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Universal equation for Efimov states
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Efimov states are a sequence of shallow three-body bound states that arise when the two-body scattering
length is large. Efimov showed that the binding energies of these states can be calculated in terms of the
scattering length and a three-body parameter by solving a transcendental equation involving a universal func-
tion of one variable. We calculate this universal function using effective field theory and use it to describe the
three-body system ofHe atoms. We also extend Efimov’s theory to include the effects of deep two-body
bound states, which give widths to the Efimov states.
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The interactions of nonrelativistic particlésuch as at-

PACS nuntber03.65.Ge, 36.46-c, 31.15.Ja, 21.45.v

the interactions in Bose-Einstein condensates. An important

oms with short-range interactions at extremely low energiedifference from He is that the interatomic potentials for Na

are determined primarily by theBwave scattering lengta.
If |a] is much larger than the characteristic range their

and Rb support many deep two-body bound states.
Efimov derived some powerful constraints on low-energy

interaction, low-energy atoms exhibit universal propertiesthree-body observables for systems with large scattering
that are insensitive to the details of the interaction potentiallength [1]. They follow from the approximate scale invari-
In the two-body sector, the universal properties are simpl@nce at length scalé®in the regionl <R<|a| and the con-
and familiar. The differential cross section for two identical servation of probability. He introduced polar variablésind

bosons with relative wave numbdér<1/ and massm is
do/dQ=4a%/(1+k? a?). If a>0, there is also a shallow
two-body bound statéthe dimej with binding energyB,

¢ in the plane whose axes arealand the energy variable
sgnE)|mE|Y%#%, and showed that low-energy three-body
observables are determined by a few universal functions of

=#2/ma’. In the three-body sector, there are also universathe angleé. In particular, the binding energies of the Efimov

properties that were first deduced by EfimdJ. The most

states are solutions to a transcendental equation involving a

remarkable is the existence of a sequence of three-bodsingle universal function of [1]. In this paper, we calculate
bound states with binding energies geometrically spaced ithis universal function for the case of three identical bosons

the interval betweerh?/ma? and #%/mI2. The number of
these “Efimov states” is roughly Ing/l)/= if |a| is large
enough. In the limitja|—, there is an accumulation of
infinitely many three-body bound states at thresh@e
“Efimov effect”). The knowledge of the Efimov binding en-

and apply Efimov’s equation to thtHe trimer. We also ex-
tend Efimov theory to atoms with deep two-body bound
states.

The existence of Efimov states can easily be understood
in terms of the equation for the radial wave functigiR) in

ergies is essential for understanding the energy dependentiee adiabatic hyperspherical representation of the three-body
of low-energy three-body observables. For example, Efimoyproblem[9,10]. The hyperspherical radius for three identical
states can have dramatic effects on atom-dimer scattering #toms with coordinates, r,, and r is R2=(ri,+r%,

a>0 [1,2] and on three-body recombinationaf<0 [3,4].

+159)/3, wherer;;=|r;—r;|. If |a|>I, the radial equation

A large two-body scattering length can be obtained byfor three atoms with total angular momentum zero reduces in
fine-tuning a parameter in the interatomic potential to bring ahe regionl <R<|a| to

real or virtual two-body bound state close to the two-atom

threshold. The fine-tuning can be provided accidentally by
nature. An example is théHe atom, whose scattering length

a=104 A[5] is much larger than the effective ranbe= 7
A. Another example is the two-nucleon system in @

s2+1/4

prs
}f(R)IEf(R),

hZ
[W+ R

- 2m

)

wheres,~1.00624. This looks like the Schitimger equation

channel, for which the deuteron is the shallow bound statefor a particle in a one-dimensional, scale-invaria®?po-
This system provided the original motivation for Efimov’s tential. If we impose a boundary condition 6(R) at short
investigationg1]. In the case of atoms, the fine-tuning can distances of ordel, the radial equatioril) has solutions at

also be obtained by tuning an external electric fl&Hor by

discrete negative values of the eigenvalire — B;, with B3

tuning an external magnetic field to the neighborhood of aanging from order#?/ml? to order #%/ma?. The corre-
Feshbach resonand&]. Such resonances have, e.g., beersponding eigenstates are called Efimov states|ahs:,

observed for’®Na and ®°Rb atoms[8] and are used to tune
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their spectrum the la{”
~515'%2/ma’.

Efimov’s constraints can be derived by constructing a so-
lution to Eq.(1) that is valid in the regiom<R</|a|. In the
case of a bound state with energy — B3, the radial vari-

able isH?=mB5/#%2+ 1/a? and the angular variablé is

&= —arctataymBs/h)—7H(—a),

approaches simple

@
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where 6(x) is the unit step function. Since we are interested
in low energied E|~#%/ma?, the energy eigenvalue in Eq.
(1) can be neglected. The most general solution therefore has
the form[1]

f(R): \/ﬁ[Aeisoln(HR)-l— Be_isoln(HR)], (3)

which is the sum of outgoing and incoming hyperspherical
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waves. The dimensionless coefficiedtsand B can depend
on ¢&. At shorter distancefR~1 and longer distancef

~|al, the wave function becomes very complicated. Fortu-

nately, we can avoid solving for it by using simple consider-
ations based on unitarifyl].

We first consider the short-distance region. Efimov as-
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FIG. 1. The energy variable (mB;/#2A2)Yfor three shallow
Efimov states as a function of s@)(A,|al) ™2

sumed implicitly that there are no deep two-body bound

states with binding energieB > #%/ma?. Thus the two-
body potential supports no bound states at athf0 and
only the dimer with binding energB,=%2/ma? if a>0.

The universal functior (£) could be determined by solv-
ing the three-body equation for the Efimov binding energies
in various potentials whose scattering lengths are so large

We will address the complication of deep two-body boundthat effective range corrections are negligible. It can be cal-
states later. The probability in the incoming wave must therculated more easily by using the effective field the@E§FT)
be totally reflected by the potential at short distances, so wef Ref.[2] in which the effective range can be set to zero. In

can seB=A¢€’. The phase can be specified by giving the
logarithmic derivative Ryf' (Rg)/f(Rp) at any point |
< Ry < |al. The resulting expression fa# has a simple
dependence OHI:
0/2=syIn(H/CA,). (4)

The denominatocA , is a complicated function oR, and
Rof'(Rp)/f(Rp). It differs by an unknown constarmt from
the three-body parametdr, introduced in Ref[2].

We next consider large distanc®s-|al. In general, an
outgoing hyperspherical wave incident on Re |a| region
can either be reflected or else transmitte&®te « as a three-

Ref.[2], the dependence of the binding energyaoand A ,

was calculated for the shallowest Efimov state ax0. In
order to extract the universal functian(¢), we have calcu-
lated the binding energies of the three lowest Efimov states
for both signs ofa. In Fig. 1, we plot— (mB,/%2A2)Y* as a
function of sgn@)(A, |a|) %2 for these three branches of
Efimov states. The binding energies for deeper Efimov states

and for shallower states nean (|a|) =0 can be ob-
tained from the discrete scaling symmetry. A given two-body
potential is characterized by valuesafind A, and corre-
sponds to a vertical line in Fig. 1, such as the dashed line
shown. The intersections of this line with the binding energy
curves correspond to the infinitely many Efimov states.

atom or atom-dimer scattering state. The reflection and transpose states WittB;=%2/mI? are unphysical. FOB;—
mission amplitudes are described by a dimensionlesg,, angle¢ goes to— m/2. The ratio of the binding energies

unitary 3x3 matrix that is a function of¢ only. For
—7<&<— /4, scattering states witR—oo are kinemati-
cally not allowed. The probability is therefore totally re-
flected, so we must havB=Ae*(® where the phasé
depends on the anglé Compatibility with the constraint
from short distances requirgs=A (&) mod 2. Using Eq.
(4) for 6 and inserting the expression fbt, we obtain Efi-
mov’s equatior1]

*
Byt ——=——*
ma? m

2 K2A2

e?™% exf A(€)/so], ©)

where¢ is given by Eq.(2) and the constart was absorbed
into A(£). Note that we measurB; from the three-atom
threshold and\, is only defined up to factors of ekp/sy].
Once the universal functiofi () is known, the Efimov bind-
ing energiesB; can be calculated by solving E@5) for

of successive Efimov states therefore approaches
exd 27/5]~515. However, for the shallowest Efimov states,
this ratio exhibits significant deviations from the asymptotic
value. If a>0, there is an Efimov state at the atom-dimer
thresholdB;=%2/ma? whens, In(aA, )=1.444 modm. The
sequence of binding energiBs in units of22/ma’ is 1, 6.8,
1.4x10% ... . Consequently, the ratio &5 for the two
shallowest Efimov states can range from 6.8 to 210a If
<0, there is an Efimov state at the three-atom threshold
B;=0 when syIn(aA,)=1.378 modw. The sequence of
binding energiesB; in units of A%/ma? is 0, 1.1X10°,
6.0x 10>, ... . Thus, the ratio oB; for the two shallowest
Efimov states can range from to 550.

Using Eq.(5) with n=0, we have extracted the universal
function A (&) from the data for the middle branch in Fig. 1.
The extracted values df (&) are given in Table I. An ana-
Iytic expression forA(¢) is not known, but we can obtain

different integers. This equation has an exact discrete scal-Parametrizations in various regions by fitting the data:

ing symmetry: if there is an Efimov state with binding energy
B, for the parametera andA , , then there is also an Efimov
state with binding energy 2B, for the parameters ~'a and
A, if N=exfgn'w/s] with n” an integer.

37
~5 2 'A=3.10*—9.6X%—2.18, (6)

e

022505-2



UNIVERSAL EQUATION FOR EFIMOV STATES PHYSICAL REVIEW A67, 022505 (2003

TABLE I. The values of the universal functial(¢). TABLE II. The values ofB,, B, B{"), and a,, for four
model potentials from Refl15], the value ofagA, determined
¢ A(¢) ¢ A(¢) ¢ A(¢) from B{Y, and the predictions foB{”) from Eq. (5) anda,, from

Eq. (9). All energies (lengths are given in mK (A). (£%/m

-0.785 —2.214 -0.965 —-5.712 —1.482 —8.009 —12.12 K A for 4He)

—0.787 -2.539 -1.019 -6.123 -1502 —8.059
~0.791 -2.897 -1.065 -6.415 -1651 —8.373
—0.797 —3.194 -1.104 -6.634 —1681 —8.427
—0.804 —3.448 -1.166 —-6.943 -1745 -8534 HFpHE2 0.830 116.7 1.67 1.258 1185 87.9
-0820  ~3864 ~-1214 ~7151 ~1817 8641  rpg 1685 1325 274 135 0922 1375 1202
—0836 —419 -1296 -7.461 —1.988 -8.843  \o\o 1303 1259 228 135) 1.033 1303 113.1

-0.852 —4.469 —1.347 -7.632 -2.197 —9.009
0808 4701 1408 —7814 -—2395 _oogs TTY 1310 1258 228 13F) 1025 129.1 1145

—-0.899 -5.076 —1.443 -7.910 -2.751 -—9.110
—0.933 —-5.434

Potential B, B BY a;, aA, BY ap

sured or calculated value 8f; for one Efimov state as input,
one can read off\, from Fig. 2. Predictions for other three-
57 37 body observables, such as the atom-dimer scattering length
— 5 ?} A=1.1%°+1.9%°+2.1%-8.22, in Eq. (9), are then immediate.
(7) One of the most promising systems for observing Efimov
states is*He atoms. Theé'He trimer has been observgt?],
5 but no quantitative experimental information about its bind-
-, — ?}:Azo.z&% 0.2&—-9.11, (8) ing energy is available to date. The binding energy has been
calculated accurately for various model potentials. They in-
where  x=(— m/4— 5)1/2, y=ml2+ ¢, and z=(m dicate that there are two trimers, a ground state with binding

+&)%exd—1(m+&?]. These parametrizations deviate @nergyBY” and an excited state with binding energ{".
from the numerical results in Table | by less than 0.013. Thelhe most accurate calculations have been obtained by solv-
discontinuity até=—3m/8 and £¢=—5m/8 is less than Ing the Faddeev equations in the hyperspherical representa-
0.016. This accuracy is sufficient for most practical calculation [13], in configuration spac¢l4], and with hard-core
tions using Eq(5). boundary condition§15]. These methods all give consistent
Universality can be exploited to greatly reduce the calcuresults. The results of Ref15] for B,, B, andB§" and
lational effort required to predict three-body observables foithe atom-dimer scattering lenggh, for four different model
atoms with largea. The observables can be calculated oncepotentials are given in Table Il. The discrepancies between
and for all as functions of and A, either by using the EFT B, and the largea prediction/i’/ma? are about 68 %15].
or by solving the Schidinger or Faddeev equation with vari- They can be attributed to effective range corrections and pro-
ous methods. The binding energies obtained by solving Efivide estimates of the error associated with the large-
mov’s equation(5) are shown in Fig. 2. Simple expressions approximation.
can be given for other observables, such asshave atom- We proceed to illustrate the power of universality by ap-
dimer scattering length: plying it to the “He trimer. For the scattering length we
take the valueag=#//mB, obtained from the calculated
a1p=a{1.46-2.15 tafisy In(aA ) +0.09}, (9 dimer binding energy. We determine, by demanding that
B{Y satisfy Eq.(5) with n=1. Solving Eq.(5) with n=2,
fWe obtain the predictions fB{) in the second-to-last col-
umn of Table II. The predictions are only 1-4 % higher than
the calculated values, which is within the expected error for
2 the largea approximation. This demonstrates that the ground
] state of the*He trimer can be described by Efimov’s equa-
3 tion (5). If we use the calculated values @fas input instead
] of B,, the predicted values cBéO) are larger than the calcu-
lated values by 11-21 %.
] We can use the value @z A, determined from the ex-
cited state of the trimer to predict the atom-dimer scattering
length a;, and compare with the calculated values in the
fourth column of Table II. The predictions for the four model
10 100 potentials are given in the last column of Table Il. They are
Alal smaller than the calculated values by about 13%. If the cal-
FIG. 2. The Efimov binding energi®;ma?/#2 as a function of ~ Culated value ofiis used as input they are smaller by about
la|]A, for a>0 (solid lines and a<O0 (dashed linegs Vertical ~ 28%. It should be possible to account for these differences
dashed line givega| A, for LM2M2/TTY potentials(cf. Ref.[15]).  quantitatively by taking into account higher order corrections
The horizontal dotted line is the atom-dimer threshad-Q). [11].

(e

e

as well as the phase shifts and the rate constant for thre
body recombination at thresho[d1]. Givena and a mea-

10°

B, ma
.
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Efimov implicitly assumed in his derivation of E(p) that ~ ~|a|, we still haveB=Ae'*(9) with the same universal func-
there were no deep two-body bound stdtEs If such states tion A(€) given in Eqs.(6)—(8). In the unitarity constraint at
are present, the Efimov states become resonances that dan-|, we need to take into account that only a fraction of the
decay into a deep two-body bound state and a recoiling atonprobability that flows to short distances is reflected back to
Thus their energies are given by complex numbErs long distances through the lowest adiabatic hyperspherical
—B5;—iT'3/2. If a potential supports many two-body bound potential associated with the three-atom or atom-dimer con-
states, the direct calculation of the widthig by solving the tinuum. Denoting the reflection probability &7, the co-
Schrainger equation is very difficu[tL6]. However, one can efficientB in Eq. (3) can be writterB=Ae'** 72 The com-
show that the cumulative effect of all deep two-body boundpatibility condition —i »/2=A(£) mod 27 then becomes
states on low-energy three-body observables can be taken 52 h2A2
into account by including one add|t|qnal low-energy param- Byt =3t —>= X @2misog(A(O+in)iso (1)
eter . Three-body recombination into a deep two-body 2 ma m
bound state with binding energg~#%2/ml? can only take
place if R~1. It is obvious that the atoms that form the
bound state must approach to within a distance of otder
since the size of the bound state is of ortiddowever, the
third atom must also approach the pair to within a distance o
order |, because it must recoil with momentugdmB/3

where¢ is defined by Eq(2) with B;—B3+i1"3/2. To solve
this equation, we need the analytic continuatiomMdg) to
complex values of. The parametrizatio6)—(8) for A(&)
§hould be accurate for compleik with sufficiently small
Imaginary parts, except perhaps néar— 7 where it has an

~#/1, and the necessary momentum kick can be delivereﬁssentlal singularity. 1B; andI'; for one Efimov state are

. . nown, they can be used to determing and 5. The re-
only if R~I. The atoms can approach such short distances _. . . A
. : . . maining spectrum of Efimov states and their widths can then
only by following the lowest continuum adiabatic hyper-

spherical potential, because it is attractive in the redion be calculated by solving Ed10). For infinitesimal, the

. N 2 2 .
< R < |al, while all other potentials are repulsive. Thus all widths approachi's— (#/So) (Bs +2°/ma’) . The widths of

. . . he deeper Efimov states increase geometrically just like the
pathways to final states including a deep two-body bound .~ ° . . :
. : . : inding energies, as has been observed in numerical calcula-
state must flow through this lowest continuum adiabatic po-. . .

) . . tions[16]. If » is so large thaB; ~ I'5, the Efimov states
tential. Note the lowest continuum state can be either a three- - .
atom state or an atom-dimer state. See, e Fig. 5 in RefC2>¢ o exist in any meaningful sense.

' » €0, Mg " We have calculated the universal functidi¢) that ap-

[10] for an explicit calculation of these potentials. The cu- ears in Efimov’s equatiofs) for the binding energieBs of
mulative effects of three-body recombination into deep two-PE =q : 9 giess of
fimov states. This equation can be used as an operational

body bound states can therefore be described by the reflec- . . ; .
tion probability e~ for hyperspherical waves entering the efinition of the three-body parameté&r, introduced in Ref.

region R~1 of this potential. Up to corrections suppressedgzgt'el:msgex)r Or;i dES]rgﬁv 2'ta;ers§I'i(n0\r,gj"c§scglrl1 Ige _lé?]z(: to
by 1/]a|, the low-energy three-body observables are all deihree-blo o i)servablesuaslv functlignrs) a)blnd . ‘m . 9y
termined bya, A, , and 7. y * - Q.

We proceed to generalize Efimov's equatitB) to the (10), we have generalized Efimov’s equation to permit deep

case in which there are deep two-body bound states AgairInWO'bOdy bound states. The generalization involves an addi-
’ tional inelasticity parameter), but the spectrum is deter-

we combine the analytic solutidi3) to the radial equation in . . .
the regionl <R<|a| with simple probability considerations mined by the same universal functiar(¢).
at R~|al] andR~I. Since the existence of deep two-body This research was supported by DOE Grant No. DE-
bound states plays no role in the unitarity constrainRat FG02-91-ER4069 and NSF Grant No. PHY-0098645.
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