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Universal equation for Efimov states
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Efimov states are a sequence of shallow three-body bound states that arise when the two-body scattering
length is large. Efimov showed that the binding energies of these states can be calculated in terms of the
scattering length and a three-body parameter by solving a transcendental equation involving a universal func-
tion of one variable. We calculate this universal function using effective field theory and use it to describe the
three-body system of4He atoms. We also extend Efimov’s theory to include the effects of deep two-body
bound states, which give widths to the Efimov states.
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The interactions of nonrelativistic particles~such as at-
oms! with short-range interactions at extremely low energ
are determined primarily by theirS-wave scattering lengtha.
If uau is much larger than the characteristic rangel of their
interaction, low-energy atoms exhibit universal propert
that are insensitive to the details of the interaction poten
In the two-body sector, the universal properties are sim
and familiar. The differential cross section for two identic
bosons with relative wave numberk!1/l and massm is
ds/dV54a2/(11k2 a2). If a.0, there is also a shallow
two-body bound state~the dimer! with binding energyB2
5\2/ma2. In the three-body sector, there are also univer
properties that were first deduced by Efimov@1#. The most
remarkable is the existence of a sequence of three-b
bound states with binding energies geometrically space
the interval between\2/ma2 and \2/ml2. The number of
these ‘‘Efimov states’’ is roughly ln(uau/l)/p if uau is large
enough. In the limituau→`, there is an accumulation o
infinitely many three-body bound states at threshold~the
‘‘Efimov effect’’ !. The knowledge of the Efimov binding en
ergies is essential for understanding the energy depend
of low-energy three-body observables. For example, Efim
states can have dramatic effects on atom-dimer scatterin
a.0 @1,2# and on three-body recombination ifa,0 @3,4#.

A large two-body scattering length can be obtained
fine-tuning a parameter in the interatomic potential to brin
real or virtual two-body bound state close to the two-at
threshold. The fine-tuning can be provided accidentally
nature. An example is the4He atom, whose scattering leng
a5104 Å @5# is much larger than the effective rangel ' 7
Å. Another example is the two-nucleon system in the3S1
channel, for which the deuteron is the shallow bound st
This system provided the original motivation for Efimov
investigations@1#. In the case of atoms, the fine-tuning c
also be obtained by tuning an external electric field@6# or by
tuning an external magnetic field to the neighborhood o
Feshbach resonance@7#. Such resonances have, e.g., be
observed for23Na and 85Rb atoms@8# and are used to tun
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the interactions in Bose-Einstein condensates. An impor
difference from He is that the interatomic potentials for N
and Rb support many deep two-body bound states.

Efimov derived some powerful constraints on low-ener
three-body observables for systems with large scatte
length @1#. They follow from the approximate scale invar
ance at length scalesR in the regionl !R!uau and the con-
servation of probability. He introduced polar variablesH and
j in the plane whose axes are 1/a and the energy variable
sgn(E)umEu1/2/\, and showed that low-energy three-bod
observables are determined by a few universal functions
the anglej. In particular, the binding energies of the Efimo
states are solutions to a transcendental equation involvin
single universal function ofj @1#. In this paper, we calculate
this universal function for the case of three identical boso
and apply Efimov’s equation to the4He trimer. We also ex-
tend Efimov theory to atoms with deep two-body bou
states.

The existence of Efimov states can easily be underst
in terms of the equation for the radial wave functionf (R) in
the adiabatic hyperspherical representation of the three-b
problem@9,10#. The hyperspherical radius for three identic
atoms with coordinatesr1 , r2, and r3 is R25(r 12

2 1r 13
2

1r 23
2 )/3, wherer i j 5ur i2r j u. If uau@ l , the radial equation

for three atoms with total angular momentum zero reduce
the regionl !R!uau to

2
\2

2m F ]2

]R21
s0

211/4

R2 G f ~R!5E f~R!, ~1!

wheres0'1.00624. This looks like the Schro¨dinger equation
for a particle in a one-dimensional, scale-invariant 1/R2 po-
tential. If we impose a boundary condition onf (R) at short
distances of orderl, the radial equation~1! has solutions at
discrete negative values of the eigenvalueE52B3, with B3
ranging from order\2/ml2 to order \2/ma2. The corre-
sponding eigenstates are called Efimov states. Asuau→`,
their spectrum approaches the simple lawB3

(n)

;515n\2/ma2.
Efimov’s constraints can be derived by constructing a

lution to Eq.~1! that is valid in the regionl !R!uau. In the
case of a bound state with energyE52B3, the radial vari-
able isH25mB3 /\211/a2 and the angular variablej is

j52arctan~aAmB3/\!2pu~2a!, ~2!
©2003 The American Physical Society05-1
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whereu(x) is the unit step function. Since we are interest
in low energiesuEu;\2/ma2, the energy eigenvalue in Eq
~1! can be neglected. The most general solution therefore
the form @1#

f ~R!5AHR@Aeis0ln(HR)1Be2 is0ln(HR)#, ~3!

which is the sum of outgoing and incoming hyperspheri
waves. The dimensionless coefficientsA and B can depend
on j. At shorter distancesR; l and longer distancesR
;uau, the wave function becomes very complicated. For
nately, we can avoid solving for it by using simple consid
ations based on unitarity@1#.

We first consider the short-distance region. Efimov
sumed implicitly that there are no deep two-body bou
states with binding energiesB @ \2/ma2. Thus the two-
body potential supports no bound states at all ifa,0 and
only the dimer with binding energyB25\2/ma2 if a.0.
We will address the complication of deep two-body bou
states later. The probability in the incoming wave must th
be totally reflected by the potential at short distances, so
can setB5Aeiu. The phaseu can be specified by giving th
logarithmic derivative R0f 8(R0)/ f (R0) at any point l
! R0 ! uau. The resulting expression foru has a simple
dependence onH:

u/25s0 ln~H/cL* !. ~4!

The denominatorcL* is a complicated function ofR0 and
R0f 8(R0)/ f (R0). It differs by an unknown constantc from
the three-body parameterL* introduced in Ref.@2#.

We next consider large distancesR;uau. In general, an
outgoing hyperspherical wave incident on theR;uau region
can either be reflected or else transmitted toR→` as a three-
atom or atom-dimer scattering state. The reflection and tra
mission amplitudes are described by a dimension
unitary 333 matrix that is a function ofj only. For
2p,j,2p/4, scattering states withR→` are kinemati-
cally not allowed. The probability is therefore totally re
flected, so we must haveB5AeiD(j), where the phaseD
depends on the anglej. Compatibility with the constraint
from short distances requiresu5D(j) mod 2p. Using Eq.
~4! for u and inserting the expression forH, we obtain Efi-
mov’s equation@1#

B31
\2

ma2
5

\2L
*
2

m
e2pn/s0 exp@D~j!/s0#, ~5!

wherej is given by Eq.~2! and the constantc was absorbed
into D(j). Note that we measureB3 from the three-atom
threshold andL* is only defined up to factors of exp@p/s0#.
Once the universal functionD(j) is known, the Efimov bind-
ing energiesB3 can be calculated by solving Eq.~5! for
different integersn. This equation has an exact discrete sc
ing symmetry: if there is an Efimov state with binding ener
B3 for the parametersa andL* , then there is also an Efimo
state with binding energyl2B3 for the parametersl21a and
L* if l5exp@n8p/s0# with n8 an integer.
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The universal functionD(j) could be determined by solv
ing the three-body equation for the Efimov binding energ
in various potentials whose scattering lengths are so la
that effective range corrections are negligible. It can be c
culated more easily by using the effective field theory~EFT!
of Ref. @2# in which the effective range can be set to zero.
Ref. @2#, the dependence of the binding energy ona andL*
was calculated for the shallowest Efimov state anda.0. In
order to extract the universal functionD(j), we have calcu-
lated the binding energies of the three lowest Efimov sta
for both signs ofa. In Fig. 1, we plot2(mB3 /\2L

*
2 )1/4 as a

function of sgn(a)(L* uau)21/2 for these three branches o
Efimov states. The binding energies for deeper Efimov sta
and for shallower states near (L* uau)21/250 can be ob-
tained from the discrete scaling symmetry. A given two-bo
potential is characterized by values ofa andL* and corre-
sponds to a vertical line in Fig. 1, such as the dashed
shown. The intersections of this line with the binding ener
curves correspond to the infinitely many Efimov stat
Those states withB3*\2/ml2 are unphysical. ForB3→`,
the anglej goes to2p/2. The ratio of the binding energie
of successive Efimov states therefore approac
exp@2p/s0#'515. However, for the shallowest Efimov state
this ratio exhibits significant deviations from the asympto
value. If a.0, there is an Efimov state at the atom-dim
thresholdB35\2/ma2 whens0 ln(aL* )51.444 modp. The
sequence of binding energiesB3 in units of\2/ma2 is 1, 6.8,
1.43103, . . . . Consequently, the ratio ofB3 for the two
shallowest Efimov states can range from 6.8 to 210. Ia
,0, there is an Efimov state at the three-atom thresh
B350 when s0 ln(aL* )51.378 modp. The sequence o
binding energiesB3 in units of \2/ma2 is 0, 1.13103,
6.03105, . . . . Thus, the ratio ofB3 for the two shallowest
Efimov states can range from̀ to 550.

Using Eq.~5! with n50, we have extracted the univers
functionD(j) from the data for the middle branch in Fig. 1
The extracted values ofD(j) are given in Table I. An ana-
lytic expression forD(j) is not known, but we can obtain
parametrizations in various regions ofj by fitting the data:

jPF2
3p

8
,2

p

4 G :D53.10x229.63x22.18, ~6!

FIG. 1. The energy variable2(mB3 /\2L
*
2 )1/4 for three shallow

Efimov states as a function of sgn(a)(L* uau)21/2.
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UNIVERSAL EQUATION FOR EFIMOV STATES PHYSICAL REVIEW A67, 022505 ~2003!
jPF2
5p

8
,2

3p

8 G :D51.17y311.97y212.12y28.22,

~7!

jPF2p,2
5p

8 G :D50.25z210.28z29.11, ~8!

where x5(2p/42j)1/2, y5p/21j, and z5(p
1j)2 exp@21/(p1j)2#. These parametrizations devia
from the numerical results in Table I by less than 0.013. T
discontinuity at j523p/8 and j525p/8 is less than
0.016. This accuracy is sufficient for most practical calcu
tions using Eq.~5!.

Universality can be exploited to greatly reduce the cal
lational effort required to predict three-body observables
atoms with largea. The observables can be calculated on
and for all as functions ofa andL* either by using the EFT
or by solving the Schro¨dinger or Faddeev equation with var
ous methods. The binding energies obtained by solving
mov’s equation~5! are shown in Fig. 2. Simple expressio
can be given for other observables, such as theS-wave atom-
dimer scattering length:

a125a$1.4622.15 tan@s0 ln~aL* !10.09#%, ~9!

as well as the phase shifts and the rate constant for th
body recombination at threshold@11#. Given a and a mea-

TABLE I. The values of the universal functionD(j).

j D(j) j D(j) j D(j)

20.785 22.214 20.965 25.712 21.482 28.009
20.787 22.539 21.019 26.123 21.502 28.059
20.791 22.897 21.065 26.415 21.651 28.373
20.797 23.194 21.104 26.634 21.681 28.427
20.804 23.448 21.166 26.943 21.745 28.534
20.820 23.864 21.214 27.151 21.817 28.641
20.836 24.196 21.296 27.461 21.988 28.843
20.852 24.469 21.347 27.632 22.197 29.009
20.868 24.701 21.408 27.814 22.395 29.095
20.899 25.076 21.443 27.910 22.751 29.110
20.933 25.434

FIG. 2. The Efimov binding energiesB3ma2/\2 as a function of
uauL* for a.0 ~solid lines! and a,0 ~dashed lines!. Vertical
dashed line givesuauL* for LM2M2/TTY potentials~cf. Ref. @15#!.
The horizontal dotted line is the atom-dimer threshold (a.0).
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sured or calculated value ofB3 for one Efimov state as input
one can read offL* from Fig. 2. Predictions for other three
body observables, such as the atom-dimer scattering le
in Eq. ~9!, are then immediate.

One of the most promising systems for observing Efim
states is4He atoms. The4He trimer has been observed@12#,
but no quantitative experimental information about its bin
ing energy is available to date. The binding energy has b
calculated accurately for various model potentials. They
dicate that there are two trimers, a ground state with bind
energyB3

(0) and an excited state with binding energyB3
(1) .

The most accurate calculations have been obtained by s
ing the Faddeev equations in the hyperspherical represe
tion @13#, in configuration space@14#, and with hard-core
boundary conditions@15#. These methods all give consiste
results. The results of Ref.@15# for B2 , B3

(0) , andB3
(1) and

the atom-dimer scattering lengtha12 for four different model
potentials are given in Table II. The discrepancies betw
B2 and the large-a prediction\2/ma2 are about 6–8 %@15#.
They can be attributed to effective range corrections and p
vide estimates of the error associated with the larga
approximation.

We proceed to illustrate the power of universality by a
plying it to the 4He trimer. For the scattering lengtha, we
take the valueaB[\/AmB2 obtained from the calculated
dimer binding energy. We determineL* by demanding that
B3

(1) satisfy Eq.~5! with n51. Solving Eq.~5! with n52,
we obtain the predictions forB3

(0) in the second-to-last col
umn of Table II. The predictions are only 1–4 % higher th
the calculated values, which is within the expected error
the large-a approximation. This demonstrates that the grou
state of the4He trimer can be described by Efimov’s equ
tion ~5!. If we use the calculated values ofa as input instead
of B2, the predicted values ofB3

(0) are larger than the calcu
lated values by 11–21 %.

We can use the value ofaBL* determined from the ex-
cited state of the trimer to predict the atom-dimer scatter
length a12 and compare with the calculated values in t
fourth column of Table II. The predictions for the four mod
potentials are given in the last column of Table II. They a
smaller than the calculated values by about 13%. If the c
culated value ofa is used as input they are smaller by abo
28%. It should be possible to account for these differen
quantitatively by taking into account higher order correctio
@11#.

TABLE II. The values ofB2 , B3
(0) , B3

(1) , and a12 for four
model potentials from Ref.@15#, the value ofaBL* determined
from B3

(1) , and the predictions forB3
(0) from Eq. ~5! anda12 from

Eq. ~9!. All energies ~lengths! are given in mK ~Å!. (\2/m
512.12 K Å2 for 4He.!

Potential B2 B3
(0) B3

(1) a12 aBL* B3
(0) a12

HFDHE2 0.830 116.7 1.67 1.258 118.5 87.9
HFD-B 1.685 132.5 2.74 135~5! 0.922 137.5 120.2
LM2M2 1.303 125.9 2.28 131~5! 1.033 130.3 113.1
TTY 1.310 125.8 2.28 131~5! 1.025 129.1 114.5
5-3
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Efimov implicitly assumed in his derivation of Eq.~5! that
there were no deep two-body bound states@1#. If such states
are present, the Efimov states become resonances tha
decay into a deep two-body bound state and a recoiling at
Thus their energies are given by complex numbersE5
2B32 iG3/2. If a potential supports many two-body boun
states, the direct calculation of the widthsG3 by solving the
Schrödinger equation is very difficult@16#. However, one can
show that the cumulative effect of all deep two-body bou
states on low-energy three-body observables can be t
into account by including one additional low-energy para
eter h. Three-body recombination into a deep two-bo
bound state with binding energyB;\2/ml2 can only take
place if R; l . It is obvious that the atoms that form th
bound state must approach to within a distance of ordel,
since the size of the bound state is of orderl. However, the
third atom must also approach the pair to within a distance
order l, because it must recoil with momentumA4mB/3
;\/ l , and the necessary momentum kick can be delive
only if R; l . The atoms can approach such short distan
only by following the lowest continuum adiabatic hype
spherical potential, because it is attractive in the regionl
! R ! uau, while all other potentials are repulsive. Thus
pathways to final states including a deep two-body bou
state must flow through this lowest continuum adiabatic
tential. Note the lowest continuum state can be either a th
atom state or an atom-dimer state. See, e.g., Fig. 5 in
@10# for an explicit calculation of these potentials. The c
mulative effects of three-body recombination into deep tw
body bound states can therefore be described by the re
tion probability e2h for hyperspherical waves entering th
region R; l of this potential. Up to corrections suppress
by l /uau, the low-energy three-body observables are all
termined bya, L* , andh.

We proceed to generalize Efimov’s equation~5! to the
case in which there are deep two-body bound states. Ag
we combine the analytic solution~3! to the radial equation in
the regionl !R!uau with simple probability consideration
at R;uau and R; l . Since the existence of deep two-bod
bound states plays no role in the unitarity constraint aR
ev

,
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;uau, we still haveB5AeiD(j) with the same universal func
tion D(j) given in Eqs.~6!–~8!. In the unitarity constraint at
R; l , we need to take into account that only a fraction of t
probability that flows to short distances is reflected back
long distances through the lowest adiabatic hyperspher
potential associated with the three-atom or atom-dimer c
tinuum. Denoting the reflection probability bye2h, the co-
efficient B in Eq. ~3! can be writtenB5Aeiu1h/2. The com-
patibility conditionu2 ih/25D(j) mod 2p then becomes

B31
i

2
G31

\2

ma2 5
\2L

*
2

m
e2pn/s0e(D(j)1 ih/2)/s0, ~10!

wherej is defined by Eq.~2! with B3→B31 iG3/2. To solve
this equation, we need the analytic continuation ofD(j) to
complex values ofj. The parametrization~6!–~8! for D(j)
should be accurate for complexj with sufficiently small
imaginary parts, except perhaps nearj52p where it has an
essential singularity. IfB3 and G3 for one Efimov state are
known, they can be used to determineL* and h. The re-
maining spectrum of Efimov states and their widths can th
be calculated by solving Eq.~10!. For infinitesimalh, the
widths approachG3→(h/s0)(B31\2/ma2) . The widths of
the deeper Efimov states increase geometrically just like
binding energies, as has been observed in numerical calc
tions @16#. If h is so large thatB3 ; G3, the Efimov states
cease to exist in any meaningful sense.

We have calculated the universal functionD(j) that ap-
pears in Efimov’s equation~5! for the binding energiesB3 of
Efimov states. This equation can be used as an operati
definition of the three-body parameterL* introduced in Ref.
@2#. If B3 for one Efimov state is known, it can be used
determineL* , and then universality predicts all low-energ
three-body observables as functions ofa and L* . In Eq.
~10!, we have generalized Efimov’s equation to permit de
two-body bound states. The generalization involves an a
tional inelasticity parameterh, but the spectrum is deter
mined by the same universal functionD(j).
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