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Near-field turbulence effects on quantum-key distribution

Jeffrey H. Shapiro
Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139

~Received 27 September 2002; published 24 February 2003!

Bounds on average power transfer over a near-field optical path through atmospheric turbulence are used to
deduce bounds on the sift and error probabilities of a free-space quantum-key distribution system that uses the
Bennett-Brassard 1984~BB84! protocol. It is shown that atmospheric turbulence imposes at most a modest
decrease in the sift probability and a modest increase in the conditional probability of error given that a sift
event has occurred.
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I. INTRODUCTION

Quantum-key distribution~QKD! has developed from the
original proposal of Bennett and Brassard@1# into a technol-
ogy that is on the verge of commercial viability. For mo
applications, the propagation medium of choice for QKD
low-loss optical fiber; see Ref.@2# for a number of experi-
mental demonstrations of such fiber-based systems. On
other hand, there are a variety of QKD scenarios, such
communication involving mobile terminals, for which line
of-sight optical propagation through the atmosphere mus
used. So-called free-space QKD systems, operating betw
terrestrial terminals separated by as much as 10 km, h
been demonstrated@3#, although the term free-space QKD
really a misnomer in this regard. In particular, there are n
trivial impairments—arising from molecular, aerosol, a
turbulence effects—over atmospheric paths that would
be encountered were the propagation through vacuum,
through free space. Nevertheless, in keeping with exis
terminology we shall use free-space QKD to refer to syste
operating over atmospheric paths, reserving the term vac
propagation for cases in which there are no atmosphe
whatsoever.

Previous work on free-space QKD has not adequately
lineated the effects of atmospheric turbulence, viz., the r
dom refractive-index variations that accompany turbul
mixing of air parcels with;1 K temperature differences
Papers describing experimental systems comment on the
pact of turbulence-induced scintillation@3#, without quanti-
fying its effects. A theoretical paper assessing the viability
free-space QKD@4# draws upon well-established statistic
results for the phase and log-amplitude fluctuations produ
by propagation through turbulence@5#, but does not directly
address the resulting QKD sift and error probabilities. Der
ing upper and lower bounds on these probabilities is thus
main goal of the present paper. Although a great dea
known about optical communication error probabilities f
the turbulent channel@6#, these studies differ from the free
space QKD scenario in two respects. First, a conventio
optical communication transmitter for the atmospheric ch
nel produces sufficient photon flux to ensure an extrem
low error probability~say between 1029 and 1026), whereas
a QKD transmitter constrains itself to a very low photon fl
to preclude multiphoton security attacks and hence suffer
appreciable error probability (;1022). Second, a conven
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tional atmospheric optical communication system is typica
configured for far-field operation, to minimize pointing o
tracking requirements, whereas a free-space QKD sys
should operate in the near field, to maximize its key rate
follows that our treatment of the sift and error probabiliti
for free-space QKD will differ, in significant respects, fro
prior work on optical communication through atmosphe
turbulence. Indeed, the lognormal-fading analyses that do
nate previous treatments of the turbulent atmospheric ch
nel play no role in our near-field QKD study.

The remainder of this paper is organized as follows.
Sec. II we describe the BB84 QKD system whose sift a
error probabilities are to be determined. In Sec. III we ap
the normal-mode decomposition for propagation through
bulence @7# to obtain bounds on these probabilities. W
conclude, in Sec. IV, with a numerical example and so
discussion.

II. BB84 FREE SPACE QKD SYSTEM

The QKD system we consider uses a line-of-sight opti
link to connect a transmitter~Alice, shown in Fig. 1! with a
receiver~Bob, shown in Fig. 2!. On each bit interval, Alice
chooses randomly between two linear polarization bas
0°/90° and745°, which we will denote1 and3, respec-
tively. Having chosen a basis, she sends a random bit va
0 or 1, using the coding

0→H 0° if 1 was chosen

245° if 3 was chosen,
~1a!

1→H 90° if 1 was chosen

145° if 3 was chosen.
~1b!

Bob’s receiver uses a passive 50/50 beam splitter to cr
inputs for a pair of polarization analysis systems—one
the 1 basis and one for the3 basis—that employ identica
single-photon avalanche photodiodes~APDs!, each of quan-
tum efficiencyh @11#. For a single photon arriving at Bob’
receiver, this passive arrangement amounts to a ran
choice between the1 and the3 measurement bases.

Let $N0° ,N90° ,N245° ,N145°% denote the photon count
from the four APDs during a single bit interval. Bob has
detection event whenN0°1N90°1N245°1N145°51, i.e.,
when exactly one of his detectors registers a count. In
©2003 The American Physical Society09-1
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FIG. 1. Block diagram of a single-laser QKD transmitter~Alice!. The laser output is a stream of linearly polarized pulses. T
polarization controllers are driven by a pair of random binary sequences. The first sequence determines the sequence of polariz
that will be sent:150°/90° or35745°. The second sequence determines the bit value to be sent, according to the coding rule g
Eq. ~1!. The attenuator reduces the transmitter’s output tonS photons, on average, per bit interval.
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BB84 protocol, Bob discloses to Alice the sequence of
intervals and associated measurement bases for which h
detections. Alice then informs Bob which detections o
curred in bases coincident with those that she used. Thes
thesift events, i.e., bit intervals in which Bob has a detect
andhis count has occurred in the same basis that Alice u
For example, if Alice sent her bit value as a 90°-polariz
laser pulse, then a sift event means that Bob had dete
exactly one count from his four detectors, withN0°51 or
N90°51. An error event is a sift event in which Bob decode
the incorrect bit value. For example, if Alice sent her
value as a 90°-polarized laser pulse, then an error e
means that Bob had a sift in whichN0°51 occurred. Once
sift events have been identified, the remainder of the BB
protocol—which shall not concern us in this paper—is st
dard. Alice and Bob follow a prescribed set of operations
identify errors in their sifted bits, correct these errors, a

FIG. 2. Block diagram of a QKD receiver~Bob!. IF, interference
filter, provides spectral discrimination against background light.
50, ordinary beam splitter, provides a passive, random choic
polarization-analysis basis (1 or 3) for a single photon. HWP,
half-wave plate, converts3 basis into1 basis. PBS, polarizing
beam splitter. FS, field stop, provides spatial-mode discrimina
against background light. APD, single-photon~Geiger mode! ava-
lanche photodiode.
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apply sufficient privacy amplification to deny useful key i
formation to any potential eavesdropper~Eve!. At the end of
the full QKD procedure, Alice and Bob have a shared on
time pad with which they can communicate in complete
curity. For a given level of privacy amplification~security!,
the principal figure-of-merit for the BB84 QKD system is i
key rate, i.e., the number of one-time pad bits/sec that A
and Bob produce. Key rate decreases with decreasing
probability and increasing error probability. Our objective
to determine the degree to which turbulence affects th
probabilities@12#.

We shall assume that Alice transmits an appropriately
larized laser signal pulse with an average photon numbe
nS to represent her bit value. Bob’s receiver will collect
random fractiong of the transmitted photons owing to th
combined effects of diffraction, atmospheric turbulence, a
~absorption-plus-scattering induced! extinction@13#. In addi-
tion, Bob’s receiver will collectnB background photons pe
polarization, on average, and each of his detectors will
subject to a dark-current-equivalent average photon num
of nD . Let x,y be dummy variables each taking on the po
sible values$0°,90°,245°,145°%. We then have the fol-
lowing statistics for the APD counts. Given that Alice sen
an x-polarized signal and given the value ofg, the counts
$N0° ,N90° ,N245° ,N145°% are statistically independent Pois
son random variables@8# whose conditional means are@14#,

E~Nyux sent,g!

55
h~nSg/21nN! for y5x

hnN for yÞx, with x,yP1

hnN for yÞx, with x,yP3

h~nSg/41nN! for xP1 and yP3

h~nSg/41nN! for xP3 and yP1,

~2!

wherenN[nB/21nD is the average number of noise~back-
ground light plus dark-current-equivalent! photons reaching
each detector. These conditional means presume pe
alignment between Alice’s and Bob’s polarization bases, a
perfect polarization separation by the polarizing beam sp
ters in Bob’s receiver.
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NEAR-FIELD TURBULENCE EFFECTS ON QUANTUM- . . . PHYSICAL REVIEW A 67, 022309 ~2003!
It is now easy to find the sift and error probabilities co
ditioned on knowledge ofg:

Prob~siftug!5h~nSg/212nN!e2h(nSg14nN), ~3!

Prob~errorug!5hnNe2h(nSg14nN). ~4!

To obtain the unconditional sift and error probabilities w
need to average the preceding results usingp(g), the prob-
ability density for the capture fractiong:

Prob~sift!5E
0

1

dg p~g!Prob~siftug!, ~5!

Prob~error!5E
0

1

dgp~g!Prob~errorug!. ~6!

III. NORMAL-MODE DECOMPOSITION AND
PROBABILITY BOUNDS

The capture fractiong is obtainable from the extende
Huygens-Fresnel principle. Suppose that Alice transmit
normalized spatial beam patternj0(rW ) from a diameter-d1
circular exit pupilR1 in thez50 plane, and that Bob collect
the light received from Alice within a diameter-d2 entrance
pupil R2 in thez5L plane that is coaxial withR1. The field
pattern jL(rW 8) generated in thez5L plane from Alice’s
transmission ofj0(rW ) satisfies@6#,

jL~rW 8!5E
R1

drW j0~rW !
exp~ jkL1 jkurW 2rW 8u2/2L !

j lL

3exp@x~rW 8,rW !1 j f~rW 8,rW !#exp~2aL/2!. ~7!

In this equation, the fraction term within the integrand is t
vacuum-propagation Green’s functionhL

o(rW 82rW ) for mono-
chromatic~wavelengthl, wave numberk52p/l), paraxial
diffraction from z50 to z5L. The x and f terms account
for the stochastic log-amplitude and phase fluctuations,
spectively, imposed by atmospheric turbulence. Thus,

hL~rW 8,rW ![hL
o~rW 82rW !exp@x~rW 8,rW !1 j f~rW 8,rW !#, ~8!

is the Green’s function forz50 to z5L propagation through
clear turbulent air, i.e., atmospheric propagation in the
sence of extinction. The remaining exponential term in
Eq. ~7! integrand accounts for extinction, viz., the loss tha
due to absorption and scattering. Note that we have assu
this loss to be uniformly distributed along thez50 to z5L
path with extinction coefficienta, although a nonuniform
distribution is easily accommodated@15#. Within the weak-
perturbation ~Rytov! regime, x(rW 8,rW ) and f(rW 8,rW ) are
jointly Gaussian random fields with known first and seco
moments@6#.

With j0(rW ) normalized to satisfy

E
R1

drW uj0~rW !u251, ~9!
02230
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the capture fractiong is found from Eq.~7! via

g5E
R2

drW 8ujL~rW 8!u2. ~10!

Let us introduce the singular value~normal-mode! decompo-
sition of Green’s functionhL(rW 8,rW ) @7#,

hL~rW 8,rW !5 (
n51

`

Amnfn~rW 8!Fn* ~rW !

for rW PR1 and rW 8PR2 , ~11!

where 1>m1>m2>m3>•••>0, and $Fn(rW ) % and

$fn(rW 8)% are complete orthonormal~CON! function sets on
R1 and R2, respectively. The eigenvalues$mn%, the input
eigenfunctions $Fn(rW )% and the output eigenfunction

$fn(rW 8)% are, in general, random quantities, because
have made a singular value decomposition of a stocha
Green’s function. For future use, we also introduce the c
responding decomposition of the vacuum-propagat
Green’s function, i.e.,

hL
o~rW 82rW !5 (

n51

`

Amn
ofn

o~rW 8!Fn
o* ~rW !,

for rW PR1 and rW 8PR2 , ~12!

with 1>m1
o>m2

o>m3
o
•••>0, and$Fn

o(rW )%, $fn
o(rW 8)% CON

on R1 andR2, respectively. Here, of course, the eigenvalu
and eigenfunctions are deterministic, as there is no rand
ness in vacuum propagation.

In QKD we are interested in maximizing the capture fra
tion g. From the singular value decomposition ofhL(rW 8,rW )
we see thatg<m1e2aL prevails, with equality whenj0(rW )
5F1(rW ). In general, such an input distribution can only
achieved by adaptive optics techniques, although there
special cases for whichF1(rW ) is nonrandom. Because w
are interested in the ultimate limits set by turbulence on
sift and error probabilities, we shall assume that Alice is a
to employ the optimum field pattern in her transmitter, ev
if that calls for adaptive optics. To find the unconditional s
and error probabilities for this optimum transmitter, we no
must find the statistics ofm1, the maximum eigenvalue o
the turbulent atmosphere’s singular value decomposition.
near-field propagation, determining these statistics is a
midable task. Thus we shall content ourselves with ea
derived bounds onE(m1), the average value of this eigen
value. Results are available@9#, however, for the free-spac
eigenvaluem1

o , which will allow us to compare our turbu
lence bounds on the sift and error probabilities with th
nonturbulent~vacuum propagation attenuated by extinctio!
counterparts.

For both vacuum and turbulent propagation paths, we
distinguish the existence of far-field and near-fieldR1-to-R2
power transfer regimes according to whether their respec
eigensums,
9-3
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D f
o[E

R1

drW E
R2

drW 8uhL
o~rW 82rW !u25 (

n51

`

mn
o ~13!

and

D f[E
R1

drW E
R2

drW 8uhL~rW 8,rW !u25 (
n51

`

mn , ~14!

are much less than~far field! or much greater than~near
field! unity @7#. In the far field, m1

o'D f
o!1 and m1'D f

!1 prevail, indicating, in each case, that there is only
single input mode that couples appreciable power fromR1 to
R2. In the near field, there are'D f

o near-unity vacuum-
propagation eigenvalues and'D f near-unity turbulent-
propagation eigenvalues, corresponding, in each case, t
number of pixels that theR2 pupil could resolve withinR1

@16#. From Eqs.~7! and ~13! we have thatD f
o equals the

Fresnel number product of theR1 andR2 pupils,

D f
o5S pd1d2

4lL D 2

, ~15!

and the statistics of the log-amplitude fluctuationx(rW 8,rW )
imply that E(D f)5D f

o @7#. This last result yields the uppe
bound

E~m1!<mUB[min~1,D f
o!, ~16!

we shall also need a lower bound onE(m1). BecauseE(m1)
is the maximum average power transfer achievable over
turbulentR1-to-R2 path, it is lower bounded by the averag
power transfer of any normalized input functionj0(rW ). As
discussed in Ref.@7#, the normalized focused beam,

j0~rW !5A 4

pd1
2
exp~2 jkurW u2/2L ! for rW PR1 , ~17!

is a good choice in this regard, leading to the lower boun

E~m1!>mLB[E
0

1

dx~8AD f
o/p!exp@2D~d1x!/2#

3~cos21~x!2xA12x2!J1~4xAD f
o!, ~18!

where

D~r!51.09k2Cn
2Lr5/3 ~19!

is the spherical-wave wave structure function withCn
2 being

the turbulence-strength constant along the propagation
@17#, and J1(•) being the first-order Bessel function of th
first kind.

It is now a simple matter to obtain the desired results
the unconditional sift and error probabilities. We shall a
sume that Alice employs the optimum normalized spa
beam pattern at her transmitter:j0(rW )5F1

o(rW ) for the case

of nonturbulent propagation, andj0(rW )5F1(rW ) for the case
02230
a

the

e

th

r
-
l

of atmospheric propagation, recognizing that the latter m
require the use of adaptive optics. Vacuum propagation
fers no fading, whence

Prob~sift!5~h/2!~nSm1
oe2aL14nN!e2h(nSm1

oe2aL14nN),
~20!

Prob~error!5hnNe2h(nSm1
oe2aL14nN), ~21!

for nonturbulent propagation. Moreover, becausef (x)
[xe2x is a convex function for 0<x,2 whose derivative is
positive for 0<x,1, it follows that,

Prob~sift!<~h/2!@nSmUBe2aL14nN#e2h(nSmUBe2aL14nN)

~22!

and

Prob~sift!>h2nNe2h4nN@12mLB#1~h/2!~nSe2aL14nN!

3e2h(nSe2aL14nN)mLB , ~23!

for atmospheric propagation, under the condition th
h(nSe2aL14nN),1. Likewise, becauseg(x)5e2x is a
concave function with a negative derivative forx>0, we can
show that

Prob~error!>hnNe2h[nSmUBe2aL14nN] ~24!

and

Prob~error!<hnNe2h4nN@12mLB#

1hnNe2h(nSe2aL14nN)mLB . ~25!

Although these bounds apply in both the far field and
near field, our primary interest is in the near-field regim
whereinD f

o>1.

FIG. 3. Upper bound on average of maximum turbulence eig
value mUB ~curve A), vacuum-propagation maximum eigenvalu
~curve B), and lower bound on average of maximum turbulen
eigenvaluemLB ~curveC), versus Fresnel number productD f

o . The
mLB plot assumesd15d2 operation in asx

250.1 scintillation propa-
gation environment.
9-4
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FIG. 4. Sift probability versus pupil diamete
for equal aperture diameters,d15d2: ~a! nS

50.5, ~b! nS51.0. In both~a! and~b! curveA is
the sift-probability upper bound for the turbulen
channel, curveB is the sift probability for the
nonturbulent case, and curveC is the sift-
probability lower bound for the turbulent chan
nel. The turbulent cases assume operation in
sx

250.1 propagation environment.
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IV. EXAMPLE AND DISCUSSION

In this section we shall instantiate the bounds Eqs.~22!–
~25!, and compare them with the exact results for nontur
lent propagation, namely, Eqs.~20! and ~21!. In all that fol-
lows we shall assume operation atl50.7 mm wavelength,
with a52 dB/km, L51 km, h50.5, nB51023, and nD
51026. The h and nD values are consistent with availab
silicon Geiger-mode APD technology at this waveleng
with a T51 ns transmitter pulse duration. ThenB value is in
the range of typical daytime operation at this wavelen
using a receiver field of view that is ten times the diffracti
limit. The 2 dB/km extinction coefficient corresponds to re
sonably clear weather—visibility roughly 10 km. For the tu
bulence cases, we shall employ a uniformCn

252
310214 m22/3 turbulence distribution along the propagatio
path, representing moderate turbulence for a near-gro
path.

We begin our calculations by examining the behavior
eigenvalue bounds,mLB and mUB , as compared to the
vacuum-propagation eigenvalue,m1

o . Figure 3 plots all three
of these quantities versus the Fresnel number productD f

o

under the assumption that thed15d2, i.e., that the transmi
and receive apertures have equal diameters. Interesti
whereasmUB only depends onD f

o , and the same is known t
be true@9# for m1

o , the equal-diameter case provides a wor
case lower bound onE(m1) for a given value ofD f

o @7#. This
is becausemLB is an increasing function of decreasingd1 at
constantD f

o andatmospheric reciprocity@10# can be used to
show that
02230
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E~m1!>mLB8 [E
0

1

dx~8AD f
o/p!exp@2D~d2x!/2#

3@cos21~x!2xA12x2#J1~4xAD f
o!. ~26!

So, because the symmetric (d15d2) case may be the mos
convenient in practice, we shall limit our consideration
this worst-case scenario. It is then worth noting that

D~r!551.0sx
2~D f

o!5/12r5/3 ~27!

whend15d2, where

sx
250.124Cn

2k7/6L11/6 ~28!

is the spherical-wave log-amplitude variance, viz., the sc
tillation strength. For our assumed parameter values,sx

2

50.1 prevails.
Figure 3 clearly exhibits near-field characteristics,m1

o

→1 and 1>E(m1)>mLB→1 asD f
o→`. Applying these ei-

genvalue results to the QKD sift and error probabilities
obtain the plots shown in Figs. 4 and 5, respectively. Th
figures demonstrate thatsx

250.1 scintillation has a very
modest effect on the sift and error probabilities in worst-ca
~equal aperture! near-field operation. In particular, suppo
that d15d255.31 cm, so thatD f

o510 for l50.7 mm and
L51 km. Here we find that the nonturbulent Prob(si
50.068 as compared to the turbulence lower bound of 0.
whenns50.5, and Pr(sift)50.115 for the nonturbulent cas
versus a turbulence lower bound of 0.093 whennS51.0. In
FIG. 5. Error probability versus pupil diameter for equal aperture diameters,d15d2: ~a! nS50.5, ~b! nS51.0. In both~a! and~b! curve
A is the error-probability upper bound for the turbulent channel, curveB is the error probability for the nonturbulent case, and curveC is the
error-probability lower bound for the turbulent channel. The turbulent cases assume operation in asx

250.1 propagation environment.
9-5
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other words, atD f
o510, the near-field sift probability in the

presence of turbulence isat least 80% of its value in the
absence of turbulence. Although similar comments can
made, from Fig. 5, comparing the near-field error probab
ties in the absence and presence of turbulence, it is m
interesting to consider the conditional probability of err
given that a sift event has occurred,

Prob~errorusift![
Prob~error!

Prob~sift!
, ~29!

because it is this conditional probability that directly me
sures the amount of error correction which must be e
ployed in the BB84 protocol. Figure 6 compares the non
bulent results for Prob(errorusift) with the turbulence uppe
bound, where the latter is obtained by employing Eqs.~25!
and ~23!, respectively, in the numerator and denominator
Eq. ~29!. Here we find, ford15d255.31 cm~corresponding
to D f

o510), that nonturbulent Prob(errorusift)56.2831023

whennS50.5, and it equals 3.1531023 whennS51.0. The
corresponding turbulence upper bounds are 8.0631023 and
4.2031023. Thus, the presence of turbulence causesat most
28% and 39% increases in conditional error probability
thesenS values.

Some final comments are now in order. We have u
near-field power transfer analysis to obtain bounds on the
and error probabilities of a free-space BB84 QKD syste
These bounds show that turbulence effects will be qu

FIG. 6. Conditional probability of error, given that a sift eve
has occurred, versus pupil diameter for equal aperture diame
d15d2. Curve A, upper bound on Pr(errorusift) for the turbulent
channel whennS50.5; curve B, nonturbulent Pr( errorusift) when
nS50.5; curve C, upper bound on Pr(errorusift) for the turbulent
channel whennS51.0; and curve D nonturbulent Pr(errorusift)
whennS51.0. The turbulent cases assume operation in asx

250.1
propagation environment.
es
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modest in the near-field regime. In this regard, it is import
to note how conservative our results are. First of all, E
~23! and~25!—which determine our upper bound on the co
ditional probability of error given that a sift event ha
occurred—are obtained by assigning the worst-case p
ability density,

p~z!5@12mLB#d~z!1mLBd~z21!, ~30!

where d(•) is the unit impulse~Dirac d) function, to the
focused-beam power transfer through the turbulence, viz

z[E
R2

drW 8U E
R1

drWA 4

pd1
2
e2 jkurW u2/2LhL~rW 8,rW !U2

. ~31!

The actualp(z) will not be concentrated atz50,1, hence it
will have a lower variance than that of Eq.~30!, leading to a
higher value for the sift probability and a lower value for th
error probability for the same value ofmLB5E(z). More-
over, although we indicated that adaptive optics will, in ge
eral, be required to achieve optimumR1-to-R2 power trans-
fer over a turbulent path, our bounds donot use adaptive
optics. In particular, the performance results we have p
sented apply to a nonadaptive system that employs the
cused beam pattern given in Eq.~17!. Thus, with the use of
adaptive optics a higher average capture fraction t
mLBe2aL should be achievable, bringing the performance
turbulence even closer to that of the nonturbulent case@18#.
Finally, we must recognize that the near-field regime will n
encompass all likely free-space QKD applications. If we ta
D f

o510 atl50.7 mm as our target near-field configuratio
then path lengths as long asL520 km can be reached with
d15d2<24 cm. We should note, however, that focus
beams of this diameter and wavelength require pointing
microradian accuracy for our analysis to apply. Thus, p
form vibrations and mobile-terminal dynamics would ma
date the use of closed-loop pointing and tracking. At ev
longer path lengths—such as those needed for QKD betw
a satellite and a ground terminal—the near-field ceases t
an accessible operating regime. A QKD sift and error pro
ability analysis for far-field operation through atmosphe
turbulence can be developed, from the extended Huyge
Fresnel principle, but this will be the subject of anoth
paper.
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@11# We will neglect optics losses within Bob’s receiver; they c

be accounted for by regardingh as the overall detection effi
ciency, i.e., the product of optics transmission and dete
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@12# We could also address the detection probability, but, beca
Bob’s receiver makes a random polarization-basis choice
each photon it measures, the detection probability is exa
twice the sift probability.
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@13# Because Bob’s receiver will employ a narrow field of view—
minimize background light shot noise—it will collect only th
turbulence-modified extinguished direct beam from Alice
transmitter, i.e., no scattered light will be collected. Moreov
for bit durations that are appreciably shorter than 1 ms a
appreciably longer than 1 ps, we can neglect time-depend
fading and multipath spread, and, because atmospheric tu
lence is nondepolarizing, we then have that attenuation by
capture fractiong is the only propagation effect incurred b
Alice’s transmitted pulse en route to Bob’s receiver.

@14# By assuming conditionally-Poisson statistics we are ignor
the dead-time and after-pulsing limitations that are enco
tered with Geiger-mode APDs. These effects set a minim
value for the bit-interval duration, and preclude detection
more than one photon during such an interval. Conditiona
Poisson statistics can be used to analyze such a detecto
replacingNx with Nx8 in our definitions of the detection, sif
and error events, whereNx850 if Nx50, and Nx851 if Nx

>1, for xP$0°,90°,245°, 45°%. We shall employ the
conditionally-Poisson statisticswithout such a replacement
i.e., we are assuming a multiphoton detection capability
each detection port in Fig. 2.

@15# A nonuniform distribution of extinction loss would mea
exp(2aL/2) should be replaced with exp@2*0

Ldza(z)/2# in Eq.
~7!, wherea(z) is thez-dependent extinction coefficient alon
the path from the transmitter to the receiver.

@16# Adaptive optics would, in general, be required for the turbule
case to achieve this resolution.

@17# For simplicity, we have assumed a uniform turbulence dis
bution from z50 to z5L. For a nonuniform distribution,
1.09Cn

2L in Eq. ~19! should be replaced with 2.91*0
LdzCn

2(z)
3(12z/L)5/3.

@18# It is worth mentioning that an adaptive optics QKD impleme
tation will require pilot-beam transmission to provide a stro
signal for atmospheric wave-front sensing.
9-7


