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Near-field turbulence effects on quantum-key distribution
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Bounds on average power transfer over a near-field optical path through atmospheric turbulence are used to
deduce bounds on the sift and error probabilities of a free-space quantum-key distribution system that uses the
Bennett-Brassard 198@B84) protocol. It is shown that atmospheric turbulence imposes at most a modest
decrease in the sift probability and a modest increase in the conditional probability of error given that a sift
event has occurred.
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[. INTRODUCTION tional atmospheric optical communication system is typically
configured for far-field operation, to minimize pointing or

Quantum-key distributioiiQKD) has developed from the tracking requirements, whereas a free-space QKD system
original proposal of Bennett and Brassaid into a technol- should operate in the near field, to maximize its key rate. It
ogy that is on the verge of commercial V|ab|||ty For most follows that our treatment of the sift and error probabilities
applications, the propagation medium of choice for QKD isfor free-space QKD will differ, in significant respects, from
low-loss 0ptica| fiber; see Re[2] for a number of experi_ prior work on optical communication through atmospheric
mental demonstrations of such fiber-based systems. On tfigrbulence. Indeed, the lognormal-fading analyses that domi-
other hand, there are a variety of QKD scenarios, such aate previous treatments of the turbulent atmospheric chan-
communication involving mobile terminals, for which line- nel play no role in our near-field QKD study.
of-sight optical propagation through the atmosphere must be The remainder of this paper is organized as follows. In
used. So-called free-space QKD systems, operating betwe&€c. Il we describe the BB84 QKD system whose sift and
terrestrial terminals separated by as much as 10km, hawror probabilities are to be determined. In Sec. Il we apply
been demonstratd@], although the term free-space QKD is the normal-mode decomposition for propagation through tur-
really a misnomer in this regard. In particular, there are nonbulence[7] to obtain bounds on these probabilities. We
trivial impairments—arising from molecular, aerosol, andconclude, in Sec. IV, with a numerical example and some
turbulence effects—over atmospheric paths that would no#liscussion.
be encountered were the propagation through vacuum, i.e.,
through free space. Nevertheless, in keeping with existing Il. BB84 FREE SPACE QKD SYSTEM
terminology we shall use free-space QKD to refer to systems . : . .
operating over atmospheric paths, reserving the term vacuuin I;I'he QKD system we _con:;_der uzes a !'n?:'.Of'S'ghthOpt'cal
propagation for cases in which there are no atmosphericén to connect a"a”Sm"Fe( ice, shown in F1g. 1 wit a
whatsoever. receiver(Bob, shown in Fig. 2 On gach bit mtgrvgl, Alice

Previous work on free-space QKD has not adequately dec_r:oosoes randoznly b.etween two linear polarization bases,
lineated the effects of atmospheric turbulence, viz., the rang /90 an(_1+45 » Which We.W'” denote+ and x, respec-
dom refractive-index variations that accompany turbulemgvely' Having chosen a basis, she sends a random bit value,

mixing of air parcels with~1 K temperature differences. or 1, using the coding

Papers describing (_experimentql §ys§ems cqmment on the im- 0° if + was chosen

pact of turbulence-induced scintillatid®], without quanti- o_>[ ) (1a
fying its effects. A theoretical paper assessing the viability of —45° if X was chosen,

free-space QKO4] draws upon well-established statistical 3 )

results for the phase and log-amplitude fluctuations produced 1_}{ 90 if + was chosen (1b)
by propagation through turbuleng8], but does not directly +45° if X was chosen.

address the resulting QKD sift and error probabilities. Deriv-

ing upper and lower bounds on these probabilities is thus thBob’s receiver uses a passive 50/50 beam splitter to create
main goal of the present paper. Although a great deal isputs for a pair of polarization analysis systems—one for
known about optical communication error probabilities forthe + basis and one for th& basis—that employ identical
the turbulent channdb], these studies differ from the free- single-photon avalanche photodiod@dDs), each of quan-
space QKD scenario in two respects. First, a conventionalm efficiency» [11]. For a single photon arriving at Bob’s
optical communication transmitter for the atmospheric chanfeceiver, this passive arrangement amounts to a random
nel produces sufficient photon flux to ensure an extremelghoice between the- and thex measurement bases.

low error probability(say between 10° and 10 °), whereas Let {Ng-,Nggo,N_45:,N, 45-} denote the photon counts

a QKD transmitter constrains itself to a very low photon flux from the four APDs during a single bit interval. Bob has a
to preclude multiphoton security attacks and hence suffers adetection event whenNge+Ngge+ N_45:+ N 45.=1, Ii.€.,
appreciable error probability~10 2). Second, a conven- when exactly one of his detectors registers a count. In the
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FIG. 1. Block diagram of a single-laser QKD transmitigtlice). The laser output is a stream of linearly polarized pulses. The
polarization controllers are driven by a pair of random binary sequences. The first sequence determines the sequence of polarization bases
that will be sent:+=0°/90° or X = *45°. The second sequence determines the bit value to be sent, according to the coding rule given in
Eq. (1). The attenuator reduces the transmitter’'s outpuid@hotons, on average, per bit interval.

BB84 protocol, Bob discloses to Alice the sequence of bitapply sufficient privacy amplification to deny useful key in-
intervals and associated measurement bases for which he Hasmation to any potential eavesdropp&ve). At the end of
detections. Alice then informs Bob which detections oc-the full QKD procedure, Alice and Bob have a shared one-
curred in bases coincident with those that she used. These aime pad with which they can communicate in complete se-
thesift events, i.e., bit intervals in which Bob has a detectioncurity. For a given level of privacy amplificatiofsecurity,
andhis count has occurred in the same basis that Alice usedhe principal figure-of-merit for the BB84 QKD system is its
For example, if Alice sent her bit value as a 90°-polarizedkey rate, i.e., the number of one-time pad bits/sec that Alice
laser pulse, then a sift event means that Bob had detectethd Bob produce. Key rate decreases with decreasing sift
exactly one count from his four detectors, with.=1 or  probability and increasing error probability. Our objective is
Ngg-=1. An error event is a sift event in which Bob decodes to determine the degree to which turbulence affects these
the incorrect bit value. For example, if Alice sent her bit probabilities[12].
value as a 90°-polarized laser pulse, then an error event We shall assume that Alice transmits an appropriately po-
means that Bob had a sift in whidl,.=1 occurred. Once larized laser signal pulse with an average photon number of
sift events have been identified, the remainder of the BB8415 to represent her bit value. Bob’s receiver will collect a
protocol—which shall not concern us in this paper—is stan+tandom fractiony of the transmitted photons owing to the
dard. Alice and Bob follow a prescribed set of operations tocombined effects of diffraction, atmospheric turbulence, and
identify errors in their sifted bits, correct these errors, and@bsorption-plus-scattering indugesktinction[13]. In addi-
tion, Bob’s receiver will collecng background photons per
N polarization, on average, and each of his detectors will be
-45; . .
APD £ subject to a dark—current—equ_lvalent average photon number
of np. Let x,y be dummy variables each taking on the pos-
——-rs sible values{0°,90°,—45°,+45°}. We then have the fol-
lowing statistics for the APD counts. Given that Alice sends

[ e an x-polarized signal and given the value ¢f the counts
PBS J_DAPD > N {Nge,Ngg-,N_45:,N 45-} are statistically independent Pois-
T +45i son random variablgs] whose conditional means af&4],
HWP— S
PBS J_ APD E(Ny|x senty)
TELESCOPE / NO'
TD i n(ngy/l2+ny) for y=x
R 7NN for y#x, with x,ye +
——-rs ={ 7mnhy for y#x, with x,ye X
T n(ngyld+ny) for xe+ and ye X
Noo; n(ngyld+ny) for xe X and ye +,

FIG. 2. Block diagram of a QKD receivéBob). IF, interference @

filter, provides spectral discrimination against background light. 50/ ) )

50, ordinary beam splitter, provides a passive, random choice ofhereny=ng/2+np is the average number of noigeack-
polarization-analysis basisH or x) for a single photon. HWP, ground light plus dark-current-equivalgnthotons reaching
half-wave plate, convert basis into+ basis. PBS, polarizing €ach detector. These conditional means presume perfect

beam splitter. FS, field stop, provides spatial-mode discriminatiorflignment between Alice’s and Bob’s polarization bases, and
against background light. APD, single-phott@eiger modgava-  perfect polarization separation by the polarizing beam split-
lanche photodiode. ters in Bob’s receiver.
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It is now easy to find the sift and error probabilities con-the capture fractiory is found from Eq.(7) via
ditioned on knowledge o¥:

Prolsift| y) = p(ngy/2+2ny)e” "Ns7+4m) - (3) y= JR dp’|éL(p")|%. (10
2
Proterrof y) = pnye™ 7("s7* 4, (4)  Let us introduce the singular valéeormal-modg decompo-
To obtain the unconditional sift and error probabilities we Sition of Green's functiorh, (p",p) [7],
need to average the preceding results ugi(g), the prob- ®
ability density for the capture fractio: hL(F;/’f;): Z \/E%(ﬁ')q’:(f;)
1
Prolsift) = fo dy p(y)Prolsift| y), (5) for peR, and p’ € R,, (11)
1 where I=u;=p,=ps=---=0, and {®,(p)} and
Prot{erron = fo dyp(y)Proterroiy). ©6) {¢a(p ')} are complete orthonorm&CON) function sets on
R; and R,, respecti\!ely. The eigenvaludg.,}, the input
1. NORMAL-MODE DECOMPOSITION AND eigenfunctions {®,(p)} and the output eigenfunctions
PROBABILITY BOUNDS {¢n(5’)} are, in general, random quantities, because we

) ) ) have made a singular value decomposition of a stochastic
The capture fractiony is obtainable from the extended Greens function. For future use, we also introduce the cor-
Huygens-Fresnel principle. Suppo;e that Alice transmits fesponding decomposition of the vacuum-propagation
normalized spatial beam patteéig(p) from a diameted; Green’s function, i.e.,
circular exit pupilR; in thez=0 plane, and that Bob collects

the light received from Alice within a diametel; entrance 0 v, > - S 0r 1 e ox . >
pupil R, in thez=L plane that is coaxial witfR,. The field hi(p —P)anl Vuada(p )P (p),
pattern £, (p') generated in the=L plane from Alice’s R )
transmission ofy(p) satisfieg6], for peR; and p’ eRy, (12
- -, - expkL+jklp—p’|?/2L) with 1= u§=ug=ug- - =0, and{®7(p)}, {#7(p')} CON
&u(p')= ledpfo(P) inC on R; andR,, respectively. Here, of course, the eigenvalues

and eigenfunctions are deterministic, as there is no random-
xexx(p'.p)+]d(p' p)]exp —al/2). (7) ~NeSSInvacuum propagation. =
In QKD we are interested in maximizing the capture frac-
In this equation, the fraction term within the integrand is thetion y. From the singular value decomposition m_f(ﬁf,ﬁ)

vacuum-propagation Green's functioi(p’ — p) for mono-  we see thaty<u,e” " prevails, with equality whero(p)
chromatic(wavelengthn, wave numbek=27/)), paraxial  — @, (). In general, such an input distribution can only be

diffraction fromz=0 to z=L. The y and ¢ terms account 4chieved by adaptive optics techniques, although there are
for the stochastic log-amplitude and phase fluctuations, re- . . 5y
spectively, imposed by atmospheric turbulence. Thus speglal cases _for whlcl@l(p) IS _nonrandom. Because we

' ' ' are interested in the ultimate limits set by turbulence on the

sift and error probabilities, we shall assume that Alice is able
to employ the optimum field pattern in her transmitter, even
if that calls for adaptive optics. To find the unconditional sift

clear turbulent air, i.e., atmospheric propagation in the ap@nd error probabilities for this optimum transmitter, we now

sence of extinction. The remaining exponential term in theMust find the statistics oft,, the maximum eigenvalue of
Eq. (7) integrand accounts for extinction, viz., the loss that isthe turbulent atmosphere’s singular value decomposition. For

due to absorption and scattering. Note that we have assum&§ar-field propagation, determining these statistics is a for-
this loss to be uniformly distributed along tke-0 to z=L midable task. Thus we shall content ourselves with easily

path with extinction coefficientr, although a nonuniform derived bounds of(x,), the average value of this eigen-
distribution is easily accommodatédis]. Within the weak- value. Results are availabJ8], however, for the free-space
perturbation (Rytov) regime X(ﬁ' 5) and ¢(5, 5) are eigenvalueu, which will allow us to compare our turbu-

jointly Gaussian random fields with known first and secondlenCe bounds on the sift and error probabilities W'.th t_he|r
nonturbulent(vacuum propagation attenuated by extinction

h (p",p)=h2(p'—plexdx(p’.p)+id(p',p)], (8

is the Green’s function for=0 toz=L propagation through

momentg 6].
) = . . counterparts.
With £(p) normalized to satisfy For both vacuum and turbulent propagation paths, we can
distinguish the existence of far-field and near-fielgto-R,
f d5|§o(5)|2= 1, 9) power transfer regimes according to whether their respective
Ry eigensums,
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R R o * of atmospheric propagation, recognizing that the latter may
?Ef dpf dp'|h%(p' —p)|>= D, u® (13)  require the use of adaptive optics. Vacuum propagation suf-
Ri IRy n=1 fers no fading, whence

and Prol(sift) = ( 7/2)(nsule~ -+ 4ny)e~ 7(nsie”“+any)
© (20)
szj dpf dp’[hu(p".p) 2= 20 pta, (14 0g—al
Rt IRy n=1 Prol{erron = pnye™ 7("s#1& " F4nN), (21)

are much less thaffar field or much greater tharinear for nonturbulent propagation. Moreover, because)

field) unity [7]. In the far field, u7~D?<1 and u;~Dt  _, o xis a convex function for &x<2 whose derivative is
<1 prevail, indicating, in each case, that there is only apositive for O=<x<1. it follows that

single input mode that couples appreciable power fRyno ’ ’

R,. In the near field, there are-D{ near-unity vacuum- Prousiﬁ)g(n/z)[nSMUBefaL_._‘]_nN]efn(nSp.UBe_“L+4nN)
propagation eigenvalues aneD; near-unity turbulent- (22)
propagation eigenvalues, corresponding, in each case, to the

number of pixels that th&, pupil could resolve withirR;  and

[16]. From Egs.(7) and (13) we have thatD{ equals the

Fresnel number product of tHe, andR, pupils, Prolsift) = n2nye™ 7*"™[1— u g]+ (7/2)(nge™ “"+4ny)
po_ [ 9102 ’ 15 X nse Ay g (23)
a4 ) (19

for atmospheric propagation, under the condition that
n(nse” *“+4ny)<1. Likewise, becausg(x)=e * is a
concave function with a negative derivative fo¢0, we can
show that

and the statistics of the log-amplitude fluctuatigoﬁ’,ﬁ)
imply that E(D;)=D? [7]. This last result yields the upper
bound

—7[n e L +any)
(1)< pus=min(1,D?), (16) Prol(erron= ynye~ ""stus N (24

we shall also need a lower bound Bu ;). Because=(uq) and
is the maximum average power transfer achievable over the
turbulentR;-to-R, path, it is lower bounded by the average

power transfer of any normalized input functi@@(ﬁ). As + pnpe” ”(“597“L+4HN)MLB_ (25)
discussed in Ref.7], the normalized focused beam,

Prolerron=< pnye” ™[ 1— u g]

Although these bounds apply in both the far field and the

R 4 N . near field, our primary interest is in the near-field regime,
Solp)= W—dzexp(—lk|/3| 12L) forpeRy, (17 whereinD?=1.
1

is a good choice in this regard, leading to the lower bound Q ! § A c
K
S
E(ILLI)ZILLLBE J'O dX(8 D?/W)exq_D(d:lX)/Z] L%’ 01 L middle curve = B
[aV]
o
X (cos H(x) —xy1—x%)J;(4x\/D9), (18 2
-
where g 001 |
g 3
D(p)=1.0%>C2Lp>? (19) %
=
is the spherical-wave wave structure function witf being 0.001 sl ol vl sl ol
the turbulence-strength constant along the propagation path 0.001 0.01 0 1 10 102 1000
[17], andJ,(-) being the first-order Bessel function of the Fresnel Number Product, Dy
first kind.

It is now a simple matter to obtain the desired results for FIG- 3. Upper bound on average of maximum turbulence eigen-
the unconditional sift and error probabilities. We shall as-Y2lUe #us (curve A), vacuum-propagation maximum eigenvalue

sume that Alice employs the optimum normalized Spatial(curve B), and lower bound on average of maximum turbulence
N o, eigenvalueu g (curveC), versus Fresnel number prodi@f . The
beam pattern at her transmittéf(p) = ®1(p) for the case Mg plot assumesd; =d, operation in arf(:O.l scintillation propa-

of nonturbulent propagation, arg(p) =®,(p) for the case  gation environment.
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In this section we shall instantiate the bounds E88)—

1
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Pupil Diameter (m)

0.15
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IV. EXAMPLE AND DISCUSSION

0.05 0.1 0.15

Pupil Diameter (m)

(25), and compare them with the exact results for nonturbu-
lent propagation, namely, Eq&0) and(21). In all that fol-

lows we shall assume operationat0.7 um wavelength,
with =2 dB/km, L=1 km, »=0.5, ng=103, and np
=10"°. The 5 andnp values are consistent with available
silicon Geiger-mode APD technology at this wavelength,

with aT=1 ns transmitter pulse duration. Thg value is in
the range of typical daytime operation at this wavelength

using a receiver field of view that is ten times the diffraction whend,=d,

limit. The 2 dB/km extinction coefficient corresponds to rea-
sonably clear weather—visibility roughly 10 km. For the tur-
bulence cases, we shall employ a uniforlﬁﬁ=2
X 10~ m~23 turbulence distribution along the propagation is the spherical-wave log-amplitude variance, viz., the scin-
path, representing moderate turbulence for a near-groungliation strength. For our assumed parameter valugs,

path.

We begin our calculations by examining the behavior of

=0.1 prevails.
Figure 3 clearly exhibits near-field characteristigs;

PHYSICAL REVIEW A 67, 022309 (2003

FIG. 4. Sift probability versus pupil diameter
for equal aperture diametersi;=d,: (a8 ng
=0.5, (b) ng=1.0. In both(a) and(b) curveA is
the sift-probability upper bound for the turbulent
channel, curveB is the sift probability for the
nonturbulent case, and curv€ is the sift-
probability lower bound for the turbulent chan-
nel. The turbulent cases assume operation in a
0')2(=0.l propagation environment.

1
E(p)=pis= | dx(8\Df/m)exd ~D(d0)2]

(26)

x[cos 1(x) —xy1—x%]J;(4x/D?).

So, because the symmetrid,;=d,) case may be the most
convenient in practice, we shall limit our consideration to
this worst-case scenario. It is then worth noting that

D(p)=51.003(Df)**%p®" 27
where
04 =0.124C7K™0L 11/ (28

eigenvalue boum_jsm_s and Fu. as compared to the .1 gpng =E(uq)=ug—1 asDf{— . Applying these ei-
vacuum-propagation eigenvalye; . Figure 3 plots all three  genvalue results to the QKD sift and error probabilities we

of these quantities versus the Fresnel number pro@jct

obtain the plots shown in Figs. 4 and 5, respectively. These

under the assumption that tilg=d,, i.e., that the transmit figures demonstrate that?=0.1 scintillation has a very
and receive apertures have equal diameters. Interestinglyzodest effect on the sift and error probabilities in worst-case
whereasug only depends oDf, and the same is known to (equal apertusenear-field operation. In particular, suppose
be true[9] for uJ, the equal-diameter case provides a worst-that d;=d,=5.31 cm, so thaD?=10 for \=0.7 um and

case lower bound oB(u,) for a given value oD? [7]. This
is becauseu, g is an increasing function of decreasidg at
constantD{ and atmospheric reciprocit{10] can be used to

show that

0.0005

0.00048

0.00046

0.00044

Error Probability

0.00042

0.0004

L=1 km. Here we find that the nonturbulent Prob(sift)
=0.068 as compared to the turbulence lower bound of 0.054
whenng=0.5, and Pr(sift}x0.115 for the nonturbulent case

versus a turbulence lower bound of 0.093 wimyx1.0. In

0.0005
i 0.00045
2z
L Z
8
A S 0.0004
[N
I~ o
B @ &
0.00035
B C
L L 0.0003
0.05 0.1 0.15

Pupil Diameter (m)

(b)

0.05 0.1
Pupil Diameter (m)

0.15

FIG. 5. Error probability versus pupil diameter for equal aperture diametersd,: (a) ng=0.5, (b) ng=1.0. In both(a) and(b) curve
A'is the error-probability upper bound for the turbulent channel, cBrigethe error probability for the nonturbulent case, and c@\vs the
error-probability lower bound for the turbulent channel. The turbulent cases assume operath»b:irﬁ)a propagation environment.
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1F modest in the near-field regime. In this regard, it is important
i to note how conservative our results are. First of all, Egs.
£ (23) and(25—which determine our upper bound on the con-
E ditional probability of error given that a sift event has
s 0.1 3 occurred—are obtained by assigning the worst-case prob-
5 ability density,
w
ool \\S PO=[1- piald( D)+ medE-1), (30
g i where §(-) is the unit impulse(Dirac 8) function, to the
© D focused-beam power transfer through the turbulence, viz.,
0.001 : ' : ' : 4 . 2
0 0.05 0.1 0.15 — > > T ikl (22
Pupil Diameter (m) {= fdep ledp Wdie HPHh (p',p)| . (3D

FIG. 6. Conditional probability of error, given that a sift event The actualp({) will not be concentrated at=0,1, hence it
has occurred, versus pupil diameter for equal aperture diametergjill have a lower variance than that of EQO0), leading to a
d,=d,. Curve A, upper bound on Pr(ertsift) for the turbulent  higher value for the sift probability and a lower value for the
channel whemg=0.5; curve B, nonturbulent Pr( ertsift) when  error probability for the same value @f g=E({). More-
ns=0.5; curve C, upper bound on Pr(etsift) for the turbulent  over, although we indicated that adaptive optics will, in gen-
channel whenng=1.0; and curve D nonturbulent Pr(efsift) eral, be required to achieve optimuRy-to-R, power trans-
whenng=1.0. The turbulent cases assume operationéfa0.1  fer over a turbulent path, our bounds dot use adaptive
propagation environment. optics. In particular, the performance results we have pre-

sented apply to a nonadaptive system that employs the fo-

other words, abD{= 10, the near-field sift probability in the cysed beam pattern given in E@.7). Thus, with the use of
presence of turbulence Bt least80% of its value in the adaptive Optics a h|gher average Capture fraction than
absence of turbulence. Although similar comments can b%LBe*“L should be achievable, bringing the performance in
made, from Fig. 5, comparing the near-field error probabili-tyrhulence even closer to that of the nonturbulent ¢ag¢
ties in the absence and presence of turbulence, it is morgjnally, we must recognize that the near-field regime will not
interesting to _consider the conditional probability of error, encompass all likely free-space QKD applications. If we take
given that a sift event has occurred, D9=10 atA=0.7 um as our target near-field configuration,

then path lengths as long &s=20 km can be reached with
(29 d;=d,<24 cm. We should note, however, that focused

beams of this diameter and wavelength require pointing to

because it is this conditional probability that directly mea-m'cror"."d""“.1 accuracy for' our anaIyS|s to apply. Thus, plat-
form vibrations and mobile-terminal dynamics would man-

sures the amount of error correction which must be em-

ployed in the BB84 protocol. Figure 6 compares the nontur—date the use of closed-loop pointing and tracking. At even

bulent rests for Prob(ertit with the turbuience upper - 298 8T8 B ECr S0 L DeC B s 6 be
bound, where the latter is obtained by employing E@$) 9

and (23), respectively, in the numerator and denominator ofan.gccessmle' operatmg regime. A.QKD sift and error pro'b—
Eq. (29). Here we find, ford,=d,=5.31 cm(corresponding ability analysis for far-field operation through atmospheric

. ~ turbulence can be developed, from the extended Huygens-
to D?=10), that nonturbulent Prob(erfsift)=6.28x 103 L o .
' : F I le, but th Il be th bject of th
whenng=0.5, and it equals 3.2610 2 whenng=1.0. The resnel principie, but this will be the subject ot another

corresponding turbulence upper bounds are 8.06 3 and paper
4.20x 10" 3. Thus, the presence of turbulence causemost
28% and 39% increases in conditional error probability at
theseng values. This work was sponsored by the Department of the Air
Some final comments are now in order. We have usedrorce under Air Force Contract No. F19628-00-C-0002.
near-field power transfer analysis to obtain bounds on the sifDpinions, interpretations, conclusions, and recommendations
and error probabilities of a free-space BB84 QKD systemare those of the author and are not necessarily endorsed by
These bounds show that turbulence effects will be quiteéhe United States Air Force.

Prolerror)

Proly erroi sift) EW'
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