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Modeling LiH potential-energy curves: An approach based on integration in finite space
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In this paper, we introduce a finite-space integration method to shed physical insight into the interactions of
a Rydberg electron with a molecular ion core, as sampled by the potential-energy (RE@$ of various
electronic states of LiH. We postulate that these interactions are dominated by two independent electron-atom
processegl) scattering of the Rydberg electron at negative energy solely off of the lithium atomic cof2)and
a transition from the lithium scattering state to the lithium valence orbital necessarily accompanied by an
excitation of the hydrogen atom. It is shown that the ratio of the amplitudes for the occurrences of these two
processes can be obtained by means of bounded integrations inside a small region of space where the electron-
electron repulsion term in the Hamiltonian is dominant. Our theory and approximations are verified by a
comparison of derived potential-energy curves with those produced lnyitio calculations as well as another
empirical model that uses the Fermi approximation. It is observed that the complicated features of the PECs,
which reflect the nodal structure of the Rydberg orbitals, are reproduced well within our treatment.
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I. INTRODUCTION used to describe the evolution of the electronic structure to
higher-Rydberg states. The reason for this is that the Fermi
Excited electronic states of diatomic molecules continueapproximation makes use of the perturbation expansion and
to be a challenging subject of study. Although very accuratéhe mixing angles remain finite for an infinity of states in the
electronic structure computations can be madeabyinitio  high principal quantum number limit.
methods, purely numerical approaches rarely provide a trans- In order to avoid this difficulty and to treat low- and high-
parent “zero-order” description of the mechanisms of theRydberg states in a unified way, we incorporate the channel
many-body interactions. The main reason for this difficulty is"ave-function formalism of quantum-defect theory directly
that an analysis that is performed state by state cannot cafflt® the electronic structure calculatifa. The usefulness of
ture a global picture of structure and dynamics. The identifi{h€ potential-energy curve®ECS of the higher states for
cation and classification of the most important physical profhe determination of the quantum-defect curves and their en-
cesses remain a difficult task because the simplest dynamic@/9y dependence is explained in Ri].
processes are often encoded in a complicated way in the We postulate the existence bo atom-based processes
totality of the potential-energy curves of excited electronicaS the dominant interactions in the LiH molecule. These two
states. Thus, rather than treating the problem rigorously anBrocesses are expressed globally as channel wave functions
accurately in a state by state way, a more approximate, glob&fl in our formalism. We then show that the coupling be-
approach is needed to reveal the most important physicdy/éen the two channels is evaluated by means of bounded
processes. integrations inside a small region of space where the
In this work, we develop such an analysis for the trimet_ele(_:tron-electron repulsion term is large. Consequently, we
Rydberg states of the LiH molecule. Our central goal is tod€rive a bounded space integration formula to be used in the
explain the global electronic structure of LiH, from its low- @PProximate calculation of the global electronic structure.
lying to higher-Rydberg states, in a unified way. This mol-Hence, this bounded space integration formula shows that
ecule has been extensively studied, both experimentally arf§f€ solution of the Schringer equation in this special, com-

computationally, and its properties are very well understoodP2ct region of space contains the most important information
In a recent study, Dickinson and Gadd] have shown that about dynamical processes in the molecule and leads to new

the electronic structure of LiH can be explained within thePhysical insight that was not immediately available in the
Fermi approximation. That approximation rests on thePrevious treatments: In Sec. IV, we compare the_potentlgl—
premise that electronic motion is dominated by a simple dy£n€rgy curves obtained by our bounded space integration
namical process, namely, the collision of a Rydberg electrof€thod to previougb initio calculations as well as to the
localized on the lithium atom with the hydrogen atdhe Fermi approximation results and discuss the overall qual!ta-
Fermi approximation is capable of predicting the electronicliVé agreement between the PECs determined by the various

structure for low-lying Rydberg states, however, it cannot be?PProaches.

Il. THEORY
* Author to whom correspondence should be addressed.

Yin the Fermi approximation, the hydrogen atom is viewed as a \We begin by considering a Rydberg state of a LiH mol-
passive, nonpolarizablé function. In Sec. Il, we treat the H atom ecule at infinite nuclear separation. From the atomic point of

dynamically by allowing its structure to change during the electron-view such a state will be reached by the excitation of a
scattering process. Li(2s) electron. Now we imagine the two atoms approach-
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FIG. 1. Lithium and hydrogen atoms at large internuclear sepa-
ration.

ing each other with zero total angular momentum about the
center of masssee Fig. 1

At large internuclear separation, the lithium Rydberg elec-
tron does not “feel” the presence of the hydrogen atom. The FIG. 2. LiH molecule. The coordinates of the particles are la-
Rydberg electron is in orbit about Liand its wave function beled by vectors with respect to laboratory fixed coordinate axes.
is given by a superposition of Coulomb partial waj&kthat
acquire phase shifts as the electron scatters off the lithiurabout the Li nucleus and model this charge density with an
atomic-ion core. As the H atom approaches the Li atom, igeffective potential. Thus we let
increasingly perturbs the motion of the Rydberg electron.

One way to model this is to view the hydrogen atom as a 1 20 2% 1 p?
passive perturber, which is accomplished by the addition of a Hy=m——— — —+ . (2
pseudopotentiall] to the lithium atomic Hamiltonian, and Fan Fan Ton  2Me

the use Of perturpation theory to obtain the pptential—energx'_'ereran andry, are the distances of theth electron from
curve of interaction between the two nuclei. Instead, WeL

, he lithium and hydrogen nuclei, respectively. The effective
model the _eﬁ‘ect of the approaching H atom by a channe otential term— (1/r ) — (2e~ 2 ¥an/r ) describes the in-
wave function of the Rydberg electrgd], which expresses teraction of an electron with ['i [6]. Based on the two-
the exchange of energy hetween the Rydberg eIectronn ahannel hypothesis of Sec. Il, we make the following ansatz
the ground-state hydrogen atom by allowing for the p033|b|l1for an electronic wave function:
ity of excitation of the hydrogen atom. In doing so, we iden- '
tify, at intermediate internuclear separation, an ion-core . .. L
structure interacting with a Rydberg electron through two  #°(7)= ¢ (ry— ) thny (F1— a3 F1—Tal>T¢)
channels.

. . . 27 .5 R ST
(1) The electron exits the molecular ion core with an + AR Pos(T1— TRy [ri—Tu|>7), (9
asymptotic phase shift that it acquires inside thé atomic .. " 2 _ _
core, leaving behind a [liH ion-core structure. whereR=r,—r,, ¢’ and "’ are the two ion-core eigen-

(2) The electron settles into the Li§p valence shell, states which solve the Scldiager equation for the Hamil-

causing an excitation of the H atom. This excitation is mani-tonian in terms of one-electron operators:
fested as a transition of the ion-core electronic state from its

ground-state LiH configuration to an excited state in which Hotr (Fo—F )V =EH (R (Fo—T
the electronic charge density shifts toward a Lildonfigu- 20412~ 1) =B (RIUR (12— ),
ration.
We ignore all other energetically open channels, such as Hoh? (r;R)=E5 (R) 2 (r;R), (4)

those leading to a rotation or vibration of the ion core about

the center of mass and assume that the two distinct electromhereE; (R) + 1/R, fori=1 and 2, are the potential-energy
atom scattering processes are associated with the same roeiirves for the molecular ion in the two different ion-core
brational state of the nuclei. eigenstates. The ion-core eigenstates are orthonormal,

IIl. FORMALISM (WPlpiy=s, (5)

Consider the LiH moleculdFig. 2). The total Hamil-

; . and they are adiabatic,
tonian for the system is

2 o Vil =Viyl=0. ()

Li H

H="Hy+Ho+ o 2ms fom TR 1) Equation(3) clearly expresses the two dominant physical
processes. The first term in this expressioﬁi(r}

where subscripts 1 and 2 refer to the valence electrods.  —r,) ¢, (r,—r,) describes an electron in a Rydberg state

treat the inner electrons as an electrostatic charge densitgiteracting with a Li atomic core, and should be dominant
in the wave function at large internuclear separation. As the
two atoms approach each other, another process becomes
2See Fig. 2 for labels for the coordinates of all particles. significant, namely, the excitation of the hydrogen atom. This
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process is expressed by the second term in the wave fungy R>4 bohr. Given the matrix elements in E), we can
tion, which is |_mpI|C|tIy R dependent. As W!|| be demon- yerive explicit equations fonljn(;l_;b;ﬁ) and l!/n*(Fl
strated, the main reason for tidependence is the nonlocal - : o
nature of the excitation process, namely, the electron correfra) by assuming that a factorization of the form
lation term, 1¥,,, in the Hamiltonian.

Notice also that this wave function is defined in an outer =y (R), 8
region of space that excludes certain volumes about each of
the nuclei(see Fig. 1 The reason for imposing such a re- solves the Schitinger equation in the outer region for the
striction is to be able to evaluate the matrix elements oimolecular Hamiltonian in Eq(1):
1/r 1, which simplify in the outer region. This simplification

occurs because the two ion-core states express the two pos- p2 11

sible localizations of the inner charge density about the indi- HyYO'=Eyot= _R FHy+ Hot —+ = | [ (Fa—Ty)
vidual nuclei. The scattering from Liis associated with the 2u r. R

ion-core eigenstatg’!’, and this wave function describes an B N S -
electrostatic charge density localized about the H atom that X thge (11— T2) 7 (r 2 R) (11— 1 s R) [xn(R)

corresponds to a [iiH ion core. Similarly,?) is associated B[y (FymTo) s (Fi=F)
with the process of hydrogen excitation, and this wave func- —ELR (2T ne (11— Ta

tion implies the presence of a charge density on the Li atom + lﬂg)(Fz;ﬁ) lpn(Fl_Fb;F—é)]Xn(F—é)- (9)
and an ion core with a strong LiHcharacter. This rearrange-

ment of the inner charge density is due to earcha}ngeof . Taking the inner product of the terms in E@) with (<3|
energy between the Rydberg electron and the stationary inngf, using Eqs(4)—(7), we obtain

electron. The term in the Hamiltonian that is responsible for

such an exchange of energy is the electron-electron repulsion

term, 1f,,. In the outer region, the matrix elements of 13/ PZ 1 . p: 20 2Wa 1 4

can be evaluated using the assumed extreme localization |7, * g TE1(R)+
properties of the ion-core states:

2me la1 la1 2r§1

X e (N1 =T Xn(R) =Etny (T =T xn(R). (10

wl Lo\t @ 4 -

P =) E The presence of the/2r,, term in Eqg.(10) causes the

rlz I’bl 2[‘4 . bl . . .

b1 electronic and nuclear coordinates to be coupled in the dif-

ferential equation. However, sinege the polarization of the

1 e 2% g H atom in its ground state, small on the atomic scale, we

< $? R — zp(f),ﬁ> =—+2————, expect(and requirg the electronic wave function to exhibit
M2 Fa1 Fa1 2ra1 only weak R dependence. If we neglect thig dependence

altogether, then the Lielectron interaction becomes a

purely atom-based scattering process and an approximate so-
1,//(+2);I5> =0, () lution for ¢, (r;—r,) can be obtained. Forr g >r,

~0.2 boht[see Fig. ], the effective Li -electron interaction
where @=4.50 a.u. and3=164 a.u. are, respectively, the " EQ. (2) reduces approximately tork). Since this interac-
ground-state polarizabilities of the H and Li atofi@. In tion is sphencal_ly sym_metrlc about the Li nucl_eus, the angu-
evaluating the first two of these matrix elements, we assumi& and the radial variables, as measured with respect to a
that the Rydberg electron remains in a nonpenetrating orbfgoordinate system that takes the Li nucleus as its origin, can
about a neutral spherical charge distribution. We then obtaiR€ Separated in the differential equation. The reduced radial
analytical expressions for E7) matrix elements by noting Wave function of the Rydberg electron, denotedRiy ,,),
that in the electric field of a negative point charge, the charg@ecomes a solution of the Coulomb radial equation,
distribution of the neutral atom polarizes. The overall inter-
action energy between the outer electron and the electronic 2 1(1+1) 2
charge density about the neutral atom is given by the sum of — ——— T ——+2€ |F(ra)=0. (11
a shielding term and a polarization tergproportional to dra; Ma1 Ma1
1/r*). The third matrix element is taken to be zero because o N ) )
l/,(+1) and lr,,(+2) are localized on different nuclei and their over- The solution is then_a superposition of two linearly indepen-
lap is essentially zero for sufficiently large internuclear sepadent Coulomb functions:
ration. This approximation for the third integral will fail
whenR approaches zero. Therefore, we will a.ssert'miaas F(ra)="f(ra,e1)cod mu (€1)]—0i(r a1, €1)Sin 7 (€1)],
larger than a threshold value-@ bohr). Accordingly in the (12
outer region, exchange can be neglected because the two
electrons are not permitted to sample the same region ofhere f(r,;) is the regular Coulomb function, which be-
space and they are localized on the different nuclei separatdthves Iiker[,ﬂl asr,, approaches zero, argi(r,;) is the

<¢f‘+” o

M2
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irregular Coulomb function which diverges agl' asr,;

PHYSICAL REVIEW A 67, 022507 (2003

which occurs exclusively through an atomic channel at infi-

—0 [8]. The coefficients are chosen so that, for bound stateBite nuclear separation couples to a molecular channel at

at infinity, F(r) diverges as

F(r) e 600 TP | et e
- 1

13

which identifiesmu,(e;) as an asymptotic phase shifbe-
manding regularity ags— o,

-1
€1=— .,
1 z(n*)Z
n* == n, (14

wheren is an integer. Fors waves on L, the quantum
defect turns out to be independent rofwith the numerical

value of 0.4[6]. The explicit form ofi,, (r,—r,) becomes

S s s S 1 I
l/’n*(rl_rarlrl_ra|>rc): T[fel,l(|r1_ra|)
|I‘1—I’a|
Xcoiwﬂl,n)_gel,l(“_)l_Fa|)

X sin( Wﬂl,n)]YIm( Oa,0a),
(15

finite separation, and the strength of this coupling, in our
formalism, is modeled by thR dependence gf;(R). From
this point on, we take the electronic binding energy to be
given by Eq.(16), although we continue to use the approxi-
mateR-independent representation for the wave function it-
self.

Similarly, we can take the inner product of the terms in
Eq. (9) with (z//(f)| and repeat the same procedure as above to
obtain

P2 1 1 2
oot it HEEI R~
2u R Ty 2me lNa1
X as(F1 =T R) Xn(R)=Ethas(r1— T ;R) xn(R).

17

Here B is the polarizability of the Li atom in its ground state
and cannot be neglected since it is about 40 times larger than
the value for hydrogen. The existence of tRislependence

in the electronic coordinates of this equation forces the elec-
tronic wave function to be alsB dependent. It is useful to

employ a reduced expression fgf(r;—r,;R) in the form
of a product of two primitive functions:

Yas(T1— TR =A(R) Yos(r1— T R),

whereA(R) is an oscillating term that may vary rapidly with

(18

where 6, and ¢, are axial and azimuthal spherical polar R and,(r;—r,;R) is an envelope function which solves
coordinates with respect to the lab fixed coordinate axesne clamped nuclei equation:

shown in Fig. 2, with the origin translated to the center of the

lithium atom. Y" is a spherical harmonic. This electronic
wave function has n® dependence. It is an approximation
to the exact solution in the sense that the interactions which
would cause it to becomR dependent, namely, the polariza-

tion of the H atom, were neglected. Accordingly,is not an

2

p1 1 B - N N ~ - -
(Z—me—a—z) hos(11 =T R)= €2(R) hog(r1— T3 R).
(19

electronic binding energy for the molecule because its nu- The termA(R) describes the amplitude of occurrence of

merical value reflects only the properties of & ldore. Nev-

hydrogen excitation relative to the amplitude of pure scatter-

ertheless, we can define a rigorous electronic binding energifg off of lithium as the two nuclei approach each other and

in analogy to Eq(14):

2[n—uu(R)1?

where u(;(R) is anR dependent quantum deféavhich is

el(R)= (16)

determined here. ThisR dependence demonstrates that

can therefore be viewed as a mixing coefficient. A further
condition onA(R) is obtained by recalling that we expect,
on physical grounds, the Lielectron scattering wave-
function term to dominate at infinite nuclear separation in
Eq. (3). Thus we demand

lim A(R)=0.

R—o

(20)

Li " -electron scattering is not strictly an atom-based process
but is affected by the presence of the H atom. An interactiorin analogy with Eq.(16), we express an electronic binding

3We supress the subscripaX) onr in Eq. (13), since, in the
asymptotic limit, the choice of origin is irrelevant.

“Note that theR-dependent quantum defect no longer has the

energy in the form

€(R)=— (21)

2[1-un(R)1?

meaning of an asymptotic phase shift but should be regarded as a fit . -
parameter. Its general physical significance is explained in Refwhere we have introduced an addition® dependent

[12].

quantum-defect functionuy(R), which should also be
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viewed as a fit parameter that models the hydrogenic excitawhereP,, is the electron permutation operator and the terms

tion at a given internuclear separation. Equatioh® and /. (r,,,r,—r,,r,—rp,) describe the collision of the itinerant

(17) together imply the additional condition electron with the hydrogen atom in its ground state at zero
energy and triplet symmeti\9]:

1
UR=E;(R)————+ = ) . e s o
! 2[n—u,(R)]? R lim gi(rip,r1—"rp,ra—=rp)
l1p—®
1 1
=E;(R)—————+—, 22 . 9o(K)
(R —pry R S'r{k(flb“T
~ lime K2 , (26)
whereU(R) is the potential-energy curve for the motion of k—0 M1b

the nucleiE; (R) andE, (R) are the two ion-core potential-
energy curves in the two electronic eigenstates that corresheredy(K) is thes-wave partial phase shift. For simplicity,
spond to Li'H and LiH" structures, respectively. The eigen- we neglect the scattering terms in the reaction zone elec-
value equation for the nuclear motion becomes tronic wave function. It is shown below by direct comparison
to ab initio calculations that the error introduced from this
simplification is not significant. In the absence of the scatter-
Xn(ﬁ): EXn(ﬁ)- (23) ing terints, one re%gins EQ].?) after taking thg in.ner product
of H| ") with (7| and ignoring the contribution from the
) ) ) _ Li* core. However, since the electronic coordinates of the
~ An expression fotJ(R) can readily be obtained A(R) jtinerant electron are restricted to the region defined by Eq.
is known. We now present a physical argument to calculaigzs) the lithium polarization termg/2r?,, that appears in
A(R) which is subsequently used to calculaiR). We g (17) can be neglected. This is because the polarization
then refer to Eq(22) to obtain theR-dependent quantum erm varies as the inverse fourth powerRand we require
defects to model these two electronic channels that we havg ;¢ R~ n~3.5 bohr. Therefore, the wave function for the

built into our theory. itinerant electron reduces to
In our formalism, the electron on the hydrogen atom can

be collisionally excited from the ground state. This excitation

can occur if the distance between the two electrogs, is Pos(F1—Tp,0< |1 1= T| < PR = hoe(F1—Tp),  (27)
within an effective interaction lengthy, for electron-

hydrogen scattering, which is shown to be on the order of %vhere theR-
bohr for the states under question. With respect to the
exchange-neglected representation in E8), this corre-

sponds to stating that the itinerant electron is found inside L 1 L
the sphere of radiug about the hydrogen atom during the Uas(T1—Tp) = =——=—Fos(|ri—rp|) Y (O, dp), (28)
excitation. Thus we restrict our attention to the region of [ri=ryl

space defined by

PR 1 U(R
au RTUM

independentpzS(Fl—Fb) is given by

and 6, and ¢, are axial and azimuthal spherical polar coor-
. dinates with respect to the lab fixed coordinate axes, shown
0<[ry—rp|<7. (24 in Fig. 2, with the origin translated to the center of the hy-

) ] ) drogen atom. The electronic wave function in the reaction
We refer to this region of space as the reaction zone. FOfgne becomes

electron positions inside the reaction zone, contributions to
the exchange interaction are significant. Furthermore, the po-

larization approximation on the hydrogen atom fails. Assum- el ) = (=) g (F1—T )

ing that the off-diagonal matrix elements of the Hamiltonian L L

which get multiplied byA(R) are small, we can write an + AR PO 25R) g1 ). (29)
approximate solution for the Satmger equation inside the

reaction zone in the form In Eg. (29), we have suppressed all of the complicated

nonlocal effects and the only information that tells us that we
ely \_ 1 ay: = are looking at a molecule in this wave function is the fact
n (1) =(1=PR[¥(ra=rp) s that the electrons are localized on the two different nuclei of
X(F1=Ta:|f =Ty < 7) +AR) Y D(r,— 1, R) the diatom. Now, Ietp“_ (r1.r2,R) be an adiabatic eigenstate
of the Born-Oppenheimer Hamiltonian defined by
X rae(11 = p,0<|r = rp|<7;R)]

+Z Bi(R){i(r12,F1— T F2=Tp), (29 H=H-5". (30
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Sincg thg set of adiabatic eigen'states at any internuclear lim a'{/(R)=1, lim ag/(R)=0,
separation is complete, an expansion «f(ff(r) exists such R0 R—soo
that
(1) = (1= P M= Tp) Yoy (11— T2) limb,(R)=0, limby(R)=1. (35)
- - - - R— R—x
+AR) P12 R) ras(F1—Tp)]
_ B AR S " Wos o= The excited-state configuration, Ligp+H(n'), corre-
=V21+AR)T] 2 8, (Ro, R Y™ (11.123Ro), sponds to a repulsive state and has the following limiting
" behavior:
(31)
where

lima) (R)=0, lima) (R)=1,

\/f R—® R—
n — el. n'.
Ay (Ro R =\ o e (40 R R

. . . . limby(R)=1, limby(R)=0. 36
To manipulate this expression further, we need to discuss the Rl_m 1(R) Rl_m 2(R) (36)
solutions ™ (r;,r,;R) of the Schidinger equation for the
Born-Oppenheimer Hamiltonian in more detail. The frozen . . . .

. . : i ) . Now, by means of the following device which exploits
nuclei equation has been studied extensively in the I|teraturﬁ]

) : ese separated-atom limits of the adiabatic wave functions,
and very accurate eigenstates can be obtained. However L . ) .
X . . . - We can simplify Eq(31) and ultimately derive an expression
since our primary goal is not accuracy, for clarity we will

take the eigenstates to be given by a linear combination fpr the mixing coefficient(R). First, since the set of adia-
9 9 y Patic states is complete for every internuclear separation, for

two atomic orbitals that are variationally optimized in the avR’ that differs fromR. an expansion exists such that
physically reasonable two-dimensional subspace to give th@"Y ° P

best approximation to the excited state in question. There-
fore, we define molecular orbitals in the fofrh0]
el 2 N o NS 5T
L I ()=\2[1+AR]Z ap, (R, R " (ry,r5;R)).
P (11,723 Re) =t (F 13Rg) (1 23 R,) ¥ W

o o (37)
— Y (TR ¥21(r1;R,), (32
where Accordingly, we can imagine writing equations identical to
Eq. (37) for each internuclear separation inside an interval
I (T ﬁz):[ag’(Ro)w(L?’)(;; Ro)+a2'(Ro) ¢Ln’)(F; Ry, (0.Rmax and then summing them up. However, siiRés a
continuous parameter, this summation is actually an integra-
YT Ro) =[1(Ro) Y{29(1;Ro) + ba(Ro) y{9(1;R,)].  tion and we obtain
(33
These molecular orbitals correspond to the electronic R - -
states that belong to the(2s)nso electronic configuration. \/:2(1— Pl (1)
In Egs.(32) and(25), exchange is10 longerneglected and 2[1+A(R)7]
the electrons are placed into an antisymmetric spatial con- X (F 7 Vo<t
figuration that is demanded by a triplet state: nx L1t allo<|ry —rpl<
P (1,12 R) = — " (1,11 Ry). (34) +A(R)¢f)(F2;F§)w25(F1—Fb)|0<\;l_;b|<,7]
The molecular orbitals in Eq33) for each fixed value of _ meax n N - 2P
the principal quantum numben’, describe two different 0 nz 3 (RROPT(ry,rz;R7AR
separated-atom limits. The more stable combination, .
Li(n'l)+H(1s),® corresponds to a lithium atom in an ex- =f max_n NoneZ T BT /
cited state and a hydrogen atom in the ground state and is 0 A(RRPArL, Iz RY)AR
described by .
+ > ) "al (RR) " (r1,1,;R)dR, (38)
n'#n

5The atomic lithium spectrum reveals that only theave quan-
tum defect differs significantly from zero. Therefore, all states with I
I#0 can be considered quasidegenerate and they can be charactetherey"(r,r,;R) is the adiabatic eigenstate that converges
ized simply with the principal quantum numbetf. to the Li(ns)+H(1ls) configuration in the separated-atom
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limit.® Adjusting terms further and dividing through B, This implies that the terma/(R,R’) —1 approaches zero as

we get R gets larger and hence the second integral in (8) re-
mains bounded. Furthermore, from the normalization condi-
1-Py, tion
e O Ty e (T )0,
2[1+A(R)2][I/j+ ( 2 b)l/fn*( 1 a)|0<|r1 rpl<n
oy e > lap(RR)?=1, (42)
FARIPZ (12 R) das(T1 =) o<r, 1)< ] n’
1 Rmax - - o we get, forn’ #n,
= J' P"(ry,ra;RNAR
RmaxJ o . n "
lim a,,(R,R")=0, (43
Rmax 5 s R -
+ f [an(R,R")—1]9"(ry,r;R)AR’ o . :
RmaxJo thus the third integral in Eq(39) also remains bounded.
1 (R Therefore in the limit afR;,ay goes to inf.inity,.the Riax
+ > f A (RR) " (Fy,F0:R)AR! term forces the second and third expressions in(&9).to be
R n’ ’ 1512 . L. . . .
n'#n "maxJ0 vanishingly small and we are left with a simple expression

(39) for the electronic wave function in the reaction zone in terms
of the adiabatic states:
The adiabatic electronic wave function for the m§)

+H(1s) configuration in the separated-atom limit can be 1-Py, L o
written as m[lﬁ&l)(fz—rb)lﬁn*(fl—fa)|o<\r}r’b|<7,
I 1 . . )7 B - .
¢n(|’1,r2;R'Hoo):E[(pf(rz—rb),pn(rl—ra) +A(R)‘r/f+ (rZrR)';sz(rl rb)|0<|r17rb\<n]
- - - - Rmax - - _)’ ’
— ¢ (11— Tp)n(r2—ry)] (40) JO P"(ry,rz;RNAR
and it can be verified that = lim R : (44)
Rmax—® max
1 Exploiting the orthonormalization condition on the core
lim a)(R,R)=——==1. (41  eigenstates, we can now obtain an expressioA{&®) in the
R | VT AR)? fomm pression(6)
- - > - Rmax N — > >
f- . a(ri—ry) l/’(f)(rziR)*j Y"(rqy,r;R)AR dr,ry
A(R) Iri—rpl<n allspace 0

2[1+ AR Ry RmJQQ | aa(F1— P | 2T
[ri=rpl<7

This is the main result of our derivations. Equatifb)  value of A(R) reflects the properties of the nonlocal adia-
shows that the essence of the information aboutethre  ,5tic wave function;p”(Fl,Fz;ﬁ), in the finite region and

electronic structure of the molecule can be gained througms information is simultaneously being mapped from all

integrations over a small region of space that picks out thosﬁ]ternuclear separations through the integration dverre-

special locations where the important many-body interac-, . : . .
tions occur. Our formalism provides a general recipe to |0_placmg a summation over a complete set of adiabatic states.

cate these physically crucial poles, by means of a transfor- IN the following section, we calculate the mixing coeffi-
mation between local and nonlocal representations for théients for the excited triplet states of LiH. Then we use the
electronic wave function, which also switches between anixing coefficient to determine an expression for the
wave function that neglects exchange to one that accoungotential-energy curves for the motion of the nuclei. We also
for exchange in the proper electronic symmetry. Note that thealculate theR-dependent quantum defects that were intro-
duced in Eq.(22). Finally, we compare our results with ac-
curateab inito calculations and the Fermi approximation re-
bSee Eq/(35). sults.
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TABLE |. Expansion coefficients for the effective molecular orbitals of LiH.

State Effective molecular orbital

3s°x7 0.03455M {29+ 0.60984" {1 + 0.00944 {29 + 0.096 3] ¢
453" 0.03454{™ {29+ 0.5923{7 {19+ 0.009457 {29 + 0150457 (L
55’y " 0.03445" y(29+0.56 7P 1+ 0.01124) Y29 + 0.22145 7 g
[C 0.033%{P 29+ 0.50225(V 19 + 0.015 7 {29 + 0.3853) g
9s°x " 0.03184{7 {29+ 0.50164(7 1% + 0.0219 {29 + 0.39455{) g
12533 * 0.03354{" y{29+0.4906){7 1% + 0.01854" 29 + 0.4072 y

IV. RESULTS The expansion coefficients in this expression for different

electronic states of LiH are listed in Table I. In our calcula-
tions we setR,,,=70 bohr, but this value should be in-
creased if greater accuracy is desired. The ion-core potential-
energy curveE; (R), has been calculated, consistent with

We compute the potential-energy curves for the 15H
a(2s)nso configuration from

_ <¢EI|H|¢el> the assumptions of our theory, by placing the valence elec-
U(R)= (el gty 46 tron in the ground-state atomic orbital of hydrogen,
where ¢°' is given by Eq.(3). The numerical values for lﬂf(Fz—Fb):lﬂﬁs(Fz—Fb) (49)

A(R) are obtained from Eq45). We simplify our equations

by noting that the atomic orbitals in E¢33) vary slowly 54 employing
with R’, thus we treat them as constants in the integration

overR’ in Eq. (45), fixed at the internuclear separatid),of

the ion-core electronic wave functions: E; (R)=(¢i(ro— o) Hal 412 T2)). (50
Similarly, the excited-state ion-core potential-energy curve
Rmax - - — . . .
J Y(Fy, T R)AR’ was generated by constructing a Schmidt orthonormalized
0 electronic wave function with dominant lithium ground-state
character,

Rmax —_ — —_ —
:jo [¢n(r R ho1(r;R")

o L N TS 1o - -
(T3 R RV AR V21l = =gy Mo T T SR 0]
R
_ max oy ()
| a-PoE R —— -
+ad(R) Y (rRIby(R)$E(r5R) and using Eq(50) with ¢ replaced byy; . The ion-core

potential-energy curve&; (R)+ 1/R andE, (R)+ 1/R, cal-
culated in this fashion, have been plotted in Fig&) &nd

- L 3(b).
Then, for R,ax chosen sufficiently large, the limit-integral (b)

expression of Eq(44) becomes an average over the varia-

tional coefficients of the adiabatic wave functions. After the

integration is executed we obtain an effective molecular or- |, Eq. (45) the term/ |7, ;| |¢2S(F1—Fb)|2d Fl acts as a
! 1~ Tpl=7

bital which must be matched to the two-channel electronic L ] .
o N . normalization constant in the reaction zone. The sphere of
wave function in the excitation region:

radius # is the region of space where the hydrogenic excita-
tion takes place and thus one expects significant overlap be-

+by(R)YHI(ry; R MR’ (47)

A. Calculation of the integration range »

Pag(T)=(1—P) (Vg2 + by(D gl tween the ground-state hydrogen wave function and the first
(") 1(29) (") 1(19) excited state in this volume. A measure of this overlap is
ey i A ). (48)  given by
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FIG. 3. The ion-core potential-energy curves(R)+ 1/R andE; (R)+ 1/R.

1.3s33 % state

H/ ~ g H/ = g g
— —ry)d 52 . .
J|;1_;b<,,¢25(r1 o) Y151~ Mo)dIy (52) In Fig. 4a), we have plotted the calculated potential-

energy curve given by Eq46). Comparison withab initio
and the approximate region in which this overlap is signifi-results[11] shows good qualitative agreement between the
cant can be calculated by letting two approaches. Our plot displays a barrier with maximum at
7.5 bohr and height 192 c¢m. The barrier is followed by a
f(k)_j | H (P, )|2dF well with minimum approximately at 3.8 bohr and depth
IFy—Tl<k Yas(F1= o b 2050 cm L. The barrier maximum from thab initio results
is atR=9.05 bohr and the height is at 249 ¢t However,
the additional shallow well that arises at largerthan the
_ H, > >\ H/> > \42 barrier in Fig. 4a) is absent in theab initio results. The
9tk f(l_(b ST o)l r o) dr, ®3 height of the barrier is underestimated in our model because
of the neglect of the additional repulsive interactions that
and solving fory from arise in the LT core and the reaction zone, namely, the off-
diagonal matrix elements ofrL, which are scaled bA(R).
f(k)=g(k). (54)  We expect these interactions to be significant for this low-
lying state. The maximum of the outer barrier in REf]
The value ofn from Eq. (54) comes out to be 3.46 bohr. appears aR~8 bohr closer to the value reported in Ref.
Physically, Eq.(54) ensures thaty provides a numerical [11], with a difference of 1 bohr. However, the height of the
scale for the region where the excitation occurs. The excitabarrier is overestimated in this model by a factor of 1.2. This
tion process takes place in the innermost region occupied bgfifference can be explained from the use of the zero energy
the hydrogen atom ground state. The probability amplitudescattering length in the Fermi approximatigi.
for the excitation will be proportional to the off-diagonal ~ The R-dependent quantum-defect curve for the Lithium
matrix element of I/;, and this matrix element accumulates atom, defined by Eq22), is shown in Fig. &a). It is seen
in the reaction zone and dominates all other interactions. Athat the quantum defect starts at 0.397 riear6,’ and then
ri,> 7, the total electronic probability in the excited state, converges toward the atomic value@f 0.4 as the internu-
f(k), exceeds the overlap of the excited state with theclear separation increases. The analogous plot for the hydro-
ground state, therefore in this region to a good approximagenic excitation process in Fig(l§ recovers a quantum de-
tion many interactions can be turned off and the electronidect that remains constant at0.15 beyondR=8. Here, the
wave function can be taken in the representation of(Bg. = change from the ground-state quantum numberl toward
The method for choosingy presented here is not unique the noninteger value of 1.15 can be interpreted as a signature
and other schemes for determinimgcan be proposed. It is of the excitation of the hydrogen atom. In Figcy we plot
possible to lety be energy dependent and vary state to statethe mixing coefficientA(R), the shape of which displays a
This may lead to more accurate results. However, the methocbrrespondence with thesdotential-energy curve. This re-
presented here is mathematically explicit and physically sensemblance underlines the fact that all the finer features of the
sible. Furthermore, fixing; for all states allows for a calcu-
lation of the global electronic structure and obviates the need™
for state by state analysis. "Recall that our calculations are valid fB>4 bohr.
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FIG. 4. Potential-energy curves of LiH. The potential-energy curves plotted in the figure correspond$d¥tie 3s%3*, and %33 *
states, respectively. Comparison with the curves in Ffshows an overall qualitative agreement wath inito calculations. The mixing
coefficients for each state are also plotted in the third column, and they display a clear resemblance in shape to the corresponding
potential-energy curves. This shows that the physical origins of the finer features of the potential-energy curves are reflected by the numerical
values of the mixing coefficients in our theory.

potential-energy curves are obtained from the mixingfiner details of the potential energy curve have been captured
coefficient. in our results, such as the ratio of the heights of the inner and
outer maxima. This may be due to the additional flexibility
2.4s%3 % state of our formalism, namely, the treatment of the hydrogen

Figure 4d) shows that the overall features of thk initio atom as a dynamical object instead of a frozen, passive per-

results of Ref[11] have been captured closely for this statetUrber- As shown in Fig. ®), the quantum-defect curve that
within our treatment. There is a secondary minimum at abouglescribes the [i-electron interaction has more oscillations
Rimin= 10 bohr, which is followed by a barrier with maxi- and the oscillations have larger amplitude than teec@rve
mum appearing aR,,.,= 18 bohr as compared to tfad ini- about its atomic value oft=0.4. At R=18 bohr, it falls as

tio values ofR,;,=11 bohr andR,,,,= 18 bohr. Our calcu- low as 0.367. These oscillations are related to the undula-
lation overestimates the height of the inner and outer barrieréons observed in the PECs at long range and they indicate a
at 105 cm* and 160 cm®. The reported values from Ref. stronger coupling between the two electronic channels. This
[11] are, respectively, 60 cnt and 62 cm®. The Fermi ap- is further verified from the quantum-defect curve for hydro-
proximation also overestimates the height of the innermosgenic excitation in Fig. &), which converges to a more
maximum at nearly 115 cirt. The error in our calculation is negative value of-0.209(rather than—0.15 as for 3) be-
most likely due to the use of the limited basis set in 88  yond R=10 bohr. The larger absolute magnitude of the
and to the neglect of the additional channels that describguantum defect in the hydrogen channel for tisesthte than
electron-hydrogen scattering in E@5). Further comparison its value for the 3 state shows that hydrogenic excitation is
to the Fermi approximation result shows that some of thébecoming more significant for higher electronic states.
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FIG. 5. The quantum-defect curves for the lithium and the hydrogen channels.

3.5s%%" state the use of a limited basis set in E@®3) and the neglect of
the channels describing hydrogen-electron scattering in Eg.
The calculated potential-energy curve for this state is plot{25).
ted in Fig. 49). The correct number of wells and barriers is
reproduced, the locations of the corresponding minima and 4. Higher electronic states and the Rydberg scaling law

maxima are in good agreement with e initio results. The In Fig. 6, we have plotted the potential-energy curves for
only significant discrepancy seems to be in the barriethen=7 n=9, andn=12 electronic states that were calcu-
heights. The height of the first barrier at 79 this smaller  |ated using the bound space integration formula. In these
than theab initio value of 100 cm*. The heights of the potential-energy curves, oscillations and undulations are seen
second and third barriers are 68.3 chand 41 cm®. These  even at very large internuclear separation. This is due to the
exceed theab initio barrier heights, which are 33 cmhand  increasing diffuseness and the increasing number of radial
21 cmi !, respectively. The discrepancies may be related tmodes of the atomic orbitals on the lithium atom at higher
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60 v ; y y T v of a 2s-type lithium atomic orbital and aslhydrogenic or-
bital is sufficiently small for the desired accuracy. Her

S0 1 >4,|S(R)|<0.01 and rapidly approaches zero for increased
values ofR. For R less than this threshold, electron correla-

40f 1 tion effects become significant and the off-diagonal matrix

element of the electron-electron Coulomb repulsion term in
Eq. (7) cannot be approximated to zero. A more sophisticated
calculation is needed for a description of the two-electron
wave function wherR is smaller than this threshold value.

Li *-electron interactionEquation(2) describes the inter-
action of the Rydberg electron with Liin the central field
approximation with optimized parameters that give the clos-
est agreement with the observed quantum defects imshe
Rydberg series of Li. Altering these parameters changes the
nodal structure of the diffuse Rydberg orbitals on Li and this
leads to significant changes in the resultant potential-energy
curves. Other forms for the interaction of the electron with

FIG. 6. Higher electronic states and*)~3 scaling law. For Li~ can be used, but it is important that any adjustable pa-
these high electronic states, oscillations and undulations in potentidRMeters are optimizea priori.
curves are seen even at very large internuclear separation. The am- Restriction to triplet statesOur calculations are restricted
plitudes inside each of the barriers in the potential-energy curve$0 a study of the triplet states because the approximate elec-
are proportional to the inverse cube of the principal quantum numtronic wave function in Eq(3) is expected to realistically
ber and the corresponding barriers line up. This suggests that fatescribe the adiabatic curves in the triplet electronic symme-
these highly excited states, the shapes of the potential-energy curvey. For singlet states, additional complications occur due to
are essentially governed by the simple Rydberg scaling laws.  the interactions with the ionic state dissociating to" Li
+H™. These interactions lead to multiple avoided crossings
in the potential-energy curves and more flexibility is required
in Eq. (3) to capture this behavior. One feasible extension in
this direction is to allow for the mixing in of a third state, at
each internuclear distancR, that will correspond to a
3 Li*H~ formation. This procedure requires further study and
aoc( 1 ) constitutes a natural next step in the development of our

30
E(cm'1)

20F

-10

10 20 30 40 50 60
R(bohr)

excitation. Furthermore, the amplitudasnside each of the
barriers in the potential-energy curves, indicated by the up
ward pointing arrows in Fig. 6, follow very closely a simple
scaling law:

n_* method.

n*=n-0.4, (55) VI. CONCLUSIONS

wheren* is the effective principal quantum number for the N this work, we have demonstrated that the essential
lithium atom. This scaling law is related to the diagonal ma-dualitative features of the potential-energy curves for the
trix elements of the 1/, operator in the basis of the Rydberg '0W-lying ns“X™ electronic states of LiH can be reproduced
orbitals that are proportional tmt ) ~¥2 and is known as the and that the potential curves for higher-Rydberg states can be
Rydberg scaling law. Figure 6 shows that for highly excitedoPtained in a unified way with our finite-space bounded in-
electronic states, the shapes of the potential-energy curvdggration method. The main idea behind our theory is the
(including the nontextbook oscillationsre essentially goy- délineation of the dominant physical processes that occur
erned by the simple Rydberg scaling laws. within a bounded region of space. The information about
Table | provides further physical insight into the triplet these physical processes is then captured into an electronic
states of LiH. Although the electronic structure is dominatedVave function, which is a solution of the Schifoger equa-
by the L™H term in the effective molecular orbital, an ad- tion in the outer region using the bound space integration

ditional term occurs in the form afy{" y{19 that describes ormula of Eq.(45).- . .
Li*H+e character in the electronic wave function. The ex- of the case of LiH, the analysis reveals that neither of the

istence of this term implies that the triplet state is reached b)r/mclel acts completely as a static perturber for the other one,

the formation of an intermediate He type species in the and electronic energy gets transferred between them by

triplet symmetry, as the electron, initially localized on the M€ans of the excitation of the hydrogen atom fo its first
lithium atom, scatters off the hydrogen atom. excited state. The physical interaction that is responsible for

the excitation is the electron-electron repulsion 1term in

the Hamiltonian. When the two electrons are within the ef-

fective interaction length for atomic hydrogen, this term

dominates all other electrostatic interactions that could con-
The minimum value of internuclear distanceTRe mini-  tribute to the excitation of the hydrogen atom. Since the hy-

mum value ofRis chosen such that the overlap intedséR) drogen atom is initially in its ground state, this process must

V. DETAILS AND THE LIMITATIONS
OF THE CALCULATION
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occur inside a small sphere centered on the hydrogen withonhydrides seems quite feasible provided the perturbing
radius given by the excitation radiugs Exchange becomes atom has energetically accessible excited states. For ex-
significant when the two electrons are close to each othegmple, we expect the method to generalize in a straightfor-
and hence the solutions that are valid inside the finite regiomward fashion to LiHe or L.

of space must be antisymmetrized. In this manner, the infor- Our method can also be employed to obtain the potential
mation about the triplet nature of the electronic wave func-curves for the states belonging to different Rydberg series of
tion is mapped into the exchange-neglected representation LiH. Subsequently, these potential curves can be drawn on
Eq. (3) by means of Eq(45). for the determination of the quantum-defect curves and their

The developed technique also provides a recipe to injeatnergy dependen¢8]. Following the work of Ross and Jun-
information from the exact representations of many-bodygen, we plan to progress toward such a generalization with
electronic wave functions into simplified representationsthe ultimate goal of obtaining the set of quantum-defect
through integrations in finite regions of space where the elecfunctions that will provide a complete description of the
tron pair interaction is important. Significant improvement in short-range scattering processes.
the accuracy of our results may be achieved, if our picture is
bu?lt upon exactb initio results instead of the approximate ACKNOWLEDGMENTS
adiabatic wave functions used here.
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