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Tailoring teleportation to the quantum alphabet

P. T. Cochrane* and T. C. Ralph
Department of Physics, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia

~Received 10 October 2002; published 28 February 2003!

We introduce a refinement of the standard continuous variable teleportation measurement and displacement
strategies. This refinement makes use of prior knowledge about the target state and the partial information
carried by the classical channel when entanglement is nonmaximal. This gives an improvement in the output
quality of the protocol. The strategies we introduce could be used in current continuous variable teleportation
experiments.
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I. INTRODUCTION

Quantum teleportation has become a cornerstone of q
tum information theory since its conception by Bennettet al.
in 1993 @1#. It is a useful quantum information processin
task both in itself, and as part of other tasks such as quan
gate implementation@2,3#. In particular, optical implementa
tions of teleportation@4–7# may be useful in current linea
optical quantum computing proposals@3#.

Quantum teleportation is a process whereby the state
quantum system can be communicated between two~possi-
bly very distant! parties with prior shared entanglement, joi
local quantum measurements, local unitary transformatio
and classical communication. In the standard scheme,
two parties are called Alice and Bob, and are sender
receiver, respectively. Victor~the verifier! gives Alice a
quantum system~the target! in a state known only to him
Alice makes joint quantum measurements on the target s
and her part of the entanglement resource shared with B
The results of these measurements she shares with Bob
classical communication channel. This information tells B
the local unitary transformations he must perform on his p
of the entanglement resource to faithfully reproduce the
get at his location. Victor then compares the output stat
Bob’s location with the target state by calculating the over
between the two. In its simplest form this is just the inn
product of the two states and is in general known as
fidelity.

In ideal teleportation the resource is maximally entangl
As a result the classical channel carries no information ab
the target state. Also, the alphabet of input states is assu
to be an unbiased distribution over the same dimension
the entanglement. Examples of this include the standard
crete protocol where qubits are both the target and entan
ment resource@1# and the original continuous variable pro
tocol where the target is a flat, infinite dimension
distribution and the entanglement is idealized Einste
Podolsky-Rosen~EPR! states@8#. However, one may con
sider situations in which the entanglement is nonmaxim
and the alphabet of states is not evenly distributed. Ad
tional information is now available prior to teleportatio
from the restricted alphabet, and dynamically from the p
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How should one then tailor the protocol so as to make b
use of this additional information? We address this ques
in this paper.

The situation arises naturally in practical implementatio
of continuous variable teleportation@5,9,10#. The entangle-
ment resource most commonly used in continuous varia
teleportation is the two-mode squeezed vacuum. It is
perfectly entangled, since this would require infinite ener
On the other hand an even distribution of target states is
unphysical. We are motivated to find ways in which to ma
maximum use of the resource given this situation. In t
paper we outline a general strategy and then describ
simple refinement of the standard continuous variable t
portation protocol which gives an improved output qual
for a reduced alphabet of possible input states. It has
advantage that it may be implemented with currently av
able technology.

Consider the situation of teleporting a coherent state. T
state amplitudes will have an upper bound, and the proba
ity of Victor preparing a state with a certain amplitude mig
be known. Let us consider three variations on this theme

Two-dimensional Gaussian. The classical limit used in
Ref. @5# and derived by Braunstein, Fuchs, and Kimble@11#
assumes that Victor produces coherent states with a sym
ric two-dimensional Gaussian probability distribution, whe
coherent states of greater amplitude are less likely to oc
than those with amplitude close to zero. The standard pr
col assumes that the width of this distribution is infinit
Braunstein, Fuchs, and Kimble considered how the class
limit changed for finite width but not how to optimize th
protocol as a function of this width. Choosing this smal
subset of states should allow Alice and Bob to improve
fidelity of their teleportation protocol.

Coherent states on a circle. Another possibility is that
Victor could produce coherent states of an amplitude kno
to Alice and Bob, but of an unknown phase. If the amplitu
of Victor’s prepared coherent states isa, then these state
will lie on a circle in phase space of radiusa; hence the term
‘‘coherent states on a circle.’’ This knowledge reduces
alphabet of possible output states substantially and sh
lead to a corresponding improvement in the fidelity.

Coherent states on a line. Conversely to coherent state
on a circle, Victor could produce target states of know
phase but unknown amplitude. These states would lie alo
©2003 The American Physical Society13-1
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P. T. COCHRANE AND T. C. RALPH PHYSICAL REVIEW A67, 022313 ~2003!
line in phase space and hence are termed ‘‘coherent state
a line.’’ Again, the alphabet of states is reduced and the
delity is expected to increase with respect to the stand
protocol.

II. TAILORED DISPLACEMENT STRATEGY

We now describe a general strategy for tailoring telep
tation based upon maximizing the fidelity over Bob’s po
sible displacements in phase space. Another technique o
delity optimization has been discussed by Ideet al. @12#,
which uses gain tuning to improve the fidelity output. O
scheme is similar; however, we use the one-shot fidelity
teleporting a coherent state to find Bob’s optimum displa
ment. The technique described here gives very simple r
tions describing the displacement Bob must make to ach
the best possible fidelity given the level of squeezing, Alic
measurement results, and the known properties of the ta
state. Using the transfer operator technique of Hofma
et al. @13#, the one-shot fidelity for teleportation of a cohe
ent stateua& is1

F5e2ua2eu2e2l2ua2bu2uexp@l~a* 2e* !~a2b!#u2, ~1!

whereb5x21 ip1 is a parameter combining Alice’s mea
surement results of position differencex2 and momentum
sum p1 , l is the squeezing parameter, ande is the dis-
placement to be made by Bob. The variablea is determined
from Alice’s measurement results and the prior knowled
about the target state. The value ofa is therefore a ‘‘best
guess’’ of the target given the information at hand.

Maximizing the fidelity overe finds the displacement Bo
should make on his mode to give the best reproduction of
target state at his location. The value ofe that maximizes the
fidelity is

e5~12l!a1lb. ~2!

This has a simple physical interpretation. In the limit
low squeezing, the first term dominates and it is best to
whatever ‘‘best guess’’ we can make fora. As the level of
squeezing increases, Alice’s measurements (b) become more
relevant and the best guess has less importance. In the
of large squeezing the first term is negligible in comparis
to the second term and we are effectively performing st
dard continuous variable teleportation.

To illustrate this result, we consider teleportation of sta
on a line. These are simpler to implement experimenta
than states on a circle, since dynamically coordinating
angle of displacement is more difficult than deciding the s
of the displacement. Hence in this paper we concentrate
states on a line. We know that the states lie along the
axis in phase space; thereforeay50, andax is determined

1The average fidelityF̄ is the one-shot fidelity averaged over a
measurement resultsb.
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from information gathered in the teleportation experimen2

Alice’s measurement resultb gives this information and we
setax5ubu. The relations for thex andy components of the
displacement Bob must make are now

ex5~12l!ubu1lbx and ey5lby . ~3!

Using this technique results in the dashed curve of Fig
where we observe a significant increase in fidelity over
standard protocol~dot-dashed curve!.

III. TAILORED MEASUREMENT AND DISPLACEMENT
STRATEGY

The relations of Eq.~3! tailor only the displacement mad
by Bob. A further improvement can be obtained if one tailo
both the measurements made by Alice and Bob’s displa
ment. It is easier to perform the calculation in the Heisenb
picture; hence we continue within this formalism. Consid
the following situation: Alice and Bob know that they a
attempting to teleport coherent states, and they are very
of the phase of the states; however, the input amplitud
unknown. What is the best strategy Alice and Bob can ta
given that they know the phase of the input state and
level of squeezing? The answer is to tailor Alice’s measu
ments and Bob’s displacement to the known amount
squeezing. Bob then merely displaces his component of
entanglement resource in the known direction by an amo
related to the information sent to him. The protocol is d
scribed diagrammatically in Fig. 2 and proceeds as follo
Alice and Bob share one part of a two-mode squee
vacuum generated by parametric down-conversion of
vacuav̂1 and v̂2 in the squeezer denoted SQ in the figu

2We use the subscriptsx andy to refer to thex andy components,
respectively, of the variablesa, b, ande in phase space.

FIG. 1. Average fidelityF̄ versus squeezing parameterl. The
dashed curve is the average fidelity calculated using the adap
displacement technique described in the text. The dot-dashed c
is the average fidelity produced using standard continuous vari
teleportation. Using adaptive displacement gives a large impro
ment over standard techniques. The quantities presented
dimensionless.
3-2
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TAILORING TELEPORTATION TO THE QUANTUM ALPHABET PHYSICAL REVIEW A67, 022313 ~2003!
Once again the phase of the target coherent state is tak
be zero. We do not lose generality since it is always poss
to rotate to a frame in which the phase of the target s
points along the real axis in phase space. Alice mixes
modeb̂1 with that of the target stateâin on a beam splitter.
The level of mixing is varied by choosing the beam split
reflectance sin2h in a manner dependent upon the level
squeezingG. Alice makes measurements of the quadrat
observablesX̂1 and X̂2, which are given by

X̂15coshâin2sinhb̂11coshâin
† 2sinhb̂1

† ~4!

and

X̂25
sinhâin1coshb̂12sinhâin

† 2coshb̂1
†

i
. ~5!

Note that for a general modeâ the quadrature componen
are given by

X̂15â1â† and X̂25
â2â†

i
. ~6!

These she modifies by the gain parametersg1 and g2, re-
spectively, before sending this information to Bob via a cl
sical channel. The parametersg1 andg2 are dependent upo
the level of squeezing and the beam splitter reflectance.
uses this information to displace his modeb̂2 along the real
axis and obtain an approximate reproduction of the ini
target state.

The output field from the protocol is

b̂out5b̂21g1X̂11 ig2X̂2, ~7!

FIG. 2. Tailored continuous variable teleportation scheme. T

vacuav̂1 and v̂2 are squeezed in the squeezer SQ, producing

entangled squeezed beamsb̂1 ~which goes to Alice! and b̂2 ~which

goes to Bob!. Alice mixes the target modeâin on a beam splitter of

reflectivity sin2h and measures the quadrature componentsX̂1 and

X̂2. She modifies these measurements by the gainsg1 and g2,
respectively, and sends the results to Bob via the classical cha
who then displaces his mode by this amount to obtain a repro
tion of the target mode at his location.
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from which it is possible to show that the quadrature amp
tudes ofb̂out are

X̂b̂out

1
5~AG22g1 sinhAG21!X̂v̂2

1
1~AG21

22g1 sinhAG!X̂v̂1

1
12g1 coshX̂âin

1 , ~8!

X̂b̂out

2
5~AG22g2 coshAG21!X̂v̂2

2
2~AG21

22g2 coshAG!X̂v̂1

2
12g2 sinhX̂âin

2 . ~9!

Note that normalization factors have been absorbed into
gains g1 and g2. This means that at unit gain, when th
output mode is described by

b̂out5b̂21
1

A2
~X̂11 iX̂2!, ~10!

the gains areg15g251/A2 instead ofg15g251, as for
other conventions.

Assuming our states are uniformly distributed along t
line ~out to some largea) then unit gain for the real quadra
ture is the best strategy~as in standard teleportation!. We can
determineg1 from this constraint and so we choose

g15
1

2 cosh
. ~11!

This value forg1 gives the new amplitude quadrature of th
output mode as

X̂b̂out

1
5~AG2tanhAG21!X̂v̂2

1
1~AG212tanhAG!X̂v̂1

1

1X̂âin

1 . ~12!

Unlike the standard protocol, we know that the average va
of the phase quadrature is zero. Thus we are free to cho
the gain on the phase quadrature,g2, such that it maximizes
the fidelity. The amplitude and phase quadrature variance
b̂out are

V152G24 tanhAG~G21!1tan2h~2G21!, ~13!

V252G2128g2 coshAG~G21!

14g2
2@cos2h~2G21!1sin2h#. ~14!

These values are then substituted into the average fideli
unit gain @5#

F̄5
2

A~V111!~V211!
, ~15!

which we now maximize overg2. Maximizing the fidelity is
equivalent to minimizing the phase quadrature varianceV2

over the same variable. Performing this minimization giv
the new value ofg2,

e

e

el,
c-
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P. T. COCHRANE AND T. C. RALPH PHYSICAL REVIEW A67, 022313 ~2003!
g25
coshAG~G21!

cos2h~2G21!2sin2h
, ~16!

and the protocol is tailored for states on a line.
Let us consider various limits of the protocol, and me

surement and displacement strategies at those limits. W
there is no squeezing, one should just measure the ampl
of the incoming state since its phase is known. This situa
is represented in our protocol by using a completely tra
missive beam splitter and ignoring theX̂2 measurement. The
parameters in this situation are thereforeh50 ~completely
transmissive beam splitter!, G51 ~no squeezing!, and g2

50 ~ignoring all information measured in theX̂2 quadra-
ture!. This situation gives an amplitude quadrature varian
of V152 and a phase quadrature variance ofV251, and
hence a fidelity ofF̄5A2/3. Performing standard teleporta
tion at unit gain with no squeezing gives a fidelity ofF̄
51/2 @9,11#. One can therefore see that our protocol give
good improvement over standard techniques. If we choos
teleport using a 50:50 beam splitter we recover the result
tailoring only the displacement. With no squeezing, again
best thing to do is ignore the phase quadrature. This gives
parameter valuesh5p/4 ~50:50 beam splitter!, G51, and
g250. However, since we are mixing in half of the u
squeezed vacuum, we introduce an extra noise compon
increasing the amplitude quadrature variance toV153 with
the phase quadrature variance being the same atV251; now
the fidelity is F̄51/A2. For large amounts of squeezingG
@1, and it is best to use a 50:50 beam splitter and perfo
standard teleportation. In this limit the quadrature varian
becomeV151 and V251, respectively, and the fidelity
tends to unity.

In Fig. 3 we show these limits graphically and the tren
of three teleportation protocols as a function of squeez
parameterl5A(G21)/G. The solid line represents the av
erage fidelity as a function of squeezing for the tailored m
surement and displacement scheme. As mentioned abo

FIG. 3. Average fidelityF̄ as a function of squeezing paramet
l for tailored measurement and displacement~solid!; tailored dis-
placement~dashed!; standard scheme~dot-dashed!. The quantities
presented are dimensionless.
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starts atF̄5A2/3 at no squeezing (l50) and tends to unity
as the level of squeezing increases. Note that this is a ma
improvement over the standard protocol as shown by
dot-dashed curve. The dashed curve is the fidelity funct
when Alice’s beam splitter is set at 50:50, resulting in
tailored measurement, but still using tailored displaceme
The fidelity begins atF̄51/A2 and tends to unity with in-
creasing squeezing. This too is a good improvement over
standard protocol.

In order to obtain tailored measurement and displacem
average fidelity as a function of squeezing, one must ma
mize the fidelity over both the phase quadrature gaing2 and
the beam splitter parameterh. The gain and beam splitte
parameter values as functions of the squeezing paramete
shown in Fig. 4. The gain~solid curve! increases smoothly
from zero at no squeezing and tends to 1/A2 at infinite
squeezing (l51). The limits are expected since at n
squeezing one does not want to include any information fr
the phase quadrature measurement, and hence the
should be zero. The large squeezing limit also makes se
since for large squeezing the teleporter should be at
gain, which corresponds to ag2 value of 1/A2. The beam
splitter parameter~dashed curve! begins at zero at no squee
ing and increases smoothly top/4 ~note thath is given in
units of p in Fig. 4!. Again, this is sensible behavior: at n
squeezing one should just measure the targetâin without
mixing in any of the squeezed beamb̂1. To do this one
should have a completely transmissive beam splitter, wh
is whenh50. At infinite squeezing one should equally m
the target and Alice’s half of the entanglement resource.
one should use a 50:50 beam splitter, which corresponds
beam splitter parameter value ofh5p/4.

The tailored displacement only strategy curve of Fig
calculated from Eq.~2! is identical to the equivalent curve i
Fig. 3 showing the consistency of the two approaches. It a
turns out, fora sufficiently large, that using the tailored dis
placement scheme to teleport coherent states ‘‘on a cir
gives the same fidelity versus squeezing parameter rela
ship as that found for teleporting coherent states on a l

FIG. 4. Phase quadrature gaing2 ~solid curve; in dimensionless
units! and beam splitter parameterh ~dashed curve; in units ofp)
as a function of squeezing parameterl ~in dimensionless units!.
The curves show the values ofg2 andh one should use to obtain
the best fidelity in the tailored measurement and displacem
scheme.
3-4
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TAILORING TELEPORTATION TO THE QUANTUM ALPHABET PHYSICAL REVIEW A67, 022313 ~2003!
Bob’s displacement in this instance hasx andy components

ex5~12l!uaucos@arg~b!#1lbx , ~17!

ey5~12l!uausin@arg~b!#1lby , ~18!

where uaucos@arg(b)# and uausin@arg(b)# are the best
guesses for ax and ay , respectively, and arg(b)
5tan21(by /bx). This result is supported by the paper of Id
et al. @12# where they too discussed the optimal teleportat
of coherent states of known amplitude but unknown pha
and showed an average fidelity versus squeezing param
relationship very similar to that shown in Fig. 1 of this pap
That states on a line and states on a circle have the s
fidelity relationship indicates that the two situations are
terchangeable; the trends from one can be used to give
results for the other. Further improvement of teleportation
states on the circle would require the use of adaptive ph
measurements@14#.

IV. TWO-DIMENSIONAL DISTRIBUTIONS IN PHASE
SPACE

We now adapt the tailored displacement scheme in
Heisenberg picture to the situation of the target state alph
being a two-dimensional distribution in phase space. Le
begin by deriving the fidelity of teleportation for a variab
linear gaing applied to both Alice’s measurement resul
and a target fieldâin mixed with Alice’s part of the two-mode
squeezed vacuum entanglement resource on a 50:50 b
splitter. To do this we calculate the variance of the telepo
output fieldb̂out. For a level of squeezingG, the output field
amplitude quadratureX̂b̂out

1 can be shown to be

X̂b̂out

1
5~AG2gAG21!X̂v̂2

1
1~AG212gAG!X̂v̂1

1
2gX̂âin

1 ,

~19!

wherev̂1 andv̂2 are the vacua prior to being squeezed in
parametric down-converter. This is the same situation a
Fig. 2 whereg15g25g/A2 and h5p/4. It is possible to
show that the variance of this quadrature is

V152G24gAG~G21!12g2G21. ~20!

The phase quadrature and its corresponding variance
equal toX̂b̂out

1 and V1, respectively. This is now sufficien

information to calculate the average fidelity, which for a ge
eral gain has the form@5#

F̄~a!5
2

A~V111!~V211!
expF2

2u12gu2uau2

A~V111!~V211!
G ,

~21!

where a is the amplitude of the coherent state being te
ported, andV2 is the phase quadrature variance.
02231
n
e,
ter
.
me
-
he
r
se

e
et
s

,

am
r

e
in

re

-

-

To make use of the knowledge of the target state alpha
we weight this fidelity by the probability of Victor preparin
a given target stateua&. A simple case of this probability is a
two-dimensional Gaussian distribution centred at the ori
in phase space. This form of the distribution will be used
the following discussion since it was used by Braunste
Fuchs, and Kimble@11#; hence their results can be compar
with those presented here.

The probability of Victor preparing a given stateua&
5uax1 iay& in phase space is given by

P~a!5
1

2psxsy
expF2

ax
2

2sx
2

2
ay

2

2sy
2G , ~22!

wheresx andsy are the standard deviations of the Gauss
in the x and y directions, respectively. An overall figure o
merit for the teleportation protocol is the optimized avera
fidelity defined by

F̄5E F̄~a!P~a!da, ~23!

where the integral is taken over all possible values ofa.
Notice that the optimized average fidelity is an implicit fun
tion of the gaing and the amount of squeezingG. In the
examples that follow, this optimized average fidelity is n
merically maximized over the gain to find the relationsh
between the average fidelity and the level of squeezingl for
the given alphabet of target states.

Let us now look at two examples of probability distribu
tions in phase space. We shall initially analyze a symme
Gaussian with very large standard deviation, the reason
ing that this example corresponds well with standard c
tinuous variable teleportation. We will then investigate a ve
narrow symmetric distribution and compare the n
squeezing limit with the classical level derived by Brau
stein, Fuchs, and Kimble.

In the first example, the distribution is symmetric wi
standard deviations5sx5sy5100. Such a distribution is a
very good approximation of the situation in standard co
tinuous variable teleportation, where it is assumed that
alphabet of target states is a flat distribution over all ph
space. Calculating the optimized average fidelityF̄ maxi-
mized over the gain as a function of squeezing parametel
5A(G21)/G one obtains the trend in Fig. 5. The optimize
average fidelity increases linearly fromF̄5 1

2 at no squeezing
to F̄51 at infinite squeezing. This is thesame curveas the
dot-dashed curve in Fig. 3. This result is expected since
mentioned above, a very broad Gaussian distribution i
good approximation to the perfectly flat distribution of targ
states assumed in the standard protocol.

In the second example, the distribution is symmetric w
standard deviations5sx5sy50.2. This is a very narrow dis
tribution and one would expect to find a high optimized a
erage fidelity for all levels of squeezing since the alphabe
3-5
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P. T. COCHRANE AND T. C. RALPH PHYSICAL REVIEW A67, 022313 ~2003!
target states does not deviate far from the vacuum. Perfo
ing tailored displacement teleportation using this distribut
as the alphabet of target states and maximizing the optim
average fidelity over the gain, one produces the optimi
average fidelity versus squeezing parameter relation
shown in Fig. 6.

Note that the optimized average fidelity atl50 ~i.e., the
classical level! is very much greater than the value ofF̄5 1

2

normally predicted by standard teleportation. Braunste
Fuchs, and Kimble@11# derived a relationship between th
average fidelity at the classical limit and the spread of
two-dimensional Gaussian, optimized for the given distrib
tion. This relationship is

F̄5
11x

21x
, ~24!

wherex is inversely proportional to the square of the sta
dard deviation of the Gaussian. In the discussion herx
51/2s2 wheres5sx5sy . For a symmetric Gaussian of sta
dard deviations50.2, using Eq.~24! one would expect the
optimized average fidelity at the classical level to beF̄
50.931. Atl50 in Fig. 6 one finds thatF̄50.933. A simi-
lar level of agreement exists for all values of the stand
deviations. Thus, to a good approximation, our results ag
with the classical limit of Braunstein, Fuchs, and Kimble.

Overall, one can still make use of the prior knowledge
the target state alphabet and optimize the protocol over
gain for nonzero levels of squeezing. This is what has b
done here; the fidelity increases from the classical level u
unity with increasing squeezing as shown explicitly in Fig.

FIG. 5. Optimized average fidelity maximized over the gainF̄
as a function of squeezing parameterl for a very broad symmetric
two-dimensional Gaussian distribution of target states in the c
plex plane. The standard deviation of the Gaussian iss5100. The
relationship is identical to that of the dot-dashed curve in Fig
which is the standard continuous variable teleportation result. T
is expected, since such a broad Gaussian is a good approximati
a flat distribution in phase space. The gain at the average fid
maximum is g51 as expected for standard continuous varia
teleportation. The quantities presented are dimensionless.
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The tailored displacement teleportation technique again
ing useful in improving continuous variable teleportation.

V. SUMMARY

We have introduced a refined measurement and displ
ment strategy which makes good use of the properties
prior knowledge about the target state and nonmaximal
tanglement. This refinement is tailored to the given expe
mental situation and shown to give a great improvement
the output quality of continuous variable teleportation. T
two techniques of calculating the tailored displacement st
egy gave identical results, and some physical insight i
how this strategy works.

We also analyzed symmetric two-dimensional Gauss
distributions of coherent states as an alphabet of target st
We showed agreement with the results of Braunstein, Fu
and Kimble, and extended their work by including squeez
in the model.

The strategy described here is generally applicable to
teleportation schemes involving physically limited resourc
A major advantage of this scheme is that it is able to
implemented with current continuous variable teleportat
technology since it only requires linear gain on the measu
ment results.
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FIG. 6. Optimized average fidelity maximized over the gainF̄
~solid curve!, and its corresponding gaing ~dashed curve!, as a
function of squeezing parameterl for a narrow symmetric two-
dimensional Gaussian distribution of target states in the comp
plane. The standard deviation of the distribution iss50.2. The
average fidelity at no squeezing corresponds to the predictio
Braunstein, Fuchs, and Kimble for a distribution of this stand
deviation. The average fidelity then increases to unity as the leve
squeezing increases. The gain curve indicates that as squeezin
creases the optimal gain will tend to unity. The quantities presen
are dimensionless.
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