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Modeling LiH potential-energy curves: An approach based on integration in finite space

S. N. Altunata and R. W. Field*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 29 August 2002; published 28 February 2003!

In this paper, we introduce a finite-space integration method to shed physical insight into the interactions of
a Rydberg electron with a molecular ion core, as sampled by the potential-energy curves~PECs! of various
electronic states of LiH. We postulate that these interactions are dominated by two independent electron-atom
processes:~1! scattering of the Rydberg electron at negative energy solely off of the lithium atomic core and~2!
a transition from the lithium scattering state to the lithium valence orbital necessarily accompanied by an
excitation of the hydrogen atom. It is shown that the ratio of the amplitudes for the occurrences of these two
processes can be obtained by means of bounded integrations inside a small region of space where the electron-
electron repulsion term in the Hamiltonian is dominant. Our theory and approximations are verified by a
comparison of derived potential-energy curves with those produced byab initio calculations as well as another
empirical model that uses the Fermi approximation. It is observed that the complicated features of the PECs,
which reflect the nodal structure of the Rydberg orbitals, are reproduced well within our treatment.

DOI: 10.1103/PhysRevA.67.022507 PACS number~s!: 31.15.2p, 31.10.1z
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I. INTRODUCTION

Excited electronic states of diatomic molecules contin
to be a challenging subject of study. Although very accur
electronic structure computations can be made byab initio
methods, purely numerical approaches rarely provide a tr
parent ‘‘zero-order’’ description of the mechanisms of t
many-body interactions. The main reason for this difficulty
that an analysis that is performed state by state cannot
ture a global picture of structure and dynamics. The iden
cation and classification of the most important physical p
cesses remain a difficult task because the simplest dynam
processes are often encoded in a complicated way in
totality of the potential-energy curves of excited electro
states. Thus, rather than treating the problem rigorously
accurately in a state by state way, a more approximate, gl
approach is needed to reveal the most important phys
processes.

In this work, we develop such an analysis for the tripl
Rydberg states of the LiH molecule. Our central goal is
explain the global electronic structure of LiH, from its low
lying to higher-Rydberg states, in a unified way. This m
ecule has been extensively studied, both experimentally
computationally, and its properties are very well understo
In a recent study, Dickinson and Gade`a @1# have shown that
the electronic structure of LiH can be explained within t
Fermi approximation. That approximation rests on t
premise that electronic motion is dominated by a simple
namical process, namely, the collision of a Rydberg elect
localized on the lithium atom with the hydrogen atom.1 The
Fermi approximation is capable of predicting the electro
structure for low-lying Rydberg states, however, it cannot

*Author to whom correspondence should be addressed.
1In the Fermi approximation, the hydrogen atom is viewed a

passive, nonpolarizabled function. In Sec. II, we treat the H atom
dynamically by allowing its structure to change during the electr
scattering process.
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used to describe the evolution of the electronic structure
higher-Rydberg states. The reason for this is that the Fe
approximation makes use of the perturbation expansion
the mixing angles remain finite for an infinity of states in t
high principal quantum number limit.

In order to avoid this difficulty and to treat low- and high
Rydberg states in a unified way, we incorporate the chan
wave-function formalism of quantum-defect theory direc
into the electronic structure calculation@2#. The usefulness of
the potential-energy curves~PECs! of the higher states for
the determination of the quantum-defect curves and their
ergy dependence is explained in Ref.@3#.

We postulate the existence oftwo atom-based processe
as the dominant interactions in the LiH molecule. These t
processes are expressed globally as channel wave func
@4# in our formalism. We then show that the coupling b
tween the two channels is evaluated by means of boun
integrations inside a small region of space where
electron-electron repulsion term is large. Consequently,
derive a bounded space integration formula to be used in
approximate calculation of the global electronic structu
Hence, this bounded space integration formula shows
the solution of the Schro¨dinger equation in this special, com
pact region of space contains the most important informa
about dynamical processes in the molecule and leads to
physical insight that was not immediately available in t
previous treatments. In Sec. IV, we compare the potent
energy curves obtained by our bounded space integra
method to previousab initio calculations as well as to th
Fermi approximation results and discuss the overall qua
tive agreement between the PECs determined by the var
approaches.

II. THEORY

We begin by considering a Rydberg state of a LiH m
ecule at infinite nuclear separation. From the atomic poin
view such a state will be reached by the excitation o
Li(2s) electron. Now we imagine the two atoms approac
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ing each other with zero total angular momentum about
center of mass~see Fig. 1!.

At large internuclear separation, the lithium Rydberg el
tron does not ‘‘feel’’ the presence of the hydrogen atom. T
Rydberg electron is in orbit about Li1 and its wave function
is given by a superposition of Coulomb partial waves@5# that
acquire phase shifts as the electron scatters off the lith
atomic-ion core. As the H atom approaches the Li atom
increasingly perturbs the motion of the Rydberg electr
One way to model this is to view the hydrogen atom a
passive perturber, which is accomplished by the addition
pseudopotential@1# to the lithium atomic Hamiltonian, and
the use of perturbation theory to obtain the potential-ene
curve of interaction between the two nuclei. Instead,
model the effect of the approaching H atom by a chan
wave function of the Rydberg electron@4#, which expresses
the exchange of energy between the Rydberg electron
the ground-state hydrogen atom by allowing for the possi
ity of excitation of the hydrogen atom. In doing so, we ide
tify, at intermediate internuclear separation, an ion-c
structure interacting with a Rydberg electron through t
channels.

~1! The electron exits the molecular ion core with
asymptotic phase shift that it acquires inside the Li1 atomic
core, leaving behind a Li1H ion-core structure.

~2! The electron settles into the Li(2s) valence shell,
causing an excitation of the H atom. This excitation is ma
fested as a transition of the ion-core electronic state from
ground-state Li1H configuration to an excited state in whic
the electronic charge density shifts toward a LiH1 configu-
ration.

We ignore all other energetically open channels, such
those leading to a rotation or vibration of the ion core ab
the center of mass and assume that the two distinct elec
atom scattering processes are associated with the same
brational state of the nuclei.

III. FORMALISM

Consider the LiH molecule~Fig. 2!. The total Hamil-
tonian for the system is

H5H11H21
1

r 12
1

pLi
2

2mLi
1

pH
2

2mH
1

1

R
, ~1!

where subscripts 1 and 2 refer to the valence electrons.2 We
treat the inner electrons as an electrostatic charge de

2See Fig. 2 for labels for the coordinates of all particles.

FIG. 1. Lithium and hydrogen atoms at large internuclear se
ration.
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about the Li nucleus and model this charge density with
effective potential. Thus we let

Hn52
1

r an
2

2e22.13r an

r an
2

1

r bn
1

pn
2

2me
. ~2!

Here r an and r bn are the distances of thenth electron from
the lithium and hydrogen nuclei, respectively. The effect
potential term2(1/r an)2(2e22.13r an/r an) describes the in-
teraction of an electron with Li1 @6#. Based on the two-
channel hypothesis of Sec. II, we make the following ans
for an electronic wave function:

cel~t!5c1
(1)~rW22rWb!cn* ~rW12rWa ;urW12rWau.r c!

1c1
(2)~rW2 ;RW !c2s~rW12rWb ;RW ;urW12rWbu.h!, ~3!

whereRW 5rWb2rWa , c1
(1) andc1

(2) are the two ion-core eigen
states which solve the Schro¨dinger equation for the Hamil-
tonian in terms of one-electron operators:

H2c1
1 ~rW22rWb!5E1

1~R!c1
1 ~rW22rWb!,

H2c1
2 ~rW2 ;RW !5E2

1~R!c1
2 ~rW2 ;RW !, ~4!

whereEi
1(R)11/R, for i 51 and 2, are the potential-energ

curves for the molecular ion in the two different ion-co
eigenstates. The ion-core eigenstates are orthonormal,

^c1
( i )uc1

( j )&5d i j , ~5!

and they are adiabatic,

“Rc1
( i )5¹R

2c1
( i )50. ~6!

Equation~3! clearly expresses the two dominant physic
processes. The first term in this expression,c1

1 (rW2

2rWb)cn* (rW12rWa) describes an electron in a Rydberg sta
interacting with a Li1 atomic core, and should be domina
in the wave function at large internuclear separation. As
two atoms approach each other, another process beco
significant, namely, the excitation of the hydrogen atom. T

-

FIG. 2. LiH molecule. The coordinates of the particles are
beled by vectors with respect to laboratory fixed coordinate axe
7-2



un
-
al
rr

te
h
e-

o
n
p
d

n
th

nc
to
-

nn
fo
lsi

ti

e

m
rb
ta

rg
er
on

us
r-
pa
il

t

at

e

dif-

it

a
e so-

u-
to a
can
dial

n-

-
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process is expressed by the second term in the wave f
tion, which is implicitly R dependent. As will be demon
strated, the main reason for thisR dependence is the nonloc
nature of the excitation process, namely, the electron co
lation term, 1/r 12, in the Hamiltonian.

Notice also that this wave function is defined in an ou
region of space that excludes certain volumes about eac
the nuclei~see Fig. 1!. The reason for imposing such a r
striction is to be able to evaluate the matrix elements
1/r 12, which simplify in the outer region. This simplificatio
occurs because the two ion-core states express the two
sible localizations of the inner charge density about the in
vidual nuclei. The scattering from Li1 is associated with the
ion-core eigenstatec1

(1) , and this wave function describes a
electrostatic charge density localized about the H atom
corresponds to a Li1H ion core. Similarly,c1

(2) is associated
with the process of hydrogen excitation, and this wave fu
tion implies the presence of a charge density on the Li a
and an ion core with a strong LiH1 character. This rearrange
ment of the inner charge density is due to anexchangeof
energy between the Rydberg electron and the stationary i
electron. The term in the Hamiltonian that is responsible
such an exchange of energy is the electron-electron repu
term, 1/r 12. In the outer region, the matrix elements of 1/r 12
can be evaluated using the assumed extreme localiza
properties of the ion-core states:

K c1
(1)U 1

r 12
Uc1

(1)L 5
1

r b1
2

a

2r b1
4

,

K c1
(2) ;RW U 1

r 12
Uc1

(2) ;RW L 5
1

r a1
12

e22.13r a1

r a1
2

b

2r a1
4

,

K c1
(1)U 1

r 12
Uc1

(2) ;RW L 50, ~7!

where a54.50 a.u. andb5164 a.u. are, respectively, th
ground-state polarizabilities of the H and Li atoms@7#. In
evaluating the first two of these matrix elements, we assu
that the Rydberg electron remains in a nonpenetrating o
about a neutral spherical charge distribution. We then ob
analytical expressions for Eq.~7! matrix elements by noting
that in the electric field of a negative point charge, the cha
distribution of the neutral atom polarizes. The overall int
action energy between the outer electron and the electr
charge density about the neutral atom is given by the sum
a shielding term and a polarization term~proportional to
1/r 4). The third matrix element is taken to be zero beca
c1

(1) andc1
(2) are localized on different nuclei and their ove

lap is essentially zero for sufficiently large internuclear se
ration. This approximation for the third integral will fa
whenR approaches zero. Therefore, we will assert thatR is
larger than a threshold value (;4 bohr). Accordingly in the
outer region, exchange can be neglected because the
electrons are not permitted to sample the same region
space and they are localized on the different nuclei separ
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by R.4 bohr. Given the matrix elements in Eq.~7!, we can
derive explicit equations forcn(rW12rWb ;RW ) and cn* (rW1

2rWa) by assuming that a factorization of the form

c tot5celxn~RW !, ~8!

solves the Schro¨dinger equation in the outer region for th
molecular Hamiltonian in Eq.~1!:

Hc tot5Ec tot⇒S PR
2

2m
1H11H21

1

r 12
1

1

RD @c1
1 ~rW22rWb!

3cn* ~rW12rWa!1c1
(2)~rW2 ;RW !cn~rW12rWb ;RW !#xn~RW !

5E@c1
1 ~rW22rWb!cn* ~rW12rWa!

1c1
(2)~rW2 ;RW !cn~rW12rWb ;RW !#xn~RW !. ~9!

Taking the inner product of the terms in Eq.~9! with ^c1
(1)u

and using Eqs.~4!–~7!, we obtain

S PR
2

2m
1

1

R
1E1

1~R!1
p1

2

2me
2

2e22.13r a1

r a1
2

1

r a1
2

a

2r b1
4 D

3cn* ~rW12rWa!xn~RW !5Ecn* ~rW12rWa!xn~RW !. ~10!

The presence of thea/2r b1
4 term in Eq. ~10! causes the

electronic and nuclear coordinates to be coupled in the
ferential equation. However, sincea, the polarization of the
H atom in its ground state, issmall on the atomic scale, we
expect~and require! the electronic wave function to exhib
only weakR dependence. If we neglect thisR dependence
altogether, then the Li1-electron interaction becomes
purely atom-based scattering process and an approximat
lution for cn* (rW12rWa) can be obtained. Forr a1.r c
'0.2 bohr@see Fig. 1#, the effective Li1-electron interaction
in Eq. ~2! reduces approximately to 1/r a1. Since this interac-
tion is spherically symmetric about the Li nucleus, the ang
lar and the radial variables, as measured with respect
coordinate system that takes the Li nucleus as its origin,
be separated in the differential equation. The reduced ra
wave function of the Rydberg electron, denoted byF(r a1),
becomes a solution of the Coulomb radial equation,

S d2

dra1
2

2
l ~ l 11!

r a1
2

1
2

r a1
12e1D F~r a1!50. ~11!

The solution is then a superposition of two linearly indepe
dent Coulomb functions:

F~r a1!5 f l~r a1 ,e1!cos@pm l~e1!#2gl~r a1 ,e1!sin@pm l~e1!#,
~12!

where f l(r a1) is the regular Coulomb function, which be
haves liker a1

l 11 as r a1 approaches zero, andgl(r a1) is the
7-3
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S. N. ALTUNATA AND R. W. FIELD PHYSICAL REVIEW A 67, 022507 ~2003!
irregular Coulomb function which diverges asr a1
2 l as r a1

→0 @8#. The coefficients are chosen so that, for bound sta
at infinity, F(r ) diverges as

F~r ! ——→
r→`

j~r !EA22e1rsinFp S 1
A22e1

1 l 1m l~e1! D G ,
~13!

which identifiespm l(e1) as an asymptotic phase shift.3 De-
manding regularity asr→`,

e15
21

2~n* !2
,

n* 5n2m l ,n , ~14!

where n is an integer. Fors waves on Li1, the quantum
defect turns out to be independent ofn with the numerical
value of 0.4@6#. The explicit form ofcn* (rW12rWa) becomes

cn* ~rW12rWa ,urW12rWau.r c!5
1

urW12rWau
@ f e1 ,l~ urW12rWau!

3cos~pm l ,n!2ge1 ,l~ urW12rWau!

3sin~pm l ,n!#Yl
m~ua ,fa!,

~15!

where ua and fa are axial and azimuthal spherical pol
coordinates with respect to the lab fixed coordinate ax
shown in Fig. 2, with the origin translated to the center of
lithium atom. Yl

m is a spherical harmonic. This electron
wave function has noR dependence. It is an approximatio
to the exact solution in the sense that the interactions wh
would cause it to becomeR dependent, namely, the polariz
tion of the H atom, were neglected. Accordingly,e1 is not an
electronic binding energy for the molecule because its
merical value reflects only the properties of a Li1 core. Nev-
ertheless, we can define a rigorous electronic binding ene
in analogy to Eq.~14!:

e1~R!5
21

2@n2mLi~R!#2
, ~16!

wheremLi(R) is an R dependent quantum defect4 which is
determined here. ThisR dependence demonstrates th
Li1-electron scattering is not strictly an atom-based proc
but is affected by the presence of the H atom. An interact

3We supress the subscript (a1) on r in Eq. ~13!, since, in the
asymptotic limit, the choice of origin is irrelevant.

4Note that theR-dependent quantum defect no longer has
meaning of an asymptotic phase shift but should be regarded as
parameter. Its general physical significance is explained in R
@12#.
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which occurs exclusively through an atomic channel at in
nite nuclear separation couples to a molecular channe
finite separation, and the strength of this coupling, in o
formalism, is modeled by theR dependence ofmLi(R). From
this point on, we take the electronic binding energy to
given by Eq.~16!, although we continue to use the approx
mateR-independent representation for the wave function
self.

Similarly, we can take the inner product of the terms
Eq. ~9! with ^c1

(2)u and repeat the same procedure as abov
obtain

S PR
2

2m
1

1

R
2

1

r b1
1

p1
2

2me
1E2

(1)~R!2
b

2r a1
4 D

3c2s~rW12rWb ;RW !xn~RW !5Ec2s~rW12rWb ;RW !xn~RW !.

~17!

Hereb is the polarizability of the Li atom in its ground stat
and cannot be neglected since it is about 40 times larger
the value for hydrogen. The existence of thisR dependence
in the electronic coordinates of this equation forces the e
tronic wave function to be alsoR dependent. It is useful to
employ a reduced expression forcn(rW12rWb ;RW ) in the form
of a product of two primitive functions:

c2s~rW12rWb ;RW !5A~R!c̃2s~rW12rWb ;RW !, ~18!

whereA(R) is an oscillating term that may vary rapidly wit
R and c̃n(rW12rWb ;RW ) is an envelope function which solve
the clamped nuclei equation:

S p1
2

2me
2

1

r b1
2

b

r a1
4 D c̃2s~rW12rWb ;RW !5e2~R!c̃2s~rW12rWb ;RW !.

~19!

The termA(R) describes the amplitude of occurrence
hydrogen excitation relative to the amplitude of pure scat
ing off of lithium as the two nuclei approach each other a
can therefore be viewed as a mixing coefficient. A furth
condition onA(R) is obtained by recalling that we expec
on physical grounds, the Li1-electron scattering wave
function term to dominate at infinite nuclear separation
Eq. ~3!. Thus we demand

lim
R→`

A~R!50. ~20!

In analogy with Eq.~16!, we express an electronic bindin
energy in the form

e2~R!52
1

2@12mH~R!#2
, ~21!

where we have introduced an additionalR dependent
quantum-defect functionmH(R), which should also be

e
fit
f.
7-4
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MODELING LiH POTENTIAL-ENERGY CURVES: AN . . . PHYSICAL REVIEW A67, 022507 ~2003!
viewed as a fit parameter that models the hydrogenic exc
tion at a given internuclear separation. Equations~10! and
~17! together imply the additional condition

U~R!5E1
1~R!2

1

2@n2mLi~R!#2
1

1

R

5E2
1~R!2

1

2@12mH~R!#2
1

1

R
, ~22!

whereU(R) is the potential-energy curve for the motion
the nuclei,E1

1(R) andE2
1(R) are the two ion-core potential

energy curves in the two electronic eigenstates that co
spond to Li1H and LiH1 structures, respectively. The eige
value equation for the nuclear motion becomes

S PR
2

2m
1

1

R
1U~R! Dxn~RW !5Exn~RW !. ~23!

An expression forU(R) can readily be obtained ifA(R)
is known. We now present a physical argument to calcu
A(R) which is subsequently used to calculateU(R). We
then refer to Eq.~22! to obtain theR-dependent quantum
defects to model these two electronic channels that we h
built into our theory.

In our formalism, the electron on the hydrogen atom c
be collisionally excited from the ground state. This excitati
can occur if the distance between the two electrons,r 12, is
within an effective interaction length,h, for electron-
hydrogen scattering, which is shown to be on the order o
bohr for the states under question. With respect to
exchange-neglected representation in Eq.~3!, this corre-
sponds to stating that the itinerant electron is found ins
the sphere of radiush about the hydrogen atom during th
excitation. Thus we restrict our attention to the region
space defined by

0,urW12rWbu,h. ~24!

We refer to this region of space as the reaction zone.
electron positions inside the reaction zone, contributions
the exchange interaction are significant. Furthermore, the
larization approximation on the hydrogen atom fails. Assu
ing that the off-diagonal matrix elements of the Hamiltoni
which get multiplied byA(R) are small, we can write an
approximate solution for the Scro¨dinger equation inside the
reaction zone in the form

fn
el~t!5~12P12!@c1

(1)~rW22rWb!cn*

3~rW12rWa ;urW12rWbu,h!1A~R!c1
(2)~rW22rWa ;RW !

3c̃2s~rW12rWb,0,urW12rWbu,h;RW !#

1(
i

Bi~R!z i~r 12,rW12rWb ,rW22rWb!, ~25!
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whereP12 is the electron permutation operator and the ter
z i(r 12,rW12rWb ,rW22rWb) describe the collision of the itineran
electron with the hydrogen atom in its ground state at z
energy and triplet symmetry@9#:

lim
r 1b→`

z i~r 12,rW12rWb ,rW22rWb!

; lim
k→0

e2kr2b

sinFkS r 1b1
do~k!

k D G
r 1b

, ~26!

wheredo(k) is thes-wave partial phase shift. For simplicity
we neglect the scattering terms in the reaction zone e
tronic wave function. It is shown below by direct comparis
to ab initio calculations that the error introduced from th
simplification is not significant. In the absence of the scat
ing terms, one regains Eq.~17! after taking the inner produc
of Huc tot& with ^c1

(2)u and ignoring the contribution from the
Li1 core. However, since the electronic coordinates of
itinerant electron are restricted to the region defined by
~24!, the lithium polarization term,b/2r 1a

4 , that appears in
Eq. ~17! can be neglected. This is because the polariza
term varies as the inverse fourth power ofR and we require
that R.h'3.5 bohr. Therefore, the wave function for th
itinerant electron reduces to

c̃2s~rW12rWb,0,urW12rWbu,h;RW !5c2s~rW12rWb!, ~27!

where theR-independentc2s(rW12rWb) is given by

c2s~rW12rWb!5
1

urW12rWbu
f 2s~ urW12rWbu!Yl

m~ub ,fb!, ~28!

andub andfb are axial and azimuthal spherical polar coo
dinates with respect to the lab fixed coordinate axes, sho
in Fig. 2, with the origin translated to the center of the h
drogen atom. The electronic wave function in the react
zone becomes

fn
el~t!5c1

(1)~rW22rWb!cn* ~rW12rWa!

1A~R!c1
(2)~rW2 ;RW !c2s~rW12rWb!. ~29!

In Eq. ~29!, we have suppressed all of the complicat
nonlocal effects and the only information that tells us that
are looking at a molecule in this wave function is the fa
that the electrons are localized on the two different nucle
the diatom. Now, letcn8(rW1 ,rW2 ,RW ) be an adiabatic eigenstat
of the Born-Oppenheimer Hamiltonian defined by

H̃5H2
P̂R

2

2m
. ~30!
7-5
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Since the set of adiabatic eigenstates at any internuc
separation is complete, an expansion forfn

el(t) exists such
that

fn
el~t!5~12P12!@c1

(1)~rW22rWb!cn* ~rW12rWa!

1A~R!c1
(2)~rW2 ;RW !c2s~rW12rWb!#

5A2@11A~R!2# (
n8

an8
n

~Ro ,R!cn8~rW1 ,rW2 ;Ro
W !,

~31!

where

an8
n

~Ro ,R!5A 1

2@11A~R!2#
~^fn

el ;Rucn8;Ro&!.

To manipulate this expression further, we need to discuss
solutionscn8(rW1 ,rW2 ;RW ) of the Schro¨dinger equation for the
Born-Oppenheimer Hamiltonian in more detail. The froz
nuclei equation has been studied extensively in the litera
and very accurate eigenstates can be obtained. How
since our primary goal is not accuracy, for clarity we w
take the eigenstates to be given by a linear combination
two atomic orbitals that are variationally optimized in th
physically reasonable two-dimensional subspace to give
best approximation to the excited state in question. The
fore, we define molecular orbitals in the form@10#

cn8~rW1 ,rW2 ;Ro
W !5cn8~r 1

W ;Ro
W !c21~r 2

W ;Ro
W !

2cn8~r 2
W ;Ro

W !c21~r 1
W ;Ro

W !, ~32!

where

cn8~rW;Ro
W !5@a1

n8~Ro!cLi
(n8)~rW;Ro!1a2

n8~Ro!cH
(n8)~rW;Ro!#,

c21~rW;Ro!5@b1~Ro!cLi
(2s)~rW;Ro!1b2~Ro!cH

(1s)~rW;Ro!#.
~33!

These molecular orbitals correspond to the electro
states that belong to thes(2s)nss electronic configuration.
In Eqs. ~32! and ~25!, exchange isno longerneglected and
the electrons are placed into an antisymmetric spatial c
figuration that is demanded by a triplet state:

cn8~r 1
W ,r 2

W ;RW o!52cn8~r 2
W ,r 1

W ;RW o!. ~34!

The molecular orbitals in Eq.~33! for each fixed value of
the principal quantum number,n8, describe two different
separated-atom limits. The more stable combinati
Li( n8l )1H(1s),5 corresponds to a lithium atom in an e
cited state and a hydrogen atom in the ground state an
described by

5The atomic lithium spectrum reveals that only thes-wave quan-
tum defect differs significantly from zero. Therefore, all states w
lÞ0 can be considered quasidegenerate and they can be char
ized simply with the principal quantum numbern8.
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lim
R→`

a1
n8~R!51, lim

R→`

a2
n8~R!50,

lim
R→`

b1~R!50, lim
R→`

b2~R!51. ~35!

The excited-state configuration, Li(2s)1H(n8), corre-
sponds to a repulsive state and has the following limit
behavior:

lim
R→`

a1
n8~R!50, lim

R→`

a2
n8~R!51,

lim
R→`

b1~R!51, lim
R→`

b2~R!50. ~36!

Now, by means of the following device which exploi
these separated-atom limits of the adiabatic wave functio
we can simplify Eq.~31! and ultimately derive an expressio
for the mixing coefficientA(R). First, since the set of adia
batic states is complete for every internuclear separation
any R8 that differs fromRo an expansion exists such that

fn
el~t!5A2@11A~R!2#(

n8
an8

n
~R8,R!cn8~rW1 ,rW2 ;R8W !.

~37!

Accordingly, we can imagine writing equations identical
Eq. ~37! for each internuclear separation inside an inter
(0,Rmax) and then summing them up. However, sinceR is a
continuous parameter, this summation is actually an integ
tion and we obtain

Rmax

A2@11A~R!2#
~12P12!@c1

(1)~rW22rWb!

3cn* ~rW12rWa!u0,urW12rWbu,h

1A~R!c1
(2)~rW2 ;RW !c2s~rW12rWb!u0,urW12rWbu,h#

5E
0

Rmax

(
n8

an8
n

~R,R8!cn8~rW1 ,rW2 ;R8W !dR8

5E
0

Rmax
an

n~R,R8!cn~rW1 ,rW2 ;R8W !dR8

1 (
n8Þn

E
0

Rmax
an8

n
~R,R8!cn8~rW1 ,rW2 ;R8W !dR8, ~38!

wherecn(rW1 ,rW2 ;RW ) is the adiabatic eigenstate that converg
to the Li(ns)1H(1s) configuration in the separated-ato
ter-
7-6
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limit.6 Adjusting terms further and dividing through byRmax
we get

12P12

A2@11A~R!2#
@c1

(1)~rW22rWb!cn* ~rW12rWa!u0,urW12rWbu,h

1A~R!c1
(2)~rW2 ;RW !c2s~rW12rWb!u0,urW12rWbu,h#

5
1

Rmax
E

0

Rmax
cn~rW1 ,rW2 ;R8W !dR8

1
1

Rmax
E

0

Rmax
@an

n~R,R8!21#cn~rW1 ,rW2 ;R8W !dR8

1 (
n8Þn

1

Rmax
E

0

Rmax
an8

n
~R,R8!cn8~rW1 ,rW2 ;R8W !dR8.

~39!

The adiabatic electronic wave function for the Li(ns)
1H(1s) configuration in the separated-atom limit can
written as

cn~rW1 ,rW2 ;R8→`!5
1

A2
@c1

1~rW22rWb!cn~rW12rWa!

2c1
1~rW12rWb!cn~rW22rWa!] ~40!

and it can be verified that

lim
R8→`

an
n~R,R8!.

1

A11A~R!2
.1. ~41!
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02250
This implies that the terman
n(R,R8)21 approaches zero a

R gets larger and hence the second integral in Eq.~39! re-
mains bounded. Furthermore, from the normalization con
tion

(
n8

uan8
n

~R,R8!u251, ~42!

we get, forn8Þn,

lim
R8→`

an8
n

~R,R8!50, ~43!

thus the third integral in Eq.~39! also remains bounded
Therefore in the limit asRmax goes to infinity, the 1/Rmax
term forces the second and third expressions in Eq.~39! to be
vanishingly small and we are left with a simple express
for the electronic wave function in the reaction zone in ter
of the adiabatic states:

12P12

A2@11A~R!2#
@c1

(1)~rW22rWb!cn* ~rW12rWa!u0,urW12rWbu,h

1A~R!c1
(2)~rW2 ;RW !c2s~rW12rWb!u0,urW12rWbu,h#

5 lim
Rmax→`

E
0

Rmax
cn~rW1 ,rW2 ;R8W !dR8

Rmax

. ~44!

Exploiting the orthonormalization condition on the co
eigenstates, we can now obtain an expression forA(R) in the
form
A~R!

A2@11A~R!2#
5 lim

Rmax→`

E
urW12rWbu,h

c2s~rW12rWb!E
allspace

c1
(2)~rW2 ;RW !* E

0

Rmax
cn~rW1 ,rW2 ;R8W !dR8drW2rW1

RmaxE
urW12rWbu,h

uc2s~rW12rWb!u2drW1

. ~45!
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This is the main result of our derivations. Equation~45!
shows that the essence of the information about theentire
electronic structure of the molecule can be gained thro
integrations over a small region of space that picks out th
special locations where the important many-body inter
tions occur. Our formalism provides a general recipe to
cate these physically crucial poles, by means of a trans
mation between local and nonlocal representations for
electronic wave function, which also switches between
wave function that neglects exchange to one that acco
for exchange in the proper electronic symmetry. Note that

6See Eq.~35!.
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value of A(R) reflects the properties of the nonlocal adi

batic wave function,cn(rW1 ,rW2 ;R8W ), in the finite region and
this information is simultaneously being mapped from
internuclear separations through the integration overR8, re-
placing a summation over a complete set of adiabatic sta

In the following section, we calculate the mixing coeffi
cients for the excited triplet states of LiH. Then we use t
mixing coefficient to determine an expression for t
potential-energy curves for the motion of the nuclei. We a
calculate theR-dependent quantum defects that were int
duced in Eq.~22!. Finally, we compare our results with ac
curateab inito calculations and the Fermi approximation r
sults.
7-7
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TABLE I. Expansion coefficients for the effective molecular orbitals of LiH.

State Effective molecular orbital

3s3S1
0.0345cLi

(n)cLi
(2s)10.6098cLi

(n)cH
(1s)10.0094cH

(n)cLi
(2s)10.0963cH

(n)cH
(1s)

4s3S1
0.0345cLi

(n)cLi
(2s)10.5921cLi

(n)cH
(1s)10.0094cH

(n)cLi
(2s)10.1504cH

(n)cH
(1s)

5s3S1
0.0344cLi

(n)cLi
(2s)10.5679cLi

(n)cH
(1s)10.0112cH

(n)cLi
(2s)10.2214cH

(n)cH
(1s)

7s3S1
0.0337cLi

(n)cLi
(2s)10.5022cLi

(n)cH
(1s)10.0157cH

(n)cLi
(2s)10.3853cH

(n)cH
(1s)

9s3S1
0.0318cLi

(n)cLi
(2s)10.5016cLi

(n)cH
(1s)10.0219cH

(n)cLi
(2s)10.3945cH

(n)cH
(1s)

12s3S1 0.0335cLi
(n)cLi

(2s)10.4906cLi
(n)cH

(1s)10.0185cH
(n)cLi

(2s)10.4072cH
(n)cH

(1s)
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IV. RESULTS

We compute the potential-energy curves for the LiH3S1

s(2s)nss configuration from

U~R!5
^celuHucel&

^celucel&
, ~46!

where cel is given by Eq.~3!. The numerical values fo
A(R) are obtained from Eq.~45!. We simplify our equations
by noting that the atomic orbitals in Eq.~33! vary slowly
with R8, thus we treat them as constants in the integrat
overR8 in Eq. ~45!, fixed at the internuclear separation,R, of
the ion-core electronic wave functions:

E
0

Rmax
cn~rW1 ,rW2 ;R8W !dR8

5E
0

Rmax
@cn~r 1

W ;R8W !c21~r 2
W ;R8W !

2cn~r 2
W ;R8W !c21~r 1

W ;R8W !#dR8

.E
0

Rmax
~12P12!$@a1

n~R8!cLi
(n)~r 1

W ;R!

1a2
n~R8!cH

(n)~r 1
W ;R!#@b1~R8!cLi

(2s)~r 2
W ;R!

1b2~R8!cH
(1s)~r 2

W ;R!#%dR8. ~47!

Then, for Rmax chosen sufficiently large, the limit-integra
expression of Eq.~44! becomes an average over the var
tional coefficients of the adiabatic wave functions. After t
integration is executed we obtain an effective molecular
bital which must be matched to the two-channel electro
wave function in the excitation region:

cad~t!5~12P12!~acLi
(n)cLi

(2s)1bcLi
(n)cH

(1s)

1ccH
(n)cLi

(2s)1dcH
(n)cH

(1s)!. ~48!
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The expansion coefficients in this expression for differe
electronic states of LiH are listed in Table I. In our calcul
tions we setRmax570 bohr, but this value should be in
creased if greater accuracy is desired. The ion-core poten
energy curve,E1

1(R), has been calculated, consistent w
the assumptions of our theory, by placing the valence e
tron in the ground-state atomic orbital of hydrogen,

c1
1~rW22rWb!5cH

1s~rW22rWb!, ~49!

and employing

E1
1~R!5^cH

1s~r 2
W2rWa!uH2ucH

1s~r 2
W2rWa!&. ~50!

Similarly, the excited-state ion-core potential-energy cu
was generated by constructing a Schmidt orthonormali
electronic wave function with dominant lithium ground-sta
character,

c2
1~r 2

W ;RW !5
1

A12S~R!2
@cLi

2s~rW22rWa!2S~R!cH
1s~rW22rWb!#,

S~R!5^cH
1sucLi

2s&, ~51!

and using Eq.~50! with c1
1 replaced byc2

1 . The ion-core
potential-energy curves,E1

1(R)11/R andE2
1(R)11/R, cal-

culated in this fashion, have been plotted in Figs. 3~a! and
3~b!.

A. Calculation of the integration range h

In Eq. ~45! the term* urW12rWbu,huc2s(rW12rWb)u2drW1 acts as a
normalization constant in the reaction zone. The sphere
radiush is the region of space where the hydrogenic exc
tion takes place and thus one expects significant overlap
tween the ground-state hydrogen wave function and the
excited state in this volume. A measure of this overlap
given by
7-8
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FIG. 3. The ion-core potential-energy curvesE1
1(R)11/R andE2

1(R)11/R.
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urW12rWbu,h

c2s
H ~rW12rWb!c1s

H ~rW12rWb!drW1 ~52!

and the approximate region in which this overlap is sign
cant can be calculated by letting

f ~k!5E
urW12rWbu,k

uc2s
H ~rW12rWb!u2drW1 ,

g~k!5E
urW12rWbu,k

c2s
H ~rW12rWb!c1s

H ~rW12rWb!drW1 , ~53!

and solving forh from

f ~k!5g~k!. ~54!

The value ofh from Eq. ~54! comes out to be 3.46 boh
Physically, Eq.~54! ensures thath provides a numerica
scale for the region where the excitation occurs. The exc
tion process takes place in the innermost region occupied
the hydrogen atom ground state. The probability amplitu
for the excitation will be proportional to the off-diagon
matrix element of 1/r 12 and this matrix element accumulate
in the reaction zone and dominates all other interactions
r 1b.h, the total electronic probability in the excited sta
f (k), exceeds the overlap of the excited state with
ground state, therefore in this region to a good approxim
tion many interactions can be turned off and the electro
wave function can be taken in the representation of Eq.~3!.

The method for choosingh presented here is not uniqu
and other schemes for determiningh can be proposed. It is
possible to leth be energy dependent and vary state to st
This may lead to more accurate results. However, the me
presented here is mathematically explicit and physically s
sible. Furthermore, fixingh for all states allows for a calcu
lation of the global electronic structure and obviates the n
for state by state analysis.
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1. 3s 3S¿ state

In Fig. 4~a!, we have plotted the calculated potentia
energy curve given by Eq.~46!. Comparison withab initio
results@11# shows good qualitative agreement between
two approaches. Our plot displays a barrier with maximum
7.5 bohr and height 192 cm21. The barrier is followed by a
well with minimum approximately at 3.8 bohr and dep
2050 cm21. The barrier maximum from theab initio results
is at R59.05 bohr and the height is at 249 cm21. However,
the additional shallow well that arises at largerR than the
barrier in Fig. 4~a! is absent in theab initio results. The
height of the barrier is underestimated in our model beca
of the neglect of the additional repulsive interactions th
arise in the Li1 core and the reaction zone, namely, the o
diagonal matrix elements of 1/r 12 which are scaled byA(R).
We expect these interactions to be significant for this lo
lying state. The maximum of the outer barrier in Ref.@1#
appears atR;8 bohr closer to the value reported in Re
@11#, with a difference of 1 bohr. However, the height of th
barrier is overestimated in this model by a factor of 1.2. T
difference can be explained from the use of the zero ene
scattering length in the Fermi approximation@1#.

The R-dependent quantum-defect curve for the Lithiu
atom, defined by Eq.~22!, is shown in Fig. 5~a!. It is seen
that the quantum defect starts at 0.397 nearR56,7 and then
converges toward the atomic value ofm50.4 as the internu-
clear separation increases. The analogous plot for the hy
genic excitation process in Fig. 5~b! recovers a quantum de
fect that remains constant at20.15 beyondR58. Here, the
change from the ground-state quantum numbern51 toward
the noninteger value of 1.15 can be interpreted as a signa
of the excitation of the hydrogen atom. In Fig. 4~c!, we plot
the mixing coefficientA(R), the shape of which displays
correspondence with the 3s potential-energy curve. This re
semblance underlines the fact that all the finer features of

7Recall that our calculations are valid forR.4 bohr.
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FIG. 4. Potential-energy curves of LiH. The potential-energy curves plotted in the figure correspond to the 3s 3S1, 4s 3S1, and 5s 3S1

states, respectively. Comparison with the curves in Ref.@9# shows an overall qualitative agreement withab inito calculations. The mixing
coefficients for each state are also plotted in the third column, and they display a clear resemblance in shape to the corre
potential-energy curves. This shows that the physical origins of the finer features of the potential-energy curves are reflected by the
values of the mixing coefficients in our theory.
ing

te
o
i-

ie
f.

o

rib

th

red
and
ity
en
per-
t
s

ula-
te a
his
o-

he

is
potential-energy curves are obtained from the mix
coefficient.

2. 4s 3S¿ state

Figure 4~d! shows that the overall features of theab initio
results of Ref.@11# have been captured closely for this sta
within our treatment. There is a secondary minimum at ab
Rmin510 bohr, which is followed by a barrier with max
mum appearing atRmax518 bohr as compared to theab ini-
tio values ofRmin511 bohr andRmax518 bohr. Our calcu-
lation overestimates the height of the inner and outer barr
at 105 cm21 and 160 cm21. The reported values from Re
@11# are, respectively, 60 cm21 and 62 cm21. The Fermi ap-
proximation also overestimates the height of the innerm
maximum at nearly 115 cm21. The error in our calculation is
most likely due to the use of the limited basis set in Eq.~33!
and to the neglect of the additional channels that desc
electron-hydrogen scattering in Eq.~25!. Further comparison
to the Fermi approximation result shows that some of
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finer details of the potential energy curve have been captu
in our results, such as the ratio of the heights of the inner
outer maxima. This may be due to the additional flexibil
of our formalism, namely, the treatment of the hydrog
atom as a dynamical object instead of a frozen, passive
turber. As shown in Fig. 5~c!, the quantum-defect curve tha
describes the Li1-electron interaction has more oscillation
and the oscillations have larger amplitude than the 3s curve
about its atomic value ofm50.4. At R518 bohr, it falls as
low as 0.367. These oscillations are related to the und
tions observed in the PECs at long range and they indica
stronger coupling between the two electronic channels. T
is further verified from the quantum-defect curve for hydr
genic excitation in Fig. 5~d!, which converges to a more
negative value of20.209~rather than20.15 as for 3s) be-
yond R510 bohr. The larger absolute magnitude of t
quantum defect in the hydrogen channel for the 4s state than
its value for the 3s state shows that hydrogenic excitation
becoming more significant for higher electronic states.
7-10
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FIG. 5. The quantum-defect curves for the lithium and the hydrogen channels.
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3. 5s 3S¿ state

The calculated potential-energy curve for this state is p
ted in Fig. 4~g!. The correct number of wells and barriers
reproduced, the locations of the corresponding minima
maxima are in good agreement with theab initio results. The
only significant discrepancy seems to be in the bar
heights. The height of the first barrier at 79 cm21 is smaller
than theab initio value of 100 cm21. The heights of the
second and third barriers are 68.3 cm21 and 41 cm21. These
exceed theab initio barrier heights, which are 33 cm21 and
21 cm21, respectively. The discrepancies may be related
02250
t-

d

r

o

the use of a limited basis set in Eq.~33! and the neglect of
the channels describing hydrogen-electron scattering in
~25!.

4. Higher electronic states and the Rydberg scaling law

In Fig. 6, we have plotted the potential-energy curves
then57, n59, andn512 electronic states that were calc
lated using the bound space integration formula. In th
potential-energy curves, oscillations and undulations are s
even at very large internuclear separation. This is due to
increasing diffuseness and the increasing number of ra
nodes of the atomic orbitals on the lithium atom at high
7-11
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excitation. Furthermore, the amplitudesa inside each of the
barriers in the potential-energy curves, indicated by the
ward pointing arrows in Fig. 6, follow very closely a simp
scaling law:

a}S 1

n*
D 3

,

n* 5n20.4, ~55!

wheren* is the effective principal quantum number for th
lithium atom. This scaling law is related to the diagonal m
trix elements of the 1/r 12 operator in the basis of the Rydbe
orbitals that are proportional to (n* )23/2 and is known as the
Rydberg scaling law. Figure 6 shows that for highly excit
electronic states, the shapes of the potential-energy cu
~including the nontextbook oscillations! are essentially gov-
erned by the simple Rydberg scaling laws.

Table I provides further physical insight into the tripl
states of LiH. Although the electronic structure is domina
by the LinsH term in the effective molecular orbital, an ad
ditional term occurs in the form ofdcH

(n)cH
(1s) that describes

Li1H1e character in the electronic wave function. The e
istence of this term implies that the triplet state is reached
the formation of an intermediate H1e type species in the
triplet symmetry, as the electron, initially localized on t
lithium atom, scatters off the hydrogen atom.

V. DETAILS AND THE LIMITATIONS
OF THE CALCULATION

The minimum value of internuclear distance R. The mini-
mum value ofR is chosen such that the overlap integralS(R)

FIG. 6. Higher electronic states and (n* )23 scaling law. For
these high electronic states, oscillations and undulations in pote
curves are seen even at very large internuclear separation. The
plitudes inside each of the barriers in the potential-energy cu
are proportional to the inverse cube of the principal quantum n
ber and the corresponding barriers line up. This suggests tha
these highly excited states, the shapes of the potential-energy c
are essentially governed by the simple Rydberg scaling laws.
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of a 2s-type lithium atomic orbital and a 1s hydrogenic or-
bital is sufficiently small for the desired accuracy. ForR
.4, uS(R)u,0.01 and rapidly approaches zero for increas
values ofR. For R less than this threshold, electron correl
tion effects become significant and the off-diagonal mat
element of the electron-electron Coulomb repulsion term
Eq. ~7! cannot be approximated to zero. A more sophistica
calculation is needed for a description of the two-electr
wave function whenR is smaller than this threshold value

Li1-electron interaction.Equation~2! describes the inter-
action of the Rydberg electron with Li1 in the central field
approximation with optimized parameters that give the cl
est agreement with the observed quantum defects in thens
Rydberg series of Li. Altering these parameters changes
nodal structure of the diffuse Rydberg orbitals on Li and t
leads to significant changes in the resultant potential-ene
curves. Other forms for the interaction of the electron w
Li1 can be used, but it is important that any adjustable
rameters are optimizeda priori.

Restriction to triplet states.Our calculations are restricte
to a study of the triplet states because the approximate e
tronic wave function in Eq.~3! is expected to realistically
describe the adiabatic curves in the triplet electronic symm
try. For singlet states, additional complications occur due
the interactions with the ionic state dissociating to L1

1H2. These interactions lead to multiple avoided crossin
in the potential-energy curves and more flexibility is requir
in Eq. ~3! to capture this behavior. One feasible extension
this direction is to allow for the mixing in of a third state, a
each internuclear distanceR, that will correspond to a
Li1H2 formation. This procedure requires further study a
constitutes a natural next step in the development of
method.

VI. CONCLUSIONS

In this work, we have demonstrated that the essen
qualitative features of the potential-energy curves for
low-lying ns3S1 electronic states of LiH can be reproduce
and that the potential curves for higher-Rydberg states ca
obtained in a unified way with our finite-space bounded
tegration method. The main idea behind our theory is
delineation of the dominant physical processes that oc
within a bounded region of space. The information abo
these physical processes is then captured into an electr
wave function, which is a solution of the Schro¨dinger equa-
tion in the outer region using the bound space integrat
formula of Eq.~45!.

For the case of LiH, the analysis reveals that neither of
nuclei acts completely as a static perturber for the other o
and electronic energy gets transferred between them
means of the excitation of the hydrogen atom to its fi
excited state. The physical interaction that is responsible
the excitation is the electron-electron repulsion 1/r 12 term in
the Hamiltonian. When the two electrons are within the
fective interaction length for atomic hydrogen, this ter
dominates all other electrostatic interactions that could c
tribute to the excitation of the hydrogen atom. Since the
drogen atom is initially in its ground state, this process m
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occur inside a small sphere centered on the hydrogen
radius given by the excitation radiush. Exchange become
significant when the two electrons are close to each ot
and hence the solutions that are valid inside the finite reg
of space must be antisymmetrized. In this manner, the in
mation about the triplet nature of the electronic wave fu
tion is mapped into the exchange-neglected representatio
Eq. ~3! by means of Eq.~45!.

The developed technique also provides a recipe to in
information from the exact representations of many-bo
electronic wave functions into simplified representatio
through integrations in finite regions of space where the e
tron pair interaction is important. Significant improvement
the accuracy of our results may be achieved, if our pictur
built upon exactab initio results instead of the approxima
adiabatic wave functions used here.

The current theory can be expected to produce simila
accurate results for other hydrides with more complica
hydrogen partners, to the extent that the atomic ion core
the hydrogen partner can be treated as ‘‘frozen’’ and its
teraction with the Rydberg electron can be well appro
mated with a central field. The extension of the method
ie

02250
th

r,
n
r-
-
in

ct
y
s
c-

is

ly
d
of
-
-
o

nonhydrides seems quite feasible provided the perturb
atom has energetically accessible excited states. For
ample, we expect the method to generalize in a straight
ward fashion to LiHe or Li2.

Our method can also be employed to obtain the poten
curves for the states belonging to different Rydberg serie
LiH. Subsequently, these potential curves can be drawn
for the determination of the quantum-defect curves and th
energy dependence@3#. Following the work of Ross and Jun
gen, we plan to progress toward such a generalization w
the ultimate goal of obtaining the set of quantum-def
functions that will provide a complete description of th
short-range scattering processes.
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