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Local permutations of products of Bell states and entanglement distillation
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We present different algorithms for mixed-state multicopy entanglement distillation for pairs of qubits. Our
algorithms perform significantly better than the best-known algorithms. Better algorithms can be derived that
are tuned for specific initial states. These algorithms are based on a characterization of the group of all locally
realizable permutations of the" gossible tensor products afBell states.
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[. INTRODUCTION ants appeared in Refi—9]. These protocols as well as ours
start fromn identical qubit pairs in a Bell-diagonal state,
We study mixed-state multicopy entanglement distillationshared by Alice and Bob. A crucial ingredient of these pro-
protocols for pairs of qubits. We start fromidentical copies  tocols is a local unitary operation, performed by Bob and
of a Bell-diagonal state of two qubits and end up, after localAlice on theirn qubits, which results globally in a permuta-
operations and classical communication, witk.n Bell di- tion of the 4' possible tensor products of Bell states. The key
agonals(possibly statistically depend@nwith higher joint  ingredient of this paper is a characterization, by means of a
fidelity thanm copies of the original Bell-diagonal state. For binary matrix group, of all possible local permutations of the
non-Bell-diagonal initial states, one can first perfamrsepa- ~ Products of Bell states. This enables a search for the best
rate optimal single-copy distillation protocols to make themprotocol within this setting. In Sec. Il, we study local permu-
Bell diagonal[1]. Our protocol can be used in a recurrencetations of products of Bell states. In Sec. Ill, we discuss the
scheme followed by the hashing protocol as in RE#s3].  protocols. In Sec. IV, we discuss the combination of our
We propose a protocol with=4 andm=1, which does Protocols with a recurrence scheme and the hashing protocol
significantly better than the existing protocols. Our resultsand show the strength of our protocols by computer simula-
can be used to find even better protocols for other values dfons.
n andm that are tuned for specific initial states.
_ We see three main reasons for studying entanglemgnt dis- Il. LOCAL PERMUTATIONS OF PRODUCTS
tillation protocolg. _Thg first and most obvious reason |s_that OF BELL STATES
entanglement distillation protocols are a means of obtaining
states that are closer to maximally entangled pure states, as In this section, we study the class of local unitary opera-
needed in typical applications such as teleportation, froniions that can be performed by Alice and Bob locally and
mixed states that can be reached by sending one qubit of aesult in a permutation of the"4(tensoy products of Bell
entangled pair through a realistic channel. A second reason &ates, wheren is the number of qubit pairs. These local
study distillation protocols is that asymptotic protocols yield permutations are the key ingredient of the different distilla-
a lower bound for “entanglement of distillation,” an impor- tion protocols described in the following section.
tant measure of entanglement, that is in itself a lower bound We will code products of Bell states by binary vectors by
for any sensible measure of entanglenidtin this context, assigning two-bit vectors to the Bell states as follows
we also mention the upper bounds on entanglement of distil-
lation obtained in Ref{5]. A third reason is that multicopy 1
entanglement protocols can be considered as applications of |®*)y=—(]00)+|11)) =|Bo),
entanglement, where more can be done in the presence of V2
entangled pairs than without. We hope that studying these
mechanisms will reveal some information on the important

problem of how exactly the presence of entanglement en- W)= i(|01>+|1o>):||301>,
ables one to do things that are impossible without. V2
Multicopy mixed-state entanglement distillation for qubit (1)

pairs was first studied in Reff2,3]. An improved variant of 1
the two-copy protocol in that paper was described in R&f. |® )= -—=(]00)—|11)) =|B;0),
under the title of quantum privacy amplification. Other vari- V2
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A product of n Bell states is then described by a-Bit Eg. (2), and the—sign means equal up to a complex phase

vector, €.9.|Boo1100 = |Bog)|B11)[Boy) =[P ") [W )| ¥ ). (in this case 1j, —1 or —i). Such a phase is irrelevant as
We will also exploit a correspondence between Bell stateshe Pauli matrices here are matrix representations of pure
and Pauli matrices state vectors.
1 1 0 Assume now thatl, andUg indeed result in a permuta-
[ R S —Uo= { } tion 7:75"— 75", then the null vector is mapped to some
V2 V2 V210 1 vector v =(0). Accordingly, UpooUg~0,. Since oy is
the identity matrix, we havéJg~o,Ux where * denotes
W) 1 4 _i[ 1} complex conjugation. If we want to represemntby x— Ax
\/5 2 J211 o) +b, we clearly have to choode=v. Note that Eq(3) now
reads¥ —U, VU oy .
B 1 111 0 We now have to show that the permutatiot: x— m(X)
@ >_’ﬁ‘710 \/— T[o _1}' +b, which maps¥ to U,% U}, is a linearP-orthogonal

map 7' :Xx— AX. Linearity of binary maps means that sums
1 1 170 —i are mapped to sumg’'(v+w)=x'(v)+#'(w). This is
— =0T = 0y= = : clearly true since  Upo,+wUh~Uno,o0,UL
V2o 2 el o 1 t . fod ua
=Upo,UpUp0U, . Furthermore, it can be verified using
Atensor product oh Bell states is then described by a tensorth® commutation and anticommutation laws for Pauli matri-
product of Pauli matrices, e.gp*)|¥ )| ¥*)—1//80, C€S thaior, ando, are commutable operators if and only if
® 0y ® 0= 1\Bope® 0y ;® 0p;. We will also use longer U TPw=0. Sinceo, andoW are commutable if and only if

1¥7)

vector subscripts to denote such tensor products, e.g.,  Uao,UA and Uaa, UL are commutable, it must hold that
v ATPAw=v"Pw for all v and w, which provesATPA
0001101~ T00® 011® 001 - 2 =p.

To prove part(ii), we will first considern=2 and show
that all permutationsr:x— Ax with ATPA=P can be gen-
erated with the operationsp,:¥—U, WUl with U,
=€ (™ u=1/2(1+io,) (with ueZ3). (This is also true
for n>2, but generators affecting more than two qubits at a
VU, PUL. (3  time will not be needed Using o, o= (— 1)° PYo0r, , it

) N ) ~can be shown that, translated into the binary language
We are now in a position to state the main result of thisesyits in  a  permutation 7, :x—x+u(u™Px)=(l

section. +uu'P)x.

Theorgm 1(i) If a local unitary operatiori3) results in a We will now show that the group of permutations gener-
permutation of the %tensor products of n Bell states, this ated by the permutations, is isomorphic toS,, the group
permutation can be represented on the binary vector TePrGt all permutations of six uelements Next, we will show that

sentationd1) as an affine operation the group ofP-orthogonal 4x4 matrices contains 6720

In this representation of pure states af gubits as 2x 2"
matrices¥, local unitary operationgy)— (U,®Ug)| %), in
which Alice acts on hen qubits (jointly) with an operation
U, and Bob on his with an operatidtyg , are represented by

$:72"— 72" x— Ax+b, elements, which proves that d@H-orthogonal permutations
are generated. Since no permutati@encept the identityis
with Ae 72020 pe72n commutable with all the permutationS; is isomorphic to
the group of transformationg, :Se— S p—0qpq L, where
and ATPA=P, p andq are permutations of six elements. Such a transforma-
tion x4 is completely determined by specifying the images of
0 1 0 1 the 15 commutationp; ;, permutations o#1,2,3,4,5, that
where P=dia% 1 o OD (4)  permutei andj. This holds because any permutation is a

composition of such commutations andyq(p1P2)

(i) Conversely, any such permutation can be realized by l0= Xq(P1) xq(P2). Note that the image undet, of a commu-

cal unitary operations. tation is again a commutation. As a res\, is isomorphic
Note that all multiplication and addition should be doneto the group of permutations of 15 elements obtained by

modulo 2. We call a matri satisfyingATPA=P “P or-  restrictingy, to the commutations. We will show that this is

thogonal.” The affine and linear transformations consideredexactly the group of permutations generated by the genera-

are invertible and, therefore, amount to a permutatioYﬁBf tors 7r, (which can be considered as permutations of 15 ele-

In the sequel we sometimes directly refer to the linear transments as 0000 can be left out, being always mapped to it-

formations as permutations. self). To this end, we establish the following correspondence
Proof. We first prove parti). One can easily check that between nonzero four-bit vectors and commutations

0,0y~ 0,4y, Wherev andw are binary vector indices as in —p; ;:

022310-2



LOCAL PERMUTATIONS OF PRODUCTS OF BELL ... PHYICAL REVIEW A 67, 022310(2003

0001—psg, 0010-pyss, 0011-pys, —>UA§IUI\. The matricesJ 5 that under this action map ten-
sor products of Pauli matrices to tensor products of Pauli
0100-pz3, 010}-p;4, 0110-p;s, 011k-pye, matrices possibly with a minus sign are known to form the
Clifford group, studied in Refs[10,1]] in the context of
1000-py3, 1001-py4, 1010-pzs, 101t-pyge, quantum error correction and quantum computation. The

P-orthogonal matrices form a group that is isomorphic to a
1100-p;,, 110k-pz4, 1110-p3s, 1111-p3e. quotient group of the Clifford group. The Clifford group is
known to be generated by controlledT (CNOT) operations
and one-qubit operations that map Pauli matrices to Pauli
matrices. It is possible that this knowledge may be used to
give other proofs for the theorem above. However, we think

It can be verified thay] 7(X) ] = x [ ¥(X)] for all uandx.
So m, and x,, realize the same permutation of 15 ele-
ments. As a consequence, also produq;lsx co Xy, Te-

alize the same permutations as produgt$y,)X ...  that our set of generators and the isomorphism between
X Xy(uy) - This finally establishes the isomorphism betweenP-orthogonal 4<4 matrices and permutations of six ele-
Ss and the permutations generated by the ments are worthwhile results on their own. It also follows

It remains to be shown that there are Blorthogonal 4  that the controlledvoT operation should be decomposable in
X 4 matrices. It follows fromATPA=P thatA is P orthogo-  terms of our generator@t least realizing the same permuta-
nal if and only if all the pairs of columns oA represent tion of products of Pauli matrices up to signs, but the follow-

commutableo, except for the first and second or the third ing formula gives thecNoT exactly. One can easily verify

— H —i(mld)o i(mld)o —i(ml4)o
and fourth columns. Therefore, to make an arbitrarymgtte thCNOT (L+i)/\2e e e 200

P-orthogonal matrix, the first columa, can be chosen to be
any nonzero four-bit vectatl5 choiceg the second column
should satisfyaIPazz 1 (one linear condition yielding eight
possiblea,), the third column should be commutable with IIl. MIXED-STATE MULTICOPY ENTANGLEMENT
a, anda, (two linear conditions yielding three choices after DISTILLATION FROM PAIRS OF QUBITS

excluding 0000) and finally the fourth column should be The distillation protocols presented in this paper can be
commutable witha; and a, and noncommutable witla;  symmarized as follows.

at the first and last operations are actually one-qubit
operations.

(three linear conditions, yielding two possibilitleghis re- (1) Start fromn identical independent Bell-diagonal states
sults in 15x8X3X2=720=6! pOSSlblIltleS. This ends the with entang|ement_ This y|e|ds a mixture of #ensor prod-
proof forn=2. ucts of Bell states.

For n>2, we turn to the matrix piCtUre and show that (2) App|y a local permutation of thesé’;products of Bell

every P-orthogonal matrixA can be reduced to the identity states as described in the preceding section. As a resufi, the
matrix by two-qubit operations, i.e.,>d4 P-orthogonal ma-  qubit pairs get statistically dependent.

trices embedded in an identity matrix on rows and columns  (3) Check whether the lasn—m qubit pairs are
2k+1,2k+2,21+1,21+2 for somek,| {0, ... n—1}. We  |®)-states [@*) or |®~)). This can be accomplished lo-
concentrate on two columns Afat a time, first 1 and 2, then cally by measuring both the qubits of each pair in ftbe | 1)

3 and 4, and so on and transform them to the correspondingasis, and checking whether both measurements yield the
columns of the identity matrix with two-qubit operations. same result.

Assume, without loss of generality, that we are workkir|19 on  (4) If all measured pairs werigb) states, keep the firsh
columns 1 and 2, then we namgt()( " pairs. This is a new mixture of%products of Bell states.
=Apk+1,x+22+1,2+2},{1,2 - If the two columns oK™ are  Thijs is a generalization of a protocol with=2 andm
commutable, they can be thought Qf as the first and third=1, presented in Refg2,3]. In that protocol the applied
columns of a 4«4 P-orthogonal matrix and can be reduced |gcal permutation consisted of a bilateral controlienir op-

by a two-qubit operation to the first aﬂd third column of aneration by Alice and Bob. In our protocol, we will only con-
identity matrix. If the two columns ok®:") are noncommut-  sider linear permutationsb0) as we expect that, in gen-
able, they can be reduced to the first and second columns @fa|, nothing can be gained by considering affine
an identity matrix. One can see that by combining such twopermutations(For entangled states, the coefficientogf . o
qubit operations the first two columns Afcan be reduced to - dominates the other coefficients. Setting-0 ensures that

the first two columns of an identity matrix. Due to the com- this coefficient will also contribute to the obtained entangle-
mutability relations between the columns Af as a result, ment after the protocol.

also the first two rows become the first rows of an identity |n the following section, we discuss how to choose the
matrix. One can now proceed in a similar way with the nextjocal permutation so as to obtain a good protocol. The main
pair of columns until the whole matrix is reduced to the regylt of this section is a formula for the resulting staterof
identity matrix. The composition of the inverses of all two- pajrs as a function of the permutation of Bell states per-
qubit operations that were applied yields a decomposition oformed in step(2) of the protocol
A into two-qubit operations that can be realized by local Theorem 2.If Alice and Bob apply the above protocol,
unitary operations as shown above. This ends the pfdof. starting from n-independent identical copies of a Bell-
In the proof, we saw that linear transformatio’s<0)  diagonal state pog/® )@ *|+ poy ¥ ) (W |+ pa @)
correspond to operations withUg=U%, ie., ¥ X(D® ™|+ ppa| TN ¥ | with pog=pPo1=P10=P11, and with
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entanglement, i.epoo™ 3, within step(2), a local operation  that half the coefficients €1)*'™* are one and half are
by Alice and Bob that results in a permutation of products of -1, Now the statexe R are exactly the ones, for which

Bell statesm:x—Ax with A'PA=P as described in the pre- x is commutable with all elements & Therefore S, . s,
ceding section, the resulting state of the remaining m qubit-2n-ms 5 . This concludes the proof. ]

pairs is given by
IV. RECURRENCE SCHEMES

> P

xcS5+PATPY With the above formula for the end state of the protocol
2n—m 22 — [ IBy)(By/, (5  (Theorem 2, it is possible to derive good protocols by
yezs" 2 Sy searching over all possible values for the relevant rows of the
xes P-orthogonal matrixA and optimizing some quality measure.

Typically this measure will depend on the fidelity of the end
state and the success rate of the protgtwé probability of
having |®) states in the measured pairén that case, one
only needs the first coefficierithe fidelity) and the denomi-
nator (the success raten Eq. (5), which both only depend

where S is the subspace spanned by the rowsAdf with
indices 2n+2,2m+4, ..., 2,

Soo 1 1 1 1T Poo

So1| 1 1 -1 -1 Po1 on S, a space spanned by onfy-m rows of A. Although
so| |1 -1 1 =11 pwol’ this Qrastiqally Iimi.ts the search space, it still grows expo-
11 1 -1 -1 1| py nentially with growingn.

Therefore, to come up with schemes for lamgeone
needs to use the recurrence scheme, as was proposad for
=2 andm=1 in Refs.[2,3]. If m=1, this scheme means
preceding section, €.%Poo110= PoaP11Por that the above_ protocol is perfo_rmechmes (with the same

Proof. After the permutation, and before the measurement:i?]c"".I perrrfmtatlo]n and then |]£1Ient|cal end sta:]es are taken as
the state of the n qubit pairs is given by e input for a new step. Of course, more than two steps are

possible too. One could also envision recurrence schemes

y is y extended with 26—m) zeros, and the long vector
indices ofp ands andB behave like the indices af in the

Zxe2Px/Bag(Ba.  The states Bax  with m+1, for instance, combining two end states ofran
(AX)2ms2,(AX)2m+a, - - - ,(AX)2q=0 yield |®) states and  —4 m=2 protocol to yield the input for a second step with
will be kept. These are the statd,), for whichxis com- n—4_|n that case, however, the input for the second step
mutable with the rowsl,m.. 5, . . . @z, Of AP. If we call the  \yould no longer consist of independent pairs. Although,

subspace of these vectorsR, the success rat@robability  this only requires a minor modification of the above results
of keeping the firsim pairg is 2,_zpx. Among the states (p and's, can no longer be interpreted as products of
that are kept, the ones witAk);=y;,j=1,....2nyield = 5 ) we will not consider this case in this paper.
|By) states. Together with the conditions for being kept, "To end up with almost pure Bell states, the recurrence
these are &+ (n—m) independent linear conditions, yield- scheme can best be combined with the hashing protocol as in
ing a coset of anr(—m)-dimensional subspace @". This  Refs. [2,3]. The hashing protocol is the best-known
subspace must b& since the latter isr{—m) dimensional asymptotic protocolfor n—) but can only be applied to
and satisfies all homogeneous conditiowith y=0) by the  Bell-diagonal states with high-enough fidelity. The combined
P orthogonality ofA. The right coset is obtained by adding protocol then consists of first applying a few recurrence steps
PATPy (a combination of the first @ rows of AP, deter- and then switching to the hashing protocol.

mined byy). As a result, the state of the firat pairs after The best-knowm=2, m=1 recurrence scheme is the
the measurement is one of Ref[6]. In our language it amounts to a scheme with
a 4x 4 P-orthogonal matrix whose last line is 11 11. It can
2 M be proven that this scheme yields the best achievable fidelity
E xeS+PATPy IB,)(B,| after one stepgthough not achieved with the best success
yoz2m > by YAATY rate for initial probabilities that are ordereplys™>poi1= P10
2 xeR =p,,. For this reason, it is also best to apply a pair-per-pair

- i transformation after each recurrence step, which reorders the
If all coefficients(for all y) are calculated, the denomina- probabilities of the end state if they are not ordef@he can

tor = Py can be calculated as the sum of tH&' humera- easily find such one-pair transformations using the theory of
tors. If only one coefficient is needebr instance, if only  gec “jj or equivalently using the local operations of Refs.
the fidelity of the end state is neededhe denominator 5 31 This reordering scheme was also introduced in another
can be calculated in a more efficient way asyathematical setting in Ref9].)
SxerPx=2"0" m)TEXESSX- One can easily verify that — ajhough, it is probably best to search for a new protocol
Sy=2xez2n(—1)" PXp, (first verify for two bits and then for every given initial state, we propose below a protocol
which we think is good if one does not have the time for
- such a search. We show by computer simulations that it per-
If x commutes with allveS, (—1)° PX=1 for all veS forms better than the=2 scheme.

T ; i
andX, _g(—1)" P*=2""M_If v ¢S, one can easily show Our scheme is am=4, m=1 recurrence scheme com-

extend. Therefore, 2,_s5,= EXEZ%”[EU cs(— 1)UTPX] Py -
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FIG. 1. Comparison of 10-logarithm of inverse asymptotic yield  FIG. 2. Comparison of 10-logarithm of inverse asymptotic yield
L for input Werner states with fidelitl for proposed protocaffull L averaged over 100 random non-Werner input states with fidelity
line) and existing recurrence-hashing prototdéshed ling for proposed protocalfull line) and existing recurrence or hashing

protocol (dashed ling

bined with hashing, and with as the last step possiblynan
=2, m=1 step if this can lead to better performance. For th%ur method (]:4, m=1 recurrence with the local permuta_
local permutation(determined by theP-orthogonal matrix tjon realized byU, as in Eq.(6), with reordering between
A), we choose a permutation that is found experimentally tqhe steps, possibly one last=2, m=1 step, and optimal
often lead to the best fidelity after one step, when starting;witching to hashing protocpland the method of Ref6]
with ordered probabilities. For this reason, we also apply ayith reordering between the steps and optimal switching to
reordering in between recurrence steps as discussed for thge Hashing protocol. Figure 1 shows the results for Werner
n=2 protocol above. The chosen qual permutation correstates (with pgo=F>% and pg;=pio=p11=c(1—F)/3).
sponds to an &8 P-orthogonal matrixA whose fourth,  Figure 2 shows the average performancefof each value
sixth, and eighth rows span the space spanned byf the input fidelity 100 random non-Werner states.
{10111110,01101100,111010/11This can be achieved  To do better than this protocol for a specific initial Bell-
by the operations diagonal state, one can do several things depending on the
amount of computing time available. One can try recurrence
schemes with higher and even highem, but the amount of

@i 4710 00 11 ogal 4700 01 10 0 (6) time needed increases fast with increasmgrhere is, of

course, no obligation to take the same local permutation in

In this realization, the first and second rows of theconsecutive recurrence steps. One can also consider distilling
P-orthogonal matrix A are 01100010 and 101010 10. more than one end state at once. Making two states with two
These rows are needed to compute the reordering operations=4, m=1 protocols is just a special case of a nonoptimal
between the steps, for although the three valugs)pf p;,, ~ N=8, m=2 protocol. One can, of course, search for better
and pil after one Step of the protoc0| are fixed, their order isones if O-ne has the time. In this case, the t-WO -Obtained Bell
not. (The three cosets & in R in Eq. (5) are fixed but not ~States will not be mdepen(_ient but as the fidelity goes to 1,
their orden their dependence will vanish. Also two consecutive recur-

This realization was found by exhaustive search over all€nce steps, say two=2, m=1 steps, can be considered as
operations that can be realized by four consecutive elemer@ne bigger nonoptimal step, in this case witk4, m=1.
tary two-qubit operations. If, for protocols with largerfor SO if one has the time, he can in theory always go for a one
instance, no such simple realization can be found in a reaShot protocol(no recurrenck but if one combines with the
sonable amount of time, one can always find a realizatiofecurrence scheme, he can always afford lower initial en-
using the theory of Sec. Il but this can increase the totafanglement with the same amount of computing time.
amount of work for executing the distillation protocol. This
was also one of the reasons for choosimg4 in the pro- V. CONCLUSION
posed protocol.

As a performance measure, we have chosen the expected We have derived different protocols for distillation of en-
number of input pairs needed per output Bell state in artanglement from mixed states of two qubits. The protocols
asymptotic protocolthe inverse of the asymptotic yigld were based on a characterization of the group of all locally
The number of recurrence steps was also chosen as to optealizable permutations of thé' possible tensor products of
mize this measure. Figures 1 and 2 show the performance far Bell states. Our protocols perform significantly better than

Up= UE = @/ 74010 01 00 0@l 74901 00 00 01

022310-5



DEHAENE et al. PHYSICAL REVIEW A 67, 022310 (2003

existing protocols as was shown by computer simulation. W&66 (Mathematical Engineering several Ph.D./postdoc
also indicated how to derive even better protocols for spegrants; Flemish Government: Fund for Scien-tific Research
cific initial states. Flanders (several Ph.D./postdoc grants, Projects Nos.
G.0256.97 (subspace G.0240.99 (multilinear algebra
ACKNOWLEDGMENTS G.0;20.03(QIT), research communities ICCoS, ANMMM
Belgian Federal Government: DWTQUAP 1V-02 (1996—
Our research was supported by grants from several fund2001) and IUAP V-22(2002—-200& dynamical systems and
ing agencies and sources: Research Council Katholieke Ungontrol: Computation, identification, and modelingrhe
versiteit Leuven: Concerted Research Action GOA-MefistoEuropean Commission: Esprit project: DICTAM.

[1] F. Verstraete, J. Dehaene, and B.D. Moor, Phys. ReG4A [6] D. Deutsch, A. Ekert, R. Josze, C. Macchiavello, S. Popescu,

010101(2002. and A. Sanpera, Phys. Rev. Léetf7, 2818(1996.
[2] C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters, Phys. [7] C. Macchiavello, Phys. Lett. 46, 358 (1998.
Rev. A54, 3824(1996. [8] E. Maneva and J. Smolin, e-print quant-ph/0003099.
[3] C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smof9] N. Metwally, e-print quant-ph/0109051.
lin, and W. Wootters, Phys. Rev. Left6, 722(1996. [10] D. Gottesman, e-print quant-ph/9807006.
[4] M. Horodecki, Quantum Inf. Comg., 3 (200J). [11] D. Gottesman, Ph.D. thesis, Caltech, 1997, e-print
[5] E. Rains, IEEE Trans. Inf. Theor/7, 2921(2002). quant-ph/9705052.

022310-6



