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Tailoring teleportation to the quantum alphabet
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We introduce a refinement of the standard continuous variable teleportation measurement and displacement
strategies. This refinement makes use of prior knowledge about the target state and the partial information
carried by the classical channel when entanglement is nonmaximal. This gives an improvement in the output
quality of the protocol. The strategies we introduce could be used in current continuous variable teleportation
experiments.
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[. INTRODUCTION tial target information now carried by the classical channel.
How should one then tailor the protocol so as to make best
Quantum teleportation has become a cornerstone of quanmise of this additional information? We address this question
tum information theory since its conception by Benmtal.  in this paper.
in 1993[1]. It is a useful quantum information processing The situation arises naturally in practical implementations
task both in itself, and as part of other tasks such as quantuf continuous variable teleportatids,9,10. The entangle-
gate implementatiofi2,3]. In particular, optical implementa- ment resource most commonly used in continuous variable
tions of teleportatiorf4—7] may be useful in current linear teleportation is the two-mode squeezed vacuum. It is not
optical quantum computing proposBj. perfectly entangled, since this would require infinite energy.
Quantum teleportation is a process whereby the state of @n the other hand an even distribution of target states is also
guantum system can be communicated between(pessi-  unphysical. We are motivated to find ways in which to make
bly very distan} parties with prior shared entanglement, joint maximum use of the resource given this situation. In this
local quantum measurements, local unitary transformationggaper we outline a general strategy and then describe a
and classical communication. In the standard scheme, th@mple refinement of the standard continuous variable tele-
two parties are called Alice and Bob, and are sender angortation protocol which gives an improved output quality
receiver, respectively. Victofthe verifiej gives Alice a for a reduced alphabet of possible input states. It has the
guantum systengthe targex in a state known only to him. advantage that it may be implemented with currently avail-
Alice makes joint quantum measurements on the target stasle technology.
and her part of the entanglement resource shared with Bob. Consider the situation of teleporting a coherent state. The
The results of these measurements she shares with Bob viasstate amplitudes will have an upper bound, and the probabil-
classical communication channel. This information tells Bobity of Victor preparing a state with a certain amplitude might
the local unitary transformations he must perform on his parbe known. Let us consider three variations on this theme.
of the entanglement resource to faithfully reproduce the tar- Two-dimensional GaussianThe classical limit used in
get at his location. Victor then compares the output state aRef.[5] and derived by Braunstein, Fuchs, and Kimflé]
Bob’s location with the target state by calculating the overlapassumes that Victor produces coherent states with a symmet-
between the two. In its simplest form this is just the innerric two-dimensional Gaussian probability distribution, where
product of the two states and is in general known as theoherent states of greater amplitude are less likely to occur
fidelity. than those with amplitude close to zero. The standard proto-
In ideal teleportation the resource is maximally entangledcol assumes that the width of this distribution is infinite.
As a result the classical channel carries no information abouBraunstein, Fuchs, and Kimble considered how the classical
the target state. Also, the alphabet of input states is assumdichit changed for finite width but not how to optimize the
to be an unbiased distribution over the same dimensions gwotocol as a function of this width. Choosing this smaller
the entanglement. Examples of this include the standard disubset of states should allow Alice and Bob to improve the
crete protocol where qubits are both the target and entangldidelity of their teleportation protocol.
ment resourc¢l] and the original continuous variable pro-  Coherent states on a circléAnother possibility is that
tocol where the target is a flat, infinite dimensional Victor could produce coherent states of an amplitude known
distribution and the entanglement is idealized Einsteinto Alice and Bob, but of an unknown phase. If the amplitude
Podolsky-RoserEPR states[8]. However, one may con- of Victor's prepared coherent statesds then these states
sider situations in which the entanglement is nonmaximalvill lie on a circle in phase space of radias hence the term
and the alphabet of states is not evenly distributed. Addi“coherent states on a circle.” This knowledge reduces the
tional information is now available prior to teleportation, alphabet of possible output states substantially and should
from the restricted alphabet, and dynamically from the par{fead to a corresponding improvement in the fidelity.
Coherent states on a lin€Conversely to coherent states
on a circle, Victor could produce target states of known
*Electronic address: cochrane@physics.ug.edu.au phase but unknown amplitude. These states would lie along a
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line in phase space and hence are termed “coherent states on 1 , - - ]
a line.” Again, the alphabet of states is reduced and the fi-
delity is expected to increase with respect to the standard 0.9 e
protocol.
0.8
Il. TAILORED DISPLACEMENT STRATEGY F ,/’/

We now describe a general strategy for tailoring telepor- 0.7¢
tation based upon maximizing the fidelity over Bob’s pos-
sible displacements in phase space. Another technique of fi- 0.6f
delity optimization has been discussed by lekeal. [12], )
which uses gain tuning to improve the fidelity output. Our 0.5 . . . .
scheme is similar; however, we use the one-shot fidelity of 0 0.2 0.4 A 06 08 1

teleporting a coherent state to find Bob’s optimum displace-

ment. The technique described here gives very simple rela- FiG. 1. Average fidelitye versus squeezing parameter The
tions describing the displacement Bob must make to achievgashed curve is the average fidelity calculated using the adaptive
the best possible fidelity given the level of squeezing, Alice’sdisplacement technique described in the text. The dot-dashed curve
measurement results, and the known properties of the targgtthe average fidelity produced using standard continuous variable
state. Using the transfer operator technique of Hofmannmeleportation. Using adaptive displacement gives a large improve-
et al. [13], the one-shot fidelity for teleportation of a coher- ment over standard techniques. The quantities presented are
ent statg a) is dimensionless.

from information gathered in the teleportation experinfent.
Alice’s measurement resy gives this information and we
seta,=|B|. The relations for the& andy components of the
where B=x_+ip, is a parameter combining Alice’'s mea- displacement Bob must make are now
surement results of position differenge and momentum
sump., M\ is the squeezing parameter, aads the dis- =(1—\)|B|+\By and €,=\By. 3)
placement to be made by Bob. The variahlés determined
from Alice’s measurement results and the prior knowledgeJsing this technique results in the dashed curve of Fig. 1,
about the target state. The value @fis therefore a “best Wwhere we observe a significant increase in fidelity over the
guess” of the target given the information at hand. standard protocoldot-dashed curye

Maximizing the fidelity overe finds the displacement Bob
should make on his mode to give the best reproduction of the;. TaAILORED MEASUREMENT AND DISPLACEMENT
target state at his location. The valueeathat maximizes the STRATEGY
fidelity is

F=e la-de e B exg N (a* — € ) (a—B)]I2, (D)

The relations of Eq(3) tailor only the displacement made
by Bob. A further improvement can be obtained if one tailors
both the measurements made by Alice and Bob’s displace-
ment. It is easier to perform the calculation in the Heisenberg

This has a simple physical interpretation. In the limit of picture; hence we continue within this formalism. Consider
low squeezing, the first term dominates and it is best to usthe following situation: Alice and Bob know that they are
whatever “best guess” we can make far As the level of attempting to teleport coherent states, and they are very sure
sgueezing increases, Alice’s measuremefi)siiecome more  of the phase of the states; however, the input amplitude is
relevant and the best guess has less importance. In the liminknown. What is the best strategy Alice and Bob can take
of large squeezing the first term is negligible in comparisongiven that they know the phase of the input state and the
to the second term and we are effectively performing stanlevel of squeezing? The answer is to tailor Alice’s measure-
dard continuous variable teleportation. ments and Bob's displacement to the known amount of

To illustrate this result, we consider teleportation of statessqueezing. Bob then merely displaces his component of the
on a line. These are simpler to implement experimentallyentanglement resource in the known direction by an amount
than states on a circle, since dynamically coordinating theelated to the information sent to him. The protocol is de-
angle of displacement is more difficult than deciding the sizescribed diagrammatically in Fig. 2 and proceeds as follows.
of the displacement. Hence in this paper we concentrate oAlice and Bob share one part of a two-mode squeezed
states on a line. We know that the states lie along the realacuum generated by parametric down-conversion of the

axis in phase space; therefafg=0, anda, is determined vacuav, ando, in the squeezer denoted SQ in the figure.

e=(1-N)a+\B. (2)

The average fidelit)E is the one-shot fidelity averaged over all  2We use the subscriptsandy to refer to thex andy components,
measurement resulf3. respectively, of the variables, B, ande in phase space.
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P £y from which it is possible to show that the quadrature ampli-
S TN fary tudes ofb,,, are
X- \\\ X+ \
~ \ 3 . 3
| 4 S Y % =(JG-2g;sinp G- DX, +(VG—1
\ /’\\\ Voous = b2 + 1 X +iga X~ R A
sin i +cosmby  cosm —sinnby N \ —2g; sin n\/E)X31+291 cosnxgin, 8
~
N
Aiee /1 3 wov X5,,= (VG ~2g; cosy (G- 1)X; ~(/G~1
N sin“ 7 / out 2
b VG + v E=To) - ARy —2gzcosw&)x;1+ 29 sin7X; . 9
Note that normalization factors have been absorbed into the
VAN . ) e
2 o gains g, and g,. This means that at unit gain, when the

output mode is described by
FIG. 2. Tallored continuous variable teleportation scheme. The

vacuav; andv, are squeezed in the squeezer SQ, producing the . . 1 ooy oo
entangled squeezed beas(which goes to Alicg andb, (which Dour= b2+ E(X +iX7), (10
goes to Boh Alice mixes the target mode,, on a beam splitter of

[eflectivity sirf» and measures the quadrature compon&ﬁtsand the gains areg,=g,= 1/\/§ instead ofg;=g,=1, as for
X7. She modifies these measurements by the ggingand g, other conventions.

respectively, and sends the results to Bob via the classical channel, Assuming our states are uniformly distributed along the
who then displaces his mode by this amount to obtain a reprodugine (out to some |argeg) then unit gain for the real quadra-
tion of the target mode at his location. ture is the best stratedgs in standard teleportatipiWe can

determineg, from this constraint and so we choose
Once again the phase of the target coherent state is taken to

be zero. We do not lose generality since it is always possible 1
to rotate to a frame in which the phase of the target state O1=
points along the real axis in phase space. Alice mixes her

modeb; with that of the target state;, on a beam splitter. This value forg, gives the new amplitude quadrature of the
The level of mixing is varied by choosing the beam splitteroutput mode as

reflectance sifyy in a manner dependent upon the level of

squeezingG. Alice makes measurements of the quadrature XA —(\/— tannyG )X + VG tann\/—

observableX* andX~, which are given by

2cosy’ (D

A A A A A +X2 (12
X*=cosnaj,—sin7b,+ cosnal —sin zbl (4) in

Unlike the standard protocol, we know that the average value

and of the phase quadrature is zero. Thus we are free to choose

SiN PE. 4 coSnb- — sinmat — cosb! the gain on the phase quadratuge, such that it maximizes

X = 7<in 7 1 N 78 n = (5) the fidelity. The amplitude and phase quadrature variances of
! boye are
Note that for a general mock the quadrature components V'=2G-4tanyJG(G—1)+tarf»(2G—1), (13
are given by
aeat V =2G—-1-8g,cosnyG(G—1)
S+ —ay At - —
X*=ata' and X"=—p—. ©) +4g3 co$n(2G— 1) +sirf7]. (14)

These she modifies by the gain paramegysand g,, re-  These values are then substituted into the average fidelity at
spectively, before sending this information to Bob via a clas-Unit gain[5]

sical channel. The parametags andg, are dependent upon

the level of squeezing and the beam splitter reflectance. Bob e 2 (15

uses this information to displace his mobgalong the real JVT+1) (Vv +1)]
axis and obtain an approximate reproduction of the initial
target state. which we now maximize oveg,. Maximizing the fidelity is
The output field from the protocol is equivalent to minimizing the phase quadrature variavice
over the same variable. Performing this minimization gives
Bou= Do+ g1 X+ +ig,X ", (7)  the new value ofy,,
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A FIG. 4. Phase quadrature gajp (solid curve; in dimensionless

_ units) and beam splitter parameter(dashed curve; in units af)
FIG. 3. Average fidelityF as a function of squeezing parameter 55 a function of squeezing parameter(in dimensionless units
\ for tailored measurement and displacemésalid); tailored dis-  The curves show the values g5 and » one should use to obtain
placement(dashedt standard schemglot-dashejl The quantities  the pest fidelity in the tailored measurement and displacement

presented are dimensionless. scheme.
=~ starts atF = /2/3 at no squeezing\(=0) and tends to unity
Uo= cosnyVG(G—1) , (16) as the level of squeezing increases. Note that this is a marked
cogn(2G—1)—sirfy improvement over the standard protocol as shown by the

dot-dashed curve. The dashed curve is the fidelity function
dth tocol is tailored for stat i when Alice’s beam splitter is set at 50:50, resulting in no
and the protocol Is tarlored for statés on a line. tailored measurement, but still using tailored displacement.

Let us consider various limits of the protocol, and mea- fidelity bedi £-1//2 and tend ity with |
surement and displacement strategies at those limits. WheH€ fidelity begins aF=1/y2 and tends to unity with in-

there is no squeezing, one should just measure the amplitu&€@sing squeezing. This too is a good improvement over the

of the incoming state since its phase is known. This situatior?‘tandard protocol.. , .
is represented in our protocol by using a completely trans- In order to obtain tailored measurement and displacement

issive b ltt di ing the t Th average fidelity as a function of squeezing, one must maxi-
missive béam splitier and ignoring measurement. 1N€ 76 the fidelity over both the phase quadrature ggiand
parameters in this situation are therefaye-0 (completely

i ssive b litterG =1 : d the beam splitter parameter. The gain and beam splitter
ransmissive beam splitlerG=1 (no squeezing and g, parameter values as functions of the squeezing parameter are

=0 (ignoring all information measured in the™ quadra-  shown in Fig. 4. The gaittsolid curve increases smoothly
ture).+Th|s situation gives an amplltude.quadrature variancgrom zero at no squeezing and tends tg/2/at infinite

of V7' =2 and a phase quadrature varianceVof=1, and  gqueezing X=1). The limits are expected since at no
hence a fidelity ofF = \2/3. Performing standard teleporta- squeezing one does not want to include any information from
tion at unit gain with no squeezing gives a fidelity Bf ~ the phase quadrature measurement, and hence the gain
=1/2[9,11]. One can therefore see that our protocol gives &hould be zero. The large squeezing limit also makes sense
good improvement over standard techniques. If we choose t®ince for large squeezing the teleporter should be at unit
teleport using a 50:50 beam splitter we recover the result fogain, which corresponds to @ value of 142. The beam
tailoring only the displacement. With no squeezing, again theplitter parametefdashed curvebegins at zero at no squeez-
best thing to do is ignore the phase quadrature. This gives theg and increases smoothly te/4 (note thats is given in
parameter valuegy= 7/4 (50:50 beam splittey G=1, and  units of 7 in Fig. 4). Again, this is sensible behavior: at no
g,=0. However, since we are mixing in half of the un- squeezing one should just measure the tasgetwithout

squeezed vacuum, we introduce an extra noise componeq\tﬂxing in any of the squeezed beal. To do this one
increasing the amplitude quadrature varianc®to=3 with  gp61d have a completely transmissive beam splitter, which
the phase quadrature variance being the sarie atl; now g \heny,=0. At infinite squeezing one should equally mix
the fidelity isF=1/y2. For large amounts of squeezi®  the target and Alice’s half of the entanglement resource. So,
>1, and it is best to use a 50:50 beam splitter and performane should use a 50:50 beam splitter, which corresponds to a
standard teleportation. In this limit the quadrature variancegpeam splitter parameter value gf= /4.
becomeV*"=1 and V™~ =1, respectively, and the fidelity =~ The tailored displacement only strategy curve of Fig. 1
tends to unity. calculated from Eq(2) is identical to the equivalent curve in

In Fig. 3 we show these limits graphically and the trendsFig. 3 showing the consistency of the two approaches. It also
of three teleportation protocols as a function of squeezingurns out, fora sufficiently large, that using the tailored dis-
parameten = \/(G—1)/G. The solid line represents the av- placement scheme to teleport coherent states “on a circle”
erage fidelity as a function of squeezing for the tailored meagives the same fidelity versus squeezing parameter relation-
surement and displacement scheme. As mentioned aboveship as that found for teleporting coherent states on a line.
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Bob's displacement in this instance haandy components To make use of the knowledge of the target state alphabet,
we weight this fidelity by the probability of Victor preparing
€x=(1—N\)|a|codarg B)]+\ By, (170 agiven target stater). A simple case of this probability is a
two-dimensional Gaussian distribution centred at the origin
eyz(l—)\)|a|sir{arg(ﬁ)]+)\ﬂy, (18) in phase space. This form of the distribution will be used in

the following discussion since it was used by Braunstein,
where |a|codarg(8)] and |a|siarg(8)] are the best Fl_Jchs, and Kimbl¢11]; hence their results can be compared
: with those presented here.
guesses fora, and ay, respectively, and arg) The probability of Victor preparing a given stafe)
=tan‘1(,8y/ﬁx). This result is supported by the paper of Ide —| +ip ) in h)r;se space isp i\F/)en bg 9
et al.[12] where they too discussed the optimal teleportation axTiay P P 9 y
of coherent states of known amplitude but unknown phase,

and showed an average fidelity versus squeezing parameter o2 ol
relationship very similar to that shown in Fig. 1 of this paper. P(a)= exp — —Xz - —y2 , (22
That states on a line and states on a circle have the same 27S,Sy 2s,  2s;

fidelity relationship indicates that the two situations are in-

terchangeable; the trends from one can be used to give theh q the standard deviati fthe G .
results for the other. Further improvement of teleportation forVN€res, ands, are the standard deviations ot the ‘>aussian
the x andy directions, respectively. An overall figure of

states on the circle would require the use of adaptive phaé@ . ) . e
measurementgl4]. merit for the teleportation protocol is the optimized average

fidelity defined by

IV. TWO-DIMENSIONAL DISTRIBUTIONS IN PHASE

SPACE F= f F(a)P(a)da, (23

We now adapt the tailored displacement scheme in the
Heisenberg picture to the situation of the target state alphabet
being a two-dimensional distribution in phase space. Let usvhere the integral is taken over all possible valuesxof
begin by deriving the fidelity of teleportation for a variable Notice that the optimized average fidelity is an implicit func-
linear gaing applied to both Alice’s measurement results, tion of the gaing and the amount of squeezir@. In the
and a target field,, mixed with Alice’s part of the two-mode €xamples that follow, this optimized average fidelity is nu-
squeezed vacuum entanglement resource on a 50:50 bedfgrically maximized over the gain to find the relationship
splitter. To do this we calculate the variance of the teleportepetween the average fidelity and the level of squeexifior

output fieldb,,;. For a level of squeezinG, the output field e given alphabet of target states. N
litud dratursc be sh b Let us now look at two examples of probability distribu-
amplitude quadratur bout can be shown to be tions in phase space. We shall initially analyze a symmetric
Gaussian with very large standard deviation, the reason be-
5(; =(JG-gJG—-1)X: +(JG—1-gJG)X' —gf(g , ing that this example corresponds well with standard con-
out v2 U1 I?Lg tinuous variable teleportation. We will then investigate a very
(19 narrow symmetric distribution and compare the no-

. . squeezing limit with the classical level derived by Braun-
wherev, andv, are the vacua prior to being squeezed in thestein, Fuchs, and Kimble.

parametric down-converter. This is the same situation as in |n the first example, the distribution is symmetric with
Fig. 2 whereg,=g,=9/+2 and »=m/4. It is possible to standard deviatios= sy=5s,=100. Such a distribution is a

show that the variance of this quadrature is very good approximation of the situation in standard con-
tinuous variable teleportation, where it is assumed that the
Vt=2G-49JG(G—1)+2g°G—1. (200  alphabet of target states is a flat distribution over all phase

space. Calculating the optimized average fideﬁymaxi—
The phase quadrature and its corresponding variance argized over the gain as a function of squeezing parameter
equal toX. andV", respectively. This is now sufficient =V(G—1)/G one obtains the trend in Fig. 5. The optimized
out - . . . 1 .
information to calculate the average fidelity, which for a gen-2verage fidelity increases linearly fraf=; at no squeezing

eral gain has the forrfb] to =1 at infinite squeezing. This is tteame curveas the
dot-dashed curve in Fig. 3. This result is expected since, as

2|1 |2|a|2 mentioned above, a very broad Gaussian distribution is a
Fla)= ex;{ — 9 , good approximation to the perfectly flat distribution of target
JIVT+1) (V™ +1) JVT+1) (VT +1) states assumed in the standard protocol.

(21) In the second example, the distribution is symmetric with

standard deviatios=s,=s,=0.2. This is a very narrow dis-
where « is the amplitude of the coherent state being teletribution and one would expect to find a high optimized av-
ported, andV™ is the phase quadrature variance. erage fidelity for all levels of squeezing since the alphabet of
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FIG. 6. Optimized average fidelity maximized over the gﬁn
FIG. 5. Optimized average fidelity maximized over the gﬁn (SOHd. curve, and IFS corresponding gaig (dashed CUME’T as a
. . . function of squeezing parametar for a narrow symmetric two-
as a function of squeezing paramexefor a very broad symmetric . . . o .
. . . o . dimensional Gaussian distribution of target states in the complex
two-dimensional Gaussian distribution of target states in the com- L T
L S plane. The standard deviation of the distributionsis0.2. The
plex plane. The standard deviation of the Gaussiasr400. The average fidelity at no squeezing corresponds to the prediction of
relationship is identical to that of the dot-dashed curve in Fig. 3 9 y d 9 P P

which is the standard continuous variable teleportation result. Thisl?raunsteln, Fuchs, and Kimble for a distribution of this standard

. . o L d(Teviation. The average fidelity then increases to unity as the level of
is expected, since such a broad Gaussian is a good approximation 0 L . L A
ST ) .. squeezing increases. The gain curve indicates that as squeezing in-
a flat distribution in phase space. The gain at the average flde|lt¥
maximum isg=1 as expected for standard continuous variable

teleportation. The quantities presented are dimensionless.

reases the optimal gain will tend to unity. The quantities presented
are dimensionless.

target states does not deviate far from the vacuum. Perform-l:he tailored displacement teleportation technique again be-

ing tailored displacement teleportation using this distribution "9 useful in improving continuous variable teleportation.
as the alphabet of target states and maximizing the optimized

average fidelity over the gain, one produces the optimized V. SUMMARY
average fidelity versus squeezing parameter relationship
shown in Fig. 6. We have introduced a refined measurement and displace-

Note that the optimized average fidelity)at=0 (i.e., the  ment strategy which makes good use of the properties of
classical levelis very much greater than the value B+  Prior knowledge about the target state and nonmaximal en-
normally predicted by standard teleportation. Braunsteint2nglement. This refinement is tailored to the given experi-
Fuchs, and Kimbld11] derived a relationship between the Mental situation and shown to give a great improvement on
average fidelity at the classical limit and the spread of théhe output quality of continuous variable teleportation. The

two-dimensional Gaussian, optimized for the given distribu-\W0 techniques of calculating the tailored displacement strat-
tion. This relationship is egy gave identical results, and some physical insight into

how this strategy works.
We also analyzed symmetric two-dimensional Gaussian

— 1+y distributions of coherent states as an alphabet of target states.
- 24y’ (24 we showed agreement with the results of Braunstein, Fuchs,
and Kimble, and extended their work by including squeezing
in the model.

where y is inversely proportional to the square of the stan- The strategy described here is generally applicable to all
dard deviation of the Gaussian. In the discussion here teleportation schemes involving physically limited resources.
=1/252 wheres=s,=s, . For a symmetric Gaussian of stan- A major advantage of this scheme is that it is able to be
dard deviations=0.2, using Eq(24) one would expect the implemented with current continuous variable teleportation
optimized average fidelity at the classical level to Be technology since it only requires linear gain on the measure-

—0.931. At\=0 in Fig. 6 one finds thaF=0.933. Asimi- Ment results.
lar level of agreement exists for all values of the standard

deviations. Thus, to a good approximation, our results agree

with the classical limit of Braunstein, Fuchs, and Kimble.

Overall, one can still make use of the prior knowledge of P.T.C. acknowledges the financial support of the Center
the target state alphabet and optimize the protocol over thfor Laser Science, the University of Queensland, and the
gain for nonzero levels of squeezing. This is what has beeAustralian Research Council. The authors thank G. J. Mil-
done here; the fidelity increases from the classical level up tburn for helpful discussions and insights in the production of
unity with increasing squeezing as shown explicitly in Fig. 6.this work.
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