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Nonrelativistic energy of the hydrogen negative ion in the 2p2 3Pe bound state

Mirosław Bylicki* and Eugeniusz Bednarz
Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudzia¸dzka 5, 87-100 Torun´, Poland

~Received 15 November 2002; published 24 February 2003!

By using a Hylleraas configuration-interaction explicitly correlated expansion we compute an upper bound
to the energy of the 2p2 3Pe bound state of H2. The result is converged on eleven significant digits. It
improves the previous best upper bound on the sixth significant figure.
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I. INTRODUCTION

There is still strong interest in reaching the limits of n
merical exactness by computing energies of small atoms
increasing accuracy. The leading cases are the helium a
and heliumlike ions. This includes the hydrogen negat
ion, which is the most challenging because negative ions
much more demanding as the electron correlation
considered.

The H2 ion has only two bound states: the ground 1s2 1S
state and the doubly excited 2p2 3P state. The former has
been investigated both theoretically and experimentally.
references see recent papers of Drake, Cassar, and Nist@1#
and Sims and Hagstrom@2# where the ground-state energ
has been computed with an extremely high precision. T
other bound state of H2, 2p2 3P, has not been observed ti
date. It was predicted computationally@3# nearly 40 years
ago. Its energy was computed repeatedly@4–8# and there is
no doubt about its existence. The problem of its experime
nonappearance is due to the lack of an initial state fr
which it could be reached.

For such a small system an extremely high accuracy
be obtained by using expansions that depend explicitly
the interelectronic distancer 12. Recent computations for th
H2 ground state performed by Drake, Cassar, and Nistor@1#
converged up to eighteen significant digits. Surprisingly,
results one can find in the literature for the 2p2 3Pe state are
far from such a precision. The best one was obtained
Jauregui and Bunge@7# 24 years ago. They used
configuration-interaction~CI!-expansion of only 108 con
figurations and obtained the energy20.125 354 716 6 a.u
They analyzed the convergence pattern of their computat
and extrapolated them obtaining20.125 355 08(10) a.u. On
the other hand, the largest Hylleraas-type computation
this state, done by Drake@4# and then repeated by Banyar
Keeble, and Drake@8# gave only20.125 353 6 a.u. though
they used about 50 thousand linear terms containing pow
of r 12 up to the 82nd one.

This implies that computing accurately the energy of
2p2 3P state is a much more demanding and challeng
problem than for the ground state.1 In this work we try to
meet this challenge by applying a Hylleraas CI method. T

*Email address: mirekb@phys.uni.torun.pl
1The details of electron correlations were discussed by Bany

Keeble, and Drake@8# in terms of the Coulomb-hole and partia
1050-2947/2003/67~2!/022503~3!/$20.00 67 0225
th
m

e
re
is

r

e

al

n
n

e

y

ns

r

rs

e
g

e

result we obtained as an upper bound to the energy of
2p2 3P state is far below the extrapolated value of Jaure
and Bunge@7#. This led us to perform an extrapolation bas
on more elaborated CI computations than those of Ref.@7#.
The extrapolated result is below but close to the upper bo
we obtained within ther 12-correlated expansion.

II. HYLLERAAS CI COMPUTATION

We applied an explicitly correlated trial function of th
Hylleraas CI type:

C~rW1 ,rW2!5(
l 51

l max

Yll
L51~V1 ,V2!(

i , j ,n
ci , j ,n

l @f i
l~r 1!f j

l ~r 2!

1~1↔2!#r 12
n . ~1!

This expansion differs from the Hylleraas-type one used
Refs. @4,8#. Several angularl l terms are included explicitly
and not only thepp one. Apart from the configuration term
with n50, low powers ofr 12 are used as correlation factor
the first one being most important. The radial functionsf(r )
are Slater-type orbitals with various exponent paramet
which may be optimized. This kind of approach to the e
plicitly correlated expansion problem was introduced
Sims and Hagstrom@9# under the name Hylleraas CI, an
independently by Woz´nicki @10# who named it superposition
of correlated configurations.

In the present work, several such expansions were u
differing in the number of angular terms explicitly include
l max, and in the maximum power of ther 12 distance,nmax.
The nonlinear parameters were partially optimized. The
sults are collected in Table I. The best upper bound ene
we obtained is20.125 355 451 24 a.u. This result is co
firmed by our computations using various particular trial e
pansions~Table I!. So we believe that the decimal digit
given above are converged. Our result is far below the p
vious upper bound as well as below the extrapolated res
both obtained over 20 years ago by Jauregui and Bunge@7#.

III. EXTRAPOLATED CI COMPUTATION

Hence, it seemed to us to be necessary to perform
extrapolation similar to that of Jauregui and Bunge@7# but

d,Coulomb-hole description. They compare the 2p2 3P excited state
with the ground state.
©2003 The American Physical Society03-1
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based on more extensive computations. We carried out a
ries of CI computations in which the trial space was syste
atically enlarged by adding consecutively angular termsl l
and extending the number of radials.

TABLE I. Explicitly correlated computations of the 2p2 3P
state energy,E. The expansions used are characterized byl max and
nmax parameters regarding Eq.~1!. The total number of linear term
is Ntotal . The basis sets are contracted after the Lo¨wdin canonical
orthogonalization, due to very restrictive constraints prevent
quasilinear dependence.

l max nmax Ntotal Nreduced

E
~in a.u.!

1 1 342 276 20.12534552291344
1 2 198 187 20.12535532145467
1 2 273 241 20.12535541251296
1 2 360 292 20.12535543420024
1 2 408 326 20.12535543763169
1 2 459 351 20.12535544026560
2 1 684 481 20.12535544966128
3 1 468 381 20.12535544736695
3 1 1026 542 20.12535545116416
3 1 1800 712 20.12535545123940
3 2 702 488 20.12535545098811
3 2 1539 745 20.12535545123037
4 1 468 468 20.12535545120759
4 1 876 859 20.12535545124225
4 1 1566 1197 20.12535545124281
4 1 2456 1350 20.12535545124284
4 2 702 680 20.12535545123956
4 2 1314 1118 20.12535545124278
4 2 2349 1442 20.12535545124280
02250
e-
-

In Table II the contributions ofll terms are presented fo
different levels of radial expansion~a row corresponds to a
given level of radial expansion!, including those extrapolated
~as given in Table III! for infinite radial expansion. For eac
series of a given level of radial suturation they were fitted
the formuladEl5a( l 1b)c. Jauregui and Bunge@7# used the
same formula with theb andc parameters frozen:b5 1

2 and
c527. In the present investigation all three paramet
were optimized to obtain the best fit. In all the seriesb turned
out to be close to20.5 and the exponentc'25.6. Thus the
convergence of the angular contributions is much slow
than was found by Jauregui and Bunge@7#. The summarized
contribution ofl>8 terms is about 16.431028 a.u. which is
50% more than the value estimated by Jauregui and Bu
This is because in ourab initio calculations the higher angu
lar parts are much better represented by considerably lo
radial expansions than those used in Ref.@7#. The l max→`
extrapolated results are given in the last column of Table
The last-row last-column result,DE`(`)5355 453 060
310212 a.u., was extrapolated first with respect to the rad
and then with respect to the angular expansion.

To be more confident about the extrapolated result,
other extrapolation was performed in the reversed ord
Table III presents the extrapolation with respect to the rad
expansion. The formuladE(n)5@p/(n1q)# r was used to fit
the dEl max

(n) contributions at a givenl max level. The last

row contains the results extrapolated in Table II forl max
→`. So, DE`(`)5355 453 062310212 a.u. is a result of
extrapolating first with respect to angular expansion and t
for n→`. This number is essentially the same asDE`(`)
obtained in Table II.

Thus we conclude that the extrapolated energy value
the 2p2 3P H2 state is20.125 355 453 06 a.u. This is 0.3
31026 a.u. below the extrapolated value of Jauregui a
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5474
9254
0881
1819
2295
2639
3060
TABLE II. Extrapolation of CI calculations to the infinite angular-wave expansion. The radial expan
is characterized byn related to the number of orbitals used; the number of orbitals of angular momentul is
n2 l 11. DEn( l<2) is the electron affinity~with respect to the H 2p state! obtained by using the expansio
built of n orbitals ofp-type andn21 d orbitals. The contributionsdEn( l ) coming from thell angular waves
were obtained from the actual CI computations.Rl>9

n is a sum of contributions froml>9. It was obtained by
using the formuladE( l )5a/( l 1b)c fitted to thedEn( l ) values for l 54, . . . ,8. Finally, DEn(`) is the
extrapolated electron affinity value obtained as a sum of all thell contributions at a given leveln of radial
expansion~along a given row of the table!. The last row values were obtained by extrapolating with resp
to increasing radial expansions as given in Table III. The valueDE`(`) is extrapolated with respect to bot
radial ~n! and angular (l ) expansions.~All the energy contributions are given in 10212 a.u.).

DEn( l<2)

dEn( l )

Rl>9
n DEn(`)n l53 l 54 l 55 l 56 l 57 l 58

13 309772659 38158479 5433495 1318993 428029 167235 74272 87928 35544
14 309775727 38158523 5433608 1319166 428177 167420 74477 88376 35544
15 309778423 38158310 5433678 1319264 428343 167602 74722 88912 35544
16 309779487 38158304 5433734 1319319 428408 167683 74819 89127 35545
17 309780116 38158272 5433761 1319358 428452 167732 74876 89252 35545
18 309780410 38158282 5433778 1319372 428473 167755 74906 89319 35545
19 309780629 38158274 5433788 1319390 428490 167776 74927 89365 35545
` 309780878 38158270 5433803 1319411 428512 167803 74955 89428 35545
3-2
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TABLE III. Extrapolation of CI computations to an infinite radial expansion. The angularl l -wave expan-
sion is characterized by the maximum number ofl: l max. Each row corresponds to a given level of angu
expansion. The last row contains the values extrapolated to the infinite angular expansion as given i
II. The radial expansion increases along a row.DEl max

(n513) is the electron affinity obtained by using 1
2 l orbitals of l type for l 51, . . . ,l max. dEl max

(n) is a contribution due to the extension of radial expans
from n21 to n. Rl max

` is the remaining contribution expected to come from the enlargement of expa
from n519 to an infinite one. This residue is evaluated as a sum of extrapolated termsdE(n)5@p/(n
1q)# r obtained by fitting the formula to thedEl max

(n) values ofn514, . . .,19. DEl max
(`) is the electron

affinity value extrapolated to infinity with respect to the radial expansion.~All the energy contributions are
given in 10212 a.u.)

DEl max
(n513)

dEl max
(n)

Rl max

` DEl max
(`)l max n514 n515 n516 n517 n518 n519

2 309772659 3068 2696 1064 629 294 219 249 3097808
3 347931138 3112 2483 1058 597 304 211 245 3479391
4 353364633 3225 2553 1114 624 321 221 260 3533729
5 354683626 3398 2651 1169 663 335 239 281 3546923
6 355111655 3546 2817 1234 707 356 256 303 3551208
7 355278890 3731 2999 1315 756 379 277 330 3552886
8 355353162 3936 3244 1412 813 409 298 358 3553636
` 355441090 4384 3780 1627 938 476 344 423 3554530
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Bunge @7# and 1.8310210 a.u. below our upper bound en
ergy value. The latter difference is just 2% of the gain due
the extrapolation. So the agreement between the energy
per bound and the extrapolated energy value we obtaine
very good. Obviously, the extrapolated value is just an e
mation and the only reliable result is the energy upper bou

IV. SUMMARY

The Hylleraas CI method was used to compute an up
bound to the energy of the 2p2 3P. The result is
20.125 355 45 124 a.u. It is much lower than the previou
published ones and below the CI-extrapolated value obta
by Jauregui and Bunge@7#. It agrees within the eight signifi
02250
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cant digits with the CI-extrapolated value obtained also
this work. Because of the mutual confirmation of results o
tained by using different basis sets we believe that 11 sign
cant figures are converged. The result can be improved
further figures by using a higher precision numerics~the
double precision computer arithmetics was used in t
work! and enlarged Hylleraas CI trial functions.
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