree is the correlation energy defined earlier. It is inter-
of Eqg. (8), namely, to expresg(r,r') in terms of its HF  esting to compare the diagonalon Weizsaken and off-
counterpart yue(r,r'). The essential simplicity of two- diagonal contributions to the correlation kinetic-energy. For

electron systems with opposed spins is that(r,r’') can  the latter,T,¢ say, we have immediately
immediately be written in terms of the HF density as in Eq.

(1). The objective in the remainder of the present study is to 3(a—1)2
constructy(r,r’), for the two-particle systems considered Toti=————, (17
here, in terms solely of the exact densjtyr) and the HF 2a
density. Let us proceed to construet(r,r’) from the
Moshinsky model. Following the study of Mardat al [7],  which behaves as-e with very small deviations of order
from the definition of the appropriate wave function 0.075(—€)*? up to large values ok. This is a remarkable
W¥(rq,r,), one can easily obtain result because we will show in the following section that, by
changing the interparticle interaction to the Coulomb repul-

20— 1)3/2 % (2a-1) , sion, the off-diagonal contribution to the correlation kinetic-
— | exg———5—(r°+r’'9) : ;

2a energy remains essentially of the same ordet. In the

y(r,r')=2

5 Moshinsky model, forced by the virial theorem, the diagonal
_(“_ D r—r’z} (10) contribution to the correlation kinetic-energy is thus of order
da ' 3el2.

) . ) Having obtained exact results fofr,r") andt.,, for the
Equation(10) can be expanded near the diagonal to give  yg-electron model atom, we start now to consider approxi-
(a—1)2 mate relations for more realistic systems. We note first of all
1——— 2 —y'2 (11  that, to obtairt,, we need only the near diagonal behavior
4a of y(r,r'). Therefore, we shall postulate the approximate

) =p(r)Vop(r)

which is sufficient to get the exact kinetic-energy density byform

12
PHe(r)

pHe(r’)

In this exact model we can relate the kinetic energy to the —f(r)1/2f(r')1/2|r—r’|2+(higher-orderterm)s
total energy via the virial theorem and, because the same
holds for the HF result, we can directly relate the correlation (18)
energy to the correlation kinetic energy. From the above defi-
nition (12), insertingy(r,r') from Eq. (11), the result is wheref(r) is a positive function directly related to the as-
sumed Mder-Plesset-like expansion, and clearly is zero in
|V p|? (@—1)2 the noninteracting limit. The rest of E¢L8), apart from the
8p +3p(0)—7——, (13)  near diagonallr—r'|* term, arises from the first-order
Rayleigh-Schrdinger perturbation theory, as already noted
which shows an “off-diagonal” contribution other than the in the study of Hal[8] (see also Re{9]), which generalized
so-called von Weizsker inhomogeneity kinetic-energy the densityp(r) given by Schwart710]. In the present

:p(lf){pHF(r’)r’2 p(r’)

1 . .
t(r)zE[Vr'vr’y(rvr’)]r’=r' (12) Y(r’r,) 2 pHF(r) 2

t(r)=

term. model atom, it is straightforward to show from the exact
Now, from the usual definition of the correlation kinetic- (r,r') in Eq. (10) that f(r) is [(«—1)?/4a]p(r) and that
energy density the first term in Eq(18) can be recovered by expanding the
exact density around the HF counterpart and by truncating at
teorr(r) =t(r) —tye(r), (14)  the first order in the difference, namely,
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201 spring constank=1/4 in atomic units. For such a system the
exact ground-state wave function can be explicitly written
[11],

1
\If(rl,rz)zj\/o( 1+ §r12> exd —(r2+r3)/4] (21

with energy eigenvalue B,, and where the normalization
constant\ is given by

1
Ne=— — 22
0 47578+ 5712 2

3.0 +———v—v——————

00 10 20 30 40 50 The wave function21) can be processed to give the exact
. . o one-electron density matrix. In particular, we are interested
FIG. 1. Plot of correlation energye] and correlation kinetic- in determining a suitable functiof(r) in order to apply our

energy contributiongdashed linesfor the Moshinsky model atom  proposal, Eq(18), to this particular system. By writing
against the interparticle spring constamt) ( Data are in atomic

units and the spring constant of the external confining potential is

set to 1. Curvaw refers to the von Weizsker contribution, curve 1 y(ry,rp)= 2f W(ry,rg)W*(ry,ra)drg, (23
to the first two terms of Eq(20) and curve 2 to the off-diagonal

contribution(see text which is a function ofr,, r,, andr;,, owing to spherical

" symmetry, we can defingr) by making the following limit:
p(r)_PHF(r)}

p(NY2p(r")¥2=pue(r)*ppe(r’)¥q 1+ 0] 1{ 42
PHF —f()=lm S| —|  rr), (24)
p(r')=pue(r’) 1 EEARET f1:r2
X| 1+ ———————
pHe(r") which leads to
B " v . PN = pue(r) —f(r)=lim N exg —(ri+r3)/4]
=pur(r)pue(r’ )™ 1+ 2pne(r) ry.fo—r
9? 1 29
p(r')—pue(r’) x| —- f—rlgrzgexq—rZIZ)drg.
.| (19 ar’, 4 8
2pue(r’) ri:fo

Returning to the kinetic-energy density, after a short cal- For the integration, it is convenient to choose a reference
culation resulting from the insertion of E@L8) into Eq.(12),  frame withr; on thex axis andr, on thexy plane. Devel-
the approximate result fdi(r) is found to be oping the integrand up to the second orde®in, the angle

between the two vectors, andr,, one has

Vp-V Vpue|?
t(r)= p PHF_P| PHF|

+3f(r). (20 2 .2
2 1 exp(—rs/2
Apur 8Pk f(r)ZZN(Z) exp(—r?/2) Ys XM 7 r5/2)

5> dr;. (26

r“+rz—2Xar

In the Moshinsky model, the first two pieces on the right-

hand side of Eq(20) give a contribution to the correlation For comparison purposes, a plot of this function

kinetic-energy which behaves as (3¢23s « tends to zero, f(r)/f(0) and of the density ratip(r)/p(0) is shown in Fig.

according to the von Weizsker term, but deviate signifi- 2. For this particular case of the Hookean atdnis not

cantly in the case of strong interparticle interaction~2). proportional to the density as in the Moshinsky model, be-

In Fig. 1 we show the plots of the contributions to the cor-cause by a fitting of data displayed in Fig. 2, we have ob-

relation kinetic-energy for the Moshinsky model atom tained

againstx, according to the decompositions made in Egs.

(13) and (20). f(r) _
f(0)

a

p(0)
p(0)

with a=1.867>1. Integration of 3(r) gives finally
This is the point at which to illustrate the physical basis0.033 8, about 88% of— ¢, €, the correlation energy,
for the approximation introduced into the density-matrix being —0.038 51 in this particular two-electron system. The
form (18). First we start from the Hookean atom in which HF solution is not analytically known; here it has been ob-
two real electrons are confined by a harmonic potential withtained by using a standamb initio program in which the

(27)

Ill. TWO-ELECTRON HOOKEAN ATOM
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1.01 and Hooke model atoms, we can now consider the realistic
1 situation of two electrons in an external Coulomb potential
08] \ due to a nuclear chargge. With standardab initio programs

\ it is possible to compute numerical HF and correlated densi-
v ties. For this purpose we have considered the neutral He

| atom using a good enough Gaussian basis set made vwgth 10
g \ functions, 9 functions, and @ functions and a full
= 04 \ configuration-interaction scheme. The resulting energies
> ]

k have been—2.861 1, with HF and —2.9007E,, at a
more refined level. In this framework the estimated value of
the correlation energy is 0.039 &,,, about 95% of the best
literature data(see, for exampl€e}13]). With the numerical
Y o 20 an a0 sh p(r) andpye(r) we have finally computed the contribution

' ' e 7 ' ' to the correlation kinetic-energy from the first two terms of
Eq. (20). This part of the correlation kinetic-energy contains
the largeZ limit correlation kinetic-energy given earlier by
G4 et al [14]. The result, 0.000 &, shows that in such
systems the main contribution to the correlation kinetic-
nuclear potential has been substituted by a harmonic poteﬁe__n_ergy comes again from the Oﬁ'd'agﬁna' tef(m). The
. . 12 . . virial theorem establishes now that,,,= —e and conse-
tial. More precisely,pgr, the doubly occupied 4 orbital, quently
has been constructed from sl@Gaussian elementary func-
tions with exponentsa/2"~!, with =8 and 1=n=10.
With the numericapye(r) and the analyticab(r) we have 3f f(r)dr=—e. (30)
also computed by numerical integration the correlation
kinetic-energy contribution due to the two first terms on the . . )
right-hand side of Eq.(20). This contribution gives This result seems to b_e common in all cases in which the two
0.0010E,,, very close to the von Weizsker contribution, ~ €lectrons are trapped in a single-well potential. Equa@ih
namely, 0.001 24, and about 3% efe. The rest of the cor- IS essentially a consequence of the elec'gron-electron cusp in
relation energy, less then 10%, is recovered by the contribithe wave function, as it appears clearly in E25) that de-
tion due to the external harmonic potential. We remark, infines f(r) for the Hookean atom with spring constant 1/4.

fact, that in this model the virial theorem establishes that For the heliumlike atomic ions we can show, using simple
arguments, that the correlation energy is weakly dependent

T=Uegy—3Uce (29 on the nuclear potential. In fact, in terms of Koopmans theo-
rem, one can write the total energy in the form

FIG. 2. Plot off(r)/f(0) from Eq.(26) (dashed lingand of the
density ratiop(r)/p(0) against (a,) for the two electron Hookean
atom considered in this work.

whereT is the total kinetic-energyJ.y; is the potential en-

ergy of the electrons in the external harmonic force field, and Z?
U, is the total electron-electron repulsion. Under these con- E=—-5*wn (32)
ditions the correlation energy can be written as
e=—T.. +3U (29) where —Z?/2 is the hydrogenic ion energy andis the HF
corr exteorr: eigenvalue for the two-electron system. The correlation en-

In our numerical calculation, we obtainetleyco,= ~ €'9Y IS thus
—0.00091E,. )

In the Hookean model, there are other analytical solutions _ & U E (32)
for a discrete set ok values smaller than 1/#12]. Such €T T ) THATEHF:

solutions correspond to a weaker confinement and conse-

quently to stronger electron correlation effects. The applicag , _ peing the HF total energy. By approximating the doubly
tion of the proposed equatidii8) to the Hooke atom in this  occupied HF orbital with a 4 hydrogenic orbital with expo-
regime should lead to deviations similar to those observed ipantz — o, whereo accounts for screening, one obtains
the Moshinsky model for high interparticle interaction but, in

these cases, we have not attempted here any analytical de- o2

velopment. The resultindg(r) of Eq. (26) is strictly con- €=— —. (33
nected to the very simple form of the wave function for 2

=1/4.

The value ofa which minimizes the HF energy is 5/16ee,

for example, Ref.[15]) and leads toe=—0.048&,, a

slightly overestimated value. We remark that this value does
Having discussed in some detail the propd48) for near  not depend orZ and could be used to estimaitér) by rec-

diagonal y(r,r’) of a two-electron system for Moshinsky ognizing that, from the previous two models,

IV. HELIUMLIKE ATOMIC IONS

022509-4



EXACT DENSITY MATRIX FOR A TWO-ELECTRON. . .. PHYSICAL REVIEW A67, 022509 (2003

f(0) VI. SUMMARY AND FUTURE PERSPECTIVES

r 34
p(0) p0) P (34 The main achievements of the present study are the fol-

. . lowing: (i) the summation to all orders of a NMer-Plesset-
which leads to, combining Eq¢30) and (33), like series, relating the exact densjiyr) to the HF density

f(r)=

o2 pue(r), embodied in Eq.(8) for the “model atom” of
f(r)<p(r) T (35  Moshinsky[6]; (ii) its generalization to the one-particle den-

sity matrix y(r,r") and the exact kinetic-energy densify)

It is interesting to note that the exact correlation energyfor the same modekiii) the approximate propos&l8) for
for the He-like ions ranges from-0.04E, for He to the near-diagonay(r,r’), which can be used to construct

—0.047E,, for largeZ [16]. the kinetic-energy density in all realistic two-electron sys-
tems. The proposed expression for the 1DM depends solely
V. HYDROGEN MOLECULE on the (assumed knownground-state density, the corre-

sponding HF density and a positive functibfr) which can

In the hydrogen molecule, the two electrons are placed imbe related to the density itself and does not contribute to the
a double-well potential. At the dissociation, when the twodiagonal. It has been proved that this functign) is essen-
nuclei are far apart, there is not any contribution to the cortially related to the short-range interparticle correlation; in
relation energy due to the electron-electron cusp, because thige case of electrons, which show Coulomb repulsion,
electrons themselves are far apart on each nucleus. Nevertheapped in a harmonic force field with spring constant 1/4,
less the correlation energy is much bigger in modulus than iff(r) can be evaluated analytically and it is shown here that it
the He atom. This effect is due to the fact that in HF atjs related to the electron-electron cusp in the wave function.
dissociation there is a residual mean-field electron-electrorhe other term ofy(r,r’) in Eq. (18) which gives the exact

interagtic.)n.. . o _ density on the diagonal is able instead to account for long
At infinite interatomic distance we still hf_:lve_from the range correlation, as is shown for the hydrogen molecule at
virial theorem thafT = — € because the derivative of the dissociation. The expressiafl8) behaves properly for all

energy with respect to the internuclear distance is zero. Thugpes of force field and seems to be valid up to relatively
we can compare again the correlation kinetic-energy with intense interparticle interactions. The computed kinetic-

For the exact density, we can write energy, for the different cases treated in this work, is in gen-
eral agreement with the virial theorem—a result we think
p(r)= i[elerlel+ef2|r7R2\] [|Ry—Ry|—2], promising for f_uturg applications. Moreover, if one contem-

™ plates approximations fof(r) as that of Eq.(35), the

(36) kinetic-energy density(r) resulting from Eq.(20) is linear
in the exact density—a remarkable aspect in density func-
tional theory.
An interesting suggestion for the future consists in an ex-
pre(D=NTo(|r —Ry)2+ ¢(|r —Ry|)2], (37)  tension of the present study to more complicated wave func-
tions written in terms of two-particle group functiofgemi-
where¢ is a spherical symmetry orbital to be determined bynals [17,18. In this area, very recently Nag$9] has shown

whereR; andR, indicate the positions of the two protons,
while for the HF density we have

minimizing the functional that the problem of an arbitrary system with even electrons
can be reduced to a two-particle problem and that the effec-
B —V2 f f &( 1)¢( z) rd tive potential in the two-electron equation contains a term of
¢ F1dra, completely kinetic origin.
(38)

where the repulsion integral corresponds to the residual
electron-electron mean-field interaction. The optinkalis
one-half of the HF total energy at dissociation. In this case, C.A. acknowledges financial support from MUR®Hro-
again, a combination of ten Gaussian elementary functions igetti di interesse nazionaleN.H.M. wishes to thank Scuola
sufficient for a good approximation @f. In our calculation Normale Superiore and in particular Professor M.P. Tosi for
we have obtained-0.715 1€, for the HF energy and con- generous hospitality during his visit to Pisa in 2002, where
sequently—0.284 84&,, for e. Finally, neglecting the term in  some of this work was carried out. N.H.M. also acknowl-
f, we have evaluated the correlation kinetic-energy from Egedges partial financial support from the Franqui Foundation
(20): the result 0.269 3B, is in substantial agreement with (Brussel$ and wishes to thank especially Professor L. Eyck-
the expected value and shows that the proposed equationans of that Foundation for encouragement and motivation.
(18) for the one-particle density matrix takes into accountFinally the authors thank Professor I.A. Howard, Professor
both short- and long-range correlations in the ground-staté. Nagy, Dr. F. Bartha, Dr. F. Bogar, and Dr. T. |[Gar
realistic two-electron systems. valuable discussions in this general area.
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