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Teleportation of a Bose-Einstein condensate state by controlled elastic collisions
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A protocol for teleportation of the state of a Bose-Einstein condensate trapped in a three-well potential is
developed. The protocol uses hard-sphere cross collision between the condensate modes as a means of gener-
ating entanglement. As Bell state measurement, it is proposed that a homodyne detection of the condensate
quadrature is performed through Josephson coupling of the condensate mode to another mode in a neighboring
well.
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I. INTRODUCTION

Teleportation of quantum states, proposed by Ben
et al. @1#, was first realized for light polarization states@2#,
owing to the possibility of generating nonlocal entanglem
between parties~the quantum channel! in this system@3#.
Although many proposals and experimental realizations
nonlocal entanglement of massive particles~atoms and ions!
exist @4#, up to now there has been no experimental evide
of the teleportation of massive particles state@5#. Indeed,
nonlinear interactions~a valuable resource for determinist
generation of entanglement! are always present in many
particle systems. An interesting question then arises—
what extent can the teleportation protocol be applied to m
sive many-particle systems? A strong candidate for mas
particle state teleportation is the condensate state of a m
field, where nonlinear interactions appear quite naturally
elastic collisions@6#.

In this paper we propose an experimental protocol
teleportation@1# of mode states of an atomic Bose-Einste
condensate~BEC! trapped in an optical lattice potential, b
using controllable elastic collisions and Josephson coup
@7# between modes for both the quantum channel forma
and measurement stage. Elastic collisions are a fundam
resource for both the formation of the entanglement and
parity operations needed to correct the teleported state.
the measurement stage, we propose a balanced homo
detection of the BEC modes quadratures, valid for a sm
condensate. By measuring the difference of population
two condensate modes~the central mode and a referen
mode! interacting via Josephson coupling the central mo
quadrature is determined.

This paper is organized as follows. In Sec. II we pres
the model for three interacting condensate modes trappe
a three-well potential. In Sec. III we propose the telepor
tion protocol using controlled collisions as a means to g
erate entanglement. In Sec. IV we turn to the measurem
stage, presenting a scheme of homodyne detection of
BEC phase. In Sec. V we present the operations of parity
displacement needed in order to correct to the required s
the state of the condensate mode at the receiver statio
Sec. VI we present a physical implementation of the c
trolled collision on optical lattices. In Sec. VII a discussion
given.
1050-2947/2003/67~2!/022307~7!/$20.00 67 0223
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II. MODEL

The observation of BECs of diluted trapped neutral ato
@8# and the recent achievement of all-optical confinemen
a BEC @9# and condensation on a microelectronic chip@10#
have stimulated a large research program on BEC of dilu
neutral atom gases. Of particular interest is the study o
BEC in a confining potential. In Ref.@11# the dynamics of a
BEC in a double-well potential was modeled. In that mod
coherent oscillations due to tunnelling~Josephson-like cou
pling! @7# between the two wells are suppressed when
number of atoms exceeds a critical value~self-trapping!. In
fact, the barrier separation between the two wells has a c
tral role as it determines whether the Josephson coup
between modes is negligible in contrast to cross collisio
when the wave functions of the two modes considera
overlap. A dynamic process can be envisaged where the
well barrier is lowered and raised back adiabatically, su
that the elastic collisions leave the two modes in an
tangled state@12#—a hallmark of teleportation protocols
This is the mechanism we focus on here. We extensively
controlled collisions between condensate modes, by adiab
cally turning off and on the potential barriers in an optic
lattice potential, in order to teleport the state of one cond
sate mode, to another mode, located inside the trap, but
localized from the first one. This sequential process is
picted in Fig. 1. Initially we describe the general approa
for entanglement generation and measurement and at the
we give a specific but clarifying physical implementation
the time varying potential, for optical lattices.

Extending the model in Ref.@11#, we consider a BEC
trapped in a symmetric three-well single-particle poten
V(r ) with minima atr 1 , r 2, andr 3 disposed along thez axis.
We assume that the three lowest states of the potentia
closely spaced and well separated from its higher levels,
that many-particle interactions do not significantly chan
this situation, to allow a three-mode approximation. The p
tential expanded around each minimum is

V~r !5Ṽ(2)~r2r j !1•••, j 51,2,3, ~1!

whereṼ(2)(r2r j ) is the parabolic approximation to the po
tential in the vicinity of each minimum. The normalize
©2003 The American Physical Society07-1
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M. C. de OLIVEIRA PHYSICAL REVIEW A67, 022307 ~2003!
single-particle ground stateu0(r ) of the local potential
Ṽ2(r ), with energyE0, defines the local mode solutions o
the individual wells. If the position uncertainty in the sta
u0(r ) is much less than the separation of the minima of
global potential, the overlap between the modes of each w
e, is much less than unity and the modes are approxima
orthogonal@11#. The many-body Hamiltonian describing a
atomic BEC in this potential is

H5E d3xc†~r !S 2
\

2m
¹21V~r ! Dc~r !

1
1

2

4pas\
2

m E d3rc†~r !c†~r !c~r !c~r !, ~2!

where m is the atomic mass,U054p\2a/m measures the
strength of the two-body interaction,a being thes-wave scat-
tering length,c(r ,t) andc†(r ,t) are the Heisenberg pictur
field operators, which annihilate and create atoms at posi
r , and normal ordering has been used. In the three-m
approximation the field operators are expanded in term
the local modes and the Heisenberg picture annihilation
creation operators read as

cj~ t !5E d3ruj* ~r !c~r ,t !, ~3!

so that@cj ,ck#5d jk to ordere0. With this prescription, and
retaining terms up to ordere, one arrives at two distinc
regimes.

FIG. 1. Sequential collision for entanglement formation.
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~i! If the potential wells are well separated only se
collision terms are important and the many-body Ham
tonian reduces to

H15E0~c1
†c11c2

†c21c3
†c3!1\k@~c1

†!2c1
21~c2

†!2c2
2

1~c3
†!2c3

2#, ~4!

wherek5U0/2\Ve f f , andVe f f
215*d3r uu0(r )u4 is the effec-

tive mode volume of each well. In such a situation, no cro
collisions or Josephson tunneling occur.

~ii ! If the potential wells are not well separated Joseph
tunneling @7# between neighboring wells occurs and in t
diluted atomic gas regime it prevails over cross collisio
The many-body Hamiltonian then becomes

H25E0~c1
†c11c2

†c21c3
†c3!1\

V

2
~c1

†c21c2
†c31H.c.!

1\k@~c1
†!2c1

21~c2
†!2c2

21~c3
†!2c3

2#, ~5!

where V52R/\ is the tunneling frequency between tw
minima, with

R5E d3rui* ~r !@V~r !2Ṽ(2)~r2r i !#ui 11~r !, i 51,2.

~6!

We assume that in equilibrium state, regime~i! rules out,
and the modes can be treated independently. If the ba
separating modes 2 and 3 is lowered adiabatically@dV/dt
!(E82E0)/\#, in order to avoid transitions to other state
~of energyE8), the two respective modes overlap and stro
cross collision occurs asVc52\kc2

†c2c3
†c3. When the bar-

rier is raised back adiabatically, bringing the system to
equilibrium regime, the two modes split again, but now ha
ing a nonlocal entanglement generated by the cross colli
term, over the time the two modes overlapped. In such a c
a nonlocal quantum channel would be formed between c
densate modes 2 and 3@13# as we describe in following
section.

III. TELEPORTATION PROTOCOL

The following protocol is more efficient if the condensa
modes are initially prepared in coherent states, but we m
assume a general initial state expanding it in the cohe
state basis,uca&25*d2aaaua&2 and ucb&35*d2bbbub&3,
for modes 2 and 3, respectively. The dynamics governed
H1, together with the cross collisionVc , gives for modes 2
and 3 alone
uc~ t !&5E d2ad2baabbe2(uau21ubu2)/2 (
m,n50

`
1

Am!n!
~ae2 i (E0 /\2k)te2 ikmt!m~be2 i (E0 /\2k)te2 ik(m1n)t!num&2un&3 ,

~7!

022307-2
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TELEPORTATION OF A BOSE-EINSTEIN CONDENSATE . . . PHYSICAL REVIEW A 67, 022307 ~2003!
which, for t5p/2k, turns out to be the entangled state giv
by

uF~p/k!&5
1

2E d2ad2baabb@~12 i !uae2 if&2ube2 if&3

1~11 i !u2ae2 if&2u2be2 if&3], ~8!

wheref5(E0 /\2k)/2k. Choosing properly the frequenc
of the modes (E0 /\2k) a set of approximately orthonorma
states uF j& can be generated forE0 /\5( j 11)k, j
50,1,2,3, respectively, as

uF j&5
1

2E d2ad2baabb@~12 i !u~2 i ! ja&2u~2 i ! jb&3

1~11 i !u2~2 i ! ja&2u2~ i ! jb&3]. ~9!

From now on we suppose that the condition for the gene
tion of uF0&, i.e., E0 /\5k, is met.

A simple teleportation protocol@13# based on homodyne
measurement of the condensate modes phases can be
formed. Let us say the condensate mode 1, called here
the target mode, is prepared in an unknown superpositio
the specific form@14#,

uc&T5E d2gcg~Aug&1Bu2g&), ~10!

whereA andB are constants respecting normalization con
tions. Now if the modes 1 and 2 are made to collide,
whole condensate state is left as

1

2E d2ad2bdgaabbcg$2 i ug&ua&~Aub&2Bu2b&)1ug&u

2a&~Au2b&1Bub&)1 i u2g&ua&~Au2b&2Bub&)1u2g&u

2a&~Aub&1Bu2b&)%, ~11!

a three-partite entangled state composed of four eleme
We can distinguish each element by the phase of mode 2
target. Notice that although the protocol is encoded in c
tinuous variables states, the protocol itself is discrete as o
four equiprobable outcomes are possible. Thus, after the
tinction of the target and mode 2 phases, only two bits
classical information have to be sent to the mode 3 at
receiver station.

IV. HOMODYNE DETECTION OF BEC PHASE

If a joint measurement on both modes 1 and 2 can
envisaged to distinguish the phase of each condensate m
the complete Bell state measurement is realized. Tomo
phic reconstruction of the condensate state would allow
distinction between the two different phases. Such an
proach is based on optical homodyne tomography@15#, using
an arrangement composed of an atomic beam splitter an
02230
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ideal atom counter. Here instead, we describe an alterna
scheme for phase determination similar to the optical b
anced homodyne measurement, where the Josephson
pling @7# plays the role of an atomic beam splitter. Consid
two condensate modes separated by a barrier, as in Ref.@11#.
A two-mode approximation is assumed. Neglecting cro
collision terms~once the overlap of condensate wave fun
tions is negligible! the Hamiltonian for the two modes is

H5E0~c†c1b†b!1
\V

2
~c†b1b†c!

1\k@~c†!2c21~b†!2b2#. ~12!

Defining new operators asSx5(1/2N)(c†c2b†b), Sy
5( i /2N)(c†b2cb†), Sz5(1/2N)(c†b1cb†), where N
5^c†c1b†b&, the equations for the evolution of these o
erators are

Ṡx52VSy , ~13!

Ṡy5VSx22i eVSy24eVNSxSz , ~14!

Ṡz522i eVSz14eVNSxSy , ~15!

wheree5k/V!1. A semiclassical solution forSx is given
up to first order ine by

Sx~ t !5@Sx~0!1et~2Nz0y02 ix0!#cosVt

2@Sy~0!2et~2Nz0x01 iy0!#sinVt, ~16!

valid only for eN!1, i.e., for k!V, a small number of
particles and also for a short time. To derive this solutio
the above operators are expanded asSx5(nenxn , Sy
5(nenyn , and Sz5(nenzn . Assuming initially an equal
number of atoms in both wells, the solution~16! simplifies to

Sx~ t !52Sy~0!sinVt12etNz0y0cosVt1 i ety0sinVt.
~17!

Consider the following semiclassical picture for the o
eratorSy :

^Sy&5
i

2
ubu~^c†&eiu2^c&e2 iu!52ubu^Xu2p/2&, ~18!

where the modeB was prepared in a coherent state given
b5ubueiu. It is easy to observe then that foreN!1, at t
5p/2V, Eq. ~17! gives the well-known result for balance
homodyne detection, plus a small correction,

^Sx~p/2V!&5ubu^Xu2p/2&1 i
pe

2V
^y0&, ~19!

i.e., the difference between the numbers of atoms in the
wells determines the quadrature phase of one of the ma
fields. This method is, however, sensitive to the exact de
7-3



s
e
al
it

rg
s

a

-
th

e
o

co
ir
e
ft

ed

be
io

l

an

m

e on

in
ted.
ode
Fig.
all

he
ber

de-
rent
this

ry

xis is
is is

M. C. de OLIVEIRA PHYSICAL REVIEW A67, 022307 ~2003!
mination of the reference phaseu, which for condensates i
a central problem@16#. Here it is simply assumed that th
reference phase can be determined by the experiment
With such a quadrature matter field measurement at hand
possible to distinguish between coherent states likeua& and
u2a&, which is the necessary resource to apply to both ta
and mode 2 and thus distinguish between the many state
the superposition of Eq.~11!. Note that the requirement for
small number of particles (N!V/k) avoids the regime of
self-trapping, as observed in Ref.@11#, when the approximate
solution, Eq.~16!, is no longer valid. This requirement im
poses a severe limitation of this detection method to
‘‘size’’ of the BEC to be teleported.

V. RECEIVER OPERATIONS

The two bits of classical information obtained as d
scribed above are transferred to the receiver mode 3. N
one has to apply the operations needed to transform the
densate state mode 3 in the receiver station into the requ
state. Depending on the results of the joint homodyne m
surement described above, the condensate mode 3 is le
one of the following states:

E d2bbb~Aub&1Bu2b&), ~20!

E d2bbb~Aub&2Bu2b&), ~21!

E d2bbb~Au2b&1Bub&), ~22!

2E d2bbb~Au2b&2Bub&). ~23!

In order to transform the condensate states~21!, ~22!, and
~23! into the required state~20!, operations of parity and
displacement@13#, in principle, can be realized, as describ
below.

A. Parity

A parity operation involving only atomic systems may
envisaged for a two-species BEC with the cross collis
strength given by l5UAB/2\Ve f f , where lÞk
5UAA/2\Ve f f5UBB/2\Ve f f @14#. Supposing the centra
condensate initially in the state~22!, we require to transform
it to Eq. ~20!. The auxiliary condensate is prepared in
arbitrary state expanded also in the coherent basisuc&a
5*d2jajuj&. Due to cross collision the state of this syste
at time t52p/k is
02230
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uF&ac5E d2bd2j;bbaj

3(
n

e21/2uju2

An!
~je2 i2p[(E0 /\2k)/k] !nun&a

^ ~Au2be2 i2p[(E0 /\2k1nl)/k]&

1Bube2 i2p[(E0 /\2k1nl)/k]&)c . ~24!

Now suppose a number projective measurement is mad
the auxiliary condensate, projecting it toum&. The normal-
ized conditioned state of the central condensate is

uF&c5

a^muF&ac

ATr$ua^muF&acu2% , ~25!

which for l5(E0 /\2k)5k/2 turns out to be

uF&c5E d2bbb~Aubeimp&1Bu2beimp&)c , ~26!

and now, ifm is even the central condensate mode is left
the required state, if it is not the experiment is to be repea
Thus the number of atoms in the auxiliary condensate m
determines the parity of the central condensate mode. In
2 we plot the efficiency of this process by summing over
the even number probabilities,

Peven5 (
m5even

P~m!5 (
m5even

Tr$ua^muF&acu2%, ~27!

for the auxiliary mode prepared in three distinct states. T
dashed line is for the auxiliary mode prepared in a num
state with average number of atoms^n&. As is expected in
this case, the probability of success is constantly 0.5, in
pendent of the atom number. The dotted line is for a cohe
state. We see that when the auxiliary mode is prepared in

FIG. 2. Efficiency of even number count event for the auxilia
mode prepared in number state~dashed line!, coherent state~dotted
line!, and squeezed vacuum state~solid line!. Bottom axis repre-
sents the number and coherent average number, while the top a
for the squeezing parameter of the squeezed vacuum. Right ax
for the whole process efficiency.
7-4
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TELEPORTATION OF A BOSE-EINSTEIN CONDENSATE . . . PHYSICAL REVIEW A 67, 022307 ~2003!
state the probability of success also attains the limit of 0
unless the auxiliary mode has less than one atom in ave
as it attains the vacuum state. However, the state that
sents the best efficiency is the squeezed vacuum state@6# as
depicted by the solid line in Fig. 2, by varying the squeez
parameterr in the top axis of the plot. We see that forr
<1.425 the probability of success of the event is higher th
0.5. This is probably the best situation for parity control.

B. Displacement

Now, to transform the state~21! into Eq. ~20!, we choose
a virtual displacement on the central field, defined as follo
Consider an atomic beam acting as a displacement ope
over the central mode,

DduF&c5E d2bbb$cos@ Im~d* b!#~Aub1d&2Bu2b1d&)

1 isin@ Im~db!#~Aub1d&1Bu2b1d&)%. ~28!

SupposedPR and udu!ubu. If d5( l 11/2)p/Im(b), for l
50,1,2, . . . , the central mode state is left in the require
state~but a global phase of no importance!. The displace-
ment operation can also be directly given by quadratureX
5b1b†) measurement through the homodyne detection
scribed in Sec. IV. As the parameterudu!ubu is known to be
very small, the displacement operator is given by

Dd5ei uduX'11 idX;@Dd ,X#50. ~29!

Knowing d, the measurement ofX gives the required dis
placement. The efficiency of this process is dependent u
the full knowledge of the above constants, and thus u
experimental mastering.

Rotations such as that proposed above can be realize
virtual displacement. Obviously, the state~23! can be trans-
formed into Eq.~20! by sequential applications of the dis
placement and parity operations. With this procedure,
teleportation protocol is complete. Notice, however, th

FIG. 3. Efficiency of success of operation for the auxiliary mo
prepared in a squeezed vacuum state.
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none of the above operations are unitary, being dependen
selective measurements, and thus irreversible. A figure
merit of the whole process can be given by adding the pr
ability of success of each event and dividing by the num
of equiprobable events,

P5~11Peven1PD1PevenPD!/4, ~30!

where PD , the probability of success of the displaceme
operation, is determined by the experimental control. In
right axis of Fig. 2 we compareP for the three states con
sidered above for the auxiliary mode, fixingPD51. Again
we observe that forr<1.425 the squeezed vacuum is th
best state for the auxiliary mode to be prepared. In Fig. 3
analyzeP for the squeezed vacuum by varying bothr and
PD . The efficiency decreases considerably~less than 0.3)
when the squeezing parameter is high and the displacem
process efficiency is low. But, when the squeezing param
is fixed to 0, or alternativelyPD is fixed to 1, either situation
has efficiency higher than 0.5 attaining the ideality forPD
51 andr 50, the vacuum state. This situation correspon
to an empty mode. Thus if the auxiliary mode can be initia
prepared in a vacuum state, the protocol has a high proba
ity of success.

VI. PHYSICAL IMPLEMENTATION

A specific physical implementation of the time-depende
potential can be designed, similarly to what is presented
Ref. @17# on optical lattices. Let us consider a picture of
atom driven on auJ51/2&→uJ53/2& transition by a one-
dimensional optical lattice red-detuned in one-dimensio
lin-angle-lin configuration. The optical field can be written
a superposition of opposite helicity standing waves@17,18#,

EL~z!5A2E1@2e2 iu/2cos~kLz1u/2!e1

1eiu/2cos~kLz2u/2!e2#, ~31!

for a convenient choice of relative phase between the bea
The potential for atoms in the ground state is

U~z!52
2U1

3
$2@11cosu cos~2kLz!#I

1@sinu sin~2kLz!#sz%2
\

2
gBs, ~32!

where U1 is the light shift produced by a single beam
amplitudeE1, while B is a magnetic field and$I ,s i% are the
identity and Pauli spin operators in the ground-state ma
fold. By varying u the peak-peak modulation depth of th
potential and the distance between theum51/2& and
um521/2& potential wells are changed by

Up5
4

3
U1A3cos2u11, klDz5tan21S tanu

2 D , ~33!

respectively, while changing the longitudinal component
B shifts the minima of these wells. The transverse com
nent of B breaks the degeneracy of the bipotential at po
7-5
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M. C. de OLIVEIRA PHYSICAL REVIEW A67, 022307 ~2003!
tions of linearly polarized light. By varyingu appropriately
one can design adiabatically time-dependent poten
@12,17#. By loading the optical potential with the condensa
at u5p/2, and changing it fromp/2 to 5p/2 adiabatically,
we obtain the sequential controlled collision we required,
pictured in Fig. 4. The three condensate modes should
loaded in neighboring wells in order to produce the requi
protocol.

An alternative approach can be designed much in
same way as the controlled entanglement generation
atomic ensembles of Jakschet al. @12#, with no need of a
magnetic field, but where different internal spin compone
are selected to promote the minima of the potential to m
in relation to each other. Adiabaticity here is then related
the speed of the minima displacement. This alternative
an advantage in relation to the first one, which is that
condensate modes do not need to be loaded in neighbo
wells. As long as the condensate modes 1 and 3 have
same spin component, mode 2 with an opposite compo
can be moved in relation to the other two modes effecting
required operations, despite their~mode 1 and 3! relative
position.

VII. DISCUSSION

In summary, we have speculated about teleportation
BEC state between modes in a three-well potential~over
short distances!. Hard-sphere cross collision is used as a
source to generate entanglement between modes. For th
nal state measurement, the protocol employs a homod
detection of the BEC quadrature, in which Josephson c
pling of the condensate mode to an auxiliary mode in
neighboring well plays the role of atomic beam splitter.

The teleportation protocol itself was constituted of thr

FIG. 4. Density map of them51/2 optical lattice trap potential
Bi50, while B'Þ0. Brighter zones correspond to potenti
minima, z852klz. The sequential collision path is depicted by t
numbered arrows.
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stages,~i! entanglement formation;~ii ! measurement; and
~iii ! receiver operations. In~i! we limited ourselves to the
situation of adiabatic time varying potential@dV/dt!(E8
2E0)/\# to avoid excitations to other states. In~ii ! the ho-
modyne detection of the BEC quadrature guarantees tha
(N!V/k), a well-diluted atomic gas and short time of in
teraction, a condensate mode quadrature can be determ
by the difference of atoms between the central mode and
auxiliary mode. In~iii ! parity and displacement operation
were proposed to fix the teleported state at the receiver
tion. Since those operations are dependent upon sele
measurements, the whole teleportation protocol is limited
the operations’ efficiencies. The efficiency of the parity o
eration is given by the even parity of number of atom
present in the auxiliary state, which can be higher than
once the auxiliary condensate can be prepared approxima
to a vacuum squeezed state with squeezing parametr
<1.425. Together with the virtual displacement operatio
those parity operations have their efficiency limited by t
full knowledge of the experimental parameters. Such is
case for the squeezing parameter,r, and the virtual displace-
ment d5( l 11/2)p/Im(b), for l 50,1,2, . . . . The effi-
ciency of the whole operation varies from 0.3 to 1 for
auxiliary mode prepared in the squeezed vacuum, by vary
r and the probability of success of the displacement ope
tion.

We stress that the proposed protocol is idealized in t
the above measurement processes will be very sensitiv
the presence of dissipation, such as collisions with nonc
densate atoms@19#. We expect that, together with the re
quirement of a small number of particles at the measurem
stage (N!V/k), decoherence effects impose a severe lim
tation to the ‘‘size’’ of the BEC to be teleported. The com
petition between Josephson coupling and cross collis
could also represent a limitation for the above protocol.
know that if the modes are prepared in coherent states
does not represent any problem, once the Josephson cou
just adds a phase to the state. However, for other states
may not be so. Thus the competition of those evolutio
needs to be further investigated.

As a last remark, throughout the paper we have assum
coherent basis representation for the condensate mode s
which are better adapted to our discussion. Although not
plicitly addressing coherent states for the modes, those s
could also be considered, if each mode were actually
tangled with another condensate to form an entangled co
ent state. The scheme could then proceed as described
would effectively be entanglement swapping.

Despite the idealization, we hope that the above con
erations bring some contribution to the realization of mat
field state teleportation in the near future.
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