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Exact density matrix for a two-electron model atom and approximate proposals
for realistic two-electron systems
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Moshinsky introduced an exactly soluble model of a two-electron atom consisting of two spin-1
2 particles

interacting via harmonic forces and moving in a harmonic-oscillator potential. Here, the exact ground-state
densityr(r ) is related to the~also analytically known! Hartree-Fock densityrHF(r ). The generalization to the
off-diagonal matrixg(r ,r 8) is then effected, this being related to the idempotentgHF(r ,r 8)/2. This exact
information on this ‘‘model atom’’ prompts us to propose an approximate form ofg(r ,r 8) for the He-like ions,
the H2 molecule and, in general, all two-electron systems.g(r ,r 8) is constructed solely from the exactr(r )
and its Hartree-Fock counterpart. Some detailed treatment of the two-electron Hookean atom with spring
constantk51/4 ~atomic units! is also presented.

DOI: 10.1103/PhysRevA.67.022509 PACS number~s!: 31.15.Ew, 31.25.Eb, 31.25.Nj
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I. INTRODUCTION

A good deal of interest is now focussing on the low-ord
density matrices in the description of the ground-state pr
erties of finite systems such as atoms, molecules, and c
ters. One reason for this is the proof by Holas and March@1#
that the exact exchange-correlation potentialVxc(r ) of the
density-functional theory@2# can be written explicitly in
terms of the one-particle density matrixg(r ,r 8) and the di-
agonal elementn2(r1 ,r2) of the two-particle density matrix
~see also Ref.@3#!. Second, the proposal of Goedecker a
Umrigar @4#, while not without some difficulties, is alread
recognized as a successful step forward in developin
density-matrix-functional approach to the ground-state pr
lem of a correlated electronic assembly@5#.

The present proposal lies in this same general area. H
ever, we have had in mind the essential philosophy unde
ing the Mo” ller-Plesset perturbation theory, namely to co
struct a treatment that has the Hartree-Fock~HF! solution as
its zero-order term. Of course, for two-electron systems s
as He-like atomic ions with atomic numberZ, or the H2
molecule, the HF one-particle density matrix~1DM! has the
form

gHF~r ,r 8!5rHF
1/2~r !rHF

1/2~r 8!. ~1!

The outline of the paper is as follows. In Sec. II the harmo
model of Moshinsky is set out and applied to obtain t
correlation kinetic energy. This then motivates a proposal
the correlated one-particle density matrixg(r ,r 8). The ap-
proximation employed in constructingg(r ,r 8) is then tested
in Sec. III on the two-electron Hookean atom. Sections
and V present results for He-like atomic ions and for the2
molecule, respectively, while Sec. VI constitutes a summ
and proposals for possible future studies.

II. THE MOSHINSKY MODEL

Before turning to discuss the ‘‘real’’ two-electron system
inevitably by approximate methods, let us begin with t
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soluble model of Moshinsky@6#. In this model the two par-
ticles with opposite spins are tied to an origin by a harmo
force field while they interact through a harmonic potent
u(r 12)5(1/2)kr 12

2 , where, in an obvious notation,r 125ur1

2r2u, rather than bye2/r 12 to be treated later in this paper
In units in which the interparticle spring constantk is

measured relative to that of the external confining poten
(kext51), the exact ground-state energy is known to be@6#

Eex5
3
2 @11~112k!1/2# ~2!

while its Hartree-Fock counterpart is

EHF53~11k!1/2. ~3!

Since the aim of this work is about correlation energye,
defined by

e5Eex2EHF , ~4!

we note that it is readily demonstrated from Eqs.~2!–~4! that
e is of orderk2 ask tends to zero.

Below, we shall proceed in the spirit of a Mo” ller-Plesset-
like perturbation theory~MPPT! by regardinge as the~di-
mensionless, by suitable choice of units! expansion param-
eter to be employed. If we first focus on the diagonal elem
of the one-particle density matrixg(r ,r 8), namely, the
ground-state electron densityr(r )[g(r ;r ), from the above
model it is known that

rHF~r !5NHF exp@2~11k!1/2r 2#, ~5!

whereas the exact ground-state density has a different e
nent, but remains Gaussian in shape:

r~r !5N expF2
~2a21!

a
r 2G , ~6!

where

a5 1
2 @11~112k!1/2# ~7!
©2003 The American Physical Society09-1
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with NHF andN being normalization costants.
Here, because of the special forms of the two densitie

is possible to relater(r ) andrHF(r ) by the use of scaling
namely, by writing

r~r !5l3rHF~lr !. ~8!

Thenl is readily obtained from Eqs.~5! and ~6! as

l5A 2~112k!1/2

@11~112k!1/2#~11k!1/2
511O~k2!. ~9!

Such a result is clearly in the spirit of the MPPT, equatio
~8! and ~9! can be expanded in an infinite series in the c
relation energye, rHF(r ) being the leading term.

We proceed next to effect the off-diagonal generalizat
of Eq. ~8!, namely, to expressg(r ,r 8) in terms of its HF
counterpart gHF(r ,r 8). The essential simplicity of two-
electron systems with opposed spins is thatgHF(r ,r 8) can
immediately be written in terms of the HF density as in E
~1!. The objective in the remainder of the present study is
constructg(r ,r 8), for the two-particle systems considere
here, in terms solely of the exact densityr(r ) and the HF
density. Let us proceed to constructg(r ,r 8) from the
Moshinsky model. Following the study of Marchet al @7#,
from the definition of the appropriate wave functio
C(r1 ,r2), one can easily obtain

g~r ,r 8!52S 2a21

pa D 3/2

expF2
~2a21!

2a
~r 21r 82!

2
~a21!2

4a
r2r 82G . ~10!

Equation~10! can be expanded near the diagonal to give

g~r ,r 8!5r~r !1/2r~r 8!1/2F12
~a21!2

4a
r2r 82G , ~11!

which is sufficient to get the exact kinetic-energy density

t~r !5
1

2
@¹Wr•¹Wr8g~r ,r 8!# r85r . ~12!

In this exact model we can relate the kinetic energy to
total energy via the virial theorem and, because the sa
holds for the HF result, we can directly relate the correlat
energy to the correlation kinetic energy. From the above d
nition ~12!, insertingg(r ,r 8) from Eq. ~11!, the result is

t~r !5
u¹W ru2

8r
13r~r !

~a21!2

4a
, ~13!

which shows an ‘‘off-diagonal’’ contribution other than th
so-called von Weizsa¨cker inhomogeneity kinetic-energ
term.

Now, from the usual definition of the correlation kineti
energy density

tcorr~r !5t~r !2tHF~r !, ~14!
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wheretHF5u¹W rHFu2/8rHF , we readily obtain

tcorr~r !5r~r !F ~2a21!2

2a2
r 21

3~a21!2

4a G
2rHF~r !

~11k!

2
r 2. ~15!

Thus, from the virial theorem

E tcorr~r !dr5 1
2 e, ~16!

wheree is the correlation energy defined earlier. It is inte
esting to compare the diagonal~von Weizsa¨cker! and off-
diagonal contributions to the correlation kinetic-energy. F
the latter,To f f say, we have immediately

To f f5
3~a21!2

2a
, ~17!

which behaves as2e with very small deviations of orde
0.075(2e)3/2 up to large values ofk. This is a remarkable
result because we will show in the following section that,
changing the interparticle interaction to the Coulomb rep
sion, the off-diagonal contribution to the correlation kineti
energy remains essentially of the same order2e. In the
Moshinsky model, forced by the virial theorem, the diagon
contribution to the correlation kinetic-energy is thus of ord
3e/2.

Having obtained exact results forg(r ,r 8) andtcorr for the
two-electron model atom, we start now to consider appro
mate relations for more realistic systems. We note first of
that, to obtaintcorr , we need only the near diagonal behavi
of g(r ,r 8). Therefore, we shall postulate the approxima
form

g~r ,r 8!5
r~r !

2 FrHF~r 8!

rHF~r ! G1/2

1
r~r 8!

2 F rHF~r !

rHF~r 8!
G 1/2

2 f ~r !1/2f ~r 8!1/2ur2r 8u21~higher-order terms!,

~18!

where f (r ) is a positive function directly related to the a
sumed Mo” ller-Plesset-like expansion, and clearly is zero
the noninteracting limit. The rest of Eq.~18!, apart from the
near diagonalur2r 8u2 term, arises from the first-orde
Rayleigh-Schro¨dinger perturbation theory, as already not
in the study of Hall@8# ~see also Ref.@9#!, which generalized
the densityr(r ) given by Schwartz@10#. In the present
model atom, it is straightforward to show from the exa
g(r ,r 8) in Eq. ~10! that f (r ) is @(a21)2/4a#r(r ) and that
the first term in Eq.~18! can be recovered by expanding th
exact density around the HF counterpart and by truncatin
the first order in the difference, namely,
9-2
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r~r !1/2r~r 8!1/25rHF~r !1/2rHF~r 8!1/2F11
r~r !2rHF~r !

rHF~r ! G1/2

3F11
r~r 8!2rHF~r 8!

rHF~r 8!
G 1/2

5rHF~r !1/2rHF~r 8!1/2F11
r~r !2rHF~r !

2rHF~r !

1
r~r 8!2rHF~r 8!

2rHF~r 8!
1•••G . ~19!

Returning to the kinetic-energy density, after a short c
culation resulting from the insertion of Eq.~18! into Eq.~12!,
the approximate result fort(r ) is found to be

t~r !5
¹W r•¹W rHF

4rHF
2

ru¹W rHFu2

8rHF
2

13 f ~r !. ~20!

In the Moshinsky model, the first two pieces on the rig
hand side of Eq.~20! give a contribution to the correlatio
kinetic-energy which behaves as (3/2)e as k tends to zero,
according to the von Weizsa¨cker term, but deviate signifi
cantly in the case of strong interparticle interaction (k.2).
In Fig. 1 we show the plots of the contributions to the c
relation kinetic-energy for the Moshinsky model ato
againstk, according to the decompositions made in E
~13! and ~20!.

III. TWO-ELECTRON HOOKEAN ATOM

This is the point at which to illustrate the physical ba
for the approximation introduced into the density-mat
form ~18!. First we start from the Hookean atom in whic
two real electrons are confined by a harmonic potential w

FIG. 1. Plot of correlation energy (e) and correlation kinetic-
energy contributions~dashed lines! for the Moshinsky model atom
against the interparticle spring constant (k). Data are in atomic
units and the spring constant of the external confining potentia
set to 1. CurveW refers to the von Weizsa¨cker contribution, curve 1
to the first two terms of Eq.~20! and curve 2 to the off-diagona
contribution~see text!.
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spring constantk51/4 in atomic units. For such a system th
exact ground-state wave function can be explicitly writt
@11#,

C~r1 ,r2!5N0S 11
1

2
r 12Dexp@2~r 1

21r 2
2!/4# ~21!

with energy eigenvalue 2Eh , and where the normalization
constantN0 is given by

N 0
25

1

4p5/2~815p1/2!
. ~22!

The wave function~21! can be processed to give the exa
one-electron density matrix. In particular, we are interes
in determining a suitable functionf (r ) in order to apply our
proposal, Eq.~18!, to this particular system. By writing

g~r1 ,r2!52E C~r1 ,r3!C* ~r2 ,r3!dr3 , ~23!

which is a function ofr 1 , r 2, and r 12, owing to spherical
symmetry, we can definef (r ) by making the following limit:

2 f ~r !5 lim
r1 ,r2→r

1

2 S ]2

]r 12
2 D

r 1 ,r 2

g~r1 ,r2!, ~24!

which leads to

2 f ~r !5 lim
r1 ,r2→r

N 0
2 exp@2~r 1

21r 2
2!/4#

3S ]2

]r 12
2 D

r 1 ,r 2

E 1

4
r 13r 23 exp~2r 3

2/2!dr3 .

~25!

For the integration, it is convenient to choose a refere
frame with r1 on thex axis andr2 on thexy plane. Devel-
oping the integrand up to the second order inu12, the angle
between the two vectorsrW1 and rW2, one has

f ~r !5
1

4
N 0

2 exp~2r 2/2!E y3
2 exp~2r 3

2/2!

r 21r 3
222x3r

dr3 . ~26!

For comparison purposes, a plot of this functio
f (r )/ f (0) and of the density ratior(r )/r(0) is shown in Fig.
2. For this particular case of the Hookean atom,f is not
proportional to the density as in the Moshinsky model, b
cause by a fitting of data displayed in Fig. 2, we have o
tained

f ~r !

f ~0!
5F r~r !

r~0!G
a

~27!

with a51.867.1. Integration of 3f (r ) gives finally
0.033 83Eh , about 88% of2e, e, the correlation energy
being20.038 51 in this particular two-electron system. T
HF solution is not analytically known; here it has been o
tained by using a standardab initio program in which the

is
9-3
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C. AMOVILLI AND N. H. MARCH PHYSICAL REVIEW A 67, 022509 ~2003!
nuclear potential has been substituted by a harmonic po
tial. More precisely,rHF

1/2 , the doubly occupied 1s orbital,
has been constructed from 10s Gaussian elementary func
tions with exponentsa/2n21, with a58 and 1<n<10.
With the numericalrHF(r ) and the analyticalr(r ) we have
also computed by numerical integration the correlat
kinetic-energy contribution due to the two first terms on t
right-hand side of Eq. ~20!. This contribution gives
0.001 09Eh , very close to the von Weizsa¨cker contribution,
namely, 0.001 24, and about 3% of2e. The rest of the cor-
relation energy, less then 10%, is recovered by the contr
tion due to the external harmonic potential. We remark,
fact, that in this model the virial theorem establishes tha

T5Uext2
1
2 Uee ~28!

whereT is the total kinetic-energy,Uext is the potential en-
ergy of the electrons in the external harmonic force field, a
Uee is the total electron-electron repulsion. Under these c
ditions the correlation energye can be written as

e52Tcorr13Uext,corr . ~29!

In our numerical calculation, we obtainedUext,corr5
20.000 91Eh .

In the Hookean model, there are other analytical soluti
for a discrete set ofk values smaller than 1/4@12#. Such
solutions correspond to a weaker confinement and co
quently to stronger electron correlation effects. The appli
tion of the proposed equation~18! to the Hooke atom in this
regime should lead to deviations similar to those observe
the Moshinsky model for high interparticle interaction but,
these cases, we have not attempted here any analytica
velopment. The resultingf (r ) of Eq. ~26! is strictly con-
nected to the very simple form of the wave function fork
51/4.

IV. HELIUMLIKE ATOMIC IONS

Having discussed in some detail the proposal~18! for near
diagonal g(r ,r 8) of a two-electron system for Moshinsk

FIG. 2. Plot off (r )/ f (0) from Eq.~26! ~dashed line! and of the
density ratior(r )/r(0) againstr (a0) for the two electron Hookean
atom considered in this work.
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and Hooke model atoms, we can now consider the reali
situation of two electrons in an external Coulomb poten
due to a nuclear chargeZe. With standardab initio programs
it is possible to compute numerical HF and correlated de
ties. For this purpose we have considered the neutral
atom using a good enough Gaussian basis set made withs
functions, 5p functions, and 3d functions and a full
configuration-interaction scheme. The resulting energ
have been22.861 10Eh with HF and 22.900 71Eh at a
more refined level. In this framework the estimated value
the correlation energy is20.039 6Eh , about 95% of the bes
literature data~see, for example,@13#!. With the numerical
r(r ) andrHF(r ) we have finally computed the contributio
to the correlation kinetic-energy from the first two terms
Eq. ~20!. This part of the correlation kinetic-energy contai
the largeZ limit correlation kinetic-energy given earlier b
Gál et al @14#. The result, 0.000 83Eh , shows that in such
systems the main contribution to the correlation kinet
energy comes again from the off-diagonal termf (r ). The
virial theorem establishes now thatTcorr52e and conse-
quently

3E f ~r !dr.2e. ~30!

This result seems to be common in all cases in which the
electrons are trapped in a single-well potential. Equation~30!
is essentially a consequence of the electron-electron cus
the wave function, as it appears clearly in Eq.~25! that de-
fines f (r ) for the Hookean atom with spring constant 1/
For the heliumlike atomic ions we can show, using simp
arguments, that the correlation energy is weakly depend
on the nuclear potential. In fact, in terms of Koopmans th
rem, one can write the total energy in the form

E52
Z2

2
1m, ~31!

where2Z2/2 is the hydrogenic ion energy andm is the HF
eigenvalue for the two-electron system. The correlation
ergy is thus

e52
Z2

2
1m2EHF , ~32!

EHF being the HF total energy. By approximating the doub
occupied HF orbital with a 1s hydrogenic orbital with expo-
nentZ2s, wheres accounts for screening, one obtains

e52
s2

2
. ~33!

The value ofs which minimizes the HF energy is 5/16~see,
for example, Ref.@15#! and leads toe520.0488Eh , a
slightly overestimated value. We remark that this value d
not depend onZ and could be used to estimatef (r ) by rec-
ognizing that, from the previous two models,
9-4
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EXACT DENSITY MATRIX FOR A TWO-ELECTRON . . . PHYSICAL REVIEW A67, 022509 ~2003!
f ~r !<
f ~0!

r~0!
r~r !, ~34!

which leads to, combining Eqs.~30! and ~33!,

f ~r !<r~r !
s2

12
. ~35!

It is interesting to note that the exact correlation ene
for the He-like ions ranges from20.042Eh for He to
20.047Eh for largeZ @16#.

V. HYDROGEN MOLECULE

In the hydrogen molecule, the two electrons are place
a double-well potential. At the dissociation, when the tw
nuclei are far apart, there is not any contribution to the c
relation energy due to the electron-electron cusp, becaus
electrons themselves are far apart on each nucleus. Neve
less the correlation energy is much bigger in modulus tha
the He atom. This effect is due to the fact that in HF
dissociation there is a residual mean-field electron-elec
interaction.

At infinite interatomic distance we still have from th
virial theorem thatTcorr52e because the derivative of th
energy with respect to the internuclear distance is zero. T
we can compare again the correlation kinetic-energy withe.
For the exact density, we can write

r~r !.
1

p
@e22ur2R1u1e22ur2R2u# @ uR12R2u→`#,

~36!

whereR1 and R2 indicate the positions of the two proton
while for the HF density we have

rHF~r !.N @f~ ur2R1u!21f~ ur2R2u!2#, ~37!

wheref is a spherical symmetry orbital to be determined
minimizing the functional

F5 K fU2 1

2
¹22

1

r Uf L 1
1

4E E f~r 1!f~r 2!

r 12
dr1dr2 ,

~38!

where the repulsion integral corresponds to the resid
electron-electron mean-field interaction. The optimalF is
one-half of the HF total energy at dissociation. In this ca
again, a combination of ten Gaussian elementary function
sufficient for a good approximation off. In our calculation
we have obtained20.715 16Eh for the HF energy and con
sequently20.284 84Eh for e. Finally, neglecting the term in
f, we have evaluated the correlation kinetic-energy from
~20!: the result 0.269 38Eh is in substantial agreement wit
the expected value and shows that the proposed equ
~18! for the one-particle density matrix takes into accou
both short- and long-range correlations in the ground-s
realistic two-electron systems.
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VI. SUMMARY AND FUTURE PERSPECTIVES

The main achievements of the present study are the
lowing: ~i! the summation to all orders of a Mo” ller-Plesset-
like series, relating the exact densityr(r ) to the HF density
rHF(r ), embodied in Eq.~8! for the ‘‘model atom’’ of
Moshinsky@6#; ~ii ! its generalization to the one-particle de
sity matrixg(r ,r 8) and the exact kinetic-energy densityt(r )
for the same model;~iii ! the approximate proposal~18! for
the near-diagonalg(r ,r 8), which can be used to construc
the kinetic-energy density in all realistic two-electron sy
tems. The proposed expression for the 1DM depends so
on the ~assumed known! ground-state density, the corre
sponding HF density and a positive functionf (r ) which can
be related to the density itself and does not contribute to
diagonal. It has been proved that this functionf (r ) is essen-
tially related to the short-range interparticle correlation;
the case of electrons, which show Coulomb repulsi
trapped in a harmonic force field with spring constant 1
f (r ) can be evaluated analytically and it is shown here tha
is related to the electron-electron cusp in the wave functi
The other term ofg(r ,r 8) in Eq. ~18! which gives the exact
density on the diagonal is able instead to account for lo
range correlation, as is shown for the hydrogen molecule
dissociation. The expression~18! behaves properly for al
types of force field and seems to be valid up to relativ
intense interparticle interactions. The computed kine
energy, for the different cases treated in this work, is in g
eral agreement with the virial theorem—a result we thi
promising for future applications. Moreover, if one contem
plates approximations forf (r ) as that of Eq.~35!, the
kinetic-energy densityt(r ) resulting from Eq.~20! is linear
in the exact density—a remarkable aspect in density fu
tional theory.

An interesting suggestion for the future consists in an
tension of the present study to more complicated wave fu
tions written in terms of two-particle group functions~gemi-
nals! @17,18#. In this area, very recently Nagy@19# has shown
that the problem of an arbitrary system with even electro
can be reduced to a two-particle problem and that the ef
tive potential in the two-electron equation contains a term
completely kinetic origin.
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